pandora: defconfig: update
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static int modparam_nohwcrypt = 0;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59         unsigned int i;
60         u32 reg;
61
62         /*
63          * SOC devices don't support MCU requests.
64          */
65         if (rt2x00_is_soc(rt2x00dev))
66                 return;
67
68         for (i = 0; i < 200; i++) {
69                 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75                         break;
76
77                 udelay(REGISTER_BUSY_DELAY);
78         }
79
80         if (i == 200)
81                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91
92         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93
94         iounmap(base_addr);
95 }
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105         struct rt2x00_dev *rt2x00dev = eeprom->data;
106         u32 reg;
107
108         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109
110         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112         eeprom->reg_data_clock =
113             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114         eeprom->reg_chip_select =
115             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120         struct rt2x00_dev *rt2x00dev = eeprom->data;
121         u32 reg = 0;
122
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126                            !!eeprom->reg_data_clock);
127         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128                            !!eeprom->reg_chip_select);
129
130         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135         struct eeprom_93cx6 eeprom;
136         u32 reg;
137
138         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139
140         eeprom.data = rt2x00dev;
141         eeprom.register_read = rt2800pci_eepromregister_read;
142         eeprom.register_write = rt2800pci_eepromregister_write;
143         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144         {
145         case 0:
146                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147                 break;
148         case 1:
149                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150                 break;
151         default:
152                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153                 break;
154         }
155         eeprom.reg_data_in = 0;
156         eeprom.reg_data_out = 0;
157         eeprom.reg_data_clock = 0;
158         eeprom.reg_chip_select = 0;
159
160         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161                                EEPROM_SIZE / sizeof(u16));
162 }
163
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166         return rt2800_efuse_detect(rt2x00dev);
167 }
168
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171         rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180         return 0;
181 }
182
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187
188 /*
189  * Queue handlers.
190  */
191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194         u32 reg;
195
196         switch (queue->qid) {
197         case QID_RX:
198                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201                 break;
202         case QID_BEACON:
203                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
205                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
206                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208
209                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212                 break;
213         default:
214                 break;
215         }
216 }
217
218 static void rt2800pci_kick_queue(struct data_queue *queue)
219 {
220         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
221         struct queue_entry *entry;
222
223         switch (queue->qid) {
224         case QID_AC_VO:
225         case QID_AC_VI:
226         case QID_AC_BE:
227         case QID_AC_BK:
228                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
229                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
230                                          entry->entry_idx);
231                 break;
232         case QID_MGMT:
233                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
234                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
235                                          entry->entry_idx);
236                 break;
237         default:
238                 break;
239         }
240 }
241
242 static void rt2800pci_stop_queue(struct data_queue *queue)
243 {
244         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
245         u32 reg;
246
247         switch (queue->qid) {
248         case QID_RX:
249                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252                 break;
253         case QID_BEACON:
254                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
256                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
257                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259
260                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263
264                 /*
265                  * Wait for current invocation to finish. The tasklet
266                  * won't be scheduled anymore afterwards since we disabled
267                  * the TBTT and PRE TBTT timer.
268                  */
269                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
270                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
271
272                 break;
273         default:
274                 break;
275         }
276 }
277
278 /*
279  * Firmware functions
280  */
281 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
282 {
283         return FIRMWARE_RT2860;
284 }
285
286 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
287                                     const u8 *data, const size_t len)
288 {
289         u32 reg;
290
291         /*
292          * enable Host program ram write selection
293          */
294         reg = 0;
295         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
296         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
297
298         /*
299          * Write firmware to device.
300          */
301         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
302                                       data, len);
303
304         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
305         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
306
307         rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
308         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
309
310         return 0;
311 }
312
313 /*
314  * Initialization functions.
315  */
316 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
317 {
318         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
319         u32 word;
320
321         if (entry->queue->qid == QID_RX) {
322                 rt2x00_desc_read(entry_priv->desc, 1, &word);
323
324                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
325         } else {
326                 rt2x00_desc_read(entry_priv->desc, 1, &word);
327
328                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
329         }
330 }
331
332 static void rt2800pci_clear_entry(struct queue_entry *entry)
333 {
334         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
335         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
336         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
337         u32 word;
338
339         if (entry->queue->qid == QID_RX) {
340                 rt2x00_desc_read(entry_priv->desc, 0, &word);
341                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
342                 rt2x00_desc_write(entry_priv->desc, 0, word);
343
344                 rt2x00_desc_read(entry_priv->desc, 1, &word);
345                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
346                 rt2x00_desc_write(entry_priv->desc, 1, word);
347
348                 /*
349                  * Set RX IDX in register to inform hardware that we have
350                  * handled this entry and it is available for reuse again.
351                  */
352                 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
353                                       entry->entry_idx);
354         } else {
355                 rt2x00_desc_read(entry_priv->desc, 1, &word);
356                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
357                 rt2x00_desc_write(entry_priv->desc, 1, word);
358         }
359 }
360
361 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
362 {
363         struct queue_entry_priv_pci *entry_priv;
364         u32 reg;
365
366         /*
367          * Initialize registers.
368          */
369         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
370         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
371         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
372                                  rt2x00dev->tx[0].limit);
373         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
374         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
375
376         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
377         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
378         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
379                                  rt2x00dev->tx[1].limit);
380         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
381         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
382
383         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
384         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
385         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
386                                  rt2x00dev->tx[2].limit);
387         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
388         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
389
390         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
391         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
392         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
393                                  rt2x00dev->tx[3].limit);
394         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
395         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
396
397         entry_priv = rt2x00dev->rx->entries[0].priv_data;
398         rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
399         rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
400                                  rt2x00dev->rx[0].limit);
401         rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
402                                  rt2x00dev->rx[0].limit - 1);
403         rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
404
405         /*
406          * Enable global DMA configuration
407          */
408         rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
409         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
410         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
411         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
412         rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
413
414         rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
415
416         return 0;
417 }
418
419 /*
420  * Device state switch handlers.
421  */
422 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
423                                  enum dev_state state)
424 {
425         u32 reg;
426         unsigned long flags;
427
428         /*
429          * When interrupts are being enabled, the interrupt registers
430          * should clear the register to assure a clean state.
431          */
432         if (state == STATE_RADIO_IRQ_ON) {
433                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
434                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
435         }
436
437         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
438         reg = 0;
439         if (state == STATE_RADIO_IRQ_ON) {
440                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
441                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
442                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
443                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
444                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
445         }
446         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
447         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
448
449         if (state == STATE_RADIO_IRQ_OFF) {
450                 /*
451                  * Wait for possibly running tasklets to finish.
452                  */
453                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
454                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
455                 tasklet_kill(&rt2x00dev->autowake_tasklet);
456                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
457                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
458         }
459 }
460
461 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
462 {
463         u32 reg;
464
465         /*
466          * Reset DMA indexes
467          */
468         rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
469         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
470         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
471         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
472         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
473         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
474         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
475         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
476         rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
477
478         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
479         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
480
481         if (rt2x00_is_pcie(rt2x00dev) &&
482             (rt2x00_rt(rt2x00dev, RT3572) ||
483              rt2x00_rt(rt2x00dev, RT5390))) {
484                 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
485                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
486                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
487                 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
488         }
489
490         rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
491
492         rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
493         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
494         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
495         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
496
497         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
498
499         return 0;
500 }
501
502 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
503 {
504         if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
505                      rt2800pci_init_queues(rt2x00dev)))
506                 return -EIO;
507
508         return rt2800_enable_radio(rt2x00dev);
509 }
510
511 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
512 {
513         if (rt2x00_is_soc(rt2x00dev)) {
514                 rt2800_disable_radio(rt2x00dev);
515                 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
516                 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
517         }
518 }
519
520 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
521                                enum dev_state state)
522 {
523         if (state == STATE_AWAKE) {
524                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02);
525                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
526         } else if (state == STATE_SLEEP) {
527                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
528                                          0xffffffff);
529                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
530                                          0xffffffff);
531                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01);
532         }
533
534         return 0;
535 }
536
537 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
538                                       enum dev_state state)
539 {
540         int retval = 0;
541
542         switch (state) {
543         case STATE_RADIO_ON:
544                 /*
545                  * Before the radio can be enabled, the device first has
546                  * to be woken up. After that it needs a bit of time
547                  * to be fully awake and then the radio can be enabled.
548                  */
549                 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
550                 msleep(1);
551                 retval = rt2800pci_enable_radio(rt2x00dev);
552                 break;
553         case STATE_RADIO_OFF:
554                 /*
555                  * After the radio has been disabled, the device should
556                  * be put to sleep for powersaving.
557                  */
558                 rt2800pci_disable_radio(rt2x00dev);
559                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
560                 break;
561         case STATE_RADIO_IRQ_ON:
562         case STATE_RADIO_IRQ_OFF:
563                 rt2800pci_toggle_irq(rt2x00dev, state);
564                 break;
565         case STATE_DEEP_SLEEP:
566         case STATE_SLEEP:
567         case STATE_STANDBY:
568         case STATE_AWAKE:
569                 retval = rt2800pci_set_state(rt2x00dev, state);
570                 break;
571         default:
572                 retval = -ENOTSUPP;
573                 break;
574         }
575
576         if (unlikely(retval))
577                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
578                       state, retval);
579
580         return retval;
581 }
582
583 /*
584  * TX descriptor initialization
585  */
586 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
587 {
588         return (__le32 *) entry->skb->data;
589 }
590
591 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
592                                     struct txentry_desc *txdesc)
593 {
594         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
595         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
596         __le32 *txd = entry_priv->desc;
597         u32 word;
598
599         /*
600          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
601          * must contains a TXWI structure + 802.11 header + padding + 802.11
602          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
603          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
604          * data. It means that LAST_SEC0 is always 0.
605          */
606
607         /*
608          * Initialize TX descriptor
609          */
610         word = 0;
611         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
612         rt2x00_desc_write(txd, 0, word);
613
614         word = 0;
615         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
616         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
617                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
618         rt2x00_set_field32(&word, TXD_W1_BURST,
619                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
620         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
621         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
622         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
623         rt2x00_desc_write(txd, 1, word);
624
625         word = 0;
626         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
627                            skbdesc->skb_dma + TXWI_DESC_SIZE);
628         rt2x00_desc_write(txd, 2, word);
629
630         word = 0;
631         rt2x00_set_field32(&word, TXD_W3_WIV,
632                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
633         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
634         rt2x00_desc_write(txd, 3, word);
635
636         /*
637          * Register descriptor details in skb frame descriptor.
638          */
639         skbdesc->desc = txd;
640         skbdesc->desc_len = TXD_DESC_SIZE;
641 }
642
643 /*
644  * RX control handlers
645  */
646 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
647                                   struct rxdone_entry_desc *rxdesc)
648 {
649         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
650         __le32 *rxd = entry_priv->desc;
651         u32 word;
652
653         rt2x00_desc_read(rxd, 3, &word);
654
655         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
656                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
657
658         /*
659          * Unfortunately we don't know the cipher type used during
660          * decryption. This prevents us from correct providing
661          * correct statistics through debugfs.
662          */
663         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
664
665         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
666                 /*
667                  * Hardware has stripped IV/EIV data from 802.11 frame during
668                  * decryption. Unfortunately the descriptor doesn't contain
669                  * any fields with the EIV/IV data either, so they can't
670                  * be restored by rt2x00lib.
671                  */
672                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
673
674                 /*
675                  * The hardware has already checked the Michael Mic and has
676                  * stripped it from the frame. Signal this to mac80211.
677                  */
678                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
679
680                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
681                         rxdesc->flags |= RX_FLAG_DECRYPTED;
682                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
683                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
684         }
685
686         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
687                 rxdesc->dev_flags |= RXDONE_MY_BSS;
688
689         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
690                 rxdesc->dev_flags |= RXDONE_L2PAD;
691
692         /*
693          * Process the RXWI structure that is at the start of the buffer.
694          */
695         rt2800_process_rxwi(entry, rxdesc);
696 }
697
698 /*
699  * Interrupt functions.
700  */
701 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
702 {
703         struct ieee80211_conf conf = { .flags = 0 };
704         struct rt2x00lib_conf libconf = { .conf = &conf };
705
706         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
707 }
708
709 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
710 {
711         struct data_queue *queue;
712         struct queue_entry *entry;
713         u32 status;
714         u8 qid;
715         int max_tx_done = 16;
716
717         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
718                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
719                 if (unlikely(qid >= QID_RX)) {
720                         /*
721                          * Unknown queue, this shouldn't happen. Just drop
722                          * this tx status.
723                          */
724                         WARNING(rt2x00dev, "Got TX status report with "
725                                            "unexpected pid %u, dropping\n", qid);
726                         break;
727                 }
728
729                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
730                 if (unlikely(queue == NULL)) {
731                         /*
732                          * The queue is NULL, this shouldn't happen. Stop
733                          * processing here and drop the tx status
734                          */
735                         WARNING(rt2x00dev, "Got TX status for an unavailable "
736                                            "queue %u, dropping\n", qid);
737                         break;
738                 }
739
740                 if (unlikely(rt2x00queue_empty(queue))) {
741                         /*
742                          * The queue is empty. Stop processing here
743                          * and drop the tx status.
744                          */
745                         WARNING(rt2x00dev, "Got TX status for an empty "
746                                            "queue %u, dropping\n", qid);
747                         break;
748                 }
749
750                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
751                 rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
752
753                 if (--max_tx_done == 0)
754                         break;
755         }
756
757         return !max_tx_done;
758 }
759
760 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
761                                               struct rt2x00_field32 irq_field)
762 {
763         u32 reg;
764
765         /*
766          * Enable a single interrupt. The interrupt mask register
767          * access needs locking.
768          */
769         spin_lock_irq(&rt2x00dev->irqmask_lock);
770         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
771         rt2x00_set_field32(&reg, irq_field, 1);
772         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
773         spin_unlock_irq(&rt2x00dev->irqmask_lock);
774 }
775
776 static void rt2800pci_txstatus_tasklet(unsigned long data)
777 {
778         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
779         if (rt2800pci_txdone(rt2x00dev))
780                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
781
782         /*
783          * No need to enable the tx status interrupt here as we always
784          * leave it enabled to minimize the possibility of a tx status
785          * register overflow. See comment in interrupt handler.
786          */
787 }
788
789 static void rt2800pci_pretbtt_tasklet(unsigned long data)
790 {
791         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
792         rt2x00lib_pretbtt(rt2x00dev);
793         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
794                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
795 }
796
797 static void rt2800pci_tbtt_tasklet(unsigned long data)
798 {
799         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
800         rt2x00lib_beacondone(rt2x00dev);
801         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
802                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
803 }
804
805 static void rt2800pci_rxdone_tasklet(unsigned long data)
806 {
807         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
808         if (rt2x00pci_rxdone(rt2x00dev))
809                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
810         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
811                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
812 }
813
814 static void rt2800pci_autowake_tasklet(unsigned long data)
815 {
816         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
817         rt2800pci_wakeup(rt2x00dev);
818         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
819                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
820 }
821
822 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
823 {
824         u32 status;
825         int i;
826
827         /*
828          * The TX_FIFO_STATUS interrupt needs special care. We should
829          * read TX_STA_FIFO but we should do it immediately as otherwise
830          * the register can overflow and we would lose status reports.
831          *
832          * Hence, read the TX_STA_FIFO register and copy all tx status
833          * reports into a kernel FIFO which is handled in the txstatus
834          * tasklet. We use a tasklet to process the tx status reports
835          * because we can schedule the tasklet multiple times (when the
836          * interrupt fires again during tx status processing).
837          *
838          * Furthermore we don't disable the TX_FIFO_STATUS
839          * interrupt here but leave it enabled so that the TX_STA_FIFO
840          * can also be read while the tx status tasklet gets executed.
841          *
842          * Since we have only one producer and one consumer we don't
843          * need to lock the kfifo.
844          */
845         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
846                 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
847
848                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
849                         break;
850
851                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
852                         WARNING(rt2x00dev, "TX status FIFO overrun,"
853                                 "drop tx status report.\n");
854                         break;
855                 }
856         }
857
858         /* Schedule the tasklet for processing the tx status. */
859         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
860 }
861
862 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
863 {
864         struct rt2x00_dev *rt2x00dev = dev_instance;
865         u32 reg, mask;
866
867         /* Read status and ACK all interrupts */
868         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
869         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
870
871         if (!reg)
872                 return IRQ_NONE;
873
874         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
875                 return IRQ_HANDLED;
876
877         /*
878          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
879          * for interrupts and interrupt masks we can just use the value of
880          * INT_SOURCE_CSR to create the interrupt mask.
881          */
882         mask = ~reg;
883
884         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
885                 rt2800pci_txstatus_interrupt(rt2x00dev);
886                 /*
887                  * Never disable the TX_FIFO_STATUS interrupt.
888                  */
889                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
890         }
891
892         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
893                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
894
895         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
896                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
897
898         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
899                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
900
901         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
902                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
903
904         /*
905          * Disable all interrupts for which a tasklet was scheduled right now,
906          * the tasklet will reenable the appropriate interrupts.
907          */
908         spin_lock(&rt2x00dev->irqmask_lock);
909         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
910         reg &= mask;
911         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
912         spin_unlock(&rt2x00dev->irqmask_lock);
913
914         return IRQ_HANDLED;
915 }
916
917 /*
918  * Device probe functions.
919  */
920 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
921 {
922         /*
923          * Read EEPROM into buffer
924          */
925         if (rt2x00_is_soc(rt2x00dev))
926                 rt2800pci_read_eeprom_soc(rt2x00dev);
927         else if (rt2800pci_efuse_detect(rt2x00dev))
928                 rt2800pci_read_eeprom_efuse(rt2x00dev);
929         else
930                 rt2800pci_read_eeprom_pci(rt2x00dev);
931
932         return rt2800_validate_eeprom(rt2x00dev);
933 }
934
935 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
936 {
937         int retval;
938         u32 reg;
939
940         /*
941          * Allocate eeprom data.
942          */
943         retval = rt2800pci_validate_eeprom(rt2x00dev);
944         if (retval)
945                 return retval;
946
947         retval = rt2800_init_eeprom(rt2x00dev);
948         if (retval)
949                 return retval;
950
951         /*
952          * Enable rfkill polling by setting GPIO direction of the
953          * rfkill switch GPIO pin correctly.
954          */
955         rt2x00pci_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
956         rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT2, 1);
957         rt2x00pci_register_write(rt2x00dev, GPIO_CTRL_CFG, reg);
958
959         /*
960          * Initialize hw specifications.
961          */
962         retval = rt2800_probe_hw_mode(rt2x00dev);
963         if (retval)
964                 return retval;
965
966         /*
967          * This device has multiple filters for control frames
968          * and has a separate filter for PS Poll frames.
969          */
970         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
971         __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
972
973         /*
974          * This device has a pre tbtt interrupt and thus fetches
975          * a new beacon directly prior to transmission.
976          */
977         __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
978
979         /*
980          * This device requires firmware.
981          */
982         if (!rt2x00_is_soc(rt2x00dev))
983                 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
984         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
985         __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
986         __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
987         __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
988         if (!modparam_nohwcrypt)
989                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
990         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
991         __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
992
993         /*
994          * Set the rssi offset.
995          */
996         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
997
998         return 0;
999 }
1000
1001 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1002         .tx                     = rt2x00mac_tx,
1003         .start                  = rt2x00mac_start,
1004         .stop                   = rt2x00mac_stop,
1005         .add_interface          = rt2x00mac_add_interface,
1006         .remove_interface       = rt2x00mac_remove_interface,
1007         .config                 = rt2x00mac_config,
1008         .configure_filter       = rt2x00mac_configure_filter,
1009         .set_key                = rt2x00mac_set_key,
1010         .sw_scan_start          = rt2x00mac_sw_scan_start,
1011         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1012         .get_stats              = rt2x00mac_get_stats,
1013         .get_tkip_seq           = rt2800_get_tkip_seq,
1014         .set_rts_threshold      = rt2800_set_rts_threshold,
1015         .sta_add                = rt2x00mac_sta_add,
1016         .sta_remove             = rt2x00mac_sta_remove,
1017         .bss_info_changed       = rt2x00mac_bss_info_changed,
1018         .conf_tx                = rt2800_conf_tx,
1019         .get_tsf                = rt2800_get_tsf,
1020         .rfkill_poll            = rt2x00mac_rfkill_poll,
1021         .ampdu_action           = rt2800_ampdu_action,
1022         .flush                  = rt2x00mac_flush,
1023         .get_survey             = rt2800_get_survey,
1024         .get_ringparam          = rt2x00mac_get_ringparam,
1025         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1026 };
1027
1028 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1029         .register_read          = rt2x00pci_register_read,
1030         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
1031         .register_write         = rt2x00pci_register_write,
1032         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
1033         .register_multiread     = rt2x00pci_register_multiread,
1034         .register_multiwrite    = rt2x00pci_register_multiwrite,
1035         .regbusy_read           = rt2x00pci_regbusy_read,
1036         .drv_write_firmware     = rt2800pci_write_firmware,
1037         .drv_init_registers     = rt2800pci_init_registers,
1038         .drv_get_txwi           = rt2800pci_get_txwi,
1039 };
1040
1041 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1042         .irq_handler            = rt2800pci_interrupt,
1043         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1044         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1045         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1046         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1047         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1048         .probe_hw               = rt2800pci_probe_hw,
1049         .get_firmware_name      = rt2800pci_get_firmware_name,
1050         .check_firmware         = rt2800_check_firmware,
1051         .load_firmware          = rt2800_load_firmware,
1052         .initialize             = rt2x00pci_initialize,
1053         .uninitialize           = rt2x00pci_uninitialize,
1054         .get_entry_state        = rt2800pci_get_entry_state,
1055         .clear_entry            = rt2800pci_clear_entry,
1056         .set_device_state       = rt2800pci_set_device_state,
1057         .rfkill_poll            = rt2800_rfkill_poll,
1058         .link_stats             = rt2800_link_stats,
1059         .reset_tuner            = rt2800_reset_tuner,
1060         .link_tuner             = rt2800_link_tuner,
1061         .gain_calibration       = rt2800_gain_calibration,
1062         .start_queue            = rt2800pci_start_queue,
1063         .kick_queue             = rt2800pci_kick_queue,
1064         .stop_queue             = rt2800pci_stop_queue,
1065         .flush_queue            = rt2x00pci_flush_queue,
1066         .write_tx_desc          = rt2800pci_write_tx_desc,
1067         .write_tx_data          = rt2800_write_tx_data,
1068         .write_beacon           = rt2800_write_beacon,
1069         .clear_beacon           = rt2800_clear_beacon,
1070         .fill_rxdone            = rt2800pci_fill_rxdone,
1071         .config_shared_key      = rt2800_config_shared_key,
1072         .config_pairwise_key    = rt2800_config_pairwise_key,
1073         .config_filter          = rt2800_config_filter,
1074         .config_intf            = rt2800_config_intf,
1075         .config_erp             = rt2800_config_erp,
1076         .config_ant             = rt2800_config_ant,
1077         .config                 = rt2800_config,
1078         .sta_add                = rt2800_sta_add,
1079         .sta_remove             = rt2800_sta_remove,
1080 };
1081
1082 static const struct data_queue_desc rt2800pci_queue_rx = {
1083         .entry_num              = 128,
1084         .data_size              = AGGREGATION_SIZE,
1085         .desc_size              = RXD_DESC_SIZE,
1086         .priv_size              = sizeof(struct queue_entry_priv_pci),
1087 };
1088
1089 static const struct data_queue_desc rt2800pci_queue_tx = {
1090         .entry_num              = 64,
1091         .data_size              = AGGREGATION_SIZE,
1092         .desc_size              = TXD_DESC_SIZE,
1093         .priv_size              = sizeof(struct queue_entry_priv_pci),
1094 };
1095
1096 static const struct data_queue_desc rt2800pci_queue_bcn = {
1097         .entry_num              = 8,
1098         .data_size              = 0, /* No DMA required for beacons */
1099         .desc_size              = TXWI_DESC_SIZE,
1100         .priv_size              = sizeof(struct queue_entry_priv_pci),
1101 };
1102
1103 static const struct rt2x00_ops rt2800pci_ops = {
1104         .name                   = KBUILD_MODNAME,
1105         .max_sta_intf           = 1,
1106         .max_ap_intf            = 8,
1107         .eeprom_size            = EEPROM_SIZE,
1108         .rf_size                = RF_SIZE,
1109         .tx_queues              = NUM_TX_QUEUES,
1110         .extra_tx_headroom      = TXWI_DESC_SIZE,
1111         .rx                     = &rt2800pci_queue_rx,
1112         .tx                     = &rt2800pci_queue_tx,
1113         .bcn                    = &rt2800pci_queue_bcn,
1114         .lib                    = &rt2800pci_rt2x00_ops,
1115         .drv                    = &rt2800pci_rt2800_ops,
1116         .hw                     = &rt2800pci_mac80211_ops,
1117 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1118         .debugfs                = &rt2800_rt2x00debug,
1119 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1120 };
1121
1122 /*
1123  * RT2800pci module information.
1124  */
1125 #ifdef CONFIG_PCI
1126 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1127         { PCI_DEVICE(0x1814, 0x0601) },
1128         { PCI_DEVICE(0x1814, 0x0681) },
1129         { PCI_DEVICE(0x1814, 0x0701) },
1130         { PCI_DEVICE(0x1814, 0x0781) },
1131         { PCI_DEVICE(0x1814, 0x3090) },
1132         { PCI_DEVICE(0x1814, 0x3091) },
1133         { PCI_DEVICE(0x1814, 0x3092) },
1134         { PCI_DEVICE(0x1432, 0x7708) },
1135         { PCI_DEVICE(0x1432, 0x7727) },
1136         { PCI_DEVICE(0x1432, 0x7728) },
1137         { PCI_DEVICE(0x1432, 0x7738) },
1138         { PCI_DEVICE(0x1432, 0x7748) },
1139         { PCI_DEVICE(0x1432, 0x7758) },
1140         { PCI_DEVICE(0x1432, 0x7768) },
1141         { PCI_DEVICE(0x1462, 0x891a) },
1142         { PCI_DEVICE(0x1a3b, 0x1059) },
1143 #ifdef CONFIG_RT2800PCI_RT33XX
1144         { PCI_DEVICE(0x1814, 0x3390) },
1145 #endif
1146 #ifdef CONFIG_RT2800PCI_RT35XX
1147         { PCI_DEVICE(0x1432, 0x7711) },
1148         { PCI_DEVICE(0x1432, 0x7722) },
1149         { PCI_DEVICE(0x1814, 0x3060) },
1150         { PCI_DEVICE(0x1814, 0x3062) },
1151         { PCI_DEVICE(0x1814, 0x3562) },
1152         { PCI_DEVICE(0x1814, 0x3592) },
1153         { PCI_DEVICE(0x1814, 0x3593) },
1154 #endif
1155 #ifdef CONFIG_RT2800PCI_RT53XX
1156         { PCI_DEVICE(0x1814, 0x5390) },
1157         { PCI_DEVICE(0x1814, 0x539a) },
1158         { PCI_DEVICE(0x1814, 0x539f) },
1159 #endif
1160         { 0, }
1161 };
1162 #endif /* CONFIG_PCI */
1163
1164 MODULE_AUTHOR(DRV_PROJECT);
1165 MODULE_VERSION(DRV_VERSION);
1166 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1167 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1168 #ifdef CONFIG_PCI
1169 MODULE_FIRMWARE(FIRMWARE_RT2860);
1170 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1171 #endif /* CONFIG_PCI */
1172 MODULE_LICENSE("GPL");
1173
1174 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1175 static int rt2800soc_probe(struct platform_device *pdev)
1176 {
1177         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1178 }
1179
1180 static struct platform_driver rt2800soc_driver = {
1181         .driver         = {
1182                 .name           = "rt2800_wmac",
1183                 .owner          = THIS_MODULE,
1184                 .mod_name       = KBUILD_MODNAME,
1185         },
1186         .probe          = rt2800soc_probe,
1187         .remove         = __devexit_p(rt2x00soc_remove),
1188         .suspend        = rt2x00soc_suspend,
1189         .resume         = rt2x00soc_resume,
1190 };
1191 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1192
1193 #ifdef CONFIG_PCI
1194 static int rt2800pci_probe(struct pci_dev *pci_dev,
1195                            const struct pci_device_id *id)
1196 {
1197         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1198 }
1199
1200 static struct pci_driver rt2800pci_driver = {
1201         .name           = KBUILD_MODNAME,
1202         .id_table       = rt2800pci_device_table,
1203         .probe          = rt2800pci_probe,
1204         .remove         = __devexit_p(rt2x00pci_remove),
1205         .suspend        = rt2x00pci_suspend,
1206         .resume         = rt2x00pci_resume,
1207 };
1208 #endif /* CONFIG_PCI */
1209
1210 static int __init rt2800pci_init(void)
1211 {
1212         int ret = 0;
1213
1214 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1215         ret = platform_driver_register(&rt2800soc_driver);
1216         if (ret)
1217                 return ret;
1218 #endif
1219 #ifdef CONFIG_PCI
1220         ret = pci_register_driver(&rt2800pci_driver);
1221         if (ret) {
1222 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1223                 platform_driver_unregister(&rt2800soc_driver);
1224 #endif
1225                 return ret;
1226         }
1227 #endif
1228
1229         return ret;
1230 }
1231
1232 static void __exit rt2800pci_exit(void)
1233 {
1234 #ifdef CONFIG_PCI
1235         pci_unregister_driver(&rt2800pci_driver);
1236 #endif
1237 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1238         platform_driver_unregister(&rt2800soc_driver);
1239 #endif
1240 }
1241
1242 module_init(rt2800pci_init);
1243 module_exit(rt2800pci_exit);