Merge branch 'kvm-updates/3.1' of git://github.com/avikivity/kvm
[pandora-kernel.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI core. */
26
27 #include <linux/jiffies.h>
28 #include <linux/module.h>
29 #include <linux/kmod.h>
30
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fcntl.h>
38 #include <linux/init.h>
39 #include <linux/skbuff.h>
40 #include <linux/workqueue.h>
41 #include <linux/interrupt.h>
42 #include <linux/notifier.h>
43 #include <linux/rfkill.h>
44 #include <linux/timer.h>
45 #include <linux/crypto.h>
46 #include <net/sock.h>
47
48 #include <asm/system.h>
49 #include <linux/uaccess.h>
50 #include <asm/unaligned.h>
51
52 #include <net/bluetooth/bluetooth.h>
53 #include <net/bluetooth/hci_core.h>
54
55 #define AUTO_OFF_TIMEOUT 2000
56
57 static void hci_cmd_task(unsigned long arg);
58 static void hci_rx_task(unsigned long arg);
59 static void hci_tx_task(unsigned long arg);
60
61 static DEFINE_RWLOCK(hci_task_lock);
62
63 /* HCI device list */
64 LIST_HEAD(hci_dev_list);
65 DEFINE_RWLOCK(hci_dev_list_lock);
66
67 /* HCI callback list */
68 LIST_HEAD(hci_cb_list);
69 DEFINE_RWLOCK(hci_cb_list_lock);
70
71 /* HCI protocols */
72 #define HCI_MAX_PROTO   2
73 struct hci_proto *hci_proto[HCI_MAX_PROTO];
74
75 /* HCI notifiers list */
76 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
77
78 /* ---- HCI notifications ---- */
79
80 int hci_register_notifier(struct notifier_block *nb)
81 {
82         return atomic_notifier_chain_register(&hci_notifier, nb);
83 }
84
85 int hci_unregister_notifier(struct notifier_block *nb)
86 {
87         return atomic_notifier_chain_unregister(&hci_notifier, nb);
88 }
89
90 static void hci_notify(struct hci_dev *hdev, int event)
91 {
92         atomic_notifier_call_chain(&hci_notifier, event, hdev);
93 }
94
95 /* ---- HCI requests ---- */
96
97 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
98 {
99         BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
100
101         /* If this is the init phase check if the completed command matches
102          * the last init command, and if not just return.
103          */
104         if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
105                 return;
106
107         if (hdev->req_status == HCI_REQ_PEND) {
108                 hdev->req_result = result;
109                 hdev->req_status = HCI_REQ_DONE;
110                 wake_up_interruptible(&hdev->req_wait_q);
111         }
112 }
113
114 static void hci_req_cancel(struct hci_dev *hdev, int err)
115 {
116         BT_DBG("%s err 0x%2.2x", hdev->name, err);
117
118         if (hdev->req_status == HCI_REQ_PEND) {
119                 hdev->req_result = err;
120                 hdev->req_status = HCI_REQ_CANCELED;
121                 wake_up_interruptible(&hdev->req_wait_q);
122         }
123 }
124
125 /* Execute request and wait for completion. */
126 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
127                                         unsigned long opt, __u32 timeout)
128 {
129         DECLARE_WAITQUEUE(wait, current);
130         int err = 0;
131
132         BT_DBG("%s start", hdev->name);
133
134         hdev->req_status = HCI_REQ_PEND;
135
136         add_wait_queue(&hdev->req_wait_q, &wait);
137         set_current_state(TASK_INTERRUPTIBLE);
138
139         req(hdev, opt);
140         schedule_timeout(timeout);
141
142         remove_wait_queue(&hdev->req_wait_q, &wait);
143
144         if (signal_pending(current))
145                 return -EINTR;
146
147         switch (hdev->req_status) {
148         case HCI_REQ_DONE:
149                 err = -bt_to_errno(hdev->req_result);
150                 break;
151
152         case HCI_REQ_CANCELED:
153                 err = -hdev->req_result;
154                 break;
155
156         default:
157                 err = -ETIMEDOUT;
158                 break;
159         }
160
161         hdev->req_status = hdev->req_result = 0;
162
163         BT_DBG("%s end: err %d", hdev->name, err);
164
165         return err;
166 }
167
168 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
169                                         unsigned long opt, __u32 timeout)
170 {
171         int ret;
172
173         if (!test_bit(HCI_UP, &hdev->flags))
174                 return -ENETDOWN;
175
176         /* Serialize all requests */
177         hci_req_lock(hdev);
178         ret = __hci_request(hdev, req, opt, timeout);
179         hci_req_unlock(hdev);
180
181         return ret;
182 }
183
184 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
185 {
186         BT_DBG("%s %ld", hdev->name, opt);
187
188         /* Reset device */
189         set_bit(HCI_RESET, &hdev->flags);
190         hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
191 }
192
193 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
194 {
195         struct hci_cp_delete_stored_link_key cp;
196         struct sk_buff *skb;
197         __le16 param;
198         __u8 flt_type;
199
200         BT_DBG("%s %ld", hdev->name, opt);
201
202         /* Driver initialization */
203
204         /* Special commands */
205         while ((skb = skb_dequeue(&hdev->driver_init))) {
206                 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
207                 skb->dev = (void *) hdev;
208
209                 skb_queue_tail(&hdev->cmd_q, skb);
210                 tasklet_schedule(&hdev->cmd_task);
211         }
212         skb_queue_purge(&hdev->driver_init);
213
214         /* Mandatory initialization */
215
216         /* Reset */
217         if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
218                         set_bit(HCI_RESET, &hdev->flags);
219                         hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
220         }
221
222         /* Read Local Supported Features */
223         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
224
225         /* Read Local Version */
226         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
227
228         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
229         hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
230
231 #if 0
232         /* Host buffer size */
233         {
234                 struct hci_cp_host_buffer_size cp;
235                 cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
236                 cp.sco_mtu = HCI_MAX_SCO_SIZE;
237                 cp.acl_max_pkt = cpu_to_le16(0xffff);
238                 cp.sco_max_pkt = cpu_to_le16(0xffff);
239                 hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
240         }
241 #endif
242
243         /* Read BD Address */
244         hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
245
246         /* Read Class of Device */
247         hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
248
249         /* Read Local Name */
250         hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
251
252         /* Read Voice Setting */
253         hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
254
255         /* Optional initialization */
256
257         /* Clear Event Filters */
258         flt_type = HCI_FLT_CLEAR_ALL;
259         hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
260
261         /* Connection accept timeout ~20 secs */
262         param = cpu_to_le16(0x7d00);
263         hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
264
265         bacpy(&cp.bdaddr, BDADDR_ANY);
266         cp.delete_all = 1;
267         hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
268 }
269
270 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
271 {
272         BT_DBG("%s", hdev->name);
273
274         /* Read LE buffer size */
275         hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
276 }
277
278 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
279 {
280         __u8 scan = opt;
281
282         BT_DBG("%s %x", hdev->name, scan);
283
284         /* Inquiry and Page scans */
285         hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
286 }
287
288 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
289 {
290         __u8 auth = opt;
291
292         BT_DBG("%s %x", hdev->name, auth);
293
294         /* Authentication */
295         hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
296 }
297
298 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
299 {
300         __u8 encrypt = opt;
301
302         BT_DBG("%s %x", hdev->name, encrypt);
303
304         /* Encryption */
305         hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
306 }
307
308 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
309 {
310         __le16 policy = cpu_to_le16(opt);
311
312         BT_DBG("%s %x", hdev->name, policy);
313
314         /* Default link policy */
315         hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
316 }
317
318 /* Get HCI device by index.
319  * Device is held on return. */
320 struct hci_dev *hci_dev_get(int index)
321 {
322         struct hci_dev *hdev = NULL;
323         struct list_head *p;
324
325         BT_DBG("%d", index);
326
327         if (index < 0)
328                 return NULL;
329
330         read_lock(&hci_dev_list_lock);
331         list_for_each(p, &hci_dev_list) {
332                 struct hci_dev *d = list_entry(p, struct hci_dev, list);
333                 if (d->id == index) {
334                         hdev = hci_dev_hold(d);
335                         break;
336                 }
337         }
338         read_unlock(&hci_dev_list_lock);
339         return hdev;
340 }
341
342 /* ---- Inquiry support ---- */
343 static void inquiry_cache_flush(struct hci_dev *hdev)
344 {
345         struct inquiry_cache *cache = &hdev->inq_cache;
346         struct inquiry_entry *next  = cache->list, *e;
347
348         BT_DBG("cache %p", cache);
349
350         cache->list = NULL;
351         while ((e = next)) {
352                 next = e->next;
353                 kfree(e);
354         }
355 }
356
357 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
358 {
359         struct inquiry_cache *cache = &hdev->inq_cache;
360         struct inquiry_entry *e;
361
362         BT_DBG("cache %p, %s", cache, batostr(bdaddr));
363
364         for (e = cache->list; e; e = e->next)
365                 if (!bacmp(&e->data.bdaddr, bdaddr))
366                         break;
367         return e;
368 }
369
370 void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
371 {
372         struct inquiry_cache *cache = &hdev->inq_cache;
373         struct inquiry_entry *ie;
374
375         BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
376
377         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
378         if (!ie) {
379                 /* Entry not in the cache. Add new one. */
380                 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
381                 if (!ie)
382                         return;
383
384                 ie->next = cache->list;
385                 cache->list = ie;
386         }
387
388         memcpy(&ie->data, data, sizeof(*data));
389         ie->timestamp = jiffies;
390         cache->timestamp = jiffies;
391 }
392
393 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
394 {
395         struct inquiry_cache *cache = &hdev->inq_cache;
396         struct inquiry_info *info = (struct inquiry_info *) buf;
397         struct inquiry_entry *e;
398         int copied = 0;
399
400         for (e = cache->list; e && copied < num; e = e->next, copied++) {
401                 struct inquiry_data *data = &e->data;
402                 bacpy(&info->bdaddr, &data->bdaddr);
403                 info->pscan_rep_mode    = data->pscan_rep_mode;
404                 info->pscan_period_mode = data->pscan_period_mode;
405                 info->pscan_mode        = data->pscan_mode;
406                 memcpy(info->dev_class, data->dev_class, 3);
407                 info->clock_offset      = data->clock_offset;
408                 info++;
409         }
410
411         BT_DBG("cache %p, copied %d", cache, copied);
412         return copied;
413 }
414
415 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
416 {
417         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
418         struct hci_cp_inquiry cp;
419
420         BT_DBG("%s", hdev->name);
421
422         if (test_bit(HCI_INQUIRY, &hdev->flags))
423                 return;
424
425         /* Start Inquiry */
426         memcpy(&cp.lap, &ir->lap, 3);
427         cp.length  = ir->length;
428         cp.num_rsp = ir->num_rsp;
429         hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
430 }
431
432 int hci_inquiry(void __user *arg)
433 {
434         __u8 __user *ptr = arg;
435         struct hci_inquiry_req ir;
436         struct hci_dev *hdev;
437         int err = 0, do_inquiry = 0, max_rsp;
438         long timeo;
439         __u8 *buf;
440
441         if (copy_from_user(&ir, ptr, sizeof(ir)))
442                 return -EFAULT;
443
444         hdev = hci_dev_get(ir.dev_id);
445         if (!hdev)
446                 return -ENODEV;
447
448         hci_dev_lock_bh(hdev);
449         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
450                                 inquiry_cache_empty(hdev) ||
451                                 ir.flags & IREQ_CACHE_FLUSH) {
452                 inquiry_cache_flush(hdev);
453                 do_inquiry = 1;
454         }
455         hci_dev_unlock_bh(hdev);
456
457         timeo = ir.length * msecs_to_jiffies(2000);
458
459         if (do_inquiry) {
460                 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
461                 if (err < 0)
462                         goto done;
463         }
464
465         /* for unlimited number of responses we will use buffer with 255 entries */
466         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
467
468         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
469          * copy it to the user space.
470          */
471         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
472         if (!buf) {
473                 err = -ENOMEM;
474                 goto done;
475         }
476
477         hci_dev_lock_bh(hdev);
478         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
479         hci_dev_unlock_bh(hdev);
480
481         BT_DBG("num_rsp %d", ir.num_rsp);
482
483         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
484                 ptr += sizeof(ir);
485                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
486                                         ir.num_rsp))
487                         err = -EFAULT;
488         } else
489                 err = -EFAULT;
490
491         kfree(buf);
492
493 done:
494         hci_dev_put(hdev);
495         return err;
496 }
497
498 /* ---- HCI ioctl helpers ---- */
499
500 int hci_dev_open(__u16 dev)
501 {
502         struct hci_dev *hdev;
503         int ret = 0;
504
505         hdev = hci_dev_get(dev);
506         if (!hdev)
507                 return -ENODEV;
508
509         BT_DBG("%s %p", hdev->name, hdev);
510
511         hci_req_lock(hdev);
512
513         if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
514                 ret = -ERFKILL;
515                 goto done;
516         }
517
518         if (test_bit(HCI_UP, &hdev->flags)) {
519                 ret = -EALREADY;
520                 goto done;
521         }
522
523         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
524                 set_bit(HCI_RAW, &hdev->flags);
525
526         /* Treat all non BR/EDR controllers as raw devices for now */
527         if (hdev->dev_type != HCI_BREDR)
528                 set_bit(HCI_RAW, &hdev->flags);
529
530         if (hdev->open(hdev)) {
531                 ret = -EIO;
532                 goto done;
533         }
534
535         if (!test_bit(HCI_RAW, &hdev->flags)) {
536                 atomic_set(&hdev->cmd_cnt, 1);
537                 set_bit(HCI_INIT, &hdev->flags);
538                 hdev->init_last_cmd = 0;
539
540                 ret = __hci_request(hdev, hci_init_req, 0,
541                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
542
543                 if (lmp_host_le_capable(hdev))
544                         ret = __hci_request(hdev, hci_le_init_req, 0,
545                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
546
547                 clear_bit(HCI_INIT, &hdev->flags);
548         }
549
550         if (!ret) {
551                 hci_dev_hold(hdev);
552                 set_bit(HCI_UP, &hdev->flags);
553                 hci_notify(hdev, HCI_DEV_UP);
554                 if (!test_bit(HCI_SETUP, &hdev->flags))
555                         mgmt_powered(hdev->id, 1);
556         } else {
557                 /* Init failed, cleanup */
558                 tasklet_kill(&hdev->rx_task);
559                 tasklet_kill(&hdev->tx_task);
560                 tasklet_kill(&hdev->cmd_task);
561
562                 skb_queue_purge(&hdev->cmd_q);
563                 skb_queue_purge(&hdev->rx_q);
564
565                 if (hdev->flush)
566                         hdev->flush(hdev);
567
568                 if (hdev->sent_cmd) {
569                         kfree_skb(hdev->sent_cmd);
570                         hdev->sent_cmd = NULL;
571                 }
572
573                 hdev->close(hdev);
574                 hdev->flags = 0;
575         }
576
577 done:
578         hci_req_unlock(hdev);
579         hci_dev_put(hdev);
580         return ret;
581 }
582
583 static int hci_dev_do_close(struct hci_dev *hdev)
584 {
585         BT_DBG("%s %p", hdev->name, hdev);
586
587         hci_req_cancel(hdev, ENODEV);
588         hci_req_lock(hdev);
589
590         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
591                 del_timer_sync(&hdev->cmd_timer);
592                 hci_req_unlock(hdev);
593                 return 0;
594         }
595
596         /* Kill RX and TX tasks */
597         tasklet_kill(&hdev->rx_task);
598         tasklet_kill(&hdev->tx_task);
599
600         hci_dev_lock_bh(hdev);
601         inquiry_cache_flush(hdev);
602         hci_conn_hash_flush(hdev);
603         hci_dev_unlock_bh(hdev);
604
605         hci_notify(hdev, HCI_DEV_DOWN);
606
607         if (hdev->flush)
608                 hdev->flush(hdev);
609
610         /* Reset device */
611         skb_queue_purge(&hdev->cmd_q);
612         atomic_set(&hdev->cmd_cnt, 1);
613         if (!test_bit(HCI_RAW, &hdev->flags)) {
614                 set_bit(HCI_INIT, &hdev->flags);
615                 __hci_request(hdev, hci_reset_req, 0,
616                                         msecs_to_jiffies(250));
617                 clear_bit(HCI_INIT, &hdev->flags);
618         }
619
620         /* Kill cmd task */
621         tasklet_kill(&hdev->cmd_task);
622
623         /* Drop queues */
624         skb_queue_purge(&hdev->rx_q);
625         skb_queue_purge(&hdev->cmd_q);
626         skb_queue_purge(&hdev->raw_q);
627
628         /* Drop last sent command */
629         if (hdev->sent_cmd) {
630                 del_timer_sync(&hdev->cmd_timer);
631                 kfree_skb(hdev->sent_cmd);
632                 hdev->sent_cmd = NULL;
633         }
634
635         /* After this point our queues are empty
636          * and no tasks are scheduled. */
637         hdev->close(hdev);
638
639         mgmt_powered(hdev->id, 0);
640
641         /* Clear flags */
642         hdev->flags = 0;
643
644         hci_req_unlock(hdev);
645
646         hci_dev_put(hdev);
647         return 0;
648 }
649
650 int hci_dev_close(__u16 dev)
651 {
652         struct hci_dev *hdev;
653         int err;
654
655         hdev = hci_dev_get(dev);
656         if (!hdev)
657                 return -ENODEV;
658         err = hci_dev_do_close(hdev);
659         hci_dev_put(hdev);
660         return err;
661 }
662
663 int hci_dev_reset(__u16 dev)
664 {
665         struct hci_dev *hdev;
666         int ret = 0;
667
668         hdev = hci_dev_get(dev);
669         if (!hdev)
670                 return -ENODEV;
671
672         hci_req_lock(hdev);
673         tasklet_disable(&hdev->tx_task);
674
675         if (!test_bit(HCI_UP, &hdev->flags))
676                 goto done;
677
678         /* Drop queues */
679         skb_queue_purge(&hdev->rx_q);
680         skb_queue_purge(&hdev->cmd_q);
681
682         hci_dev_lock_bh(hdev);
683         inquiry_cache_flush(hdev);
684         hci_conn_hash_flush(hdev);
685         hci_dev_unlock_bh(hdev);
686
687         if (hdev->flush)
688                 hdev->flush(hdev);
689
690         atomic_set(&hdev->cmd_cnt, 1);
691         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
692
693         if (!test_bit(HCI_RAW, &hdev->flags))
694                 ret = __hci_request(hdev, hci_reset_req, 0,
695                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
696
697 done:
698         tasklet_enable(&hdev->tx_task);
699         hci_req_unlock(hdev);
700         hci_dev_put(hdev);
701         return ret;
702 }
703
704 int hci_dev_reset_stat(__u16 dev)
705 {
706         struct hci_dev *hdev;
707         int ret = 0;
708
709         hdev = hci_dev_get(dev);
710         if (!hdev)
711                 return -ENODEV;
712
713         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
714
715         hci_dev_put(hdev);
716
717         return ret;
718 }
719
720 int hci_dev_cmd(unsigned int cmd, void __user *arg)
721 {
722         struct hci_dev *hdev;
723         struct hci_dev_req dr;
724         int err = 0;
725
726         if (copy_from_user(&dr, arg, sizeof(dr)))
727                 return -EFAULT;
728
729         hdev = hci_dev_get(dr.dev_id);
730         if (!hdev)
731                 return -ENODEV;
732
733         switch (cmd) {
734         case HCISETAUTH:
735                 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
736                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
737                 break;
738
739         case HCISETENCRYPT:
740                 if (!lmp_encrypt_capable(hdev)) {
741                         err = -EOPNOTSUPP;
742                         break;
743                 }
744
745                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
746                         /* Auth must be enabled first */
747                         err = hci_request(hdev, hci_auth_req, dr.dev_opt,
748                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
749                         if (err)
750                                 break;
751                 }
752
753                 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
754                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
755                 break;
756
757         case HCISETSCAN:
758                 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
759                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
760                 break;
761
762         case HCISETLINKPOL:
763                 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
764                                         msecs_to_jiffies(HCI_INIT_TIMEOUT));
765                 break;
766
767         case HCISETLINKMODE:
768                 hdev->link_mode = ((__u16) dr.dev_opt) &
769                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
770                 break;
771
772         case HCISETPTYPE:
773                 hdev->pkt_type = (__u16) dr.dev_opt;
774                 break;
775
776         case HCISETACLMTU:
777                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
778                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
779                 break;
780
781         case HCISETSCOMTU:
782                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
783                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
784                 break;
785
786         default:
787                 err = -EINVAL;
788                 break;
789         }
790
791         hci_dev_put(hdev);
792         return err;
793 }
794
795 int hci_get_dev_list(void __user *arg)
796 {
797         struct hci_dev_list_req *dl;
798         struct hci_dev_req *dr;
799         struct list_head *p;
800         int n = 0, size, err;
801         __u16 dev_num;
802
803         if (get_user(dev_num, (__u16 __user *) arg))
804                 return -EFAULT;
805
806         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
807                 return -EINVAL;
808
809         size = sizeof(*dl) + dev_num * sizeof(*dr);
810
811         dl = kzalloc(size, GFP_KERNEL);
812         if (!dl)
813                 return -ENOMEM;
814
815         dr = dl->dev_req;
816
817         read_lock_bh(&hci_dev_list_lock);
818         list_for_each(p, &hci_dev_list) {
819                 struct hci_dev *hdev;
820
821                 hdev = list_entry(p, struct hci_dev, list);
822
823                 hci_del_off_timer(hdev);
824
825                 if (!test_bit(HCI_MGMT, &hdev->flags))
826                         set_bit(HCI_PAIRABLE, &hdev->flags);
827
828                 (dr + n)->dev_id  = hdev->id;
829                 (dr + n)->dev_opt = hdev->flags;
830
831                 if (++n >= dev_num)
832                         break;
833         }
834         read_unlock_bh(&hci_dev_list_lock);
835
836         dl->dev_num = n;
837         size = sizeof(*dl) + n * sizeof(*dr);
838
839         err = copy_to_user(arg, dl, size);
840         kfree(dl);
841
842         return err ? -EFAULT : 0;
843 }
844
845 int hci_get_dev_info(void __user *arg)
846 {
847         struct hci_dev *hdev;
848         struct hci_dev_info di;
849         int err = 0;
850
851         if (copy_from_user(&di, arg, sizeof(di)))
852                 return -EFAULT;
853
854         hdev = hci_dev_get(di.dev_id);
855         if (!hdev)
856                 return -ENODEV;
857
858         hci_del_off_timer(hdev);
859
860         if (!test_bit(HCI_MGMT, &hdev->flags))
861                 set_bit(HCI_PAIRABLE, &hdev->flags);
862
863         strcpy(di.name, hdev->name);
864         di.bdaddr   = hdev->bdaddr;
865         di.type     = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
866         di.flags    = hdev->flags;
867         di.pkt_type = hdev->pkt_type;
868         di.acl_mtu  = hdev->acl_mtu;
869         di.acl_pkts = hdev->acl_pkts;
870         di.sco_mtu  = hdev->sco_mtu;
871         di.sco_pkts = hdev->sco_pkts;
872         di.link_policy = hdev->link_policy;
873         di.link_mode   = hdev->link_mode;
874
875         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
876         memcpy(&di.features, &hdev->features, sizeof(di.features));
877
878         if (copy_to_user(arg, &di, sizeof(di)))
879                 err = -EFAULT;
880
881         hci_dev_put(hdev);
882
883         return err;
884 }
885
886 /* ---- Interface to HCI drivers ---- */
887
888 static int hci_rfkill_set_block(void *data, bool blocked)
889 {
890         struct hci_dev *hdev = data;
891
892         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
893
894         if (!blocked)
895                 return 0;
896
897         hci_dev_do_close(hdev);
898
899         return 0;
900 }
901
902 static const struct rfkill_ops hci_rfkill_ops = {
903         .set_block = hci_rfkill_set_block,
904 };
905
906 /* Alloc HCI device */
907 struct hci_dev *hci_alloc_dev(void)
908 {
909         struct hci_dev *hdev;
910
911         hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
912         if (!hdev)
913                 return NULL;
914
915         skb_queue_head_init(&hdev->driver_init);
916
917         return hdev;
918 }
919 EXPORT_SYMBOL(hci_alloc_dev);
920
921 /* Free HCI device */
922 void hci_free_dev(struct hci_dev *hdev)
923 {
924         skb_queue_purge(&hdev->driver_init);
925
926         /* will free via device release */
927         put_device(&hdev->dev);
928 }
929 EXPORT_SYMBOL(hci_free_dev);
930
931 static void hci_power_on(struct work_struct *work)
932 {
933         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
934
935         BT_DBG("%s", hdev->name);
936
937         if (hci_dev_open(hdev->id) < 0)
938                 return;
939
940         if (test_bit(HCI_AUTO_OFF, &hdev->flags))
941                 mod_timer(&hdev->off_timer,
942                                 jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
943
944         if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
945                 mgmt_index_added(hdev->id);
946 }
947
948 static void hci_power_off(struct work_struct *work)
949 {
950         struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
951
952         BT_DBG("%s", hdev->name);
953
954         hci_dev_close(hdev->id);
955 }
956
957 static void hci_auto_off(unsigned long data)
958 {
959         struct hci_dev *hdev = (struct hci_dev *) data;
960
961         BT_DBG("%s", hdev->name);
962
963         clear_bit(HCI_AUTO_OFF, &hdev->flags);
964
965         queue_work(hdev->workqueue, &hdev->power_off);
966 }
967
968 void hci_del_off_timer(struct hci_dev *hdev)
969 {
970         BT_DBG("%s", hdev->name);
971
972         clear_bit(HCI_AUTO_OFF, &hdev->flags);
973         del_timer(&hdev->off_timer);
974 }
975
976 int hci_uuids_clear(struct hci_dev *hdev)
977 {
978         struct list_head *p, *n;
979
980         list_for_each_safe(p, n, &hdev->uuids) {
981                 struct bt_uuid *uuid;
982
983                 uuid = list_entry(p, struct bt_uuid, list);
984
985                 list_del(p);
986                 kfree(uuid);
987         }
988
989         return 0;
990 }
991
992 int hci_link_keys_clear(struct hci_dev *hdev)
993 {
994         struct list_head *p, *n;
995
996         list_for_each_safe(p, n, &hdev->link_keys) {
997                 struct link_key *key;
998
999                 key = list_entry(p, struct link_key, list);
1000
1001                 list_del(p);
1002                 kfree(key);
1003         }
1004
1005         return 0;
1006 }
1007
1008 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1009 {
1010         struct list_head *p;
1011
1012         list_for_each(p, &hdev->link_keys) {
1013                 struct link_key *k;
1014
1015                 k = list_entry(p, struct link_key, list);
1016
1017                 if (bacmp(bdaddr, &k->bdaddr) == 0)
1018                         return k;
1019         }
1020
1021         return NULL;
1022 }
1023
1024 static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1025                                                 u8 key_type, u8 old_key_type)
1026 {
1027         /* Legacy key */
1028         if (key_type < 0x03)
1029                 return 1;
1030
1031         /* Debug keys are insecure so don't store them persistently */
1032         if (key_type == HCI_LK_DEBUG_COMBINATION)
1033                 return 0;
1034
1035         /* Changed combination key and there's no previous one */
1036         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1037                 return 0;
1038
1039         /* Security mode 3 case */
1040         if (!conn)
1041                 return 1;
1042
1043         /* Neither local nor remote side had no-bonding as requirement */
1044         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1045                 return 1;
1046
1047         /* Local side had dedicated bonding as requirement */
1048         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1049                 return 1;
1050
1051         /* Remote side had dedicated bonding as requirement */
1052         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1053                 return 1;
1054
1055         /* If none of the above criteria match, then don't store the key
1056          * persistently */
1057         return 0;
1058 }
1059
1060 struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1061 {
1062         struct link_key *k;
1063
1064         list_for_each_entry(k, &hdev->link_keys, list) {
1065                 struct key_master_id *id;
1066
1067                 if (k->type != HCI_LK_SMP_LTK)
1068                         continue;
1069
1070                 if (k->dlen != sizeof(*id))
1071                         continue;
1072
1073                 id = (void *) &k->data;
1074                 if (id->ediv == ediv &&
1075                                 (memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1076                         return k;
1077         }
1078
1079         return NULL;
1080 }
1081 EXPORT_SYMBOL(hci_find_ltk);
1082
1083 struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1084                                         bdaddr_t *bdaddr, u8 type)
1085 {
1086         struct link_key *k;
1087
1088         list_for_each_entry(k, &hdev->link_keys, list)
1089                 if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1090                         return k;
1091
1092         return NULL;
1093 }
1094 EXPORT_SYMBOL(hci_find_link_key_type);
1095
1096 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1097                                 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1098 {
1099         struct link_key *key, *old_key;
1100         u8 old_key_type, persistent;
1101
1102         old_key = hci_find_link_key(hdev, bdaddr);
1103         if (old_key) {
1104                 old_key_type = old_key->type;
1105                 key = old_key;
1106         } else {
1107                 old_key_type = conn ? conn->key_type : 0xff;
1108                 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1109                 if (!key)
1110                         return -ENOMEM;
1111                 list_add(&key->list, &hdev->link_keys);
1112         }
1113
1114         BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1115
1116         /* Some buggy controller combinations generate a changed
1117          * combination key for legacy pairing even when there's no
1118          * previous key */
1119         if (type == HCI_LK_CHANGED_COMBINATION &&
1120                                         (!conn || conn->remote_auth == 0xff) &&
1121                                         old_key_type == 0xff) {
1122                 type = HCI_LK_COMBINATION;
1123                 if (conn)
1124                         conn->key_type = type;
1125         }
1126
1127         bacpy(&key->bdaddr, bdaddr);
1128         memcpy(key->val, val, 16);
1129         key->pin_len = pin_len;
1130
1131         if (type == HCI_LK_CHANGED_COMBINATION)
1132                 key->type = old_key_type;
1133         else
1134                 key->type = type;
1135
1136         if (!new_key)
1137                 return 0;
1138
1139         persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1140
1141         mgmt_new_key(hdev->id, key, persistent);
1142
1143         if (!persistent) {
1144                 list_del(&key->list);
1145                 kfree(key);
1146         }
1147
1148         return 0;
1149 }
1150
1151 int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1152                         u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1153 {
1154         struct link_key *key, *old_key;
1155         struct key_master_id *id;
1156         u8 old_key_type;
1157
1158         BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
1159
1160         old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1161         if (old_key) {
1162                 key = old_key;
1163                 old_key_type = old_key->type;
1164         } else {
1165                 key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1166                 if (!key)
1167                         return -ENOMEM;
1168                 list_add(&key->list, &hdev->link_keys);
1169                 old_key_type = 0xff;
1170         }
1171
1172         key->dlen = sizeof(*id);
1173
1174         bacpy(&key->bdaddr, bdaddr);
1175         memcpy(key->val, ltk, sizeof(key->val));
1176         key->type = HCI_LK_SMP_LTK;
1177         key->pin_len = key_size;
1178
1179         id = (void *) &key->data;
1180         id->ediv = ediv;
1181         memcpy(id->rand, rand, sizeof(id->rand));
1182
1183         if (new_key)
1184                 mgmt_new_key(hdev->id, key, old_key_type);
1185
1186         return 0;
1187 }
1188
1189 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1190 {
1191         struct link_key *key;
1192
1193         key = hci_find_link_key(hdev, bdaddr);
1194         if (!key)
1195                 return -ENOENT;
1196
1197         BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1198
1199         list_del(&key->list);
1200         kfree(key);
1201
1202         return 0;
1203 }
1204
1205 /* HCI command timer function */
1206 static void hci_cmd_timer(unsigned long arg)
1207 {
1208         struct hci_dev *hdev = (void *) arg;
1209
1210         BT_ERR("%s command tx timeout", hdev->name);
1211         atomic_set(&hdev->cmd_cnt, 1);
1212         tasklet_schedule(&hdev->cmd_task);
1213 }
1214
1215 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1216                                                         bdaddr_t *bdaddr)
1217 {
1218         struct oob_data *data;
1219
1220         list_for_each_entry(data, &hdev->remote_oob_data, list)
1221                 if (bacmp(bdaddr, &data->bdaddr) == 0)
1222                         return data;
1223
1224         return NULL;
1225 }
1226
1227 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1228 {
1229         struct oob_data *data;
1230
1231         data = hci_find_remote_oob_data(hdev, bdaddr);
1232         if (!data)
1233                 return -ENOENT;
1234
1235         BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1236
1237         list_del(&data->list);
1238         kfree(data);
1239
1240         return 0;
1241 }
1242
1243 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1244 {
1245         struct oob_data *data, *n;
1246
1247         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1248                 list_del(&data->list);
1249                 kfree(data);
1250         }
1251
1252         return 0;
1253 }
1254
1255 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1256                                                                 u8 *randomizer)
1257 {
1258         struct oob_data *data;
1259
1260         data = hci_find_remote_oob_data(hdev, bdaddr);
1261
1262         if (!data) {
1263                 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1264                 if (!data)
1265                         return -ENOMEM;
1266
1267                 bacpy(&data->bdaddr, bdaddr);
1268                 list_add(&data->list, &hdev->remote_oob_data);
1269         }
1270
1271         memcpy(data->hash, hash, sizeof(data->hash));
1272         memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1273
1274         BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1275
1276         return 0;
1277 }
1278
1279 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1280                                                 bdaddr_t *bdaddr)
1281 {
1282         struct list_head *p;
1283
1284         list_for_each(p, &hdev->blacklist) {
1285                 struct bdaddr_list *b;
1286
1287                 b = list_entry(p, struct bdaddr_list, list);
1288
1289                 if (bacmp(bdaddr, &b->bdaddr) == 0)
1290                         return b;
1291         }
1292
1293         return NULL;
1294 }
1295
1296 int hci_blacklist_clear(struct hci_dev *hdev)
1297 {
1298         struct list_head *p, *n;
1299
1300         list_for_each_safe(p, n, &hdev->blacklist) {
1301                 struct bdaddr_list *b;
1302
1303                 b = list_entry(p, struct bdaddr_list, list);
1304
1305                 list_del(p);
1306                 kfree(b);
1307         }
1308
1309         return 0;
1310 }
1311
1312 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
1313 {
1314         struct bdaddr_list *entry;
1315         int err;
1316
1317         if (bacmp(bdaddr, BDADDR_ANY) == 0)
1318                 return -EBADF;
1319
1320         hci_dev_lock_bh(hdev);
1321
1322         if (hci_blacklist_lookup(hdev, bdaddr)) {
1323                 err = -EEXIST;
1324                 goto err;
1325         }
1326
1327         entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1328         if (!entry) {
1329                 err = -ENOMEM;
1330                 goto err;
1331         }
1332
1333         bacpy(&entry->bdaddr, bdaddr);
1334
1335         list_add(&entry->list, &hdev->blacklist);
1336
1337         err = 0;
1338
1339 err:
1340         hci_dev_unlock_bh(hdev);
1341         return err;
1342 }
1343
1344 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
1345 {
1346         struct bdaddr_list *entry;
1347         int err = 0;
1348
1349         hci_dev_lock_bh(hdev);
1350
1351         if (bacmp(bdaddr, BDADDR_ANY) == 0) {
1352                 hci_blacklist_clear(hdev);
1353                 goto done;
1354         }
1355
1356         entry = hci_blacklist_lookup(hdev, bdaddr);
1357         if (!entry) {
1358                 err = -ENOENT;
1359                 goto done;
1360         }
1361
1362         list_del(&entry->list);
1363         kfree(entry);
1364
1365 done:
1366         hci_dev_unlock_bh(hdev);
1367         return err;
1368 }
1369
1370 static void hci_clear_adv_cache(unsigned long arg)
1371 {
1372         struct hci_dev *hdev = (void *) arg;
1373
1374         hci_dev_lock(hdev);
1375
1376         hci_adv_entries_clear(hdev);
1377
1378         hci_dev_unlock(hdev);
1379 }
1380
1381 int hci_adv_entries_clear(struct hci_dev *hdev)
1382 {
1383         struct adv_entry *entry, *tmp;
1384
1385         list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1386                 list_del(&entry->list);
1387                 kfree(entry);
1388         }
1389
1390         BT_DBG("%s adv cache cleared", hdev->name);
1391
1392         return 0;
1393 }
1394
1395 struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1396 {
1397         struct adv_entry *entry;
1398
1399         list_for_each_entry(entry, &hdev->adv_entries, list)
1400                 if (bacmp(bdaddr, &entry->bdaddr) == 0)
1401                         return entry;
1402
1403         return NULL;
1404 }
1405
1406 static inline int is_connectable_adv(u8 evt_type)
1407 {
1408         if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1409                 return 1;
1410
1411         return 0;
1412 }
1413
1414 int hci_add_adv_entry(struct hci_dev *hdev,
1415                                         struct hci_ev_le_advertising_info *ev)
1416 {
1417         struct adv_entry *entry;
1418
1419         if (!is_connectable_adv(ev->evt_type))
1420                 return -EINVAL;
1421
1422         /* Only new entries should be added to adv_entries. So, if
1423          * bdaddr was found, don't add it. */
1424         if (hci_find_adv_entry(hdev, &ev->bdaddr))
1425                 return 0;
1426
1427         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1428         if (!entry)
1429                 return -ENOMEM;
1430
1431         bacpy(&entry->bdaddr, &ev->bdaddr);
1432         entry->bdaddr_type = ev->bdaddr_type;
1433
1434         list_add(&entry->list, &hdev->adv_entries);
1435
1436         BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1437                                 batostr(&entry->bdaddr), entry->bdaddr_type);
1438
1439         return 0;
1440 }
1441
1442 /* Register HCI device */
1443 int hci_register_dev(struct hci_dev *hdev)
1444 {
1445         struct list_head *head = &hci_dev_list, *p;
1446         int i, id = 0;
1447
1448         BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1449                                                 hdev->bus, hdev->owner);
1450
1451         if (!hdev->open || !hdev->close || !hdev->destruct)
1452                 return -EINVAL;
1453
1454         write_lock_bh(&hci_dev_list_lock);
1455
1456         /* Find first available device id */
1457         list_for_each(p, &hci_dev_list) {
1458                 if (list_entry(p, struct hci_dev, list)->id != id)
1459                         break;
1460                 head = p; id++;
1461         }
1462
1463         sprintf(hdev->name, "hci%d", id);
1464         hdev->id = id;
1465         list_add(&hdev->list, head);
1466
1467         atomic_set(&hdev->refcnt, 1);
1468         spin_lock_init(&hdev->lock);
1469
1470         hdev->flags = 0;
1471         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1472         hdev->esco_type = (ESCO_HV1);
1473         hdev->link_mode = (HCI_LM_ACCEPT);
1474         hdev->io_capability = 0x03; /* No Input No Output */
1475
1476         hdev->idle_timeout = 0;
1477         hdev->sniff_max_interval = 800;
1478         hdev->sniff_min_interval = 80;
1479
1480         tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
1481         tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
1482         tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
1483
1484         skb_queue_head_init(&hdev->rx_q);
1485         skb_queue_head_init(&hdev->cmd_q);
1486         skb_queue_head_init(&hdev->raw_q);
1487
1488         setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1489
1490         for (i = 0; i < NUM_REASSEMBLY; i++)
1491                 hdev->reassembly[i] = NULL;
1492
1493         init_waitqueue_head(&hdev->req_wait_q);
1494         mutex_init(&hdev->req_lock);
1495
1496         inquiry_cache_init(hdev);
1497
1498         hci_conn_hash_init(hdev);
1499
1500         INIT_LIST_HEAD(&hdev->blacklist);
1501
1502         INIT_LIST_HEAD(&hdev->uuids);
1503
1504         INIT_LIST_HEAD(&hdev->link_keys);
1505
1506         INIT_LIST_HEAD(&hdev->remote_oob_data);
1507
1508         INIT_LIST_HEAD(&hdev->adv_entries);
1509         setup_timer(&hdev->adv_timer, hci_clear_adv_cache,
1510                                                 (unsigned long) hdev);
1511
1512         INIT_WORK(&hdev->power_on, hci_power_on);
1513         INIT_WORK(&hdev->power_off, hci_power_off);
1514         setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
1515
1516         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1517
1518         atomic_set(&hdev->promisc, 0);
1519
1520         write_unlock_bh(&hci_dev_list_lock);
1521
1522         hdev->workqueue = create_singlethread_workqueue(hdev->name);
1523         if (!hdev->workqueue)
1524                 goto nomem;
1525
1526         hdev->tfm = crypto_alloc_blkcipher("ecb(aes)", 0, CRYPTO_ALG_ASYNC);
1527         if (IS_ERR(hdev->tfm))
1528                 BT_INFO("Failed to load transform for ecb(aes): %ld",
1529                                                         PTR_ERR(hdev->tfm));
1530
1531         hci_register_sysfs(hdev);
1532
1533         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1534                                 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1535         if (hdev->rfkill) {
1536                 if (rfkill_register(hdev->rfkill) < 0) {
1537                         rfkill_destroy(hdev->rfkill);
1538                         hdev->rfkill = NULL;
1539                 }
1540         }
1541
1542         set_bit(HCI_AUTO_OFF, &hdev->flags);
1543         set_bit(HCI_SETUP, &hdev->flags);
1544         queue_work(hdev->workqueue, &hdev->power_on);
1545
1546         hci_notify(hdev, HCI_DEV_REG);
1547
1548         return id;
1549
1550 nomem:
1551         write_lock_bh(&hci_dev_list_lock);
1552         list_del(&hdev->list);
1553         write_unlock_bh(&hci_dev_list_lock);
1554
1555         return -ENOMEM;
1556 }
1557 EXPORT_SYMBOL(hci_register_dev);
1558
1559 /* Unregister HCI device */
1560 int hci_unregister_dev(struct hci_dev *hdev)
1561 {
1562         int i;
1563
1564         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1565
1566         write_lock_bh(&hci_dev_list_lock);
1567         list_del(&hdev->list);
1568         write_unlock_bh(&hci_dev_list_lock);
1569
1570         hci_dev_do_close(hdev);
1571
1572         for (i = 0; i < NUM_REASSEMBLY; i++)
1573                 kfree_skb(hdev->reassembly[i]);
1574
1575         if (!test_bit(HCI_INIT, &hdev->flags) &&
1576                                         !test_bit(HCI_SETUP, &hdev->flags))
1577                 mgmt_index_removed(hdev->id);
1578
1579         if (!IS_ERR(hdev->tfm))
1580                 crypto_free_blkcipher(hdev->tfm);
1581
1582         hci_notify(hdev, HCI_DEV_UNREG);
1583
1584         if (hdev->rfkill) {
1585                 rfkill_unregister(hdev->rfkill);
1586                 rfkill_destroy(hdev->rfkill);
1587         }
1588
1589         hci_unregister_sysfs(hdev);
1590
1591         hci_del_off_timer(hdev);
1592         del_timer(&hdev->adv_timer);
1593
1594         destroy_workqueue(hdev->workqueue);
1595
1596         hci_dev_lock_bh(hdev);
1597         hci_blacklist_clear(hdev);
1598         hci_uuids_clear(hdev);
1599         hci_link_keys_clear(hdev);
1600         hci_remote_oob_data_clear(hdev);
1601         hci_adv_entries_clear(hdev);
1602         hci_dev_unlock_bh(hdev);
1603
1604         __hci_dev_put(hdev);
1605
1606         return 0;
1607 }
1608 EXPORT_SYMBOL(hci_unregister_dev);
1609
1610 /* Suspend HCI device */
1611 int hci_suspend_dev(struct hci_dev *hdev)
1612 {
1613         hci_notify(hdev, HCI_DEV_SUSPEND);
1614         return 0;
1615 }
1616 EXPORT_SYMBOL(hci_suspend_dev);
1617
1618 /* Resume HCI device */
1619 int hci_resume_dev(struct hci_dev *hdev)
1620 {
1621         hci_notify(hdev, HCI_DEV_RESUME);
1622         return 0;
1623 }
1624 EXPORT_SYMBOL(hci_resume_dev);
1625
1626 /* Receive frame from HCI drivers */
1627 int hci_recv_frame(struct sk_buff *skb)
1628 {
1629         struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1630         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1631                                 && !test_bit(HCI_INIT, &hdev->flags))) {
1632                 kfree_skb(skb);
1633                 return -ENXIO;
1634         }
1635
1636         /* Incomming skb */
1637         bt_cb(skb)->incoming = 1;
1638
1639         /* Time stamp */
1640         __net_timestamp(skb);
1641
1642         /* Queue frame for rx task */
1643         skb_queue_tail(&hdev->rx_q, skb);
1644         tasklet_schedule(&hdev->rx_task);
1645
1646         return 0;
1647 }
1648 EXPORT_SYMBOL(hci_recv_frame);
1649
1650 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1651                                                   int count, __u8 index)
1652 {
1653         int len = 0;
1654         int hlen = 0;
1655         int remain = count;
1656         struct sk_buff *skb;
1657         struct bt_skb_cb *scb;
1658
1659         if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1660                                 index >= NUM_REASSEMBLY)
1661                 return -EILSEQ;
1662
1663         skb = hdev->reassembly[index];
1664
1665         if (!skb) {
1666                 switch (type) {
1667                 case HCI_ACLDATA_PKT:
1668                         len = HCI_MAX_FRAME_SIZE;
1669                         hlen = HCI_ACL_HDR_SIZE;
1670                         break;
1671                 case HCI_EVENT_PKT:
1672                         len = HCI_MAX_EVENT_SIZE;
1673                         hlen = HCI_EVENT_HDR_SIZE;
1674                         break;
1675                 case HCI_SCODATA_PKT:
1676                         len = HCI_MAX_SCO_SIZE;
1677                         hlen = HCI_SCO_HDR_SIZE;
1678                         break;
1679                 }
1680
1681                 skb = bt_skb_alloc(len, GFP_ATOMIC);
1682                 if (!skb)
1683                         return -ENOMEM;
1684
1685                 scb = (void *) skb->cb;
1686                 scb->expect = hlen;
1687                 scb->pkt_type = type;
1688
1689                 skb->dev = (void *) hdev;
1690                 hdev->reassembly[index] = skb;
1691         }
1692
1693         while (count) {
1694                 scb = (void *) skb->cb;
1695                 len = min(scb->expect, (__u16)count);
1696
1697                 memcpy(skb_put(skb, len), data, len);
1698
1699                 count -= len;
1700                 data += len;
1701                 scb->expect -= len;
1702                 remain = count;
1703
1704                 switch (type) {
1705                 case HCI_EVENT_PKT:
1706                         if (skb->len == HCI_EVENT_HDR_SIZE) {
1707                                 struct hci_event_hdr *h = hci_event_hdr(skb);
1708                                 scb->expect = h->plen;
1709
1710                                 if (skb_tailroom(skb) < scb->expect) {
1711                                         kfree_skb(skb);
1712                                         hdev->reassembly[index] = NULL;
1713                                         return -ENOMEM;
1714                                 }
1715                         }
1716                         break;
1717
1718                 case HCI_ACLDATA_PKT:
1719                         if (skb->len  == HCI_ACL_HDR_SIZE) {
1720                                 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1721                                 scb->expect = __le16_to_cpu(h->dlen);
1722
1723                                 if (skb_tailroom(skb) < scb->expect) {
1724                                         kfree_skb(skb);
1725                                         hdev->reassembly[index] = NULL;
1726                                         return -ENOMEM;
1727                                 }
1728                         }
1729                         break;
1730
1731                 case HCI_SCODATA_PKT:
1732                         if (skb->len == HCI_SCO_HDR_SIZE) {
1733                                 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1734                                 scb->expect = h->dlen;
1735
1736                                 if (skb_tailroom(skb) < scb->expect) {
1737                                         kfree_skb(skb);
1738                                         hdev->reassembly[index] = NULL;
1739                                         return -ENOMEM;
1740                                 }
1741                         }
1742                         break;
1743                 }
1744
1745                 if (scb->expect == 0) {
1746                         /* Complete frame */
1747
1748                         bt_cb(skb)->pkt_type = type;
1749                         hci_recv_frame(skb);
1750
1751                         hdev->reassembly[index] = NULL;
1752                         return remain;
1753                 }
1754         }
1755
1756         return remain;
1757 }
1758
1759 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1760 {
1761         int rem = 0;
1762
1763         if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1764                 return -EILSEQ;
1765
1766         while (count) {
1767                 rem = hci_reassembly(hdev, type, data, count, type - 1);
1768                 if (rem < 0)
1769                         return rem;
1770
1771                 data += (count - rem);
1772                 count = rem;
1773         }
1774
1775         return rem;
1776 }
1777 EXPORT_SYMBOL(hci_recv_fragment);
1778
1779 #define STREAM_REASSEMBLY 0
1780
1781 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1782 {
1783         int type;
1784         int rem = 0;
1785
1786         while (count) {
1787                 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1788
1789                 if (!skb) {
1790                         struct { char type; } *pkt;
1791
1792                         /* Start of the frame */
1793                         pkt = data;
1794                         type = pkt->type;
1795
1796                         data++;
1797                         count--;
1798                 } else
1799                         type = bt_cb(skb)->pkt_type;
1800
1801                 rem = hci_reassembly(hdev, type, data, count,
1802                                                         STREAM_REASSEMBLY);
1803                 if (rem < 0)
1804                         return rem;
1805
1806                 data += (count - rem);
1807                 count = rem;
1808         }
1809
1810         return rem;
1811 }
1812 EXPORT_SYMBOL(hci_recv_stream_fragment);
1813
1814 /* ---- Interface to upper protocols ---- */
1815
1816 /* Register/Unregister protocols.
1817  * hci_task_lock is used to ensure that no tasks are running. */
1818 int hci_register_proto(struct hci_proto *hp)
1819 {
1820         int err = 0;
1821
1822         BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1823
1824         if (hp->id >= HCI_MAX_PROTO)
1825                 return -EINVAL;
1826
1827         write_lock_bh(&hci_task_lock);
1828
1829         if (!hci_proto[hp->id])
1830                 hci_proto[hp->id] = hp;
1831         else
1832                 err = -EEXIST;
1833
1834         write_unlock_bh(&hci_task_lock);
1835
1836         return err;
1837 }
1838 EXPORT_SYMBOL(hci_register_proto);
1839
1840 int hci_unregister_proto(struct hci_proto *hp)
1841 {
1842         int err = 0;
1843
1844         BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1845
1846         if (hp->id >= HCI_MAX_PROTO)
1847                 return -EINVAL;
1848
1849         write_lock_bh(&hci_task_lock);
1850
1851         if (hci_proto[hp->id])
1852                 hci_proto[hp->id] = NULL;
1853         else
1854                 err = -ENOENT;
1855
1856         write_unlock_bh(&hci_task_lock);
1857
1858         return err;
1859 }
1860 EXPORT_SYMBOL(hci_unregister_proto);
1861
1862 int hci_register_cb(struct hci_cb *cb)
1863 {
1864         BT_DBG("%p name %s", cb, cb->name);
1865
1866         write_lock_bh(&hci_cb_list_lock);
1867         list_add(&cb->list, &hci_cb_list);
1868         write_unlock_bh(&hci_cb_list_lock);
1869
1870         return 0;
1871 }
1872 EXPORT_SYMBOL(hci_register_cb);
1873
1874 int hci_unregister_cb(struct hci_cb *cb)
1875 {
1876         BT_DBG("%p name %s", cb, cb->name);
1877
1878         write_lock_bh(&hci_cb_list_lock);
1879         list_del(&cb->list);
1880         write_unlock_bh(&hci_cb_list_lock);
1881
1882         return 0;
1883 }
1884 EXPORT_SYMBOL(hci_unregister_cb);
1885
1886 static int hci_send_frame(struct sk_buff *skb)
1887 {
1888         struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1889
1890         if (!hdev) {
1891                 kfree_skb(skb);
1892                 return -ENODEV;
1893         }
1894
1895         BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
1896
1897         if (atomic_read(&hdev->promisc)) {
1898                 /* Time stamp */
1899                 __net_timestamp(skb);
1900
1901                 hci_send_to_sock(hdev, skb, NULL);
1902         }
1903
1904         /* Get rid of skb owner, prior to sending to the driver. */
1905         skb_orphan(skb);
1906
1907         return hdev->send(skb);
1908 }
1909
1910 /* Send HCI command */
1911 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
1912 {
1913         int len = HCI_COMMAND_HDR_SIZE + plen;
1914         struct hci_command_hdr *hdr;
1915         struct sk_buff *skb;
1916
1917         BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1918
1919         skb = bt_skb_alloc(len, GFP_ATOMIC);
1920         if (!skb) {
1921                 BT_ERR("%s no memory for command", hdev->name);
1922                 return -ENOMEM;
1923         }
1924
1925         hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1926         hdr->opcode = cpu_to_le16(opcode);
1927         hdr->plen   = plen;
1928
1929         if (plen)
1930                 memcpy(skb_put(skb, plen), param, plen);
1931
1932         BT_DBG("skb len %d", skb->len);
1933
1934         bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1935         skb->dev = (void *) hdev;
1936
1937         if (test_bit(HCI_INIT, &hdev->flags))
1938                 hdev->init_last_cmd = opcode;
1939
1940         skb_queue_tail(&hdev->cmd_q, skb);
1941         tasklet_schedule(&hdev->cmd_task);
1942
1943         return 0;
1944 }
1945
1946 /* Get data from the previously sent command */
1947 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1948 {
1949         struct hci_command_hdr *hdr;
1950
1951         if (!hdev->sent_cmd)
1952                 return NULL;
1953
1954         hdr = (void *) hdev->sent_cmd->data;
1955
1956         if (hdr->opcode != cpu_to_le16(opcode))
1957                 return NULL;
1958
1959         BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1960
1961         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1962 }
1963
1964 /* Send ACL data */
1965 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1966 {
1967         struct hci_acl_hdr *hdr;
1968         int len = skb->len;
1969
1970         skb_push(skb, HCI_ACL_HDR_SIZE);
1971         skb_reset_transport_header(skb);
1972         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1973         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1974         hdr->dlen   = cpu_to_le16(len);
1975 }
1976
1977 void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
1978 {
1979         struct hci_dev *hdev = conn->hdev;
1980         struct sk_buff *list;
1981
1982         BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
1983
1984         skb->dev = (void *) hdev;
1985         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1986         hci_add_acl_hdr(skb, conn->handle, flags);
1987
1988         list = skb_shinfo(skb)->frag_list;
1989         if (!list) {
1990                 /* Non fragmented */
1991                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1992
1993                 skb_queue_tail(&conn->data_q, skb);
1994         } else {
1995                 /* Fragmented */
1996                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1997
1998                 skb_shinfo(skb)->frag_list = NULL;
1999
2000                 /* Queue all fragments atomically */
2001                 spin_lock_bh(&conn->data_q.lock);
2002
2003                 __skb_queue_tail(&conn->data_q, skb);
2004
2005                 flags &= ~ACL_START;
2006                 flags |= ACL_CONT;
2007                 do {
2008                         skb = list; list = list->next;
2009
2010                         skb->dev = (void *) hdev;
2011                         bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2012                         hci_add_acl_hdr(skb, conn->handle, flags);
2013
2014                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2015
2016                         __skb_queue_tail(&conn->data_q, skb);
2017                 } while (list);
2018
2019                 spin_unlock_bh(&conn->data_q.lock);
2020         }
2021
2022         tasklet_schedule(&hdev->tx_task);
2023 }
2024 EXPORT_SYMBOL(hci_send_acl);
2025
2026 /* Send SCO data */
2027 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2028 {
2029         struct hci_dev *hdev = conn->hdev;
2030         struct hci_sco_hdr hdr;
2031
2032         BT_DBG("%s len %d", hdev->name, skb->len);
2033
2034         hdr.handle = cpu_to_le16(conn->handle);
2035         hdr.dlen   = skb->len;
2036
2037         skb_push(skb, HCI_SCO_HDR_SIZE);
2038         skb_reset_transport_header(skb);
2039         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2040
2041         skb->dev = (void *) hdev;
2042         bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2043
2044         skb_queue_tail(&conn->data_q, skb);
2045         tasklet_schedule(&hdev->tx_task);
2046 }
2047 EXPORT_SYMBOL(hci_send_sco);
2048
2049 /* ---- HCI TX task (outgoing data) ---- */
2050
2051 /* HCI Connection scheduler */
2052 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
2053 {
2054         struct hci_conn_hash *h = &hdev->conn_hash;
2055         struct hci_conn *conn = NULL;
2056         int num = 0, min = ~0;
2057         struct list_head *p;
2058
2059         /* We don't have to lock device here. Connections are always
2060          * added and removed with TX task disabled. */
2061         list_for_each(p, &h->list) {
2062                 struct hci_conn *c;
2063                 c = list_entry(p, struct hci_conn, list);
2064
2065                 if (c->type != type || skb_queue_empty(&c->data_q))
2066                         continue;
2067
2068                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2069                         continue;
2070
2071                 num++;
2072
2073                 if (c->sent < min) {
2074                         min  = c->sent;
2075                         conn = c;
2076                 }
2077         }
2078
2079         if (conn) {
2080                 int cnt, q;
2081
2082                 switch (conn->type) {
2083                 case ACL_LINK:
2084                         cnt = hdev->acl_cnt;
2085                         break;
2086                 case SCO_LINK:
2087                 case ESCO_LINK:
2088                         cnt = hdev->sco_cnt;
2089                         break;
2090                 case LE_LINK:
2091                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2092                         break;
2093                 default:
2094                         cnt = 0;
2095                         BT_ERR("Unknown link type");
2096                 }
2097
2098                 q = cnt / num;
2099                 *quote = q ? q : 1;
2100         } else
2101                 *quote = 0;
2102
2103         BT_DBG("conn %p quote %d", conn, *quote);
2104         return conn;
2105 }
2106
2107 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2108 {
2109         struct hci_conn_hash *h = &hdev->conn_hash;
2110         struct list_head *p;
2111         struct hci_conn  *c;
2112
2113         BT_ERR("%s link tx timeout", hdev->name);
2114
2115         /* Kill stalled connections */
2116         list_for_each(p, &h->list) {
2117                 c = list_entry(p, struct hci_conn, list);
2118                 if (c->type == type && c->sent) {
2119                         BT_ERR("%s killing stalled connection %s",
2120                                 hdev->name, batostr(&c->dst));
2121                         hci_acl_disconn(c, 0x13);
2122                 }
2123         }
2124 }
2125
2126 static inline void hci_sched_acl(struct hci_dev *hdev)
2127 {
2128         struct hci_conn *conn;
2129         struct sk_buff *skb;
2130         int quote;
2131
2132         BT_DBG("%s", hdev->name);
2133
2134         if (!test_bit(HCI_RAW, &hdev->flags)) {
2135                 /* ACL tx timeout must be longer than maximum
2136                  * link supervision timeout (40.9 seconds) */
2137                 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
2138                         hci_link_tx_to(hdev, ACL_LINK);
2139         }
2140
2141         while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
2142                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2143                         BT_DBG("skb %p len %d", skb, skb->len);
2144
2145                         hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2146
2147                         hci_send_frame(skb);
2148                         hdev->acl_last_tx = jiffies;
2149
2150                         hdev->acl_cnt--;
2151                         conn->sent++;
2152                 }
2153         }
2154 }
2155
2156 /* Schedule SCO */
2157 static inline void hci_sched_sco(struct hci_dev *hdev)
2158 {
2159         struct hci_conn *conn;
2160         struct sk_buff *skb;
2161         int quote;
2162
2163         BT_DBG("%s", hdev->name);
2164
2165         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2166                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2167                         BT_DBG("skb %p len %d", skb, skb->len);
2168                         hci_send_frame(skb);
2169
2170                         conn->sent++;
2171                         if (conn->sent == ~0)
2172                                 conn->sent = 0;
2173                 }
2174         }
2175 }
2176
2177 static inline void hci_sched_esco(struct hci_dev *hdev)
2178 {
2179         struct hci_conn *conn;
2180         struct sk_buff *skb;
2181         int quote;
2182
2183         BT_DBG("%s", hdev->name);
2184
2185         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
2186                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2187                         BT_DBG("skb %p len %d", skb, skb->len);
2188                         hci_send_frame(skb);
2189
2190                         conn->sent++;
2191                         if (conn->sent == ~0)
2192                                 conn->sent = 0;
2193                 }
2194         }
2195 }
2196
2197 static inline void hci_sched_le(struct hci_dev *hdev)
2198 {
2199         struct hci_conn *conn;
2200         struct sk_buff *skb;
2201         int quote, cnt;
2202
2203         BT_DBG("%s", hdev->name);
2204
2205         if (!test_bit(HCI_RAW, &hdev->flags)) {
2206                 /* LE tx timeout must be longer than maximum
2207                  * link supervision timeout (40.9 seconds) */
2208                 if (!hdev->le_cnt && hdev->le_pkts &&
2209                                 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2210                         hci_link_tx_to(hdev, LE_LINK);
2211         }
2212
2213         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2214         while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
2215                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2216                         BT_DBG("skb %p len %d", skb, skb->len);
2217
2218                         hci_send_frame(skb);
2219                         hdev->le_last_tx = jiffies;
2220
2221                         cnt--;
2222                         conn->sent++;
2223                 }
2224         }
2225         if (hdev->le_pkts)
2226                 hdev->le_cnt = cnt;
2227         else
2228                 hdev->acl_cnt = cnt;
2229 }
2230
2231 static void hci_tx_task(unsigned long arg)
2232 {
2233         struct hci_dev *hdev = (struct hci_dev *) arg;
2234         struct sk_buff *skb;
2235
2236         read_lock(&hci_task_lock);
2237
2238         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2239                 hdev->sco_cnt, hdev->le_cnt);
2240
2241         /* Schedule queues and send stuff to HCI driver */
2242
2243         hci_sched_acl(hdev);
2244
2245         hci_sched_sco(hdev);
2246
2247         hci_sched_esco(hdev);
2248
2249         hci_sched_le(hdev);
2250
2251         /* Send next queued raw (unknown type) packet */
2252         while ((skb = skb_dequeue(&hdev->raw_q)))
2253                 hci_send_frame(skb);
2254
2255         read_unlock(&hci_task_lock);
2256 }
2257
2258 /* ----- HCI RX task (incoming data processing) ----- */
2259
2260 /* ACL data packet */
2261 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2262 {
2263         struct hci_acl_hdr *hdr = (void *) skb->data;
2264         struct hci_conn *conn;
2265         __u16 handle, flags;
2266
2267         skb_pull(skb, HCI_ACL_HDR_SIZE);
2268
2269         handle = __le16_to_cpu(hdr->handle);
2270         flags  = hci_flags(handle);
2271         handle = hci_handle(handle);
2272
2273         BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
2274
2275         hdev->stat.acl_rx++;
2276
2277         hci_dev_lock(hdev);
2278         conn = hci_conn_hash_lookup_handle(hdev, handle);
2279         hci_dev_unlock(hdev);
2280
2281         if (conn) {
2282                 register struct hci_proto *hp;
2283
2284                 hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2285
2286                 /* Send to upper protocol */
2287                 hp = hci_proto[HCI_PROTO_L2CAP];
2288                 if (hp && hp->recv_acldata) {
2289                         hp->recv_acldata(conn, skb, flags);
2290                         return;
2291                 }
2292         } else {
2293                 BT_ERR("%s ACL packet for unknown connection handle %d",
2294                         hdev->name, handle);
2295         }
2296
2297         kfree_skb(skb);
2298 }
2299
2300 /* SCO data packet */
2301 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2302 {
2303         struct hci_sco_hdr *hdr = (void *) skb->data;
2304         struct hci_conn *conn;
2305         __u16 handle;
2306
2307         skb_pull(skb, HCI_SCO_HDR_SIZE);
2308
2309         handle = __le16_to_cpu(hdr->handle);
2310
2311         BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2312
2313         hdev->stat.sco_rx++;
2314
2315         hci_dev_lock(hdev);
2316         conn = hci_conn_hash_lookup_handle(hdev, handle);
2317         hci_dev_unlock(hdev);
2318
2319         if (conn) {
2320                 register struct hci_proto *hp;
2321
2322                 /* Send to upper protocol */
2323                 hp = hci_proto[HCI_PROTO_SCO];
2324                 if (hp && hp->recv_scodata) {
2325                         hp->recv_scodata(conn, skb);
2326                         return;
2327                 }
2328         } else {
2329                 BT_ERR("%s SCO packet for unknown connection handle %d",
2330                         hdev->name, handle);
2331         }
2332
2333         kfree_skb(skb);
2334 }
2335
2336 static void hci_rx_task(unsigned long arg)
2337 {
2338         struct hci_dev *hdev = (struct hci_dev *) arg;
2339         struct sk_buff *skb;
2340
2341         BT_DBG("%s", hdev->name);
2342
2343         read_lock(&hci_task_lock);
2344
2345         while ((skb = skb_dequeue(&hdev->rx_q))) {
2346                 if (atomic_read(&hdev->promisc)) {
2347                         /* Send copy to the sockets */
2348                         hci_send_to_sock(hdev, skb, NULL);
2349                 }
2350
2351                 if (test_bit(HCI_RAW, &hdev->flags)) {
2352                         kfree_skb(skb);
2353                         continue;
2354                 }
2355
2356                 if (test_bit(HCI_INIT, &hdev->flags)) {
2357                         /* Don't process data packets in this states. */
2358                         switch (bt_cb(skb)->pkt_type) {
2359                         case HCI_ACLDATA_PKT:
2360                         case HCI_SCODATA_PKT:
2361                                 kfree_skb(skb);
2362                                 continue;
2363                         }
2364                 }
2365
2366                 /* Process frame */
2367                 switch (bt_cb(skb)->pkt_type) {
2368                 case HCI_EVENT_PKT:
2369                         hci_event_packet(hdev, skb);
2370                         break;
2371
2372                 case HCI_ACLDATA_PKT:
2373                         BT_DBG("%s ACL data packet", hdev->name);
2374                         hci_acldata_packet(hdev, skb);
2375                         break;
2376
2377                 case HCI_SCODATA_PKT:
2378                         BT_DBG("%s SCO data packet", hdev->name);
2379                         hci_scodata_packet(hdev, skb);
2380                         break;
2381
2382                 default:
2383                         kfree_skb(skb);
2384                         break;
2385                 }
2386         }
2387
2388         read_unlock(&hci_task_lock);
2389 }
2390
2391 static void hci_cmd_task(unsigned long arg)
2392 {
2393         struct hci_dev *hdev = (struct hci_dev *) arg;
2394         struct sk_buff *skb;
2395
2396         BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2397
2398         /* Send queued commands */
2399         if (atomic_read(&hdev->cmd_cnt)) {
2400                 skb = skb_dequeue(&hdev->cmd_q);
2401                 if (!skb)
2402                         return;
2403
2404                 kfree_skb(hdev->sent_cmd);
2405
2406                 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2407                 if (hdev->sent_cmd) {
2408                         atomic_dec(&hdev->cmd_cnt);
2409                         hci_send_frame(skb);
2410                         if (test_bit(HCI_RESET, &hdev->flags))
2411                                 del_timer(&hdev->cmd_timer);
2412                         else
2413                                 mod_timer(&hdev->cmd_timer,
2414                                   jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2415                 } else {
2416                         skb_queue_head(&hdev->cmd_q, skb);
2417                         tasklet_schedule(&hdev->cmd_task);
2418                 }
2419         }
2420 }