pandora: defconfig: update
[pandora-kernel.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI core. */
26
27 #include <linux/jiffies.h>
28 #include <linux/module.h>
29 #include <linux/kmod.h>
30
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fcntl.h>
38 #include <linux/init.h>
39 #include <linux/skbuff.h>
40 #include <linux/workqueue.h>
41 #include <linux/interrupt.h>
42 #include <linux/notifier.h>
43 #include <linux/rfkill.h>
44 #include <linux/timer.h>
45 #include <linux/crypto.h>
46 #include <net/sock.h>
47
48 #include <asm/system.h>
49 #include <linux/uaccess.h>
50 #include <asm/unaligned.h>
51
52 #include <net/bluetooth/bluetooth.h>
53 #include <net/bluetooth/hci_core.h>
54
55 #define AUTO_OFF_TIMEOUT 2000
56
57 static void hci_cmd_task(unsigned long arg);
58 static void hci_rx_task(unsigned long arg);
59 static void hci_tx_task(unsigned long arg);
60
61 static DEFINE_RWLOCK(hci_task_lock);
62
63 /* HCI device list */
64 LIST_HEAD(hci_dev_list);
65 DEFINE_RWLOCK(hci_dev_list_lock);
66
67 /* HCI callback list */
68 LIST_HEAD(hci_cb_list);
69 DEFINE_RWLOCK(hci_cb_list_lock);
70
71 /* HCI protocols */
72 #define HCI_MAX_PROTO   2
73 struct hci_proto *hci_proto[HCI_MAX_PROTO];
74
75 /* HCI notifiers list */
76 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
77
78 /* ---- HCI notifications ---- */
79
80 int hci_register_notifier(struct notifier_block *nb)
81 {
82         return atomic_notifier_chain_register(&hci_notifier, nb);
83 }
84
85 int hci_unregister_notifier(struct notifier_block *nb)
86 {
87         return atomic_notifier_chain_unregister(&hci_notifier, nb);
88 }
89
90 static void hci_notify(struct hci_dev *hdev, int event)
91 {
92         atomic_notifier_call_chain(&hci_notifier, event, hdev);
93 }
94
95 /* ---- HCI requests ---- */
96
97 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
98 {
99         BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
100
101         /* If this is the init phase check if the completed command matches
102          * the last init command, and if not just return.
103          */
104         if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
105                 return;
106
107         if (hdev->req_status == HCI_REQ_PEND) {
108                 hdev->req_result = result;
109                 hdev->req_status = HCI_REQ_DONE;
110                 wake_up_interruptible(&hdev->req_wait_q);
111         }
112 }
113
114 static void hci_req_cancel(struct hci_dev *hdev, int err)
115 {
116         BT_DBG("%s err 0x%2.2x", hdev->name, err);
117
118         if (hdev->req_status == HCI_REQ_PEND) {
119                 hdev->req_result = err;
120                 hdev->req_status = HCI_REQ_CANCELED;
121                 wake_up_interruptible(&hdev->req_wait_q);
122         }
123 }
124
125 /* Execute request and wait for completion. */
126 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
127                                         unsigned long opt, __u32 timeout)
128 {
129         DECLARE_WAITQUEUE(wait, current);
130         int err = 0;
131
132         BT_DBG("%s start", hdev->name);
133
134         hdev->req_status = HCI_REQ_PEND;
135
136         add_wait_queue(&hdev->req_wait_q, &wait);
137         set_current_state(TASK_INTERRUPTIBLE);
138
139         req(hdev, opt);
140         schedule_timeout(timeout);
141
142         remove_wait_queue(&hdev->req_wait_q, &wait);
143
144         if (signal_pending(current))
145                 return -EINTR;
146
147         switch (hdev->req_status) {
148         case HCI_REQ_DONE:
149                 err = -bt_to_errno(hdev->req_result);
150                 break;
151
152         case HCI_REQ_CANCELED:
153                 err = -hdev->req_result;
154                 break;
155
156         default:
157                 err = -ETIMEDOUT;
158                 break;
159         }
160
161         hdev->req_status = hdev->req_result = 0;
162
163         BT_DBG("%s end: err %d", hdev->name, err);
164
165         return err;
166 }
167
168 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
169                                         unsigned long opt, __u32 timeout)
170 {
171         int ret;
172
173         if (!test_bit(HCI_UP, &hdev->flags))
174                 return -ENETDOWN;
175
176         /* Serialize all requests */
177         hci_req_lock(hdev);
178         ret = __hci_request(hdev, req, opt, timeout);
179         hci_req_unlock(hdev);
180
181         return ret;
182 }
183
184 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
185 {
186         BT_DBG("%s %ld", hdev->name, opt);
187
188         /* Reset device */
189         set_bit(HCI_RESET, &hdev->flags);
190         hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
191 }
192
193 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
194 {
195         struct hci_cp_delete_stored_link_key cp;
196         struct sk_buff *skb;
197         __le16 param;
198         __u8 flt_type;
199
200         BT_DBG("%s %ld", hdev->name, opt);
201
202         /* Driver initialization */
203
204         /* Special commands */
205         while ((skb = skb_dequeue(&hdev->driver_init))) {
206                 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
207                 skb->dev = (void *) hdev;
208
209                 skb_queue_tail(&hdev->cmd_q, skb);
210                 tasklet_schedule(&hdev->cmd_task);
211         }
212         skb_queue_purge(&hdev->driver_init);
213
214         /* Mandatory initialization */
215
216         /* Reset */
217         if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
218                         set_bit(HCI_RESET, &hdev->flags);
219                         hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
220         }
221
222         /* Read Local Supported Features */
223         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
224
225         /* Read Local Version */
226         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
227
228         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
229         hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
230
231 #if 0
232         /* Host buffer size */
233         {
234                 struct hci_cp_host_buffer_size cp;
235                 cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
236                 cp.sco_mtu = HCI_MAX_SCO_SIZE;
237                 cp.acl_max_pkt = cpu_to_le16(0xffff);
238                 cp.sco_max_pkt = cpu_to_le16(0xffff);
239                 hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
240         }
241 #endif
242
243         /* Read BD Address */
244         hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
245
246         /* Read Class of Device */
247         hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
248
249         /* Read Local Name */
250         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
251
252         /* Read Voice Setting */
253         hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
254
255         /* Optional initialization */
256
257         /* Clear Event Filters */
258         flt_type = HCI_FLT_CLEAR_ALL;
259         hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
260
261         /* Connection accept timeout ~20 secs */
262         param = cpu_to_le16(0x7d00);
263         hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
264
265         bacpy(&cp.bdaddr, BDADDR_ANY);
266         cp.delete_all = 1;
267         hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
268 }
269
270 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
271 {
272         BT_DBG("%s", hdev->name);
273
274         /* Read LE buffer size */
275         hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
276 }
277
278 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
279 {
280         __u8 scan = opt;
281
282         BT_DBG("%s %x", hdev->name, scan);
283
284         /* Inquiry and Page scans */
285         hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
286 }
287
288 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
289 {
290         __u8 auth = opt;
291
292         BT_DBG("%s %x", hdev->name, auth);
293
294         /* Authentication */
295         hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
296 }
297
298 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
299 {
300         __u8 encrypt = opt;
301
302         BT_DBG("%s %x", hdev->name, encrypt);
303
304         /* Encryption */
305         hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
306 }
307
308 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
309 {
310         __le16 policy = cpu_to_le16(opt);
311
312         BT_DBG("%s %x", hdev->name, policy);
313
314         /* Default link policy */
315         hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
316 }
317
318 /* Get HCI device by index.
319  * Device is held on return. */
320 struct hci_dev *hci_dev_get(int index)
321 {
322         struct hci_dev *hdev = NULL;
323         struct list_head *p;
324
325         BT_DBG("%d", index);
326
327         if (index < 0)
328                 return NULL;
329
330         read_lock(&hci_dev_list_lock);
331         list_for_each(p, &hci_dev_list) {
332                 struct hci_dev *d = list_entry(p, struct hci_dev, list);
333                 if (d->id == index) {
334                         hdev = hci_dev_hold(d);
335                         break;
336                 }
337         }
338         read_unlock(&hci_dev_list_lock);
339         return hdev;
340 }
341
342 /* ---- Inquiry support ---- */
343 static void inquiry_cache_flush(struct hci_dev *hdev)
344 {
345         struct inquiry_cache *cache = &hdev->inq_cache;
346         struct inquiry_entry *next  = cache->list, *e;
347
348         BT_DBG("cache %p", cache);
349
350         cache->list = NULL;
351         while ((e = next)) {
352                 next = e->next;
353                 kfree(e);
354         }
355 }
356
357 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
358 {
359         struct inquiry_cache *cache = &hdev->inq_cache;
360         struct inquiry_entry *e;
361
362         BT_DBG("cache %p, %s", cache, batostr(bdaddr));
363
364         for (e = cache->list; e; e = e->next)
365                 if (!bacmp(&e->data.bdaddr, bdaddr))
366                         break;
367         return e;
368 }
369
370 void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
371 {
372         struct inquiry_cache *cache = &hdev->inq_cache;
373         struct inquiry_entry *ie;
374
375         BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
376
377         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
378         if (!ie) {
379                 /* Entry not in the cache. Add new one. */
380                 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
381                 if (!ie)
382                         return;
383
384                 ie->next = cache->list;
385                 cache->list = ie;
386         }
387
388         memcpy(&ie->data, data, sizeof(*data));
389         ie->timestamp = jiffies;
390         cache->timestamp = jiffies;
391 }
392
393 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
394 {
395         struct inquiry_cache *cache = &hdev->inq_cache;
396         struct inquiry_info *info = (struct inquiry_info *) buf;
397         struct inquiry_entry *e;
398         int copied = 0;
399
400         for (e = cache->list; e && copied < num; e = e->next, copied++) {
401                 struct inquiry_data *data = &e->data;
402                 bacpy(&info->bdaddr, &data->bdaddr);
403                 info->pscan_rep_mode    = data->pscan_rep_mode;
404                 info->pscan_period_mode = data->pscan_period_mode;
405                 info->pscan_mode        = data->pscan_mode;
406                 memcpy(info->dev_class, data->dev_class, 3);
407                 info->clock_offset      = data->clock_offset;
408                 info++;
409         }
410
411         BT_DBG("cache %p, copied %d", cache, copied);
412         return copied;
413 }
414
415 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
416 {
417         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
418         struct hci_cp_inquiry cp;
419
420         BT_DBG("%s", hdev->name);
421
422         if (test_bit(HCI_INQUIRY, &hdev->flags))
423                 return;
424
425         /* Start Inquiry */
426         memcpy(&cp.lap, &ir->lap, 3);
427         cp.length  = ir->length;
428         cp.num_rsp = ir->num_rsp;
429         hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
430 }
431
432 int hci_inquiry(void __user *arg)
433 {
434         __u8 __user *ptr = arg;
435         struct hci_inquiry_req ir;
436         struct hci_dev *hdev;
437         int err = 0, do_inquiry = 0, max_rsp;
438         long timeo;
439         __u8 *buf;
440
441         if (copy_from_user(&ir, ptr, sizeof(ir)))
442                 return -EFAULT;
443
444         hdev = hci_dev_get(ir.dev_id);
445         if (!hdev)
446                 return -ENODEV;
447
448         hci_dev_lock_bh(hdev);
449         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
450                                 inquiry_cache_empty(hdev) ||
451                                 ir.flags & IREQ_CACHE_FLUSH) {
452                 inquiry_cache_flush(hdev);
453                 do_inquiry = 1;
454         }
455         hci_dev_unlock_bh(hdev);
456
457         timeo = ir.length * msecs_to_jiffies(2000);
458
459         if (do_inquiry) {
460                 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
461                 if (err < 0)
462                         goto done;
463         }
464
465         /* for unlimited number of responses we will use buffer with 255 entries */
466         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
467
468         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
469          * copy it to the user space.
470          */
471         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
472         if (!buf) {
473                 err = -ENOMEM;
474                 goto done;
475         }
476
477         hci_dev_lock_bh(hdev);
478         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
479         hci_dev_unlock_bh(hdev);
480
481         BT_DBG("num_rsp %d", ir.num_rsp);
482
483         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
484                 ptr += sizeof(ir);
485                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
486                                         ir.num_rsp))
487                         err = -EFAULT;
488         } else
489                 err = -EFAULT;
490
491         kfree(buf);
492
493 done:
494         hci_dev_put(hdev);
495         return err;
496 }
497
498 /* ---- HCI ioctl helpers ---- */
499
500 int hci_dev_open(__u16 dev)
501 {
502         struct hci_dev *hdev;
503         int ret = 0;
504
505         hdev = hci_dev_get(dev);
506         if (!hdev)
507                 return -ENODEV;
508
509         BT_DBG("%s %p", hdev->name, hdev);
510
511         hci_req_lock(hdev);
512
513         if (test_bit(HCI_UNREGISTER, &hdev->flags)) {
514                 ret = -ENODEV;
515                 goto done;
516         }
517
518         if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
519                 ret = -ERFKILL;
520                 goto done;
521         }
522
523         if (test_bit(HCI_UP, &hdev->flags)) {
524                 ret = -EALREADY;
525                 goto done;
526         }
527
528         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
529                 set_bit(HCI_RAW, &hdev->flags);
530
531         /* Treat all non BR/EDR controllers as raw devices for now */
532         if (hdev->dev_type != HCI_BREDR)
533                 set_bit(HCI_RAW, &hdev->flags);
534
535         if (hdev->open(hdev)) {
536                 ret = -EIO;
537                 goto done;
538         }
539
540         if (!test_bit(HCI_RAW, &hdev->flags)) {
541                 atomic_set(&hdev->cmd_cnt, 1);
542                 set_bit(HCI_INIT, &hdev->flags);
543                 hdev->init_last_cmd = 0;
544
545                 ret = __hci_request(hdev, hci_init_req, 0,
546                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
547
548                 if (lmp_host_le_capable(hdev))
549                         ret = __hci_request(hdev, hci_le_init_req, 0,
550                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
551
552                 clear_bit(HCI_INIT, &hdev->flags);
553         }
554
555         if (!ret) {
556                 hci_dev_hold(hdev);
557                 set_bit(HCI_UP, &hdev->flags);
558                 hci_notify(hdev, HCI_DEV_UP);
559                 if (!test_bit(HCI_SETUP, &hdev->flags))
560                         mgmt_powered(hdev->id, 1);
561         } else {
562                 /* Init failed, cleanup */
563                 tasklet_kill(&hdev->rx_task);
564                 tasklet_kill(&hdev->tx_task);
565                 tasklet_kill(&hdev->cmd_task);
566
567                 skb_queue_purge(&hdev->cmd_q);
568                 skb_queue_purge(&hdev->rx_q);
569
570                 if (hdev->flush)
571                         hdev->flush(hdev);
572
573                 if (hdev->sent_cmd) {
574                         kfree_skb(hdev->sent_cmd);
575                         hdev->sent_cmd = NULL;
576                 }
577
578                 hdev->close(hdev);
579                 hdev->flags = 0;
580         }
581
582 done:
583         hci_req_unlock(hdev);
584         hci_dev_put(hdev);
585         return ret;
586 }
587
588 static int hci_dev_do_close(struct hci_dev *hdev)
589 {
590         BT_DBG("%s %p", hdev->name, hdev);
591
592         hci_req_cancel(hdev, ENODEV);
593         hci_req_lock(hdev);
594
595         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
596                 del_timer_sync(&hdev->cmd_timer);
597                 hci_req_unlock(hdev);
598                 return 0;
599         }
600
601         /* Kill RX and TX tasks */
602         tasklet_kill(&hdev->rx_task);
603         tasklet_kill(&hdev->tx_task);
604
605         hci_dev_lock_bh(hdev);
606         inquiry_cache_flush(hdev);
607         hci_conn_hash_flush(hdev);
608         hci_dev_unlock_bh(hdev);
609
610         hci_notify(hdev, HCI_DEV_DOWN);
611
612         if (hdev->flush)
613                 hdev->flush(hdev);
614
615         /* Reset device */
616         skb_queue_purge(&hdev->cmd_q);
617         atomic_set(&hdev->cmd_cnt, 1);
618         if (!test_bit(HCI_RAW, &hdev->flags)) {
619                 set_bit(HCI_INIT, &hdev->flags);
620                 __hci_request(hdev, hci_reset_req, 0,
621                                         msecs_to_jiffies(250));
622                 clear_bit(HCI_INIT, &hdev->flags);
623         }
624
625         /* Kill cmd task */
626         tasklet_kill(&hdev->cmd_task);
627
628         /* Drop queues */
629         skb_queue_purge(&hdev->rx_q);
630         skb_queue_purge(&hdev->cmd_q);
631         skb_queue_purge(&hdev->raw_q);
632
633         /* Drop last sent command */
634         if (hdev->sent_cmd) {
635                 del_timer_sync(&hdev->cmd_timer);
636                 kfree_skb(hdev->sent_cmd);
637                 hdev->sent_cmd = NULL;
638         }
639
640         /* After this point our queues are empty
641          * and no tasks are scheduled. */
642         hdev->close(hdev);
643
644         mgmt_powered(hdev->id, 0);
645
646         /* Clear flags */
647         hdev->flags = 0;
648
649         hci_req_unlock(hdev);
650
651         hci_dev_put(hdev);
652         return 0;
653 }
654
655 int hci_dev_close(__u16 dev)
656 {
657         struct hci_dev *hdev;
658         int err;
659
660         hdev = hci_dev_get(dev);
661         if (!hdev)
662                 return -ENODEV;
663         err = hci_dev_do_close(hdev);
664         hci_dev_put(hdev);
665         return err;
666 }
667
668 int hci_dev_reset(__u16 dev)
669 {
670         struct hci_dev *hdev;
671         int ret = 0;
672
673         hdev = hci_dev_get(dev);
674         if (!hdev)
675                 return -ENODEV;
676
677         hci_req_lock(hdev);
678         tasklet_disable(&hdev->tx_task);
679
680         if (!test_bit(HCI_UP, &hdev->flags))
681                 goto done;
682
683         /* Drop queues */
684         skb_queue_purge(&hdev->rx_q);
685         skb_queue_purge(&hdev->cmd_q);
686
687         hci_dev_lock_bh(hdev);
688         inquiry_cache_flush(hdev);
689         hci_conn_hash_flush(hdev);
690         hci_dev_unlock_bh(hdev);
691
692         if (hdev->flush)
693                 hdev->flush(hdev);
694
695         atomic_set(&hdev->cmd_cnt, 1);
696         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
697
698         if (!test_bit(HCI_RAW, &hdev->flags))
699                 ret = __hci_request(hdev, hci_reset_req, 0,
700                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
701
702 done:
703         tasklet_enable(&hdev->tx_task);
704         hci_req_unlock(hdev);
705         hci_dev_put(hdev);
706         return ret;
707 }
708
709 int hci_dev_reset_stat(__u16 dev)
710 {
711         struct hci_dev *hdev;
712         int ret = 0;
713
714         hdev = hci_dev_get(dev);
715         if (!hdev)
716                 return -ENODEV;
717
718         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
719
720         hci_dev_put(hdev);
721
722         return ret;
723 }
724
725 int hci_dev_cmd(unsigned int cmd, void __user *arg)
726 {
727         struct hci_dev *hdev;
728         struct hci_dev_req dr;
729         int err = 0;
730
731         if (copy_from_user(&dr, arg, sizeof(dr)))
732                 return -EFAULT;
733
734         hdev = hci_dev_get(dr.dev_id);
735         if (!hdev)
736                 return -ENODEV;
737
738         switch (cmd) {
739         case HCISETAUTH:
740                 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
741                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
742                 break;
743
744         case HCISETENCRYPT:
745                 if (!lmp_encrypt_capable(hdev)) {
746                         err = -EOPNOTSUPP;
747                         break;
748                 }
749
750                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
751                         /* Auth must be enabled first */
752                         err = hci_request(hdev, hci_auth_req, dr.dev_opt,
753                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
754                         if (err)
755                                 break;
756                 }
757
758                 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
759                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
760                 break;
761
762         case HCISETSCAN:
763                 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
764                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
765                 break;
766
767         case HCISETLINKPOL:
768                 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
769                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
770                 break;
771
772         case HCISETLINKMODE:
773                 hdev->link_mode = ((__u16) dr.dev_opt) &
774                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
775                 break;
776
777         case HCISETPTYPE:
778                 hdev->pkt_type = (__u16) dr.dev_opt;
779                 break;
780
781         case HCISETACLMTU:
782                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
783                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
784                 break;
785
786         case HCISETSCOMTU:
787                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
788                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
789                 break;
790
791         default:
792                 err = -EINVAL;
793                 break;
794         }
795
796         hci_dev_put(hdev);
797         return err;
798 }
799
800 int hci_get_dev_list(void __user *arg)
801 {
802         struct hci_dev_list_req *dl;
803         struct hci_dev_req *dr;
804         struct list_head *p;
805         int n = 0, size, err;
806         __u16 dev_num;
807
808         if (get_user(dev_num, (__u16 __user *) arg))
809                 return -EFAULT;
810
811         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
812                 return -EINVAL;
813
814         size = sizeof(*dl) + dev_num * sizeof(*dr);
815
816         dl = kzalloc(size, GFP_KERNEL);
817         if (!dl)
818                 return -ENOMEM;
819
820         dr = dl->dev_req;
821
822         read_lock_bh(&hci_dev_list_lock);
823         list_for_each(p, &hci_dev_list) {
824                 struct hci_dev *hdev;
825
826                 hdev = list_entry(p, struct hci_dev, list);
827
828                 hci_del_off_timer(hdev);
829
830                 if (!test_bit(HCI_MGMT, &hdev->flags))
831                         set_bit(HCI_PAIRABLE, &hdev->flags);
832
833                 (dr + n)->dev_id  = hdev->id;
834                 (dr + n)->dev_opt = hdev->flags;
835
836                 if (++n >= dev_num)
837                         break;
838         }
839         read_unlock_bh(&hci_dev_list_lock);
840
841         dl->dev_num = n;
842         size = sizeof(*dl) + n * sizeof(*dr);
843
844         err = copy_to_user(arg, dl, size);
845         kfree(dl);
846
847         return err ? -EFAULT : 0;
848 }
849
850 int hci_get_dev_info(void __user *arg)
851 {
852         struct hci_dev *hdev;
853         struct hci_dev_info di;
854         int err = 0;
855
856         if (copy_from_user(&di, arg, sizeof(di)))
857                 return -EFAULT;
858
859         hdev = hci_dev_get(di.dev_id);
860         if (!hdev)
861                 return -ENODEV;
862
863         hci_del_off_timer(hdev);
864
865         if (!test_bit(HCI_MGMT, &hdev->flags))
866                 set_bit(HCI_PAIRABLE, &hdev->flags);
867
868         strcpy(di.name, hdev->name);
869         di.bdaddr   = hdev->bdaddr;
870         di.type     = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
871         di.flags    = hdev->flags;
872         di.pkt_type = hdev->pkt_type;
873         di.acl_mtu  = hdev->acl_mtu;
874         di.acl_pkts = hdev->acl_pkts;
875         di.sco_mtu  = hdev->sco_mtu;
876         di.sco_pkts = hdev->sco_pkts;
877         di.link_policy = hdev->link_policy;
878         di.link_mode   = hdev->link_mode;
879
880         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
881         memcpy(&di.features, &hdev->features, sizeof(di.features));
882
883         if (copy_to_user(arg, &di, sizeof(di)))
884                 err = -EFAULT;
885
886         hci_dev_put(hdev);
887
888         return err;
889 }
890
891 /* ---- Interface to HCI drivers ---- */
892
893 static int hci_rfkill_set_block(void *data, bool blocked)
894 {
895         struct hci_dev *hdev = data;
896
897         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
898
899         if (!blocked)
900                 return 0;
901
902         hci_dev_do_close(hdev);
903
904         return 0;
905 }
906
907 static const struct rfkill_ops hci_rfkill_ops = {
908         .set_block = hci_rfkill_set_block,
909 };
910
911 /* Alloc HCI device */
912 struct hci_dev *hci_alloc_dev(void)
913 {
914         struct hci_dev *hdev;
915
916         hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
917         if (!hdev)
918                 return NULL;
919
920         skb_queue_head_init(&hdev->driver_init);
921
922         return hdev;
923 }
924 EXPORT_SYMBOL(hci_alloc_dev);
925
926 /* Free HCI device */
927 void hci_free_dev(struct hci_dev *hdev)
928 {
929         skb_queue_purge(&hdev->driver_init);
930
931         /* will free via device release */
932         put_device(&hdev->dev);
933 }
934 EXPORT_SYMBOL(hci_free_dev);
935
936 static void hci_power_on(struct work_struct *work)
937 {
938         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
939
940         BT_DBG("%s", hdev->name);
941
942         if (hci_dev_open(hdev->id) < 0)
943                 return;
944
945         if (test_bit(HCI_AUTO_OFF, &hdev->flags))
946                 mod_timer(&hdev->off_timer,
947                                 jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
948
949         if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
950                 mgmt_index_added(hdev->id);
951 }
952
953 static void hci_power_off(struct work_struct *work)
954 {
955         struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
956
957         BT_DBG("%s", hdev->name);
958
959         hci_dev_close(hdev->id);
960 }
961
962 static void hci_auto_off(unsigned long data)
963 {
964         struct hci_dev *hdev = (struct hci_dev *) data;
965
966         BT_DBG("%s", hdev->name);
967
968         clear_bit(HCI_AUTO_OFF, &hdev->flags);
969
970         queue_work(hdev->workqueue, &hdev->power_off);
971 }
972
973 void hci_del_off_timer(struct hci_dev *hdev)
974 {
975         BT_DBG("%s", hdev->name);
976
977         clear_bit(HCI_AUTO_OFF, &hdev->flags);
978         del_timer(&hdev->off_timer);
979 }
980
981 int hci_uuids_clear(struct hci_dev *hdev)
982 {
983         struct list_head *p, *n;
984
985         list_for_each_safe(p, n, &hdev->uuids) {
986                 struct bt_uuid *uuid;
987
988                 uuid = list_entry(p, struct bt_uuid, list);
989
990                 list_del(p);
991                 kfree(uuid);
992         }
993
994         return 0;
995 }
996
997 int hci_link_keys_clear(struct hci_dev *hdev)
998 {
999         struct list_head *p, *n;
1000
1001         list_for_each_safe(p, n, &hdev->link_keys) {
1002                 struct link_key *key;
1003
1004                 key = list_entry(p, struct link_key, list);
1005
1006                 list_del(p);
1007                 kfree(key);
1008         }
1009
1010         return 0;
1011 }
1012
1013 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1014 {
1015         struct list_head *p;
1016
1017         list_for_each(p, &hdev->link_keys) {
1018                 struct link_key *k;
1019
1020                 k = list_entry(p, struct link_key, list);
1021
1022                 if (bacmp(bdaddr, &k->bdaddr) == 0)
1023                         return k;
1024         }
1025
1026         return NULL;
1027 }
1028
1029 static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1030                                                 u8 key_type, u8 old_key_type)
1031 {
1032         /* Legacy key */
1033         if (key_type < 0x03)
1034                 return 1;
1035
1036         /* Debug keys are insecure so don't store them persistently */
1037         if (key_type == HCI_LK_DEBUG_COMBINATION)
1038                 return 0;
1039
1040         /* Changed combination key and there's no previous one */
1041         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1042                 return 0;
1043
1044         /* Security mode 3 case */
1045         if (!conn)
1046                 return 1;
1047
1048         /* Neither local nor remote side had no-bonding as requirement */
1049         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1050                 return 1;
1051
1052         /* Local side had dedicated bonding as requirement */
1053         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1054                 return 1;
1055
1056         /* Remote side had dedicated bonding as requirement */
1057         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1058                 return 1;
1059
1060         /* If none of the above criteria match, then don't store the key
1061          * persistently */
1062         return 0;
1063 }
1064
1065 struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1066 {
1067         struct link_key *k;
1068
1069         list_for_each_entry(k, &hdev->link_keys, list) {
1070                 struct key_master_id *id;
1071
1072                 if (k->type != HCI_LK_SMP_LTK)
1073                         continue;
1074
1075                 if (k->dlen != sizeof(*id))
1076                         continue;
1077
1078                 id = (void *) &k->data;
1079                 if (id->ediv == ediv &&
1080                                 (memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1081                         return k;
1082         }
1083
1084         return NULL;
1085 }
1086 EXPORT_SYMBOL(hci_find_ltk);
1087
1088 struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1089                                         bdaddr_t *bdaddr, u8 type)
1090 {
1091         struct link_key *k;
1092
1093         list_for_each_entry(k, &hdev->link_keys, list)
1094                 if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1095                         return k;
1096
1097         return NULL;
1098 }
1099 EXPORT_SYMBOL(hci_find_link_key_type);
1100
1101 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1102                                 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1103 {
1104         struct link_key *key, *old_key;
1105         u8 old_key_type, persistent;
1106
1107         old_key = hci_find_link_key(hdev, bdaddr);
1108         if (old_key) {
1109                 old_key_type = old_key->type;
1110                 key = old_key;
1111         } else {
1112                 old_key_type = conn ? conn->key_type : 0xff;
1113                 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1114                 if (!key)
1115                         return -ENOMEM;
1116                 list_add(&key->list, &hdev->link_keys);
1117         }
1118
1119         BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1120
1121         /* Some buggy controller combinations generate a changed
1122          * combination key for legacy pairing even when there's no
1123          * previous key */
1124         if (type == HCI_LK_CHANGED_COMBINATION &&
1125                                         (!conn || conn->remote_auth == 0xff) &&
1126                                         old_key_type == 0xff) {
1127                 type = HCI_LK_COMBINATION;
1128                 if (conn)
1129                         conn->key_type = type;
1130         }
1131
1132         bacpy(&key->bdaddr, bdaddr);
1133         memcpy(key->val, val, 16);
1134         key->pin_len = pin_len;
1135
1136         if (type == HCI_LK_CHANGED_COMBINATION)
1137                 key->type = old_key_type;
1138         else
1139                 key->type = type;
1140
1141         if (!new_key)
1142                 return 0;
1143
1144         persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1145
1146         mgmt_new_key(hdev->id, key, persistent);
1147
1148         if (!persistent) {
1149                 list_del(&key->list);
1150                 kfree(key);
1151         }
1152
1153         return 0;
1154 }
1155
1156 int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1157                         u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1158 {
1159         struct link_key *key, *old_key;
1160         struct key_master_id *id;
1161         u8 old_key_type;
1162
1163         BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
1164
1165         old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1166         if (old_key) {
1167                 key = old_key;
1168                 old_key_type = old_key->type;
1169         } else {
1170                 key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1171                 if (!key)
1172                         return -ENOMEM;
1173                 list_add(&key->list, &hdev->link_keys);
1174                 old_key_type = 0xff;
1175         }
1176
1177         key->dlen = sizeof(*id);
1178
1179         bacpy(&key->bdaddr, bdaddr);
1180         memcpy(key->val, ltk, sizeof(key->val));
1181         key->type = HCI_LK_SMP_LTK;
1182         key->pin_len = key_size;
1183
1184         id = (void *) &key->data;
1185         id->ediv = ediv;
1186         memcpy(id->rand, rand, sizeof(id->rand));
1187
1188         if (new_key)
1189                 mgmt_new_key(hdev->id, key, old_key_type);
1190
1191         return 0;
1192 }
1193
1194 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1195 {
1196         struct link_key *key;
1197
1198         key = hci_find_link_key(hdev, bdaddr);
1199         if (!key)
1200                 return -ENOENT;
1201
1202         BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1203
1204         list_del(&key->list);
1205         kfree(key);
1206
1207         return 0;
1208 }
1209
1210 /* HCI command timer function */
1211 static void hci_cmd_timer(unsigned long arg)
1212 {
1213         struct hci_dev *hdev = (void *) arg;
1214
1215         BT_ERR("%s command tx timeout", hdev->name);
1216         atomic_set(&hdev->cmd_cnt, 1);
1217         tasklet_schedule(&hdev->cmd_task);
1218 }
1219
1220 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1221                                                         bdaddr_t *bdaddr)
1222 {
1223         struct oob_data *data;
1224
1225         list_for_each_entry(data, &hdev->remote_oob_data, list)
1226                 if (bacmp(bdaddr, &data->bdaddr) == 0)
1227                         return data;
1228
1229         return NULL;
1230 }
1231
1232 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1233 {
1234         struct oob_data *data;
1235
1236         data = hci_find_remote_oob_data(hdev, bdaddr);
1237         if (!data)
1238                 return -ENOENT;
1239
1240         BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1241
1242         list_del(&data->list);
1243         kfree(data);
1244
1245         return 0;
1246 }
1247
1248 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1249 {
1250         struct oob_data *data, *n;
1251
1252         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1253                 list_del(&data->list);
1254                 kfree(data);
1255         }
1256
1257         return 0;
1258 }
1259
1260 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1261                                                                 u8 *randomizer)
1262 {
1263         struct oob_data *data;
1264
1265         data = hci_find_remote_oob_data(hdev, bdaddr);
1266
1267         if (!data) {
1268                 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1269                 if (!data)
1270                         return -ENOMEM;
1271
1272                 bacpy(&data->bdaddr, bdaddr);
1273                 list_add(&data->list, &hdev->remote_oob_data);
1274         }
1275
1276         memcpy(data->hash, hash, sizeof(data->hash));
1277         memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1278
1279         BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1280
1281         return 0;
1282 }
1283
1284 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1285                                                 bdaddr_t *bdaddr)
1286 {
1287         struct list_head *p;
1288
1289         list_for_each(p, &hdev->blacklist) {
1290                 struct bdaddr_list *b;
1291
1292                 b = list_entry(p, struct bdaddr_list, list);
1293
1294                 if (bacmp(bdaddr, &b->bdaddr) == 0)
1295                         return b;
1296         }
1297
1298         return NULL;
1299 }
1300
1301 int hci_blacklist_clear(struct hci_dev *hdev)
1302 {
1303         struct list_head *p, *n;
1304
1305         list_for_each_safe(p, n, &hdev->blacklist) {
1306                 struct bdaddr_list *b;
1307
1308                 b = list_entry(p, struct bdaddr_list, list);
1309
1310                 list_del(p);
1311                 kfree(b);
1312         }
1313
1314         return 0;
1315 }
1316
1317 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
1318 {
1319         struct bdaddr_list *entry;
1320
1321         if (bacmp(bdaddr, BDADDR_ANY) == 0)
1322                 return -EBADF;
1323
1324         if (hci_blacklist_lookup(hdev, bdaddr))
1325                 return -EEXIST;
1326
1327         entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1328         if (!entry)
1329                 return -ENOMEM;
1330
1331         bacpy(&entry->bdaddr, bdaddr);
1332
1333         list_add(&entry->list, &hdev->blacklist);
1334
1335         return mgmt_device_blocked(hdev->id, bdaddr);
1336 }
1337
1338 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
1339 {
1340         struct bdaddr_list *entry;
1341
1342         if (bacmp(bdaddr, BDADDR_ANY) == 0) {
1343                 return hci_blacklist_clear(hdev);
1344         }
1345
1346         entry = hci_blacklist_lookup(hdev, bdaddr);
1347         if (!entry) {
1348                 return -ENOENT;
1349         }
1350
1351         list_del(&entry->list);
1352         kfree(entry);
1353
1354         return mgmt_device_unblocked(hdev->id, bdaddr);
1355 }
1356
1357 static void hci_clear_adv_cache(unsigned long arg)
1358 {
1359         struct hci_dev *hdev = (void *) arg;
1360
1361         hci_dev_lock(hdev);
1362
1363         hci_adv_entries_clear(hdev);
1364
1365         hci_dev_unlock(hdev);
1366 }
1367
1368 int hci_adv_entries_clear(struct hci_dev *hdev)
1369 {
1370         struct adv_entry *entry, *tmp;
1371
1372         list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1373                 list_del(&entry->list);
1374                 kfree(entry);
1375         }
1376
1377         BT_DBG("%s adv cache cleared", hdev->name);
1378
1379         return 0;
1380 }
1381
1382 struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1383 {
1384         struct adv_entry *entry;
1385
1386         list_for_each_entry(entry, &hdev->adv_entries, list)
1387                 if (bacmp(bdaddr, &entry->bdaddr) == 0)
1388                         return entry;
1389
1390         return NULL;
1391 }
1392
1393 static inline int is_connectable_adv(u8 evt_type)
1394 {
1395         if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1396                 return 1;
1397
1398         return 0;
1399 }
1400
1401 int hci_add_adv_entry(struct hci_dev *hdev,
1402                                         struct hci_ev_le_advertising_info *ev)
1403 {
1404         struct adv_entry *entry;
1405
1406         if (!is_connectable_adv(ev->evt_type))
1407                 return -EINVAL;
1408
1409         /* Only new entries should be added to adv_entries. So, if
1410          * bdaddr was found, don't add it. */
1411         if (hci_find_adv_entry(hdev, &ev->bdaddr))
1412                 return 0;
1413
1414         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1415         if (!entry)
1416                 return -ENOMEM;
1417
1418         bacpy(&entry->bdaddr, &ev->bdaddr);
1419         entry->bdaddr_type = ev->bdaddr_type;
1420
1421         list_add(&entry->list, &hdev->adv_entries);
1422
1423         BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1424                                 batostr(&entry->bdaddr), entry->bdaddr_type);
1425
1426         return 0;
1427 }
1428
1429 /* Register HCI device */
1430 int hci_register_dev(struct hci_dev *hdev)
1431 {
1432         struct list_head *head = &hci_dev_list, *p;
1433         int i, id = 0;
1434
1435         BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1436                                                 hdev->bus, hdev->owner);
1437
1438         if (!hdev->open || !hdev->close || !hdev->destruct)
1439                 return -EINVAL;
1440
1441         write_lock_bh(&hci_dev_list_lock);
1442
1443         /* Find first available device id */
1444         list_for_each(p, &hci_dev_list) {
1445                 if (list_entry(p, struct hci_dev, list)->id != id)
1446                         break;
1447                 head = p; id++;
1448         }
1449
1450         sprintf(hdev->name, "hci%d", id);
1451         hdev->id = id;
1452         list_add(&hdev->list, head);
1453
1454         atomic_set(&hdev->refcnt, 1);
1455         spin_lock_init(&hdev->lock);
1456
1457         hdev->flags = 0;
1458         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1459         hdev->esco_type = (ESCO_HV1);
1460         hdev->link_mode = (HCI_LM_ACCEPT);
1461         hdev->io_capability = 0x03; /* No Input No Output */
1462
1463         hdev->idle_timeout = 0;
1464         hdev->sniff_max_interval = 800;
1465         hdev->sniff_min_interval = 80;
1466
1467         tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
1468         tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
1469         tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
1470
1471         skb_queue_head_init(&hdev->rx_q);
1472         skb_queue_head_init(&hdev->cmd_q);
1473         skb_queue_head_init(&hdev->raw_q);
1474
1475         setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1476
1477         for (i = 0; i < NUM_REASSEMBLY; i++)
1478                 hdev->reassembly[i] = NULL;
1479
1480         init_waitqueue_head(&hdev->req_wait_q);
1481         mutex_init(&hdev->req_lock);
1482
1483         inquiry_cache_init(hdev);
1484
1485         hci_conn_hash_init(hdev);
1486
1487         INIT_LIST_HEAD(&hdev->blacklist);
1488
1489         INIT_LIST_HEAD(&hdev->uuids);
1490
1491         INIT_LIST_HEAD(&hdev->link_keys);
1492
1493         INIT_LIST_HEAD(&hdev->remote_oob_data);
1494
1495         INIT_LIST_HEAD(&hdev->adv_entries);
1496         setup_timer(&hdev->adv_timer, hci_clear_adv_cache,
1497                                                 (unsigned long) hdev);
1498
1499         INIT_WORK(&hdev->power_on, hci_power_on);
1500         INIT_WORK(&hdev->power_off, hci_power_off);
1501         setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
1502
1503         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1504
1505         atomic_set(&hdev->promisc, 0);
1506
1507         write_unlock_bh(&hci_dev_list_lock);
1508
1509         hdev->workqueue = create_singlethread_workqueue(hdev->name);
1510         if (!hdev->workqueue)
1511                 goto nomem;
1512
1513         hci_register_sysfs(hdev);
1514
1515         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1516                                 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1517         if (hdev->rfkill) {
1518                 if (rfkill_register(hdev->rfkill) < 0) {
1519                         rfkill_destroy(hdev->rfkill);
1520                         hdev->rfkill = NULL;
1521                 }
1522         }
1523
1524         set_bit(HCI_AUTO_OFF, &hdev->flags);
1525         set_bit(HCI_SETUP, &hdev->flags);
1526         queue_work(hdev->workqueue, &hdev->power_on);
1527
1528         hci_notify(hdev, HCI_DEV_REG);
1529
1530         return id;
1531
1532 nomem:
1533         write_lock_bh(&hci_dev_list_lock);
1534         list_del(&hdev->list);
1535         write_unlock_bh(&hci_dev_list_lock);
1536
1537         return -ENOMEM;
1538 }
1539 EXPORT_SYMBOL(hci_register_dev);
1540
1541 /* Unregister HCI device */
1542 int hci_unregister_dev(struct hci_dev *hdev)
1543 {
1544         int i;
1545
1546         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1547
1548         set_bit(HCI_UNREGISTER, &hdev->flags);
1549
1550         write_lock_bh(&hci_dev_list_lock);
1551         list_del(&hdev->list);
1552         write_unlock_bh(&hci_dev_list_lock);
1553
1554         hci_dev_do_close(hdev);
1555
1556         for (i = 0; i < NUM_REASSEMBLY; i++)
1557                 kfree_skb(hdev->reassembly[i]);
1558
1559         if (!test_bit(HCI_INIT, &hdev->flags) &&
1560                                         !test_bit(HCI_SETUP, &hdev->flags))
1561                 mgmt_index_removed(hdev->id);
1562
1563         hci_notify(hdev, HCI_DEV_UNREG);
1564
1565         if (hdev->rfkill) {
1566                 rfkill_unregister(hdev->rfkill);
1567                 rfkill_destroy(hdev->rfkill);
1568         }
1569
1570         hci_unregister_sysfs(hdev);
1571
1572         hci_del_off_timer(hdev);
1573         del_timer(&hdev->adv_timer);
1574
1575         destroy_workqueue(hdev->workqueue);
1576
1577         hci_dev_lock_bh(hdev);
1578         hci_blacklist_clear(hdev);
1579         hci_uuids_clear(hdev);
1580         hci_link_keys_clear(hdev);
1581         hci_remote_oob_data_clear(hdev);
1582         hci_adv_entries_clear(hdev);
1583         hci_dev_unlock_bh(hdev);
1584
1585         __hci_dev_put(hdev);
1586
1587         return 0;
1588 }
1589 EXPORT_SYMBOL(hci_unregister_dev);
1590
1591 /* Suspend HCI device */
1592 int hci_suspend_dev(struct hci_dev *hdev)
1593 {
1594         hci_notify(hdev, HCI_DEV_SUSPEND);
1595         return 0;
1596 }
1597 EXPORT_SYMBOL(hci_suspend_dev);
1598
1599 /* Resume HCI device */
1600 int hci_resume_dev(struct hci_dev *hdev)
1601 {
1602         hci_notify(hdev, HCI_DEV_RESUME);
1603         return 0;
1604 }
1605 EXPORT_SYMBOL(hci_resume_dev);
1606
1607 /* Receive frame from HCI drivers */
1608 int hci_recv_frame(struct sk_buff *skb)
1609 {
1610         struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1611         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1612                                 && !test_bit(HCI_INIT, &hdev->flags))) {
1613                 kfree_skb(skb);
1614                 return -ENXIO;
1615         }
1616
1617         /* Incomming skb */
1618         bt_cb(skb)->incoming = 1;
1619
1620         /* Time stamp */
1621         __net_timestamp(skb);
1622
1623         /* Queue frame for rx task */
1624         skb_queue_tail(&hdev->rx_q, skb);
1625         tasklet_schedule(&hdev->rx_task);
1626
1627         return 0;
1628 }
1629 EXPORT_SYMBOL(hci_recv_frame);
1630
1631 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1632                                                   int count, __u8 index)
1633 {
1634         int len = 0;
1635         int hlen = 0;
1636         int remain = count;
1637         struct sk_buff *skb;
1638         struct bt_skb_cb *scb;
1639
1640         if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1641                                 index >= NUM_REASSEMBLY)
1642                 return -EILSEQ;
1643
1644         skb = hdev->reassembly[index];
1645
1646         if (!skb) {
1647                 switch (type) {
1648                 case HCI_ACLDATA_PKT:
1649                         len = HCI_MAX_FRAME_SIZE;
1650                         hlen = HCI_ACL_HDR_SIZE;
1651                         break;
1652                 case HCI_EVENT_PKT:
1653                         len = HCI_MAX_EVENT_SIZE;
1654                         hlen = HCI_EVENT_HDR_SIZE;
1655                         break;
1656                 case HCI_SCODATA_PKT:
1657                         len = HCI_MAX_SCO_SIZE;
1658                         hlen = HCI_SCO_HDR_SIZE;
1659                         break;
1660                 }
1661
1662                 skb = bt_skb_alloc(len, GFP_ATOMIC);
1663                 if (!skb)
1664                         return -ENOMEM;
1665
1666                 scb = (void *) skb->cb;
1667                 scb->expect = hlen;
1668                 scb->pkt_type = type;
1669
1670                 skb->dev = (void *) hdev;
1671                 hdev->reassembly[index] = skb;
1672         }
1673
1674         while (count) {
1675                 scb = (void *) skb->cb;
1676                 len = min(scb->expect, (__u16)count);
1677
1678                 memcpy(skb_put(skb, len), data, len);
1679
1680                 count -= len;
1681                 data += len;
1682                 scb->expect -= len;
1683                 remain = count;
1684
1685                 switch (type) {
1686                 case HCI_EVENT_PKT:
1687                         if (skb->len == HCI_EVENT_HDR_SIZE) {
1688                                 struct hci_event_hdr *h = hci_event_hdr(skb);
1689                                 scb->expect = h->plen;
1690
1691                                 if (skb_tailroom(skb) < scb->expect) {
1692                                         kfree_skb(skb);
1693                                         hdev->reassembly[index] = NULL;
1694                                         return -ENOMEM;
1695                                 }
1696                         }
1697                         break;
1698
1699                 case HCI_ACLDATA_PKT:
1700                         if (skb->len  == HCI_ACL_HDR_SIZE) {
1701                                 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1702                                 scb->expect = __le16_to_cpu(h->dlen);
1703
1704                                 if (skb_tailroom(skb) < scb->expect) {
1705                                         kfree_skb(skb);
1706                                         hdev->reassembly[index] = NULL;
1707                                         return -ENOMEM;
1708                                 }
1709                         }
1710                         break;
1711
1712                 case HCI_SCODATA_PKT:
1713                         if (skb->len == HCI_SCO_HDR_SIZE) {
1714                                 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1715                                 scb->expect = h->dlen;
1716
1717                                 if (skb_tailroom(skb) < scb->expect) {
1718                                         kfree_skb(skb);
1719                                         hdev->reassembly[index] = NULL;
1720                                         return -ENOMEM;
1721                                 }
1722                         }
1723                         break;
1724                 }
1725
1726                 if (scb->expect == 0) {
1727                         /* Complete frame */
1728
1729                         bt_cb(skb)->pkt_type = type;
1730                         hci_recv_frame(skb);
1731
1732                         hdev->reassembly[index] = NULL;
1733                         return remain;
1734                 }
1735         }
1736
1737         return remain;
1738 }
1739
1740 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1741 {
1742         int rem = 0;
1743
1744         if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1745                 return -EILSEQ;
1746
1747         while (count) {
1748                 rem = hci_reassembly(hdev, type, data, count, type - 1);
1749                 if (rem < 0)
1750                         return rem;
1751
1752                 data += (count - rem);
1753                 count = rem;
1754         }
1755
1756         return rem;
1757 }
1758 EXPORT_SYMBOL(hci_recv_fragment);
1759
1760 #define STREAM_REASSEMBLY 0
1761
1762 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1763 {
1764         int type;
1765         int rem = 0;
1766
1767         while (count) {
1768                 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1769
1770                 if (!skb) {
1771                         struct { char type; } *pkt;
1772
1773                         /* Start of the frame */
1774                         pkt = data;
1775                         type = pkt->type;
1776
1777                         data++;
1778                         count--;
1779                 } else
1780                         type = bt_cb(skb)->pkt_type;
1781
1782                 rem = hci_reassembly(hdev, type, data, count,
1783                                                         STREAM_REASSEMBLY);
1784                 if (rem < 0)
1785                         return rem;
1786
1787                 data += (count - rem);
1788                 count = rem;
1789         }
1790
1791         return rem;
1792 }
1793 EXPORT_SYMBOL(hci_recv_stream_fragment);
1794
1795 /* ---- Interface to upper protocols ---- */
1796
1797 /* Register/Unregister protocols.
1798  * hci_task_lock is used to ensure that no tasks are running. */
1799 int hci_register_proto(struct hci_proto *hp)
1800 {
1801         int err = 0;
1802
1803         BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1804
1805         if (hp->id >= HCI_MAX_PROTO)
1806                 return -EINVAL;
1807
1808         write_lock_bh(&hci_task_lock);
1809
1810         if (!hci_proto[hp->id])
1811                 hci_proto[hp->id] = hp;
1812         else
1813                 err = -EEXIST;
1814
1815         write_unlock_bh(&hci_task_lock);
1816
1817         return err;
1818 }
1819 EXPORT_SYMBOL(hci_register_proto);
1820
1821 int hci_unregister_proto(struct hci_proto *hp)
1822 {
1823         int err = 0;
1824
1825         BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1826
1827         if (hp->id >= HCI_MAX_PROTO)
1828                 return -EINVAL;
1829
1830         write_lock_bh(&hci_task_lock);
1831
1832         if (hci_proto[hp->id])
1833                 hci_proto[hp->id] = NULL;
1834         else
1835                 err = -ENOENT;
1836
1837         write_unlock_bh(&hci_task_lock);
1838
1839         return err;
1840 }
1841 EXPORT_SYMBOL(hci_unregister_proto);
1842
1843 int hci_register_cb(struct hci_cb *cb)
1844 {
1845         BT_DBG("%p name %s", cb, cb->name);
1846
1847         write_lock_bh(&hci_cb_list_lock);
1848         list_add(&cb->list, &hci_cb_list);
1849         write_unlock_bh(&hci_cb_list_lock);
1850
1851         return 0;
1852 }
1853 EXPORT_SYMBOL(hci_register_cb);
1854
1855 int hci_unregister_cb(struct hci_cb *cb)
1856 {
1857         BT_DBG("%p name %s", cb, cb->name);
1858
1859         write_lock_bh(&hci_cb_list_lock);
1860         list_del(&cb->list);
1861         write_unlock_bh(&hci_cb_list_lock);
1862
1863         return 0;
1864 }
1865 EXPORT_SYMBOL(hci_unregister_cb);
1866
1867 static int hci_send_frame(struct sk_buff *skb)
1868 {
1869         struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1870
1871         if (!hdev) {
1872                 kfree_skb(skb);
1873                 return -ENODEV;
1874         }
1875
1876         BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
1877
1878         if (atomic_read(&hdev->promisc)) {
1879                 /* Time stamp */
1880                 __net_timestamp(skb);
1881
1882                 hci_send_to_sock(hdev, skb, NULL);
1883         }
1884
1885         /* Get rid of skb owner, prior to sending to the driver. */
1886         skb_orphan(skb);
1887
1888         return hdev->send(skb);
1889 }
1890
1891 /* Send HCI command */
1892 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
1893 {
1894         int len = HCI_COMMAND_HDR_SIZE + plen;
1895         struct hci_command_hdr *hdr;
1896         struct sk_buff *skb;
1897
1898         BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1899
1900         skb = bt_skb_alloc(len, GFP_ATOMIC);
1901         if (!skb) {
1902                 BT_ERR("%s no memory for command", hdev->name);
1903                 return -ENOMEM;
1904         }
1905
1906         hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1907         hdr->opcode = cpu_to_le16(opcode);
1908         hdr->plen   = plen;
1909
1910         if (plen)
1911                 memcpy(skb_put(skb, plen), param, plen);
1912
1913         BT_DBG("skb len %d", skb->len);
1914
1915         bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1916         skb->dev = (void *) hdev;
1917
1918         if (test_bit(HCI_INIT, &hdev->flags))
1919                 hdev->init_last_cmd = opcode;
1920
1921         skb_queue_tail(&hdev->cmd_q, skb);
1922         tasklet_schedule(&hdev->cmd_task);
1923
1924         return 0;
1925 }
1926
1927 /* Get data from the previously sent command */
1928 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1929 {
1930         struct hci_command_hdr *hdr;
1931
1932         if (!hdev->sent_cmd)
1933                 return NULL;
1934
1935         hdr = (void *) hdev->sent_cmd->data;
1936
1937         if (hdr->opcode != cpu_to_le16(opcode))
1938                 return NULL;
1939
1940         BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1941
1942         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1943 }
1944
1945 /* Send ACL data */
1946 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1947 {
1948         struct hci_acl_hdr *hdr;
1949         int len = skb->len;
1950
1951         skb_push(skb, HCI_ACL_HDR_SIZE);
1952         skb_reset_transport_header(skb);
1953         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1954         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1955         hdr->dlen   = cpu_to_le16(len);
1956 }
1957
1958 void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
1959 {
1960         struct hci_dev *hdev = conn->hdev;
1961         struct sk_buff *list;
1962
1963         BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
1964
1965         skb->dev = (void *) hdev;
1966         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1967         hci_add_acl_hdr(skb, conn->handle, flags);
1968
1969         list = skb_shinfo(skb)->frag_list;
1970         if (!list) {
1971                 /* Non fragmented */
1972                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1973
1974                 skb_queue_tail(&conn->data_q, skb);
1975         } else {
1976                 /* Fragmented */
1977                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1978
1979                 skb_shinfo(skb)->frag_list = NULL;
1980
1981                 /* Queue all fragments atomically */
1982                 spin_lock_bh(&conn->data_q.lock);
1983
1984                 __skb_queue_tail(&conn->data_q, skb);
1985
1986                 flags &= ~ACL_START;
1987                 flags |= ACL_CONT;
1988                 do {
1989                         skb = list; list = list->next;
1990
1991                         skb->dev = (void *) hdev;
1992                         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1993                         hci_add_acl_hdr(skb, conn->handle, flags);
1994
1995                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1996
1997                         __skb_queue_tail(&conn->data_q, skb);
1998                 } while (list);
1999
2000                 spin_unlock_bh(&conn->data_q.lock);
2001         }
2002
2003         tasklet_schedule(&hdev->tx_task);
2004 }
2005 EXPORT_SYMBOL(hci_send_acl);
2006
2007 /* Send SCO data */
2008 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2009 {
2010         struct hci_dev *hdev = conn->hdev;
2011         struct hci_sco_hdr hdr;
2012
2013         BT_DBG("%s len %d", hdev->name, skb->len);
2014
2015         hdr.handle = cpu_to_le16(conn->handle);
2016         hdr.dlen   = skb->len;
2017
2018         skb_push(skb, HCI_SCO_HDR_SIZE);
2019         skb_reset_transport_header(skb);
2020         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2021
2022         skb->dev = (void *) hdev;
2023         bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2024
2025         skb_queue_tail(&conn->data_q, skb);
2026         tasklet_schedule(&hdev->tx_task);
2027 }
2028 EXPORT_SYMBOL(hci_send_sco);
2029
2030 /* ---- HCI TX task (outgoing data) ---- */
2031
2032 /* HCI Connection scheduler */
2033 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
2034 {
2035         struct hci_conn_hash *h = &hdev->conn_hash;
2036         struct hci_conn *conn = NULL;
2037         int num = 0, min = ~0;
2038         struct list_head *p;
2039
2040         /* We don't have to lock device here. Connections are always
2041          * added and removed with TX task disabled. */
2042         list_for_each(p, &h->list) {
2043                 struct hci_conn *c;
2044                 c = list_entry(p, struct hci_conn, list);
2045
2046                 if (c->type != type || skb_queue_empty(&c->data_q))
2047                         continue;
2048
2049                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2050                         continue;
2051
2052                 num++;
2053
2054                 if (c->sent < min) {
2055                         min  = c->sent;
2056                         conn = c;
2057                 }
2058
2059                 if (hci_conn_num(hdev, type) == num)
2060                         break;
2061         }
2062
2063         if (conn) {
2064                 int cnt, q;
2065
2066                 switch (conn->type) {
2067                 case ACL_LINK:
2068                         cnt = hdev->acl_cnt;
2069                         break;
2070                 case SCO_LINK:
2071                 case ESCO_LINK:
2072                         cnt = hdev->sco_cnt;
2073                         break;
2074                 case LE_LINK:
2075                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2076                         break;
2077                 default:
2078                         cnt = 0;
2079                         BT_ERR("Unknown link type");
2080                 }
2081
2082                 q = cnt / num;
2083                 *quote = q ? q : 1;
2084         } else
2085                 *quote = 0;
2086
2087         BT_DBG("conn %p quote %d", conn, *quote);
2088         return conn;
2089 }
2090
2091 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2092 {
2093         struct hci_conn_hash *h = &hdev->conn_hash;
2094         struct list_head *p;
2095         struct hci_conn  *c;
2096
2097         BT_ERR("%s link tx timeout", hdev->name);
2098
2099         /* Kill stalled connections */
2100         list_for_each(p, &h->list) {
2101                 c = list_entry(p, struct hci_conn, list);
2102                 if (c->type == type && c->sent) {
2103                         BT_ERR("%s killing stalled connection %s",
2104                                 hdev->name, batostr(&c->dst));
2105                         hci_acl_disconn(c, 0x13);
2106                 }
2107         }
2108 }
2109
2110 static inline void hci_sched_acl(struct hci_dev *hdev)
2111 {
2112         struct hci_conn *conn;
2113         struct sk_buff *skb;
2114         int quote;
2115
2116         BT_DBG("%s", hdev->name);
2117
2118         if (!hci_conn_num(hdev, ACL_LINK))
2119                 return;
2120
2121         if (!test_bit(HCI_RAW, &hdev->flags)) {
2122                 /* ACL tx timeout must be longer than maximum
2123                  * link supervision timeout (40.9 seconds) */
2124                 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
2125                         hci_link_tx_to(hdev, ACL_LINK);
2126         }
2127
2128         while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
2129                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2130                         BT_DBG("skb %p len %d", skb, skb->len);
2131
2132                         hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2133
2134                         hci_send_frame(skb);
2135                         hdev->acl_last_tx = jiffies;
2136
2137                         hdev->acl_cnt--;
2138                         conn->sent++;
2139                 }
2140         }
2141 }
2142
2143 /* Schedule SCO */
2144 static inline void hci_sched_sco(struct hci_dev *hdev)
2145 {
2146         struct hci_conn *conn;
2147         struct sk_buff *skb;
2148         int quote;
2149
2150         BT_DBG("%s", hdev->name);
2151
2152         if (!hci_conn_num(hdev, SCO_LINK))
2153                 return;
2154
2155         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2156                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2157                         BT_DBG("skb %p len %d", skb, skb->len);
2158                         hci_send_frame(skb);
2159
2160                         conn->sent++;
2161                         if (conn->sent == ~0)
2162                                 conn->sent = 0;
2163                 }
2164         }
2165 }
2166
2167 static inline void hci_sched_esco(struct hci_dev *hdev)
2168 {
2169         struct hci_conn *conn;
2170         struct sk_buff *skb;
2171         int quote;
2172
2173         BT_DBG("%s", hdev->name);
2174
2175         if (!hci_conn_num(hdev, ESCO_LINK))
2176                 return;
2177
2178         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
2179                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2180                         BT_DBG("skb %p len %d", skb, skb->len);
2181                         hci_send_frame(skb);
2182
2183                         conn->sent++;
2184                         if (conn->sent == ~0)
2185                                 conn->sent = 0;
2186                 }
2187         }
2188 }
2189
2190 static inline void hci_sched_le(struct hci_dev *hdev)
2191 {
2192         struct hci_conn *conn;
2193         struct sk_buff *skb;
2194         int quote, cnt;
2195
2196         BT_DBG("%s", hdev->name);
2197
2198         if (!hci_conn_num(hdev, LE_LINK))
2199                 return;
2200
2201         if (!test_bit(HCI_RAW, &hdev->flags)) {
2202                 /* LE tx timeout must be longer than maximum
2203                  * link supervision timeout (40.9 seconds) */
2204                 if (!hdev->le_cnt && hdev->le_pkts &&
2205                                 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2206                         hci_link_tx_to(hdev, LE_LINK);
2207         }
2208
2209         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2210         while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
2211                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2212                         BT_DBG("skb %p len %d", skb, skb->len);
2213
2214                         hci_send_frame(skb);
2215                         hdev->le_last_tx = jiffies;
2216
2217                         cnt--;
2218                         conn->sent++;
2219                 }
2220         }
2221         if (hdev->le_pkts)
2222                 hdev->le_cnt = cnt;
2223         else
2224                 hdev->acl_cnt = cnt;
2225 }
2226
2227 static void hci_tx_task(unsigned long arg)
2228 {
2229         struct hci_dev *hdev = (struct hci_dev *) arg;
2230         struct sk_buff *skb;
2231
2232         read_lock(&hci_task_lock);
2233
2234         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2235                 hdev->sco_cnt, hdev->le_cnt);
2236
2237         /* Schedule queues and send stuff to HCI driver */
2238
2239         hci_sched_acl(hdev);
2240
2241         hci_sched_sco(hdev);
2242
2243         hci_sched_esco(hdev);
2244
2245         hci_sched_le(hdev);
2246
2247         /* Send next queued raw (unknown type) packet */
2248         while ((skb = skb_dequeue(&hdev->raw_q)))
2249                 hci_send_frame(skb);
2250
2251         read_unlock(&hci_task_lock);
2252 }
2253
2254 /* ----- HCI RX task (incoming data processing) ----- */
2255
2256 /* ACL data packet */
2257 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2258 {
2259         struct hci_acl_hdr *hdr = (void *) skb->data;
2260         struct hci_conn *conn;
2261         __u16 handle, flags;
2262
2263         skb_pull(skb, HCI_ACL_HDR_SIZE);
2264
2265         handle = __le16_to_cpu(hdr->handle);
2266         flags  = hci_flags(handle);
2267         handle = hci_handle(handle);
2268
2269         BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
2270
2271         hdev->stat.acl_rx++;
2272
2273         hci_dev_lock(hdev);
2274         conn = hci_conn_hash_lookup_handle(hdev, handle);
2275         hci_dev_unlock(hdev);
2276
2277         if (conn) {
2278                 register struct hci_proto *hp;
2279
2280                 hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2281
2282                 /* Send to upper protocol */
2283                 hp = hci_proto[HCI_PROTO_L2CAP];
2284                 if (hp && hp->recv_acldata) {
2285                         hp->recv_acldata(conn, skb, flags);
2286                         return;
2287                 }
2288         } else {
2289                 BT_ERR("%s ACL packet for unknown connection handle %d",
2290                         hdev->name, handle);
2291         }
2292
2293         kfree_skb(skb);
2294 }
2295
2296 /* SCO data packet */
2297 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2298 {
2299         struct hci_sco_hdr *hdr = (void *) skb->data;
2300         struct hci_conn *conn;
2301         __u16 handle;
2302
2303         skb_pull(skb, HCI_SCO_HDR_SIZE);
2304
2305         handle = __le16_to_cpu(hdr->handle);
2306
2307         BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2308
2309         hdev->stat.sco_rx++;
2310
2311         hci_dev_lock(hdev);
2312         conn = hci_conn_hash_lookup_handle(hdev, handle);
2313         hci_dev_unlock(hdev);
2314
2315         if (conn) {
2316                 register struct hci_proto *hp;
2317
2318                 /* Send to upper protocol */
2319                 hp = hci_proto[HCI_PROTO_SCO];
2320                 if (hp && hp->recv_scodata) {
2321                         hp->recv_scodata(conn, skb);
2322                         return;
2323                 }
2324         } else {
2325                 BT_ERR("%s SCO packet for unknown connection handle %d",
2326                         hdev->name, handle);
2327         }
2328
2329         kfree_skb(skb);
2330 }
2331
2332 static void hci_rx_task(unsigned long arg)
2333 {
2334         struct hci_dev *hdev = (struct hci_dev *) arg;
2335         struct sk_buff *skb;
2336
2337         BT_DBG("%s", hdev->name);
2338
2339         read_lock(&hci_task_lock);
2340
2341         while ((skb = skb_dequeue(&hdev->rx_q))) {
2342                 if (atomic_read(&hdev->promisc)) {
2343                         /* Send copy to the sockets */
2344                         hci_send_to_sock(hdev, skb, NULL);
2345                 }
2346
2347                 if (test_bit(HCI_RAW, &hdev->flags)) {
2348                         kfree_skb(skb);
2349                         continue;
2350                 }
2351
2352                 if (test_bit(HCI_INIT, &hdev->flags)) {
2353                         /* Don't process data packets in this states. */
2354                         switch (bt_cb(skb)->pkt_type) {
2355                         case HCI_ACLDATA_PKT:
2356                         case HCI_SCODATA_PKT:
2357                                 kfree_skb(skb);
2358                                 continue;
2359                         }
2360                 }
2361
2362                 /* Process frame */
2363                 switch (bt_cb(skb)->pkt_type) {
2364                 case HCI_EVENT_PKT:
2365                         hci_event_packet(hdev, skb);
2366                         break;
2367
2368                 case HCI_ACLDATA_PKT:
2369                         BT_DBG("%s ACL data packet", hdev->name);
2370                         hci_acldata_packet(hdev, skb);
2371                         break;
2372
2373                 case HCI_SCODATA_PKT:
2374                         BT_DBG("%s SCO data packet", hdev->name);
2375                         hci_scodata_packet(hdev, skb);
2376                         break;
2377
2378                 default:
2379                         kfree_skb(skb);
2380                         break;
2381                 }
2382         }
2383
2384         read_unlock(&hci_task_lock);
2385 }
2386
2387 static void hci_cmd_task(unsigned long arg)
2388 {
2389         struct hci_dev *hdev = (struct hci_dev *) arg;
2390         struct sk_buff *skb;
2391
2392         BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2393
2394         /* Send queued commands */
2395         if (atomic_read(&hdev->cmd_cnt)) {
2396                 skb = skb_dequeue(&hdev->cmd_q);
2397                 if (!skb)
2398                         return;
2399
2400                 kfree_skb(hdev->sent_cmd);
2401
2402                 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2403                 if (hdev->sent_cmd) {
2404                         atomic_dec(&hdev->cmd_cnt);
2405                         hci_send_frame(skb);
2406                         if (test_bit(HCI_RESET, &hdev->flags))
2407                                 del_timer(&hdev->cmd_timer);
2408                         else
2409                                 mod_timer(&hdev->cmd_timer,
2410                                   jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2411                 } else {
2412                         skb_queue_head(&hdev->cmd_q, skb);
2413                         tasklet_schedule(&hdev->cmd_task);
2414                 }
2415         }
2416 }