Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static int modparam_nohwcrypt = 0;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59         unsigned int i;
60         u32 reg;
61
62         /*
63          * SOC devices don't support MCU requests.
64          */
65         if (rt2x00_is_soc(rt2x00dev))
66                 return;
67
68         for (i = 0; i < 200; i++) {
69                 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75                         break;
76
77                 udelay(REGISTER_BUSY_DELAY);
78         }
79
80         if (i == 200)
81                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91
92         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93
94         iounmap(base_addr);
95 }
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105         struct rt2x00_dev *rt2x00dev = eeprom->data;
106         u32 reg;
107
108         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109
110         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112         eeprom->reg_data_clock =
113             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114         eeprom->reg_chip_select =
115             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120         struct rt2x00_dev *rt2x00dev = eeprom->data;
121         u32 reg = 0;
122
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126                            !!eeprom->reg_data_clock);
127         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128                            !!eeprom->reg_chip_select);
129
130         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135         struct eeprom_93cx6 eeprom;
136         u32 reg;
137
138         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139
140         eeprom.data = rt2x00dev;
141         eeprom.register_read = rt2800pci_eepromregister_read;
142         eeprom.register_write = rt2800pci_eepromregister_write;
143         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144         {
145         case 0:
146                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147                 break;
148         case 1:
149                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150                 break;
151         default:
152                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153                 break;
154         }
155         eeprom.reg_data_in = 0;
156         eeprom.reg_data_out = 0;
157         eeprom.reg_data_clock = 0;
158         eeprom.reg_chip_select = 0;
159
160         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161                                EEPROM_SIZE / sizeof(u16));
162 }
163
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166         return rt2800_efuse_detect(rt2x00dev);
167 }
168
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171         rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180         return 0;
181 }
182
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187
188 /*
189  * Queue handlers.
190  */
191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194         u32 reg;
195
196         switch (queue->qid) {
197         case QID_RX:
198                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201                 break;
202         case QID_BEACON:
203                 /*
204                  * Allow beacon tasklets to be scheduled for periodic
205                  * beacon updates.
206                  */
207                 tasklet_enable(&rt2x00dev->tbtt_tasklet);
208                 tasklet_enable(&rt2x00dev->pretbtt_tasklet);
209
210                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
211                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
212                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
213                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
214                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
215
216                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
217                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
218                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
219                 break;
220         default:
221                 break;
222         };
223 }
224
225 static void rt2800pci_kick_queue(struct data_queue *queue)
226 {
227         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
228         struct queue_entry *entry;
229
230         switch (queue->qid) {
231         case QID_AC_VO:
232         case QID_AC_VI:
233         case QID_AC_BE:
234         case QID_AC_BK:
235                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
236                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
237                                          entry->entry_idx);
238                 break;
239         case QID_MGMT:
240                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
241                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
242                                          entry->entry_idx);
243                 break;
244         default:
245                 break;
246         }
247 }
248
249 static void rt2800pci_stop_queue(struct data_queue *queue)
250 {
251         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
252         u32 reg;
253
254         switch (queue->qid) {
255         case QID_RX:
256                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
257                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
258                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
259                 break;
260         case QID_BEACON:
261                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
262                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
263                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
264                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
265                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
266
267                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
268                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
269                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
270
271                 /*
272                  * Wait for tbtt tasklets to finish.
273                  */
274                 tasklet_disable(&rt2x00dev->tbtt_tasklet);
275                 tasklet_disable(&rt2x00dev->pretbtt_tasklet);
276                 break;
277         default:
278                 break;
279         }
280 }
281
282 /*
283  * Firmware functions
284  */
285 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
286 {
287         return FIRMWARE_RT2860;
288 }
289
290 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
291                                     const u8 *data, const size_t len)
292 {
293         u32 reg;
294
295         /*
296          * enable Host program ram write selection
297          */
298         reg = 0;
299         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
300         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
301
302         /*
303          * Write firmware to device.
304          */
305         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
306                                       data, len);
307
308         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
309         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
310
311         rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
312         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
313
314         return 0;
315 }
316
317 /*
318  * Initialization functions.
319  */
320 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
321 {
322         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
323         u32 word;
324
325         if (entry->queue->qid == QID_RX) {
326                 rt2x00_desc_read(entry_priv->desc, 1, &word);
327
328                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
329         } else {
330                 rt2x00_desc_read(entry_priv->desc, 1, &word);
331
332                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
333         }
334 }
335
336 static void rt2800pci_clear_entry(struct queue_entry *entry)
337 {
338         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
339         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
340         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
341         u32 word;
342
343         if (entry->queue->qid == QID_RX) {
344                 rt2x00_desc_read(entry_priv->desc, 0, &word);
345                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
346                 rt2x00_desc_write(entry_priv->desc, 0, word);
347
348                 rt2x00_desc_read(entry_priv->desc, 1, &word);
349                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
350                 rt2x00_desc_write(entry_priv->desc, 1, word);
351
352                 /*
353                  * Set RX IDX in register to inform hardware that we have
354                  * handled this entry and it is available for reuse again.
355                  */
356                 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
357                                       entry->entry_idx);
358         } else {
359                 rt2x00_desc_read(entry_priv->desc, 1, &word);
360                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
361                 rt2x00_desc_write(entry_priv->desc, 1, word);
362         }
363 }
364
365 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
366 {
367         struct queue_entry_priv_pci *entry_priv;
368         u32 reg;
369
370         /*
371          * Initialize registers.
372          */
373         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
374         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
375         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
376                                  rt2x00dev->tx[0].limit);
377         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
378         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
379
380         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
381         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
382         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
383                                  rt2x00dev->tx[1].limit);
384         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
385         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
386
387         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
388         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
389         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
390                                  rt2x00dev->tx[2].limit);
391         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
392         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
393
394         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
395         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
396         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
397                                  rt2x00dev->tx[3].limit);
398         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
399         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
400
401         entry_priv = rt2x00dev->rx->entries[0].priv_data;
402         rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
403         rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
404                                  rt2x00dev->rx[0].limit);
405         rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
406                                  rt2x00dev->rx[0].limit - 1);
407         rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
408
409         /*
410          * Enable global DMA configuration
411          */
412         rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
413         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
414         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
415         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
416         rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
417
418         rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
419
420         return 0;
421 }
422
423 /*
424  * Device state switch handlers.
425  */
426 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
427                                  enum dev_state state)
428 {
429         int mask = (state == STATE_RADIO_IRQ_ON);
430         u32 reg;
431         unsigned long flags;
432
433         /*
434          * When interrupts are being enabled, the interrupt registers
435          * should clear the register to assure a clean state.
436          */
437         if (state == STATE_RADIO_IRQ_ON) {
438                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
439                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
440
441                 /*
442                  * Enable tasklets. The beacon related tasklets are
443                  * enabled when the beacon queue is started.
444                  */
445                 tasklet_enable(&rt2x00dev->txstatus_tasklet);
446                 tasklet_enable(&rt2x00dev->rxdone_tasklet);
447                 tasklet_enable(&rt2x00dev->autowake_tasklet);
448         }
449
450         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
451         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
452         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
453         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
454         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
455         rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
456         rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
457         rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
458         rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
459         rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
460         rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
461         rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
462         rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
463         rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
464         rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
465         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
466         rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
467         rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
468         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
469         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
470         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
471         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
472
473         if (state == STATE_RADIO_IRQ_OFF) {
474                 /*
475                  * Ensure that all tasklets are finished before
476                  * disabling the interrupts.
477                  */
478                 tasklet_disable(&rt2x00dev->txstatus_tasklet);
479                 tasklet_disable(&rt2x00dev->rxdone_tasklet);
480                 tasklet_disable(&rt2x00dev->autowake_tasklet);
481         }
482 }
483
484 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
485 {
486         u32 reg;
487
488         /*
489          * Reset DMA indexes
490          */
491         rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
492         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
493         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
494         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
495         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
496         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
497         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
498         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
499         rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
500
501         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
502         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
503
504         if (rt2x00_rt(rt2x00dev, RT5390)) {
505                 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
506                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
507                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
508                 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
509         }
510
511         rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
512
513         rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
514         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
515         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
516         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
517
518         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
519
520         return 0;
521 }
522
523 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
524 {
525         if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
526                      rt2800pci_init_queues(rt2x00dev)))
527                 return -EIO;
528
529         return rt2800_enable_radio(rt2x00dev);
530 }
531
532 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
533 {
534         if (rt2x00_is_soc(rt2x00dev)) {
535                 rt2800_disable_radio(rt2x00dev);
536                 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
537                 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
538         }
539 }
540
541 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
542                                enum dev_state state)
543 {
544         if (state == STATE_AWAKE) {
545                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02);
546                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
547         } else if (state == STATE_SLEEP) {
548                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
549                                          0xffffffff);
550                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
551                                          0xffffffff);
552                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01);
553         }
554
555         return 0;
556 }
557
558 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
559                                       enum dev_state state)
560 {
561         int retval = 0;
562
563         switch (state) {
564         case STATE_RADIO_ON:
565                 /*
566                  * Before the radio can be enabled, the device first has
567                  * to be woken up. After that it needs a bit of time
568                  * to be fully awake and then the radio can be enabled.
569                  */
570                 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
571                 msleep(1);
572                 retval = rt2800pci_enable_radio(rt2x00dev);
573                 break;
574         case STATE_RADIO_OFF:
575                 /*
576                  * After the radio has been disabled, the device should
577                  * be put to sleep for powersaving.
578                  */
579                 rt2800pci_disable_radio(rt2x00dev);
580                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
581                 break;
582         case STATE_RADIO_IRQ_ON:
583         case STATE_RADIO_IRQ_OFF:
584                 rt2800pci_toggle_irq(rt2x00dev, state);
585                 break;
586         case STATE_DEEP_SLEEP:
587         case STATE_SLEEP:
588         case STATE_STANDBY:
589         case STATE_AWAKE:
590                 retval = rt2800pci_set_state(rt2x00dev, state);
591                 break;
592         default:
593                 retval = -ENOTSUPP;
594                 break;
595         }
596
597         if (unlikely(retval))
598                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
599                       state, retval);
600
601         return retval;
602 }
603
604 /*
605  * TX descriptor initialization
606  */
607 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
608 {
609         return (__le32 *) entry->skb->data;
610 }
611
612 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
613                                     struct txentry_desc *txdesc)
614 {
615         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
616         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
617         __le32 *txd = entry_priv->desc;
618         u32 word;
619
620         /*
621          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
622          * must contains a TXWI structure + 802.11 header + padding + 802.11
623          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
624          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
625          * data. It means that LAST_SEC0 is always 0.
626          */
627
628         /*
629          * Initialize TX descriptor
630          */
631         rt2x00_desc_read(txd, 0, &word);
632         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
633         rt2x00_desc_write(txd, 0, word);
634
635         rt2x00_desc_read(txd, 1, &word);
636         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
637         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
638                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
639         rt2x00_set_field32(&word, TXD_W1_BURST,
640                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
641         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
642         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
643         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
644         rt2x00_desc_write(txd, 1, word);
645
646         rt2x00_desc_read(txd, 2, &word);
647         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
648                            skbdesc->skb_dma + TXWI_DESC_SIZE);
649         rt2x00_desc_write(txd, 2, word);
650
651         rt2x00_desc_read(txd, 3, &word);
652         rt2x00_set_field32(&word, TXD_W3_WIV,
653                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
654         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
655         rt2x00_desc_write(txd, 3, word);
656
657         /*
658          * Register descriptor details in skb frame descriptor.
659          */
660         skbdesc->desc = txd;
661         skbdesc->desc_len = TXD_DESC_SIZE;
662 }
663
664 /*
665  * RX control handlers
666  */
667 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
668                                   struct rxdone_entry_desc *rxdesc)
669 {
670         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
671         __le32 *rxd = entry_priv->desc;
672         u32 word;
673
674         rt2x00_desc_read(rxd, 3, &word);
675
676         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
677                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
678
679         /*
680          * Unfortunately we don't know the cipher type used during
681          * decryption. This prevents us from correct providing
682          * correct statistics through debugfs.
683          */
684         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
685
686         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
687                 /*
688                  * Hardware has stripped IV/EIV data from 802.11 frame during
689                  * decryption. Unfortunately the descriptor doesn't contain
690                  * any fields with the EIV/IV data either, so they can't
691                  * be restored by rt2x00lib.
692                  */
693                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
694
695                 /*
696                  * The hardware has already checked the Michael Mic and has
697                  * stripped it from the frame. Signal this to mac80211.
698                  */
699                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
700
701                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
702                         rxdesc->flags |= RX_FLAG_DECRYPTED;
703                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
704                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
705         }
706
707         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
708                 rxdesc->dev_flags |= RXDONE_MY_BSS;
709
710         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
711                 rxdesc->dev_flags |= RXDONE_L2PAD;
712
713         /*
714          * Process the RXWI structure that is at the start of the buffer.
715          */
716         rt2800_process_rxwi(entry, rxdesc);
717 }
718
719 /*
720  * Interrupt functions.
721  */
722 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
723 {
724         struct ieee80211_conf conf = { .flags = 0 };
725         struct rt2x00lib_conf libconf = { .conf = &conf };
726
727         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
728 }
729
730 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
731 {
732         struct data_queue *queue;
733         struct queue_entry *entry;
734         u32 status;
735         u8 qid;
736         int max_tx_done = 16;
737
738         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
739                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
740                 if (unlikely(qid >= QID_RX)) {
741                         /*
742                          * Unknown queue, this shouldn't happen. Just drop
743                          * this tx status.
744                          */
745                         WARNING(rt2x00dev, "Got TX status report with "
746                                            "unexpected pid %u, dropping\n", qid);
747                         break;
748                 }
749
750                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
751                 if (unlikely(queue == NULL)) {
752                         /*
753                          * The queue is NULL, this shouldn't happen. Stop
754                          * processing here and drop the tx status
755                          */
756                         WARNING(rt2x00dev, "Got TX status for an unavailable "
757                                            "queue %u, dropping\n", qid);
758                         break;
759                 }
760
761                 if (unlikely(rt2x00queue_empty(queue))) {
762                         /*
763                          * The queue is empty. Stop processing here
764                          * and drop the tx status.
765                          */
766                         WARNING(rt2x00dev, "Got TX status for an empty "
767                                            "queue %u, dropping\n", qid);
768                         break;
769                 }
770
771                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
772                 rt2800_txdone_entry(entry, status);
773
774                 if (--max_tx_done == 0)
775                         break;
776         }
777
778         return !max_tx_done;
779 }
780
781 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
782                                               struct rt2x00_field32 irq_field)
783 {
784         u32 reg;
785
786         /*
787          * Enable a single interrupt. The interrupt mask register
788          * access needs locking.
789          */
790         spin_lock_irq(&rt2x00dev->irqmask_lock);
791         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
792         rt2x00_set_field32(&reg, irq_field, 1);
793         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
794         spin_unlock_irq(&rt2x00dev->irqmask_lock);
795 }
796
797 static void rt2800pci_txstatus_tasklet(unsigned long data)
798 {
799         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
800         if (rt2800pci_txdone(rt2x00dev))
801                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
802
803         /*
804          * No need to enable the tx status interrupt here as we always
805          * leave it enabled to minimize the possibility of a tx status
806          * register overflow. See comment in interrupt handler.
807          */
808 }
809
810 static void rt2800pci_pretbtt_tasklet(unsigned long data)
811 {
812         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
813         rt2x00lib_pretbtt(rt2x00dev);
814         rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
815 }
816
817 static void rt2800pci_tbtt_tasklet(unsigned long data)
818 {
819         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
820         rt2x00lib_beacondone(rt2x00dev);
821         rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
822 }
823
824 static void rt2800pci_rxdone_tasklet(unsigned long data)
825 {
826         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
827         if (rt2x00pci_rxdone(rt2x00dev))
828                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
829         else
830                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
831 }
832
833 static void rt2800pci_autowake_tasklet(unsigned long data)
834 {
835         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
836         rt2800pci_wakeup(rt2x00dev);
837         rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
838 }
839
840 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
841 {
842         u32 status;
843         int i;
844
845         /*
846          * The TX_FIFO_STATUS interrupt needs special care. We should
847          * read TX_STA_FIFO but we should do it immediately as otherwise
848          * the register can overflow and we would lose status reports.
849          *
850          * Hence, read the TX_STA_FIFO register and copy all tx status
851          * reports into a kernel FIFO which is handled in the txstatus
852          * tasklet. We use a tasklet to process the tx status reports
853          * because we can schedule the tasklet multiple times (when the
854          * interrupt fires again during tx status processing).
855          *
856          * Furthermore we don't disable the TX_FIFO_STATUS
857          * interrupt here but leave it enabled so that the TX_STA_FIFO
858          * can also be read while the tx status tasklet gets executed.
859          *
860          * Since we have only one producer and one consumer we don't
861          * need to lock the kfifo.
862          */
863         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
864                 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
865
866                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
867                         break;
868
869                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
870                         WARNING(rt2x00dev, "TX status FIFO overrun,"
871                                 "drop tx status report.\n");
872                         break;
873                 }
874         }
875
876         /* Schedule the tasklet for processing the tx status. */
877         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
878 }
879
880 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
881 {
882         struct rt2x00_dev *rt2x00dev = dev_instance;
883         u32 reg, mask;
884
885         /* Read status and ACK all interrupts */
886         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
887         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
888
889         if (!reg)
890                 return IRQ_NONE;
891
892         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
893                 return IRQ_HANDLED;
894
895         /*
896          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
897          * for interrupts and interrupt masks we can just use the value of
898          * INT_SOURCE_CSR to create the interrupt mask.
899          */
900         mask = ~reg;
901
902         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
903                 rt2800pci_txstatus_interrupt(rt2x00dev);
904                 /*
905                  * Never disable the TX_FIFO_STATUS interrupt.
906                  */
907                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
908         }
909
910         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
911                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
912
913         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
914                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
915
916         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
917                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
918
919         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
920                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
921
922         /*
923          * Disable all interrupts for which a tasklet was scheduled right now,
924          * the tasklet will reenable the appropriate interrupts.
925          */
926         spin_lock(&rt2x00dev->irqmask_lock);
927         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
928         reg &= mask;
929         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
930         spin_unlock(&rt2x00dev->irqmask_lock);
931
932         return IRQ_HANDLED;
933 }
934
935 /*
936  * Device probe functions.
937  */
938 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
939 {
940         /*
941          * Read EEPROM into buffer
942          */
943         if (rt2x00_is_soc(rt2x00dev))
944                 rt2800pci_read_eeprom_soc(rt2x00dev);
945         else if (rt2800pci_efuse_detect(rt2x00dev))
946                 rt2800pci_read_eeprom_efuse(rt2x00dev);
947         else
948                 rt2800pci_read_eeprom_pci(rt2x00dev);
949
950         return rt2800_validate_eeprom(rt2x00dev);
951 }
952
953 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
954 {
955         int retval;
956
957         /*
958          * Allocate eeprom data.
959          */
960         retval = rt2800pci_validate_eeprom(rt2x00dev);
961         if (retval)
962                 return retval;
963
964         retval = rt2800_init_eeprom(rt2x00dev);
965         if (retval)
966                 return retval;
967
968         /*
969          * Initialize hw specifications.
970          */
971         retval = rt2800_probe_hw_mode(rt2x00dev);
972         if (retval)
973                 return retval;
974
975         /*
976          * This device has multiple filters for control frames
977          * and has a separate filter for PS Poll frames.
978          */
979         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
980         __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
981
982         /*
983          * This device has a pre tbtt interrupt and thus fetches
984          * a new beacon directly prior to transmission.
985          */
986         __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
987
988         /*
989          * This device requires firmware.
990          */
991         if (!rt2x00_is_soc(rt2x00dev))
992                 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
993         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
994         __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
995         __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
996         __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
997         if (!modparam_nohwcrypt)
998                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
999         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1000         __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1001
1002         /*
1003          * Set the rssi offset.
1004          */
1005         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1006
1007         return 0;
1008 }
1009
1010 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1011         .tx                     = rt2x00mac_tx,
1012         .start                  = rt2x00mac_start,
1013         .stop                   = rt2x00mac_stop,
1014         .add_interface          = rt2x00mac_add_interface,
1015         .remove_interface       = rt2x00mac_remove_interface,
1016         .config                 = rt2x00mac_config,
1017         .configure_filter       = rt2x00mac_configure_filter,
1018         .set_key                = rt2x00mac_set_key,
1019         .sw_scan_start          = rt2x00mac_sw_scan_start,
1020         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1021         .get_stats              = rt2x00mac_get_stats,
1022         .get_tkip_seq           = rt2800_get_tkip_seq,
1023         .set_rts_threshold      = rt2800_set_rts_threshold,
1024         .bss_info_changed       = rt2x00mac_bss_info_changed,
1025         .conf_tx                = rt2800_conf_tx,
1026         .get_tsf                = rt2800_get_tsf,
1027         .rfkill_poll            = rt2x00mac_rfkill_poll,
1028         .ampdu_action           = rt2800_ampdu_action,
1029         .flush                  = rt2x00mac_flush,
1030         .get_survey             = rt2800_get_survey,
1031         .get_ringparam          = rt2x00mac_get_ringparam,
1032 };
1033
1034 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1035         .register_read          = rt2x00pci_register_read,
1036         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
1037         .register_write         = rt2x00pci_register_write,
1038         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
1039         .register_multiread     = rt2x00pci_register_multiread,
1040         .register_multiwrite    = rt2x00pci_register_multiwrite,
1041         .regbusy_read           = rt2x00pci_regbusy_read,
1042         .drv_write_firmware     = rt2800pci_write_firmware,
1043         .drv_init_registers     = rt2800pci_init_registers,
1044         .drv_get_txwi           = rt2800pci_get_txwi,
1045 };
1046
1047 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1048         .irq_handler            = rt2800pci_interrupt,
1049         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1050         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1051         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1052         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1053         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1054         .probe_hw               = rt2800pci_probe_hw,
1055         .get_firmware_name      = rt2800pci_get_firmware_name,
1056         .check_firmware         = rt2800_check_firmware,
1057         .load_firmware          = rt2800_load_firmware,
1058         .initialize             = rt2x00pci_initialize,
1059         .uninitialize           = rt2x00pci_uninitialize,
1060         .get_entry_state        = rt2800pci_get_entry_state,
1061         .clear_entry            = rt2800pci_clear_entry,
1062         .set_device_state       = rt2800pci_set_device_state,
1063         .rfkill_poll            = rt2800_rfkill_poll,
1064         .link_stats             = rt2800_link_stats,
1065         .reset_tuner            = rt2800_reset_tuner,
1066         .link_tuner             = rt2800_link_tuner,
1067         .gain_calibration       = rt2800_gain_calibration,
1068         .start_queue            = rt2800pci_start_queue,
1069         .kick_queue             = rt2800pci_kick_queue,
1070         .stop_queue             = rt2800pci_stop_queue,
1071         .flush_queue            = rt2x00pci_flush_queue,
1072         .write_tx_desc          = rt2800pci_write_tx_desc,
1073         .write_tx_data          = rt2800_write_tx_data,
1074         .write_beacon           = rt2800_write_beacon,
1075         .clear_beacon           = rt2800_clear_beacon,
1076         .fill_rxdone            = rt2800pci_fill_rxdone,
1077         .config_shared_key      = rt2800_config_shared_key,
1078         .config_pairwise_key    = rt2800_config_pairwise_key,
1079         .config_filter          = rt2800_config_filter,
1080         .config_intf            = rt2800_config_intf,
1081         .config_erp             = rt2800_config_erp,
1082         .config_ant             = rt2800_config_ant,
1083         .config                 = rt2800_config,
1084 };
1085
1086 static const struct data_queue_desc rt2800pci_queue_rx = {
1087         .entry_num              = 128,
1088         .data_size              = AGGREGATION_SIZE,
1089         .desc_size              = RXD_DESC_SIZE,
1090         .priv_size              = sizeof(struct queue_entry_priv_pci),
1091 };
1092
1093 static const struct data_queue_desc rt2800pci_queue_tx = {
1094         .entry_num              = 64,
1095         .data_size              = AGGREGATION_SIZE,
1096         .desc_size              = TXD_DESC_SIZE,
1097         .priv_size              = sizeof(struct queue_entry_priv_pci),
1098 };
1099
1100 static const struct data_queue_desc rt2800pci_queue_bcn = {
1101         .entry_num              = 8,
1102         .data_size              = 0, /* No DMA required for beacons */
1103         .desc_size              = TXWI_DESC_SIZE,
1104         .priv_size              = sizeof(struct queue_entry_priv_pci),
1105 };
1106
1107 static const struct rt2x00_ops rt2800pci_ops = {
1108         .name                   = KBUILD_MODNAME,
1109         .max_sta_intf           = 1,
1110         .max_ap_intf            = 8,
1111         .eeprom_size            = EEPROM_SIZE,
1112         .rf_size                = RF_SIZE,
1113         .tx_queues              = NUM_TX_QUEUES,
1114         .extra_tx_headroom      = TXWI_DESC_SIZE,
1115         .rx                     = &rt2800pci_queue_rx,
1116         .tx                     = &rt2800pci_queue_tx,
1117         .bcn                    = &rt2800pci_queue_bcn,
1118         .lib                    = &rt2800pci_rt2x00_ops,
1119         .drv                    = &rt2800pci_rt2800_ops,
1120         .hw                     = &rt2800pci_mac80211_ops,
1121 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1122         .debugfs                = &rt2800_rt2x00debug,
1123 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1124 };
1125
1126 /*
1127  * RT2800pci module information.
1128  */
1129 #ifdef CONFIG_PCI
1130 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1131         { PCI_DEVICE(0x1814, 0x0601) },
1132         { PCI_DEVICE(0x1814, 0x0681) },
1133         { PCI_DEVICE(0x1814, 0x0701) },
1134         { PCI_DEVICE(0x1814, 0x0781) },
1135         { PCI_DEVICE(0x1814, 0x3090) },
1136         { PCI_DEVICE(0x1814, 0x3091) },
1137         { PCI_DEVICE(0x1814, 0x3092) },
1138         { PCI_DEVICE(0x1432, 0x7708) },
1139         { PCI_DEVICE(0x1432, 0x7727) },
1140         { PCI_DEVICE(0x1432, 0x7728) },
1141         { PCI_DEVICE(0x1432, 0x7738) },
1142         { PCI_DEVICE(0x1432, 0x7748) },
1143         { PCI_DEVICE(0x1432, 0x7758) },
1144         { PCI_DEVICE(0x1432, 0x7768) },
1145         { PCI_DEVICE(0x1462, 0x891a) },
1146         { PCI_DEVICE(0x1a3b, 0x1059) },
1147 #ifdef CONFIG_RT2800PCI_RT33XX
1148         { PCI_DEVICE(0x1814, 0x3390) },
1149 #endif
1150 #ifdef CONFIG_RT2800PCI_RT35XX
1151         { PCI_DEVICE(0x1432, 0x7711) },
1152         { PCI_DEVICE(0x1432, 0x7722) },
1153         { PCI_DEVICE(0x1814, 0x3060) },
1154         { PCI_DEVICE(0x1814, 0x3062) },
1155         { PCI_DEVICE(0x1814, 0x3562) },
1156         { PCI_DEVICE(0x1814, 0x3592) },
1157         { PCI_DEVICE(0x1814, 0x3593) },
1158 #endif
1159 #ifdef CONFIG_RT2800PCI_RT53XX
1160         { PCI_DEVICE(0x1814, 0x5390) },
1161 #endif
1162         { 0, }
1163 };
1164 #endif /* CONFIG_PCI */
1165
1166 MODULE_AUTHOR(DRV_PROJECT);
1167 MODULE_VERSION(DRV_VERSION);
1168 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1169 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1170 #ifdef CONFIG_PCI
1171 MODULE_FIRMWARE(FIRMWARE_RT2860);
1172 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1173 #endif /* CONFIG_PCI */
1174 MODULE_LICENSE("GPL");
1175
1176 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1177 static int rt2800soc_probe(struct platform_device *pdev)
1178 {
1179         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1180 }
1181
1182 static struct platform_driver rt2800soc_driver = {
1183         .driver         = {
1184                 .name           = "rt2800_wmac",
1185                 .owner          = THIS_MODULE,
1186                 .mod_name       = KBUILD_MODNAME,
1187         },
1188         .probe          = rt2800soc_probe,
1189         .remove         = __devexit_p(rt2x00soc_remove),
1190         .suspend        = rt2x00soc_suspend,
1191         .resume         = rt2x00soc_resume,
1192 };
1193 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1194
1195 #ifdef CONFIG_PCI
1196 static int rt2800pci_probe(struct pci_dev *pci_dev,
1197                            const struct pci_device_id *id)
1198 {
1199         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1200 }
1201
1202 static struct pci_driver rt2800pci_driver = {
1203         .name           = KBUILD_MODNAME,
1204         .id_table       = rt2800pci_device_table,
1205         .probe          = rt2800pci_probe,
1206         .remove         = __devexit_p(rt2x00pci_remove),
1207         .suspend        = rt2x00pci_suspend,
1208         .resume         = rt2x00pci_resume,
1209 };
1210 #endif /* CONFIG_PCI */
1211
1212 static int __init rt2800pci_init(void)
1213 {
1214         int ret = 0;
1215
1216 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1217         ret = platform_driver_register(&rt2800soc_driver);
1218         if (ret)
1219                 return ret;
1220 #endif
1221 #ifdef CONFIG_PCI
1222         ret = pci_register_driver(&rt2800pci_driver);
1223         if (ret) {
1224 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1225                 platform_driver_unregister(&rt2800soc_driver);
1226 #endif
1227                 return ret;
1228         }
1229 #endif
1230
1231         return ret;
1232 }
1233
1234 static void __exit rt2800pci_exit(void)
1235 {
1236 #ifdef CONFIG_PCI
1237         pci_unregister_driver(&rt2800pci_driver);
1238 #endif
1239 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1240         platform_driver_unregister(&rt2800soc_driver);
1241 #endif
1242 }
1243
1244 module_init(rt2800pci_init);
1245 module_exit(rt2800pci_exit);