Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[pandora-kernel.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI core. */
26
27 #include <linux/jiffies.h>
28 #include <linux/module.h>
29 #include <linux/kmod.h>
30
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fcntl.h>
38 #include <linux/init.h>
39 #include <linux/skbuff.h>
40 #include <linux/workqueue.h>
41 #include <linux/interrupt.h>
42 #include <linux/notifier.h>
43 #include <linux/rfkill.h>
44 #include <linux/timer.h>
45 #include <linux/crypto.h>
46 #include <net/sock.h>
47
48 #include <asm/system.h>
49 #include <linux/uaccess.h>
50 #include <asm/unaligned.h>
51
52 #include <net/bluetooth/bluetooth.h>
53 #include <net/bluetooth/hci_core.h>
54
55 #define AUTO_OFF_TIMEOUT 2000
56
57 static void hci_cmd_task(unsigned long arg);
58 static void hci_rx_task(unsigned long arg);
59 static void hci_tx_task(unsigned long arg);
60
61 static DEFINE_RWLOCK(hci_task_lock);
62
63 /* HCI device list */
64 LIST_HEAD(hci_dev_list);
65 DEFINE_RWLOCK(hci_dev_list_lock);
66
67 /* HCI callback list */
68 LIST_HEAD(hci_cb_list);
69 DEFINE_RWLOCK(hci_cb_list_lock);
70
71 /* HCI protocols */
72 #define HCI_MAX_PROTO   2
73 struct hci_proto *hci_proto[HCI_MAX_PROTO];
74
75 /* HCI notifiers list */
76 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
77
78 /* ---- HCI notifications ---- */
79
80 int hci_register_notifier(struct notifier_block *nb)
81 {
82         return atomic_notifier_chain_register(&hci_notifier, nb);
83 }
84
85 int hci_unregister_notifier(struct notifier_block *nb)
86 {
87         return atomic_notifier_chain_unregister(&hci_notifier, nb);
88 }
89
90 static void hci_notify(struct hci_dev *hdev, int event)
91 {
92         atomic_notifier_call_chain(&hci_notifier, event, hdev);
93 }
94
95 /* ---- HCI requests ---- */
96
97 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
98 {
99         BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
100
101         /* If this is the init phase check if the completed command matches
102          * the last init command, and if not just return.
103          */
104         if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
105                 return;
106
107         if (hdev->req_status == HCI_REQ_PEND) {
108                 hdev->req_result = result;
109                 hdev->req_status = HCI_REQ_DONE;
110                 wake_up_interruptible(&hdev->req_wait_q);
111         }
112 }
113
114 static void hci_req_cancel(struct hci_dev *hdev, int err)
115 {
116         BT_DBG("%s err 0x%2.2x", hdev->name, err);
117
118         if (hdev->req_status == HCI_REQ_PEND) {
119                 hdev->req_result = err;
120                 hdev->req_status = HCI_REQ_CANCELED;
121                 wake_up_interruptible(&hdev->req_wait_q);
122         }
123 }
124
125 /* Execute request and wait for completion. */
126 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
127                                         unsigned long opt, __u32 timeout)
128 {
129         DECLARE_WAITQUEUE(wait, current);
130         int err = 0;
131
132         BT_DBG("%s start", hdev->name);
133
134         hdev->req_status = HCI_REQ_PEND;
135
136         add_wait_queue(&hdev->req_wait_q, &wait);
137         set_current_state(TASK_INTERRUPTIBLE);
138
139         req(hdev, opt);
140         schedule_timeout(timeout);
141
142         remove_wait_queue(&hdev->req_wait_q, &wait);
143
144         if (signal_pending(current))
145                 return -EINTR;
146
147         switch (hdev->req_status) {
148         case HCI_REQ_DONE:
149                 err = -bt_to_errno(hdev->req_result);
150                 break;
151
152         case HCI_REQ_CANCELED:
153                 err = -hdev->req_result;
154                 break;
155
156         default:
157                 err = -ETIMEDOUT;
158                 break;
159         }
160
161         hdev->req_status = hdev->req_result = 0;
162
163         BT_DBG("%s end: err %d", hdev->name, err);
164
165         return err;
166 }
167
168 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
169                                         unsigned long opt, __u32 timeout)
170 {
171         int ret;
172
173         if (!test_bit(HCI_UP, &hdev->flags))
174                 return -ENETDOWN;
175
176         /* Serialize all requests */
177         hci_req_lock(hdev);
178         ret = __hci_request(hdev, req, opt, timeout);
179         hci_req_unlock(hdev);
180
181         return ret;
182 }
183
184 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
185 {
186         BT_DBG("%s %ld", hdev->name, opt);
187
188         /* Reset device */
189         set_bit(HCI_RESET, &hdev->flags);
190         hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
191 }
192
193 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
194 {
195         struct hci_cp_delete_stored_link_key cp;
196         struct sk_buff *skb;
197         __le16 param;
198         __u8 flt_type;
199
200         BT_DBG("%s %ld", hdev->name, opt);
201
202         /* Driver initialization */
203
204         /* Special commands */
205         while ((skb = skb_dequeue(&hdev->driver_init))) {
206                 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
207                 skb->dev = (void *) hdev;
208
209                 skb_queue_tail(&hdev->cmd_q, skb);
210                 tasklet_schedule(&hdev->cmd_task);
211         }
212         skb_queue_purge(&hdev->driver_init);
213
214         /* Mandatory initialization */
215
216         /* Reset */
217         if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
218                         set_bit(HCI_RESET, &hdev->flags);
219                         hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
220         }
221
222         /* Read Local Supported Features */
223         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
224
225         /* Read Local Version */
226         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
227
228         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
229         hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
230
231 #if 0
232         /* Host buffer size */
233         {
234                 struct hci_cp_host_buffer_size cp;
235                 cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
236                 cp.sco_mtu = HCI_MAX_SCO_SIZE;
237                 cp.acl_max_pkt = cpu_to_le16(0xffff);
238                 cp.sco_max_pkt = cpu_to_le16(0xffff);
239                 hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
240         }
241 #endif
242
243         /* Read BD Address */
244         hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
245
246         /* Read Class of Device */
247         hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
248
249         /* Read Local Name */
250         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
251
252         /* Read Voice Setting */
253         hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
254
255         /* Optional initialization */
256
257         /* Clear Event Filters */
258         flt_type = HCI_FLT_CLEAR_ALL;
259         hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
260
261         /* Connection accept timeout ~20 secs */
262         param = cpu_to_le16(0x7d00);
263         hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
264
265         bacpy(&cp.bdaddr, BDADDR_ANY);
266         cp.delete_all = 1;
267         hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
268 }
269
270 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
271 {
272         BT_DBG("%s", hdev->name);
273
274         /* Read LE buffer size */
275         hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
276 }
277
278 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
279 {
280         __u8 scan = opt;
281
282         BT_DBG("%s %x", hdev->name, scan);
283
284         /* Inquiry and Page scans */
285         hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
286 }
287
288 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
289 {
290         __u8 auth = opt;
291
292         BT_DBG("%s %x", hdev->name, auth);
293
294         /* Authentication */
295         hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
296 }
297
298 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
299 {
300         __u8 encrypt = opt;
301
302         BT_DBG("%s %x", hdev->name, encrypt);
303
304         /* Encryption */
305         hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
306 }
307
308 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
309 {
310         __le16 policy = cpu_to_le16(opt);
311
312         BT_DBG("%s %x", hdev->name, policy);
313
314         /* Default link policy */
315         hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
316 }
317
318 /* Get HCI device by index.
319  * Device is held on return. */
320 struct hci_dev *hci_dev_get(int index)
321 {
322         struct hci_dev *hdev = NULL;
323         struct list_head *p;
324
325         BT_DBG("%d", index);
326
327         if (index < 0)
328                 return NULL;
329
330         read_lock(&hci_dev_list_lock);
331         list_for_each(p, &hci_dev_list) {
332                 struct hci_dev *d = list_entry(p, struct hci_dev, list);
333                 if (d->id == index) {
334                         hdev = hci_dev_hold(d);
335                         break;
336                 }
337         }
338         read_unlock(&hci_dev_list_lock);
339         return hdev;
340 }
341
342 /* ---- Inquiry support ---- */
343 static void inquiry_cache_flush(struct hci_dev *hdev)
344 {
345         struct inquiry_cache *cache = &hdev->inq_cache;
346         struct inquiry_entry *next  = cache->list, *e;
347
348         BT_DBG("cache %p", cache);
349
350         cache->list = NULL;
351         while ((e = next)) {
352                 next = e->next;
353                 kfree(e);
354         }
355 }
356
357 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
358 {
359         struct inquiry_cache *cache = &hdev->inq_cache;
360         struct inquiry_entry *e;
361
362         BT_DBG("cache %p, %s", cache, batostr(bdaddr));
363
364         for (e = cache->list; e; e = e->next)
365                 if (!bacmp(&e->data.bdaddr, bdaddr))
366                         break;
367         return e;
368 }
369
370 void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
371 {
372         struct inquiry_cache *cache = &hdev->inq_cache;
373         struct inquiry_entry *ie;
374
375         BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
376
377         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
378         if (!ie) {
379                 /* Entry not in the cache. Add new one. */
380                 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
381                 if (!ie)
382                         return;
383
384                 ie->next = cache->list;
385                 cache->list = ie;
386         }
387
388         memcpy(&ie->data, data, sizeof(*data));
389         ie->timestamp = jiffies;
390         cache->timestamp = jiffies;
391 }
392
393 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
394 {
395         struct inquiry_cache *cache = &hdev->inq_cache;
396         struct inquiry_info *info = (struct inquiry_info *) buf;
397         struct inquiry_entry *e;
398         int copied = 0;
399
400         for (e = cache->list; e && copied < num; e = e->next, copied++) {
401                 struct inquiry_data *data = &e->data;
402                 bacpy(&info->bdaddr, &data->bdaddr);
403                 info->pscan_rep_mode    = data->pscan_rep_mode;
404                 info->pscan_period_mode = data->pscan_period_mode;
405                 info->pscan_mode        = data->pscan_mode;
406                 memcpy(info->dev_class, data->dev_class, 3);
407                 info->clock_offset      = data->clock_offset;
408                 info++;
409         }
410
411         BT_DBG("cache %p, copied %d", cache, copied);
412         return copied;
413 }
414
415 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
416 {
417         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
418         struct hci_cp_inquiry cp;
419
420         BT_DBG("%s", hdev->name);
421
422         if (test_bit(HCI_INQUIRY, &hdev->flags))
423                 return;
424
425         /* Start Inquiry */
426         memcpy(&cp.lap, &ir->lap, 3);
427         cp.length  = ir->length;
428         cp.num_rsp = ir->num_rsp;
429         hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
430 }
431
432 int hci_inquiry(void __user *arg)
433 {
434         __u8 __user *ptr = arg;
435         struct hci_inquiry_req ir;
436         struct hci_dev *hdev;
437         int err = 0, do_inquiry = 0, max_rsp;
438         long timeo;
439         __u8 *buf;
440
441         if (copy_from_user(&ir, ptr, sizeof(ir)))
442                 return -EFAULT;
443
444         hdev = hci_dev_get(ir.dev_id);
445         if (!hdev)
446                 return -ENODEV;
447
448         hci_dev_lock_bh(hdev);
449         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
450                                 inquiry_cache_empty(hdev) ||
451                                 ir.flags & IREQ_CACHE_FLUSH) {
452                 inquiry_cache_flush(hdev);
453                 do_inquiry = 1;
454         }
455         hci_dev_unlock_bh(hdev);
456
457         timeo = ir.length * msecs_to_jiffies(2000);
458
459         if (do_inquiry) {
460                 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
461                 if (err < 0)
462                         goto done;
463         }
464
465         /* for unlimited number of responses we will use buffer with 255 entries */
466         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
467
468         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
469          * copy it to the user space.
470          */
471         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
472         if (!buf) {
473                 err = -ENOMEM;
474                 goto done;
475         }
476
477         hci_dev_lock_bh(hdev);
478         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
479         hci_dev_unlock_bh(hdev);
480
481         BT_DBG("num_rsp %d", ir.num_rsp);
482
483         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
484                 ptr += sizeof(ir);
485                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
486                                         ir.num_rsp))
487                         err = -EFAULT;
488         } else
489                 err = -EFAULT;
490
491         kfree(buf);
492
493 done:
494         hci_dev_put(hdev);
495         return err;
496 }
497
498 /* ---- HCI ioctl helpers ---- */
499
500 int hci_dev_open(__u16 dev)
501 {
502         struct hci_dev *hdev;
503         int ret = 0;
504
505         hdev = hci_dev_get(dev);
506         if (!hdev)
507                 return -ENODEV;
508
509         BT_DBG("%s %p", hdev->name, hdev);
510
511         hci_req_lock(hdev);
512
513         if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
514                 ret = -ERFKILL;
515                 goto done;
516         }
517
518         if (test_bit(HCI_UP, &hdev->flags)) {
519                 ret = -EALREADY;
520                 goto done;
521         }
522
523         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
524                 set_bit(HCI_RAW, &hdev->flags);
525
526         /* Treat all non BR/EDR controllers as raw devices for now */
527         if (hdev->dev_type != HCI_BREDR)
528                 set_bit(HCI_RAW, &hdev->flags);
529
530         if (hdev->open(hdev)) {
531                 ret = -EIO;
532                 goto done;
533         }
534
535         if (!test_bit(HCI_RAW, &hdev->flags)) {
536                 atomic_set(&hdev->cmd_cnt, 1);
537                 set_bit(HCI_INIT, &hdev->flags);
538                 hdev->init_last_cmd = 0;
539
540                 ret = __hci_request(hdev, hci_init_req, 0,
541                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
542
543                 if (lmp_host_le_capable(hdev))
544                         ret = __hci_request(hdev, hci_le_init_req, 0,
545                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
546
547                 clear_bit(HCI_INIT, &hdev->flags);
548         }
549
550         if (!ret) {
551                 hci_dev_hold(hdev);
552                 set_bit(HCI_UP, &hdev->flags);
553                 hci_notify(hdev, HCI_DEV_UP);
554                 if (!test_bit(HCI_SETUP, &hdev->flags))
555                         mgmt_powered(hdev->id, 1);
556         } else {
557                 /* Init failed, cleanup */
558                 tasklet_kill(&hdev->rx_task);
559                 tasklet_kill(&hdev->tx_task);
560                 tasklet_kill(&hdev->cmd_task);
561
562                 skb_queue_purge(&hdev->cmd_q);
563                 skb_queue_purge(&hdev->rx_q);
564
565                 if (hdev->flush)
566                         hdev->flush(hdev);
567
568                 if (hdev->sent_cmd) {
569                         kfree_skb(hdev->sent_cmd);
570                         hdev->sent_cmd = NULL;
571                 }
572
573                 hdev->close(hdev);
574                 hdev->flags = 0;
575         }
576
577 done:
578         hci_req_unlock(hdev);
579         hci_dev_put(hdev);
580         return ret;
581 }
582
583 static int hci_dev_do_close(struct hci_dev *hdev)
584 {
585         BT_DBG("%s %p", hdev->name, hdev);
586
587         hci_req_cancel(hdev, ENODEV);
588         hci_req_lock(hdev);
589
590         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
591                 del_timer_sync(&hdev->cmd_timer);
592                 hci_req_unlock(hdev);
593                 return 0;
594         }
595
596         /* Kill RX and TX tasks */
597         tasklet_kill(&hdev->rx_task);
598         tasklet_kill(&hdev->tx_task);
599
600         hci_dev_lock_bh(hdev);
601         inquiry_cache_flush(hdev);
602         hci_conn_hash_flush(hdev);
603         hci_dev_unlock_bh(hdev);
604
605         hci_notify(hdev, HCI_DEV_DOWN);
606
607         if (hdev->flush)
608                 hdev->flush(hdev);
609
610         /* Reset device */
611         skb_queue_purge(&hdev->cmd_q);
612         atomic_set(&hdev->cmd_cnt, 1);
613         if (!test_bit(HCI_RAW, &hdev->flags)) {
614                 set_bit(HCI_INIT, &hdev->flags);
615                 __hci_request(hdev, hci_reset_req, 0,
616                                         msecs_to_jiffies(250));
617                 clear_bit(HCI_INIT, &hdev->flags);
618         }
619
620         /* Kill cmd task */
621         tasklet_kill(&hdev->cmd_task);
622
623         /* Drop queues */
624         skb_queue_purge(&hdev->rx_q);
625         skb_queue_purge(&hdev->cmd_q);
626         skb_queue_purge(&hdev->raw_q);
627
628         /* Drop last sent command */
629         if (hdev->sent_cmd) {
630                 del_timer_sync(&hdev->cmd_timer);
631                 kfree_skb(hdev->sent_cmd);
632                 hdev->sent_cmd = NULL;
633         }
634
635         /* After this point our queues are empty
636          * and no tasks are scheduled. */
637         hdev->close(hdev);
638
639         mgmt_powered(hdev->id, 0);
640
641         /* Clear flags */
642         hdev->flags = 0;
643
644         hci_req_unlock(hdev);
645
646         hci_dev_put(hdev);
647         return 0;
648 }
649
650 int hci_dev_close(__u16 dev)
651 {
652         struct hci_dev *hdev;
653         int err;
654
655         hdev = hci_dev_get(dev);
656         if (!hdev)
657                 return -ENODEV;
658         err = hci_dev_do_close(hdev);
659         hci_dev_put(hdev);
660         return err;
661 }
662
663 int hci_dev_reset(__u16 dev)
664 {
665         struct hci_dev *hdev;
666         int ret = 0;
667
668         hdev = hci_dev_get(dev);
669         if (!hdev)
670                 return -ENODEV;
671
672         hci_req_lock(hdev);
673         tasklet_disable(&hdev->tx_task);
674
675         if (!test_bit(HCI_UP, &hdev->flags))
676                 goto done;
677
678         /* Drop queues */
679         skb_queue_purge(&hdev->rx_q);
680         skb_queue_purge(&hdev->cmd_q);
681
682         hci_dev_lock_bh(hdev);
683         inquiry_cache_flush(hdev);
684         hci_conn_hash_flush(hdev);
685         hci_dev_unlock_bh(hdev);
686
687         if (hdev->flush)
688                 hdev->flush(hdev);
689
690         atomic_set(&hdev->cmd_cnt, 1);
691         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
692
693         if (!test_bit(HCI_RAW, &hdev->flags))
694                 ret = __hci_request(hdev, hci_reset_req, 0,
695                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
696
697 done:
698         tasklet_enable(&hdev->tx_task);
699         hci_req_unlock(hdev);
700         hci_dev_put(hdev);
701         return ret;
702 }
703
704 int hci_dev_reset_stat(__u16 dev)
705 {
706         struct hci_dev *hdev;
707         int ret = 0;
708
709         hdev = hci_dev_get(dev);
710         if (!hdev)
711                 return -ENODEV;
712
713         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
714
715         hci_dev_put(hdev);
716
717         return ret;
718 }
719
720 int hci_dev_cmd(unsigned int cmd, void __user *arg)
721 {
722         struct hci_dev *hdev;
723         struct hci_dev_req dr;
724         int err = 0;
725
726         if (copy_from_user(&dr, arg, sizeof(dr)))
727                 return -EFAULT;
728
729         hdev = hci_dev_get(dr.dev_id);
730         if (!hdev)
731                 return -ENODEV;
732
733         switch (cmd) {
734         case HCISETAUTH:
735                 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
736                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
737                 break;
738
739         case HCISETENCRYPT:
740                 if (!lmp_encrypt_capable(hdev)) {
741                         err = -EOPNOTSUPP;
742                         break;
743                 }
744
745                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
746                         /* Auth must be enabled first */
747                         err = hci_request(hdev, hci_auth_req, dr.dev_opt,
748                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
749                         if (err)
750                                 break;
751                 }
752
753                 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
754                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
755                 break;
756
757         case HCISETSCAN:
758                 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
759                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
760                 break;
761
762         case HCISETLINKPOL:
763                 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
764                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
765                 break;
766
767         case HCISETLINKMODE:
768                 hdev->link_mode = ((__u16) dr.dev_opt) &
769                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
770                 break;
771
772         case HCISETPTYPE:
773                 hdev->pkt_type = (__u16) dr.dev_opt;
774                 break;
775
776         case HCISETACLMTU:
777                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
778                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
779                 break;
780
781         case HCISETSCOMTU:
782                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
783                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
784                 break;
785
786         default:
787                 err = -EINVAL;
788                 break;
789         }
790
791         hci_dev_put(hdev);
792         return err;
793 }
794
795 int hci_get_dev_list(void __user *arg)
796 {
797         struct hci_dev_list_req *dl;
798         struct hci_dev_req *dr;
799         struct list_head *p;
800         int n = 0, size, err;
801         __u16 dev_num;
802
803         if (get_user(dev_num, (__u16 __user *) arg))
804                 return -EFAULT;
805
806         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
807                 return -EINVAL;
808
809         size = sizeof(*dl) + dev_num * sizeof(*dr);
810
811         dl = kzalloc(size, GFP_KERNEL);
812         if (!dl)
813                 return -ENOMEM;
814
815         dr = dl->dev_req;
816
817         read_lock_bh(&hci_dev_list_lock);
818         list_for_each(p, &hci_dev_list) {
819                 struct hci_dev *hdev;
820
821                 hdev = list_entry(p, struct hci_dev, list);
822
823                 hci_del_off_timer(hdev);
824
825                 if (!test_bit(HCI_MGMT, &hdev->flags))
826                         set_bit(HCI_PAIRABLE, &hdev->flags);
827
828                 (dr + n)->dev_id  = hdev->id;
829                 (dr + n)->dev_opt = hdev->flags;
830
831                 if (++n >= dev_num)
832                         break;
833         }
834         read_unlock_bh(&hci_dev_list_lock);
835
836         dl->dev_num = n;
837         size = sizeof(*dl) + n * sizeof(*dr);
838
839         err = copy_to_user(arg, dl, size);
840         kfree(dl);
841
842         return err ? -EFAULT : 0;
843 }
844
845 int hci_get_dev_info(void __user *arg)
846 {
847         struct hci_dev *hdev;
848         struct hci_dev_info di;
849         int err = 0;
850
851         if (copy_from_user(&di, arg, sizeof(di)))
852                 return -EFAULT;
853
854         hdev = hci_dev_get(di.dev_id);
855         if (!hdev)
856                 return -ENODEV;
857
858         hci_del_off_timer(hdev);
859
860         if (!test_bit(HCI_MGMT, &hdev->flags))
861                 set_bit(HCI_PAIRABLE, &hdev->flags);
862
863         strcpy(di.name, hdev->name);
864         di.bdaddr   = hdev->bdaddr;
865         di.type     = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
866         di.flags    = hdev->flags;
867         di.pkt_type = hdev->pkt_type;
868         di.acl_mtu  = hdev->acl_mtu;
869         di.acl_pkts = hdev->acl_pkts;
870         di.sco_mtu  = hdev->sco_mtu;
871         di.sco_pkts = hdev->sco_pkts;
872         di.link_policy = hdev->link_policy;
873         di.link_mode   = hdev->link_mode;
874
875         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
876         memcpy(&di.features, &hdev->features, sizeof(di.features));
877
878         if (copy_to_user(arg, &di, sizeof(di)))
879                 err = -EFAULT;
880
881         hci_dev_put(hdev);
882
883         return err;
884 }
885
886 /* ---- Interface to HCI drivers ---- */
887
888 static int hci_rfkill_set_block(void *data, bool blocked)
889 {
890         struct hci_dev *hdev = data;
891
892         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
893
894         if (!blocked)
895                 return 0;
896
897         hci_dev_do_close(hdev);
898
899         return 0;
900 }
901
902 static const struct rfkill_ops hci_rfkill_ops = {
903         .set_block = hci_rfkill_set_block,
904 };
905
906 /* Alloc HCI device */
907 struct hci_dev *hci_alloc_dev(void)
908 {
909         struct hci_dev *hdev;
910
911         hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
912         if (!hdev)
913                 return NULL;
914
915         skb_queue_head_init(&hdev->driver_init);
916
917         return hdev;
918 }
919 EXPORT_SYMBOL(hci_alloc_dev);
920
921 /* Free HCI device */
922 void hci_free_dev(struct hci_dev *hdev)
923 {
924         skb_queue_purge(&hdev->driver_init);
925
926         /* will free via device release */
927         put_device(&hdev->dev);
928 }
929 EXPORT_SYMBOL(hci_free_dev);
930
931 static void hci_power_on(struct work_struct *work)
932 {
933         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
934
935         BT_DBG("%s", hdev->name);
936
937         if (hci_dev_open(hdev->id) < 0)
938                 return;
939
940         if (test_bit(HCI_AUTO_OFF, &hdev->flags))
941                 mod_timer(&hdev->off_timer,
942                                 jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
943
944         if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
945                 mgmt_index_added(hdev->id);
946 }
947
948 static void hci_power_off(struct work_struct *work)
949 {
950         struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
951
952         BT_DBG("%s", hdev->name);
953
954         hci_dev_close(hdev->id);
955 }
956
957 static void hci_auto_off(unsigned long data)
958 {
959         struct hci_dev *hdev = (struct hci_dev *) data;
960
961         BT_DBG("%s", hdev->name);
962
963         clear_bit(HCI_AUTO_OFF, &hdev->flags);
964
965         queue_work(hdev->workqueue, &hdev->power_off);
966 }
967
968 void hci_del_off_timer(struct hci_dev *hdev)
969 {
970         BT_DBG("%s", hdev->name);
971
972         clear_bit(HCI_AUTO_OFF, &hdev->flags);
973         del_timer(&hdev->off_timer);
974 }
975
976 int hci_uuids_clear(struct hci_dev *hdev)
977 {
978         struct list_head *p, *n;
979
980         list_for_each_safe(p, n, &hdev->uuids) {
981                 struct bt_uuid *uuid;
982
983                 uuid = list_entry(p, struct bt_uuid, list);
984
985                 list_del(p);
986                 kfree(uuid);
987         }
988
989         return 0;
990 }
991
992 int hci_link_keys_clear(struct hci_dev *hdev)
993 {
994         struct list_head *p, *n;
995
996         list_for_each_safe(p, n, &hdev->link_keys) {
997                 struct link_key *key;
998
999                 key = list_entry(p, struct link_key, list);
1000
1001                 list_del(p);
1002                 kfree(key);
1003         }
1004
1005         return 0;
1006 }
1007
1008 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1009 {
1010         struct list_head *p;
1011
1012         list_for_each(p, &hdev->link_keys) {
1013                 struct link_key *k;
1014
1015                 k = list_entry(p, struct link_key, list);
1016
1017                 if (bacmp(bdaddr, &k->bdaddr) == 0)
1018                         return k;
1019         }
1020
1021         return NULL;
1022 }
1023
1024 static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1025                                                 u8 key_type, u8 old_key_type)
1026 {
1027         /* Legacy key */
1028         if (key_type < 0x03)
1029                 return 1;
1030
1031         /* Debug keys are insecure so don't store them persistently */
1032         if (key_type == HCI_LK_DEBUG_COMBINATION)
1033                 return 0;
1034
1035         /* Changed combination key and there's no previous one */
1036         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1037                 return 0;
1038
1039         /* Security mode 3 case */
1040         if (!conn)
1041                 return 1;
1042
1043         /* Neither local nor remote side had no-bonding as requirement */
1044         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1045                 return 1;
1046
1047         /* Local side had dedicated bonding as requirement */
1048         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1049                 return 1;
1050
1051         /* Remote side had dedicated bonding as requirement */
1052         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1053                 return 1;
1054
1055         /* If none of the above criteria match, then don't store the key
1056          * persistently */
1057         return 0;
1058 }
1059
1060 struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1061 {
1062         struct link_key *k;
1063
1064         list_for_each_entry(k, &hdev->link_keys, list) {
1065                 struct key_master_id *id;
1066
1067                 if (k->type != HCI_LK_SMP_LTK)
1068                         continue;
1069
1070                 if (k->dlen != sizeof(*id))
1071                         continue;
1072
1073                 id = (void *) &k->data;
1074                 if (id->ediv == ediv &&
1075                                 (memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1076                         return k;
1077         }
1078
1079         return NULL;
1080 }
1081 EXPORT_SYMBOL(hci_find_ltk);
1082
1083 struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1084                                         bdaddr_t *bdaddr, u8 type)
1085 {
1086         struct link_key *k;
1087
1088         list_for_each_entry(k, &hdev->link_keys, list)
1089                 if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1090                         return k;
1091
1092         return NULL;
1093 }
1094 EXPORT_SYMBOL(hci_find_link_key_type);
1095
1096 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1097                                 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1098 {
1099         struct link_key *key, *old_key;
1100         u8 old_key_type, persistent;
1101
1102         old_key = hci_find_link_key(hdev, bdaddr);
1103         if (old_key) {
1104                 old_key_type = old_key->type;
1105                 key = old_key;
1106         } else {
1107                 old_key_type = conn ? conn->key_type : 0xff;
1108                 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1109                 if (!key)
1110                         return -ENOMEM;
1111                 list_add(&key->list, &hdev->link_keys);
1112         }
1113
1114         BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1115
1116         /* Some buggy controller combinations generate a changed
1117          * combination key for legacy pairing even when there's no
1118          * previous key */
1119         if (type == HCI_LK_CHANGED_COMBINATION &&
1120                                         (!conn || conn->remote_auth == 0xff) &&
1121                                         old_key_type == 0xff) {
1122                 type = HCI_LK_COMBINATION;
1123                 if (conn)
1124                         conn->key_type = type;
1125         }
1126
1127         bacpy(&key->bdaddr, bdaddr);
1128         memcpy(key->val, val, 16);
1129         key->pin_len = pin_len;
1130
1131         if (type == HCI_LK_CHANGED_COMBINATION)
1132                 key->type = old_key_type;
1133         else
1134                 key->type = type;
1135
1136         if (!new_key)
1137                 return 0;
1138
1139         persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1140
1141         mgmt_new_key(hdev->id, key, persistent);
1142
1143         if (!persistent) {
1144                 list_del(&key->list);
1145                 kfree(key);
1146         }
1147
1148         return 0;
1149 }
1150
1151 int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1152                         u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1153 {
1154         struct link_key *key, *old_key;
1155         struct key_master_id *id;
1156         u8 old_key_type;
1157
1158         BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
1159
1160         old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1161         if (old_key) {
1162                 key = old_key;
1163                 old_key_type = old_key->type;
1164         } else {
1165                 key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1166                 if (!key)
1167                         return -ENOMEM;
1168                 list_add(&key->list, &hdev->link_keys);
1169                 old_key_type = 0xff;
1170         }
1171
1172         key->dlen = sizeof(*id);
1173
1174         bacpy(&key->bdaddr, bdaddr);
1175         memcpy(key->val, ltk, sizeof(key->val));
1176         key->type = HCI_LK_SMP_LTK;
1177         key->pin_len = key_size;
1178
1179         id = (void *) &key->data;
1180         id->ediv = ediv;
1181         memcpy(id->rand, rand, sizeof(id->rand));
1182
1183         if (new_key)
1184                 mgmt_new_key(hdev->id, key, old_key_type);
1185
1186         return 0;
1187 }
1188
1189 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1190 {
1191         struct link_key *key;
1192
1193         key = hci_find_link_key(hdev, bdaddr);
1194         if (!key)
1195                 return -ENOENT;
1196
1197         BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1198
1199         list_del(&key->list);
1200         kfree(key);
1201
1202         return 0;
1203 }
1204
1205 /* HCI command timer function */
1206 static void hci_cmd_timer(unsigned long arg)
1207 {
1208         struct hci_dev *hdev = (void *) arg;
1209
1210         BT_ERR("%s command tx timeout", hdev->name);
1211         atomic_set(&hdev->cmd_cnt, 1);
1212         clear_bit(HCI_RESET, &hdev->flags);
1213         tasklet_schedule(&hdev->cmd_task);
1214 }
1215
1216 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1217                                                         bdaddr_t *bdaddr)
1218 {
1219         struct oob_data *data;
1220
1221         list_for_each_entry(data, &hdev->remote_oob_data, list)
1222                 if (bacmp(bdaddr, &data->bdaddr) == 0)
1223                         return data;
1224
1225         return NULL;
1226 }
1227
1228 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1229 {
1230         struct oob_data *data;
1231
1232         data = hci_find_remote_oob_data(hdev, bdaddr);
1233         if (!data)
1234                 return -ENOENT;
1235
1236         BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1237
1238         list_del(&data->list);
1239         kfree(data);
1240
1241         return 0;
1242 }
1243
1244 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1245 {
1246         struct oob_data *data, *n;
1247
1248         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1249                 list_del(&data->list);
1250                 kfree(data);
1251         }
1252
1253         return 0;
1254 }
1255
1256 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1257                                                                 u8 *randomizer)
1258 {
1259         struct oob_data *data;
1260
1261         data = hci_find_remote_oob_data(hdev, bdaddr);
1262
1263         if (!data) {
1264                 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1265                 if (!data)
1266                         return -ENOMEM;
1267
1268                 bacpy(&data->bdaddr, bdaddr);
1269                 list_add(&data->list, &hdev->remote_oob_data);
1270         }
1271
1272         memcpy(data->hash, hash, sizeof(data->hash));
1273         memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1274
1275         BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1276
1277         return 0;
1278 }
1279
1280 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1281                                                 bdaddr_t *bdaddr)
1282 {
1283         struct list_head *p;
1284
1285         list_for_each(p, &hdev->blacklist) {
1286                 struct bdaddr_list *b;
1287
1288                 b = list_entry(p, struct bdaddr_list, list);
1289
1290                 if (bacmp(bdaddr, &b->bdaddr) == 0)
1291                         return b;
1292         }
1293
1294         return NULL;
1295 }
1296
1297 int hci_blacklist_clear(struct hci_dev *hdev)
1298 {
1299         struct list_head *p, *n;
1300
1301         list_for_each_safe(p, n, &hdev->blacklist) {
1302                 struct bdaddr_list *b;
1303
1304                 b = list_entry(p, struct bdaddr_list, list);
1305
1306                 list_del(p);
1307                 kfree(b);
1308         }
1309
1310         return 0;
1311 }
1312
1313 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
1314 {
1315         struct bdaddr_list *entry;
1316         int err;
1317
1318         if (bacmp(bdaddr, BDADDR_ANY) == 0)
1319                 return -EBADF;
1320
1321         hci_dev_lock_bh(hdev);
1322
1323         if (hci_blacklist_lookup(hdev, bdaddr)) {
1324                 err = -EEXIST;
1325                 goto err;
1326         }
1327
1328         entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1329         if (!entry) {
1330                 return -ENOMEM;
1331                 goto err;
1332         }
1333
1334         bacpy(&entry->bdaddr, bdaddr);
1335
1336         list_add(&entry->list, &hdev->blacklist);
1337
1338         err = 0;
1339
1340 err:
1341         hci_dev_unlock_bh(hdev);
1342         return err;
1343 }
1344
1345 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
1346 {
1347         struct bdaddr_list *entry;
1348         int err = 0;
1349
1350         hci_dev_lock_bh(hdev);
1351
1352         if (bacmp(bdaddr, BDADDR_ANY) == 0) {
1353                 hci_blacklist_clear(hdev);
1354                 goto done;
1355         }
1356
1357         entry = hci_blacklist_lookup(hdev, bdaddr);
1358         if (!entry) {
1359                 err = -ENOENT;
1360                 goto done;
1361         }
1362
1363         list_del(&entry->list);
1364         kfree(entry);
1365
1366 done:
1367         hci_dev_unlock_bh(hdev);
1368         return err;
1369 }
1370
1371 static void hci_clear_adv_cache(unsigned long arg)
1372 {
1373         struct hci_dev *hdev = (void *) arg;
1374
1375         hci_dev_lock(hdev);
1376
1377         hci_adv_entries_clear(hdev);
1378
1379         hci_dev_unlock(hdev);
1380 }
1381
1382 int hci_adv_entries_clear(struct hci_dev *hdev)
1383 {
1384         struct adv_entry *entry, *tmp;
1385
1386         list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1387                 list_del(&entry->list);
1388                 kfree(entry);
1389         }
1390
1391         BT_DBG("%s adv cache cleared", hdev->name);
1392
1393         return 0;
1394 }
1395
1396 struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1397 {
1398         struct adv_entry *entry;
1399
1400         list_for_each_entry(entry, &hdev->adv_entries, list)
1401                 if (bacmp(bdaddr, &entry->bdaddr) == 0)
1402                         return entry;
1403
1404         return NULL;
1405 }
1406
1407 static inline int is_connectable_adv(u8 evt_type)
1408 {
1409         if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1410                 return 1;
1411
1412         return 0;
1413 }
1414
1415 int hci_add_adv_entry(struct hci_dev *hdev,
1416                                         struct hci_ev_le_advertising_info *ev)
1417 {
1418         struct adv_entry *entry;
1419
1420         if (!is_connectable_adv(ev->evt_type))
1421                 return -EINVAL;
1422
1423         /* Only new entries should be added to adv_entries. So, if
1424          * bdaddr was found, don't add it. */
1425         if (hci_find_adv_entry(hdev, &ev->bdaddr))
1426                 return 0;
1427
1428         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1429         if (!entry)
1430                 return -ENOMEM;
1431
1432         bacpy(&entry->bdaddr, &ev->bdaddr);
1433         entry->bdaddr_type = ev->bdaddr_type;
1434
1435         list_add(&entry->list, &hdev->adv_entries);
1436
1437         BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1438                                 batostr(&entry->bdaddr), entry->bdaddr_type);
1439
1440         return 0;
1441 }
1442
1443 /* Register HCI device */
1444 int hci_register_dev(struct hci_dev *hdev)
1445 {
1446         struct list_head *head = &hci_dev_list, *p;
1447         int i, id = 0;
1448
1449         BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1450                                                 hdev->bus, hdev->owner);
1451
1452         if (!hdev->open || !hdev->close || !hdev->destruct)
1453                 return -EINVAL;
1454
1455         write_lock_bh(&hci_dev_list_lock);
1456
1457         /* Find first available device id */
1458         list_for_each(p, &hci_dev_list) {
1459                 if (list_entry(p, struct hci_dev, list)->id != id)
1460                         break;
1461                 head = p; id++;
1462         }
1463
1464         sprintf(hdev->name, "hci%d", id);
1465         hdev->id = id;
1466         list_add(&hdev->list, head);
1467
1468         atomic_set(&hdev->refcnt, 1);
1469         spin_lock_init(&hdev->lock);
1470
1471         hdev->flags = 0;
1472         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1473         hdev->esco_type = (ESCO_HV1);
1474         hdev->link_mode = (HCI_LM_ACCEPT);
1475         hdev->io_capability = 0x03; /* No Input No Output */
1476
1477         hdev->idle_timeout = 0;
1478         hdev->sniff_max_interval = 800;
1479         hdev->sniff_min_interval = 80;
1480
1481         tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
1482         tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
1483         tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
1484
1485         skb_queue_head_init(&hdev->rx_q);
1486         skb_queue_head_init(&hdev->cmd_q);
1487         skb_queue_head_init(&hdev->raw_q);
1488
1489         setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1490
1491         for (i = 0; i < NUM_REASSEMBLY; i++)
1492                 hdev->reassembly[i] = NULL;
1493
1494         init_waitqueue_head(&hdev->req_wait_q);
1495         mutex_init(&hdev->req_lock);
1496
1497         inquiry_cache_init(hdev);
1498
1499         hci_conn_hash_init(hdev);
1500
1501         INIT_LIST_HEAD(&hdev->blacklist);
1502
1503         INIT_LIST_HEAD(&hdev->uuids);
1504
1505         INIT_LIST_HEAD(&hdev->link_keys);
1506
1507         INIT_LIST_HEAD(&hdev->remote_oob_data);
1508
1509         INIT_LIST_HEAD(&hdev->adv_entries);
1510         setup_timer(&hdev->adv_timer, hci_clear_adv_cache,
1511                                                 (unsigned long) hdev);
1512
1513         INIT_WORK(&hdev->power_on, hci_power_on);
1514         INIT_WORK(&hdev->power_off, hci_power_off);
1515         setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
1516
1517         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1518
1519         atomic_set(&hdev->promisc, 0);
1520
1521         write_unlock_bh(&hci_dev_list_lock);
1522
1523         hdev->workqueue = create_singlethread_workqueue(hdev->name);
1524         if (!hdev->workqueue)
1525                 goto nomem;
1526
1527         hdev->tfm = crypto_alloc_blkcipher("ecb(aes)", 0, CRYPTO_ALG_ASYNC);
1528         if (IS_ERR(hdev->tfm))
1529                 BT_INFO("Failed to load transform for ecb(aes): %ld",
1530                                                         PTR_ERR(hdev->tfm));
1531
1532         hci_register_sysfs(hdev);
1533
1534         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1535                                 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1536         if (hdev->rfkill) {
1537                 if (rfkill_register(hdev->rfkill) < 0) {
1538                         rfkill_destroy(hdev->rfkill);
1539                         hdev->rfkill = NULL;
1540                 }
1541         }
1542
1543         set_bit(HCI_AUTO_OFF, &hdev->flags);
1544         set_bit(HCI_SETUP, &hdev->flags);
1545         queue_work(hdev->workqueue, &hdev->power_on);
1546
1547         hci_notify(hdev, HCI_DEV_REG);
1548
1549         return id;
1550
1551 nomem:
1552         write_lock_bh(&hci_dev_list_lock);
1553         list_del(&hdev->list);
1554         write_unlock_bh(&hci_dev_list_lock);
1555
1556         return -ENOMEM;
1557 }
1558 EXPORT_SYMBOL(hci_register_dev);
1559
1560 /* Unregister HCI device */
1561 int hci_unregister_dev(struct hci_dev *hdev)
1562 {
1563         int i;
1564
1565         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1566
1567         write_lock_bh(&hci_dev_list_lock);
1568         list_del(&hdev->list);
1569         write_unlock_bh(&hci_dev_list_lock);
1570
1571         hci_dev_do_close(hdev);
1572
1573         for (i = 0; i < NUM_REASSEMBLY; i++)
1574                 kfree_skb(hdev->reassembly[i]);
1575
1576         if (!test_bit(HCI_INIT, &hdev->flags) &&
1577                                         !test_bit(HCI_SETUP, &hdev->flags))
1578                 mgmt_index_removed(hdev->id);
1579
1580         if (!IS_ERR(hdev->tfm))
1581                 crypto_free_blkcipher(hdev->tfm);
1582
1583         hci_notify(hdev, HCI_DEV_UNREG);
1584
1585         if (hdev->rfkill) {
1586                 rfkill_unregister(hdev->rfkill);
1587                 rfkill_destroy(hdev->rfkill);
1588         }
1589
1590         hci_unregister_sysfs(hdev);
1591
1592         hci_del_off_timer(hdev);
1593         del_timer(&hdev->adv_timer);
1594
1595         destroy_workqueue(hdev->workqueue);
1596
1597         hci_dev_lock_bh(hdev);
1598         hci_blacklist_clear(hdev);
1599         hci_uuids_clear(hdev);
1600         hci_link_keys_clear(hdev);
1601         hci_remote_oob_data_clear(hdev);
1602         hci_adv_entries_clear(hdev);
1603         hci_dev_unlock_bh(hdev);
1604
1605         __hci_dev_put(hdev);
1606
1607         return 0;
1608 }
1609 EXPORT_SYMBOL(hci_unregister_dev);
1610
1611 /* Suspend HCI device */
1612 int hci_suspend_dev(struct hci_dev *hdev)
1613 {
1614         hci_notify(hdev, HCI_DEV_SUSPEND);
1615         return 0;
1616 }
1617 EXPORT_SYMBOL(hci_suspend_dev);
1618
1619 /* Resume HCI device */
1620 int hci_resume_dev(struct hci_dev *hdev)
1621 {
1622         hci_notify(hdev, HCI_DEV_RESUME);
1623         return 0;
1624 }
1625 EXPORT_SYMBOL(hci_resume_dev);
1626
1627 /* Receive frame from HCI drivers */
1628 int hci_recv_frame(struct sk_buff *skb)
1629 {
1630         struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1631         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1632                                 && !test_bit(HCI_INIT, &hdev->flags))) {
1633                 kfree_skb(skb);
1634                 return -ENXIO;
1635         }
1636
1637         /* Incomming skb */
1638         bt_cb(skb)->incoming = 1;
1639
1640         /* Time stamp */
1641         __net_timestamp(skb);
1642
1643         /* Queue frame for rx task */
1644         skb_queue_tail(&hdev->rx_q, skb);
1645         tasklet_schedule(&hdev->rx_task);
1646
1647         return 0;
1648 }
1649 EXPORT_SYMBOL(hci_recv_frame);
1650
1651 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1652                                                   int count, __u8 index)
1653 {
1654         int len = 0;
1655         int hlen = 0;
1656         int remain = count;
1657         struct sk_buff *skb;
1658         struct bt_skb_cb *scb;
1659
1660         if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1661                                 index >= NUM_REASSEMBLY)
1662                 return -EILSEQ;
1663
1664         skb = hdev->reassembly[index];
1665
1666         if (!skb) {
1667                 switch (type) {
1668                 case HCI_ACLDATA_PKT:
1669                         len = HCI_MAX_FRAME_SIZE;
1670                         hlen = HCI_ACL_HDR_SIZE;
1671                         break;
1672                 case HCI_EVENT_PKT:
1673                         len = HCI_MAX_EVENT_SIZE;
1674                         hlen = HCI_EVENT_HDR_SIZE;
1675                         break;
1676                 case HCI_SCODATA_PKT:
1677                         len = HCI_MAX_SCO_SIZE;
1678                         hlen = HCI_SCO_HDR_SIZE;
1679                         break;
1680                 }
1681
1682                 skb = bt_skb_alloc(len, GFP_ATOMIC);
1683                 if (!skb)
1684                         return -ENOMEM;
1685
1686                 scb = (void *) skb->cb;
1687                 scb->expect = hlen;
1688                 scb->pkt_type = type;
1689
1690                 skb->dev = (void *) hdev;
1691                 hdev->reassembly[index] = skb;
1692         }
1693
1694         while (count) {
1695                 scb = (void *) skb->cb;
1696                 len = min(scb->expect, (__u16)count);
1697
1698                 memcpy(skb_put(skb, len), data, len);
1699
1700                 count -= len;
1701                 data += len;
1702                 scb->expect -= len;
1703                 remain = count;
1704
1705                 switch (type) {
1706                 case HCI_EVENT_PKT:
1707                         if (skb->len == HCI_EVENT_HDR_SIZE) {
1708                                 struct hci_event_hdr *h = hci_event_hdr(skb);
1709                                 scb->expect = h->plen;
1710
1711                                 if (skb_tailroom(skb) < scb->expect) {
1712                                         kfree_skb(skb);
1713                                         hdev->reassembly[index] = NULL;
1714                                         return -ENOMEM;
1715                                 }
1716                         }
1717                         break;
1718
1719                 case HCI_ACLDATA_PKT:
1720                         if (skb->len  == HCI_ACL_HDR_SIZE) {
1721                                 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1722                                 scb->expect = __le16_to_cpu(h->dlen);
1723
1724                                 if (skb_tailroom(skb) < scb->expect) {
1725                                         kfree_skb(skb);
1726                                         hdev->reassembly[index] = NULL;
1727                                         return -ENOMEM;
1728                                 }
1729                         }
1730                         break;
1731
1732                 case HCI_SCODATA_PKT:
1733                         if (skb->len == HCI_SCO_HDR_SIZE) {
1734                                 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1735                                 scb->expect = h->dlen;
1736
1737                                 if (skb_tailroom(skb) < scb->expect) {
1738                                         kfree_skb(skb);
1739                                         hdev->reassembly[index] = NULL;
1740                                         return -ENOMEM;
1741                                 }
1742                         }
1743                         break;
1744                 }
1745
1746                 if (scb->expect == 0) {
1747                         /* Complete frame */
1748
1749                         bt_cb(skb)->pkt_type = type;
1750                         hci_recv_frame(skb);
1751
1752                         hdev->reassembly[index] = NULL;
1753                         return remain;
1754                 }
1755         }
1756
1757         return remain;
1758 }
1759
1760 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1761 {
1762         int rem = 0;
1763
1764         if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1765                 return -EILSEQ;
1766
1767         while (count) {
1768                 rem = hci_reassembly(hdev, type, data, count, type - 1);
1769                 if (rem < 0)
1770                         return rem;
1771
1772                 data += (count - rem);
1773                 count = rem;
1774         }
1775
1776         return rem;
1777 }
1778 EXPORT_SYMBOL(hci_recv_fragment);
1779
1780 #define STREAM_REASSEMBLY 0
1781
1782 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1783 {
1784         int type;
1785         int rem = 0;
1786
1787         while (count) {
1788                 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1789
1790                 if (!skb) {
1791                         struct { char type; } *pkt;
1792
1793                         /* Start of the frame */
1794                         pkt = data;
1795                         type = pkt->type;
1796
1797                         data++;
1798                         count--;
1799                 } else
1800                         type = bt_cb(skb)->pkt_type;
1801
1802                 rem = hci_reassembly(hdev, type, data, count,
1803                                                         STREAM_REASSEMBLY);
1804                 if (rem < 0)
1805                         return rem;
1806
1807                 data += (count - rem);
1808                 count = rem;
1809         }
1810
1811         return rem;
1812 }
1813 EXPORT_SYMBOL(hci_recv_stream_fragment);
1814
1815 /* ---- Interface to upper protocols ---- */
1816
1817 /* Register/Unregister protocols.
1818  * hci_task_lock is used to ensure that no tasks are running. */
1819 int hci_register_proto(struct hci_proto *hp)
1820 {
1821         int err = 0;
1822
1823         BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1824
1825         if (hp->id >= HCI_MAX_PROTO)
1826                 return -EINVAL;
1827
1828         write_lock_bh(&hci_task_lock);
1829
1830         if (!hci_proto[hp->id])
1831                 hci_proto[hp->id] = hp;
1832         else
1833                 err = -EEXIST;
1834
1835         write_unlock_bh(&hci_task_lock);
1836
1837         return err;
1838 }
1839 EXPORT_SYMBOL(hci_register_proto);
1840
1841 int hci_unregister_proto(struct hci_proto *hp)
1842 {
1843         int err = 0;
1844
1845         BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1846
1847         if (hp->id >= HCI_MAX_PROTO)
1848                 return -EINVAL;
1849
1850         write_lock_bh(&hci_task_lock);
1851
1852         if (hci_proto[hp->id])
1853                 hci_proto[hp->id] = NULL;
1854         else
1855                 err = -ENOENT;
1856
1857         write_unlock_bh(&hci_task_lock);
1858
1859         return err;
1860 }
1861 EXPORT_SYMBOL(hci_unregister_proto);
1862
1863 int hci_register_cb(struct hci_cb *cb)
1864 {
1865         BT_DBG("%p name %s", cb, cb->name);
1866
1867         write_lock_bh(&hci_cb_list_lock);
1868         list_add(&cb->list, &hci_cb_list);
1869         write_unlock_bh(&hci_cb_list_lock);
1870
1871         return 0;
1872 }
1873 EXPORT_SYMBOL(hci_register_cb);
1874
1875 int hci_unregister_cb(struct hci_cb *cb)
1876 {
1877         BT_DBG("%p name %s", cb, cb->name);
1878
1879         write_lock_bh(&hci_cb_list_lock);
1880         list_del(&cb->list);
1881         write_unlock_bh(&hci_cb_list_lock);
1882
1883         return 0;
1884 }
1885 EXPORT_SYMBOL(hci_unregister_cb);
1886
1887 static int hci_send_frame(struct sk_buff *skb)
1888 {
1889         struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1890
1891         if (!hdev) {
1892                 kfree_skb(skb);
1893                 return -ENODEV;
1894         }
1895
1896         BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
1897
1898         if (atomic_read(&hdev->promisc)) {
1899                 /* Time stamp */
1900                 __net_timestamp(skb);
1901
1902                 hci_send_to_sock(hdev, skb, NULL);
1903         }
1904
1905         /* Get rid of skb owner, prior to sending to the driver. */
1906         skb_orphan(skb);
1907
1908         return hdev->send(skb);
1909 }
1910
1911 /* Send HCI command */
1912 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
1913 {
1914         int len = HCI_COMMAND_HDR_SIZE + plen;
1915         struct hci_command_hdr *hdr;
1916         struct sk_buff *skb;
1917
1918         BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1919
1920         skb = bt_skb_alloc(len, GFP_ATOMIC);
1921         if (!skb) {
1922                 BT_ERR("%s no memory for command", hdev->name);
1923                 return -ENOMEM;
1924         }
1925
1926         hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1927         hdr->opcode = cpu_to_le16(opcode);
1928         hdr->plen   = plen;
1929
1930         if (plen)
1931                 memcpy(skb_put(skb, plen), param, plen);
1932
1933         BT_DBG("skb len %d", skb->len);
1934
1935         bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1936         skb->dev = (void *) hdev;
1937
1938         if (test_bit(HCI_INIT, &hdev->flags))
1939                 hdev->init_last_cmd = opcode;
1940
1941         skb_queue_tail(&hdev->cmd_q, skb);
1942         tasklet_schedule(&hdev->cmd_task);
1943
1944         return 0;
1945 }
1946
1947 /* Get data from the previously sent command */
1948 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1949 {
1950         struct hci_command_hdr *hdr;
1951
1952         if (!hdev->sent_cmd)
1953                 return NULL;
1954
1955         hdr = (void *) hdev->sent_cmd->data;
1956
1957         if (hdr->opcode != cpu_to_le16(opcode))
1958                 return NULL;
1959
1960         BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1961
1962         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1963 }
1964
1965 /* Send ACL data */
1966 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1967 {
1968         struct hci_acl_hdr *hdr;
1969         int len = skb->len;
1970
1971         skb_push(skb, HCI_ACL_HDR_SIZE);
1972         skb_reset_transport_header(skb);
1973         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1974         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1975         hdr->dlen   = cpu_to_le16(len);
1976 }
1977
1978 void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
1979 {
1980         struct hci_dev *hdev = conn->hdev;
1981         struct sk_buff *list;
1982
1983         BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
1984
1985         skb->dev = (void *) hdev;
1986         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1987         hci_add_acl_hdr(skb, conn->handle, flags);
1988
1989         list = skb_shinfo(skb)->frag_list;
1990         if (!list) {
1991                 /* Non fragmented */
1992                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1993
1994                 skb_queue_tail(&conn->data_q, skb);
1995         } else {
1996                 /* Fragmented */
1997                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1998
1999                 skb_shinfo(skb)->frag_list = NULL;
2000
2001                 /* Queue all fragments atomically */
2002                 spin_lock_bh(&conn->data_q.lock);
2003
2004                 __skb_queue_tail(&conn->data_q, skb);
2005
2006                 flags &= ~ACL_START;
2007                 flags |= ACL_CONT;
2008                 do {
2009                         skb = list; list = list->next;
2010
2011                         skb->dev = (void *) hdev;
2012                         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2013                         hci_add_acl_hdr(skb, conn->handle, flags);
2014
2015                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2016
2017                         __skb_queue_tail(&conn->data_q, skb);
2018                 } while (list);
2019
2020                 spin_unlock_bh(&conn->data_q.lock);
2021         }
2022
2023         tasklet_schedule(&hdev->tx_task);
2024 }
2025 EXPORT_SYMBOL(hci_send_acl);
2026
2027 /* Send SCO data */
2028 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2029 {
2030         struct hci_dev *hdev = conn->hdev;
2031         struct hci_sco_hdr hdr;
2032
2033         BT_DBG("%s len %d", hdev->name, skb->len);
2034
2035         hdr.handle = cpu_to_le16(conn->handle);
2036         hdr.dlen   = skb->len;
2037
2038         skb_push(skb, HCI_SCO_HDR_SIZE);
2039         skb_reset_transport_header(skb);
2040         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2041
2042         skb->dev = (void *) hdev;
2043         bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2044
2045         skb_queue_tail(&conn->data_q, skb);
2046         tasklet_schedule(&hdev->tx_task);
2047 }
2048 EXPORT_SYMBOL(hci_send_sco);
2049
2050 /* ---- HCI TX task (outgoing data) ---- */
2051
2052 /* HCI Connection scheduler */
2053 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
2054 {
2055         struct hci_conn_hash *h = &hdev->conn_hash;
2056         struct hci_conn *conn = NULL;
2057         int num = 0, min = ~0;
2058         struct list_head *p;
2059
2060         /* We don't have to lock device here. Connections are always
2061          * added and removed with TX task disabled. */
2062         list_for_each(p, &h->list) {
2063                 struct hci_conn *c;
2064                 c = list_entry(p, struct hci_conn, list);
2065
2066                 if (c->type != type || skb_queue_empty(&c->data_q))
2067                         continue;
2068
2069                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2070                         continue;
2071
2072                 num++;
2073
2074                 if (c->sent < min) {
2075                         min  = c->sent;
2076                         conn = c;
2077                 }
2078         }
2079
2080         if (conn) {
2081                 int cnt, q;
2082
2083                 switch (conn->type) {
2084                 case ACL_LINK:
2085                         cnt = hdev->acl_cnt;
2086                         break;
2087                 case SCO_LINK:
2088                 case ESCO_LINK:
2089                         cnt = hdev->sco_cnt;
2090                         break;
2091                 case LE_LINK:
2092                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2093                         break;
2094                 default:
2095                         cnt = 0;
2096                         BT_ERR("Unknown link type");
2097                 }
2098
2099                 q = cnt / num;
2100                 *quote = q ? q : 1;
2101         } else
2102                 *quote = 0;
2103
2104         BT_DBG("conn %p quote %d", conn, *quote);
2105         return conn;
2106 }
2107
2108 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2109 {
2110         struct hci_conn_hash *h = &hdev->conn_hash;
2111         struct list_head *p;
2112         struct hci_conn  *c;
2113
2114         BT_ERR("%s link tx timeout", hdev->name);
2115
2116         /* Kill stalled connections */
2117         list_for_each(p, &h->list) {
2118                 c = list_entry(p, struct hci_conn, list);
2119                 if (c->type == type && c->sent) {
2120                         BT_ERR("%s killing stalled connection %s",
2121                                 hdev->name, batostr(&c->dst));
2122                         hci_acl_disconn(c, 0x13);
2123                 }
2124         }
2125 }
2126
2127 static inline void hci_sched_acl(struct hci_dev *hdev)
2128 {
2129         struct hci_conn *conn;
2130         struct sk_buff *skb;
2131         int quote;
2132
2133         BT_DBG("%s", hdev->name);
2134
2135         if (!test_bit(HCI_RAW, &hdev->flags)) {
2136                 /* ACL tx timeout must be longer than maximum
2137                  * link supervision timeout (40.9 seconds) */
2138                 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
2139                         hci_link_tx_to(hdev, ACL_LINK);
2140         }
2141
2142         while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
2143                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2144                         BT_DBG("skb %p len %d", skb, skb->len);
2145
2146                         hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2147
2148                         hci_send_frame(skb);
2149                         hdev->acl_last_tx = jiffies;
2150
2151                         hdev->acl_cnt--;
2152                         conn->sent++;
2153                 }
2154         }
2155 }
2156
2157 /* Schedule SCO */
2158 static inline void hci_sched_sco(struct hci_dev *hdev)
2159 {
2160         struct hci_conn *conn;
2161         struct sk_buff *skb;
2162         int quote;
2163
2164         BT_DBG("%s", hdev->name);
2165
2166         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2167                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2168                         BT_DBG("skb %p len %d", skb, skb->len);
2169                         hci_send_frame(skb);
2170
2171                         conn->sent++;
2172                         if (conn->sent == ~0)
2173                                 conn->sent = 0;
2174                 }
2175         }
2176 }
2177
2178 static inline void hci_sched_esco(struct hci_dev *hdev)
2179 {
2180         struct hci_conn *conn;
2181         struct sk_buff *skb;
2182         int quote;
2183
2184         BT_DBG("%s", hdev->name);
2185
2186         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
2187                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2188                         BT_DBG("skb %p len %d", skb, skb->len);
2189                         hci_send_frame(skb);
2190
2191                         conn->sent++;
2192                         if (conn->sent == ~0)
2193                                 conn->sent = 0;
2194                 }
2195         }
2196 }
2197
2198 static inline void hci_sched_le(struct hci_dev *hdev)
2199 {
2200         struct hci_conn *conn;
2201         struct sk_buff *skb;
2202         int quote, cnt;
2203
2204         BT_DBG("%s", hdev->name);
2205
2206         if (!test_bit(HCI_RAW, &hdev->flags)) {
2207                 /* LE tx timeout must be longer than maximum
2208                  * link supervision timeout (40.9 seconds) */
2209                 if (!hdev->le_cnt && hdev->le_pkts &&
2210                                 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2211                         hci_link_tx_to(hdev, LE_LINK);
2212         }
2213
2214         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2215         while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
2216                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2217                         BT_DBG("skb %p len %d", skb, skb->len);
2218
2219                         hci_send_frame(skb);
2220                         hdev->le_last_tx = jiffies;
2221
2222                         cnt--;
2223                         conn->sent++;
2224                 }
2225         }
2226         if (hdev->le_pkts)
2227                 hdev->le_cnt = cnt;
2228         else
2229                 hdev->acl_cnt = cnt;
2230 }
2231
2232 static void hci_tx_task(unsigned long arg)
2233 {
2234         struct hci_dev *hdev = (struct hci_dev *) arg;
2235         struct sk_buff *skb;
2236
2237         read_lock(&hci_task_lock);
2238
2239         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2240                 hdev->sco_cnt, hdev->le_cnt);
2241
2242         /* Schedule queues and send stuff to HCI driver */
2243
2244         hci_sched_acl(hdev);
2245
2246         hci_sched_sco(hdev);
2247
2248         hci_sched_esco(hdev);
2249
2250         hci_sched_le(hdev);
2251
2252         /* Send next queued raw (unknown type) packet */
2253         while ((skb = skb_dequeue(&hdev->raw_q)))
2254                 hci_send_frame(skb);
2255
2256         read_unlock(&hci_task_lock);
2257 }
2258
2259 /* ----- HCI RX task (incoming data processing) ----- */
2260
2261 /* ACL data packet */
2262 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2263 {
2264         struct hci_acl_hdr *hdr = (void *) skb->data;
2265         struct hci_conn *conn;
2266         __u16 handle, flags;
2267
2268         skb_pull(skb, HCI_ACL_HDR_SIZE);
2269
2270         handle = __le16_to_cpu(hdr->handle);
2271         flags  = hci_flags(handle);
2272         handle = hci_handle(handle);
2273
2274         BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
2275
2276         hdev->stat.acl_rx++;
2277
2278         hci_dev_lock(hdev);
2279         conn = hci_conn_hash_lookup_handle(hdev, handle);
2280         hci_dev_unlock(hdev);
2281
2282         if (conn) {
2283                 register struct hci_proto *hp;
2284
2285                 hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2286
2287                 /* Send to upper protocol */
2288                 hp = hci_proto[HCI_PROTO_L2CAP];
2289                 if (hp && hp->recv_acldata) {
2290                         hp->recv_acldata(conn, skb, flags);
2291                         return;
2292                 }
2293         } else {
2294                 BT_ERR("%s ACL packet for unknown connection handle %d",
2295                         hdev->name, handle);
2296         }
2297
2298         kfree_skb(skb);
2299 }
2300
2301 /* SCO data packet */
2302 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2303 {
2304         struct hci_sco_hdr *hdr = (void *) skb->data;
2305         struct hci_conn *conn;
2306         __u16 handle;
2307
2308         skb_pull(skb, HCI_SCO_HDR_SIZE);
2309
2310         handle = __le16_to_cpu(hdr->handle);
2311
2312         BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2313
2314         hdev->stat.sco_rx++;
2315
2316         hci_dev_lock(hdev);
2317         conn = hci_conn_hash_lookup_handle(hdev, handle);
2318         hci_dev_unlock(hdev);
2319
2320         if (conn) {
2321                 register struct hci_proto *hp;
2322
2323                 /* Send to upper protocol */
2324                 hp = hci_proto[HCI_PROTO_SCO];
2325                 if (hp && hp->recv_scodata) {
2326                         hp->recv_scodata(conn, skb);
2327                         return;
2328                 }
2329         } else {
2330                 BT_ERR("%s SCO packet for unknown connection handle %d",
2331                         hdev->name, handle);
2332         }
2333
2334         kfree_skb(skb);
2335 }
2336
2337 static void hci_rx_task(unsigned long arg)
2338 {
2339         struct hci_dev *hdev = (struct hci_dev *) arg;
2340         struct sk_buff *skb;
2341
2342         BT_DBG("%s", hdev->name);
2343
2344         read_lock(&hci_task_lock);
2345
2346         while ((skb = skb_dequeue(&hdev->rx_q))) {
2347                 if (atomic_read(&hdev->promisc)) {
2348                         /* Send copy to the sockets */
2349                         hci_send_to_sock(hdev, skb, NULL);
2350                 }
2351
2352                 if (test_bit(HCI_RAW, &hdev->flags)) {
2353                         kfree_skb(skb);
2354                         continue;
2355                 }
2356
2357                 if (test_bit(HCI_INIT, &hdev->flags)) {
2358                         /* Don't process data packets in this states. */
2359                         switch (bt_cb(skb)->pkt_type) {
2360                         case HCI_ACLDATA_PKT:
2361                         case HCI_SCODATA_PKT:
2362                                 kfree_skb(skb);
2363                                 continue;
2364                         }
2365                 }
2366
2367                 /* Process frame */
2368                 switch (bt_cb(skb)->pkt_type) {
2369                 case HCI_EVENT_PKT:
2370                         hci_event_packet(hdev, skb);
2371                         break;
2372
2373                 case HCI_ACLDATA_PKT:
2374                         BT_DBG("%s ACL data packet", hdev->name);
2375                         hci_acldata_packet(hdev, skb);
2376                         break;
2377
2378                 case HCI_SCODATA_PKT:
2379                         BT_DBG("%s SCO data packet", hdev->name);
2380                         hci_scodata_packet(hdev, skb);
2381                         break;
2382
2383                 default:
2384                         kfree_skb(skb);
2385                         break;
2386                 }
2387         }
2388
2389         read_unlock(&hci_task_lock);
2390 }
2391
2392 static void hci_cmd_task(unsigned long arg)
2393 {
2394         struct hci_dev *hdev = (struct hci_dev *) arg;
2395         struct sk_buff *skb;
2396
2397         BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2398
2399         /* Send queued commands */
2400         if (atomic_read(&hdev->cmd_cnt)) {
2401                 skb = skb_dequeue(&hdev->cmd_q);
2402                 if (!skb)
2403                         return;
2404
2405                 kfree_skb(hdev->sent_cmd);
2406
2407                 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2408                 if (hdev->sent_cmd) {
2409                         atomic_dec(&hdev->cmd_cnt);
2410                         hci_send_frame(skb);
2411                         mod_timer(&hdev->cmd_timer,
2412                                   jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2413                 } else {
2414                         skb_queue_head(&hdev->cmd_q, skb);
2415                         tasklet_schedule(&hdev->cmd_task);
2416                 }
2417         }
2418 }