[MTD] [NAND] fsl_elbc_nand: fix mtd name
[pandora-kernel.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright (c) 2006-2007 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/ioport.h>
29 #include <linux/of_platform.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/mtd/partitions.h>
37
38 #include <asm/io.h>
39 #include <asm/fsl_lbc.h>
40
41 #define MAX_BANKS 8
42 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
44
45 struct fsl_elbc_ctrl;
46
47 /* mtd information per set */
48
49 struct fsl_elbc_mtd {
50         struct mtd_info mtd;
51         struct nand_chip chip;
52         struct fsl_elbc_ctrl *ctrl;
53
54         struct device *dev;
55         int bank;               /* Chip select bank number           */
56         u8 __iomem *vbase;      /* Chip select base virtual address  */
57         int page_size;          /* NAND page size (0=512, 1=2048)    */
58         unsigned int fmr;       /* FCM Flash Mode Register value     */
59 };
60
61 /* overview of the fsl elbc controller */
62
63 struct fsl_elbc_ctrl {
64         struct nand_hw_control controller;
65         struct fsl_elbc_mtd *chips[MAX_BANKS];
66
67         /* device info */
68         struct device *dev;
69         struct fsl_lbc_regs __iomem *regs;
70         int irq;
71         wait_queue_head_t irq_wait;
72         unsigned int irq_status; /* status read from LTESR by irq handler */
73         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
74         unsigned int page;       /* Last page written to / read from      */
75         unsigned int read_bytes; /* Number of bytes read during command   */
76         unsigned int column;     /* Saved column from SEQIN               */
77         unsigned int index;      /* Pointer to next byte to 'read'        */
78         unsigned int status;     /* status read from LTESR after last op  */
79         unsigned int mdr;        /* UPM/FCM Data Register value           */
80         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
81         unsigned int oob;        /* Non zero if operating on OOB data     */
82         char *oob_poi;           /* Place to write ECC after read back    */
83 };
84
85 /* These map to the positions used by the FCM hardware ECC generator */
86
87 /* Small Page FLASH with FMR[ECCM] = 0 */
88 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
89         .eccbytes = 3,
90         .eccpos = {6, 7, 8},
91         .oobfree = { {0, 5}, {9, 7} },
92         .oobavail = 12,
93 };
94
95 /* Small Page FLASH with FMR[ECCM] = 1 */
96 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
97         .eccbytes = 3,
98         .eccpos = {8, 9, 10},
99         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
100         .oobavail = 12,
101 };
102
103 /* Large Page FLASH with FMR[ECCM] = 0 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
105         .eccbytes = 12,
106         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
107         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
108         .oobavail = 48,
109 };
110
111 /* Large Page FLASH with FMR[ECCM] = 1 */
112 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
113         .eccbytes = 12,
114         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
115         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
116         .oobavail = 48,
117 };
118
119 /*=================================*/
120
121 /*
122  * Set up the FCM hardware block and page address fields, and the fcm
123  * structure addr field to point to the correct FCM buffer in memory
124  */
125 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
126 {
127         struct nand_chip *chip = mtd->priv;
128         struct fsl_elbc_mtd *priv = chip->priv;
129         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
130         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
131         int buf_num;
132
133         ctrl->page = page_addr;
134
135         out_be32(&lbc->fbar,
136                  page_addr >> (chip->phys_erase_shift - chip->page_shift));
137
138         if (priv->page_size) {
139                 out_be32(&lbc->fpar,
140                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
141                          (oob ? FPAR_LP_MS : 0) | column);
142                 buf_num = (page_addr & 1) << 2;
143         } else {
144                 out_be32(&lbc->fpar,
145                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
146                          (oob ? FPAR_SP_MS : 0) | column);
147                 buf_num = page_addr & 7;
148         }
149
150         ctrl->addr = priv->vbase + buf_num * 1024;
151         ctrl->index = column;
152
153         /* for OOB data point to the second half of the buffer */
154         if (oob)
155                 ctrl->index += priv->page_size ? 2048 : 512;
156
157         dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
158                             "index %x, pes %d ps %d\n",
159                  buf_num, ctrl->addr, priv->vbase, ctrl->index,
160                  chip->phys_erase_shift, chip->page_shift);
161 }
162
163 /*
164  * execute FCM command and wait for it to complete
165  */
166 static int fsl_elbc_run_command(struct mtd_info *mtd)
167 {
168         struct nand_chip *chip = mtd->priv;
169         struct fsl_elbc_mtd *priv = chip->priv;
170         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
171         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
172
173         /* Setup the FMR[OP] to execute without write protection */
174         out_be32(&lbc->fmr, priv->fmr | 3);
175         if (ctrl->use_mdr)
176                 out_be32(&lbc->mdr, ctrl->mdr);
177
178         dev_vdbg(ctrl->dev,
179                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
180                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
181         dev_vdbg(ctrl->dev,
182                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
183                  "fbcr=%08x bank=%d\n",
184                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
185                  in_be32(&lbc->fbcr), priv->bank);
186
187         /* execute special operation */
188         out_be32(&lbc->lsor, priv->bank);
189
190         /* wait for FCM complete flag or timeout */
191         ctrl->irq_status = 0;
192         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
193                            FCM_TIMEOUT_MSECS * HZ/1000);
194         ctrl->status = ctrl->irq_status;
195
196         /* store mdr value in case it was needed */
197         if (ctrl->use_mdr)
198                 ctrl->mdr = in_be32(&lbc->mdr);
199
200         ctrl->use_mdr = 0;
201
202         dev_vdbg(ctrl->dev,
203                  "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
204                  ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
205
206         /* returns 0 on success otherwise non-zero) */
207         return ctrl->status == LTESR_CC ? 0 : -EIO;
208 }
209
210 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
211 {
212         struct fsl_elbc_mtd *priv = chip->priv;
213         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
214         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
215
216         if (priv->page_size) {
217                 out_be32(&lbc->fir,
218                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
219                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
220                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
221                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
222                          (FIR_OP_RBW << FIR_OP4_SHIFT));
223
224                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
225                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
226         } else {
227                 out_be32(&lbc->fir,
228                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
229                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
230                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
231                          (FIR_OP_RBW << FIR_OP3_SHIFT));
232
233                 if (oob)
234                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
235                 else
236                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
237         }
238 }
239
240 /* cmdfunc send commands to the FCM */
241 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
242                              int column, int page_addr)
243 {
244         struct nand_chip *chip = mtd->priv;
245         struct fsl_elbc_mtd *priv = chip->priv;
246         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
247         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
248
249         ctrl->use_mdr = 0;
250
251         /* clear the read buffer */
252         ctrl->read_bytes = 0;
253         if (command != NAND_CMD_PAGEPROG)
254                 ctrl->index = 0;
255
256         switch (command) {
257         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
258         case NAND_CMD_READ1:
259                 column += 256;
260
261         /* fall-through */
262         case NAND_CMD_READ0:
263                 dev_dbg(ctrl->dev,
264                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
265                         " 0x%x, column: 0x%x.\n", page_addr, column);
266
267
268                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
269                 set_addr(mtd, 0, page_addr, 0);
270
271                 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
272                 ctrl->index += column;
273
274                 fsl_elbc_do_read(chip, 0);
275                 fsl_elbc_run_command(mtd);
276                 return;
277
278         /* READOOB reads only the OOB because no ECC is performed. */
279         case NAND_CMD_READOOB:
280                 dev_vdbg(ctrl->dev,
281                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
282                          " 0x%x, column: 0x%x.\n", page_addr, column);
283
284                 out_be32(&lbc->fbcr, mtd->oobsize - column);
285                 set_addr(mtd, column, page_addr, 1);
286
287                 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
288
289                 fsl_elbc_do_read(chip, 1);
290                 fsl_elbc_run_command(mtd);
291                 return;
292
293         /* READID must read all 5 possible bytes while CEB is active */
294         case NAND_CMD_READID:
295                 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
296
297                 out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
298                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
299                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
300                 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
301                 /* 5 bytes for manuf, device and exts */
302                 out_be32(&lbc->fbcr, 5);
303                 ctrl->read_bytes = 5;
304                 ctrl->use_mdr = 1;
305                 ctrl->mdr = 0;
306
307                 set_addr(mtd, 0, 0, 0);
308                 fsl_elbc_run_command(mtd);
309                 return;
310
311         /* ERASE1 stores the block and page address */
312         case NAND_CMD_ERASE1:
313                 dev_vdbg(ctrl->dev,
314                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
315                          "page_addr: 0x%x.\n", page_addr);
316                 set_addr(mtd, 0, page_addr, 0);
317                 return;
318
319         /* ERASE2 uses the block and page address from ERASE1 */
320         case NAND_CMD_ERASE2:
321                 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
322
323                 out_be32(&lbc->fir,
324                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
325                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
326                          (FIR_OP_CM1 << FIR_OP2_SHIFT));
327
328                 out_be32(&lbc->fcr,
329                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
330                          (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
331
332                 out_be32(&lbc->fbcr, 0);
333                 ctrl->read_bytes = 0;
334
335                 fsl_elbc_run_command(mtd);
336                 return;
337
338         /* SEQIN sets up the addr buffer and all registers except the length */
339         case NAND_CMD_SEQIN: {
340                 __be32 fcr;
341                 dev_vdbg(ctrl->dev,
342                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
343                          "page_addr: 0x%x, column: 0x%x.\n",
344                          page_addr, column);
345
346                 ctrl->column = column;
347                 ctrl->oob = 0;
348
349                 if (priv->page_size) {
350                         fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
351                               (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
352
353                         out_be32(&lbc->fir,
354                                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
355                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
356                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
357                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
358                                  (FIR_OP_CW1 << FIR_OP4_SHIFT));
359                 } else {
360                         fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
361                               (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
362
363                         out_be32(&lbc->fir,
364                                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
365                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
366                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
367                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
368                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
369                                  (FIR_OP_CW1 << FIR_OP5_SHIFT));
370
371                         if (column >= mtd->writesize) {
372                                 /* OOB area --> READOOB */
373                                 column -= mtd->writesize;
374                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
375                                 ctrl->oob = 1;
376                         } else if (column < 256) {
377                                 /* First 256 bytes --> READ0 */
378                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
379                         } else {
380                                 /* Second 256 bytes --> READ1 */
381                                 fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
382                         }
383                 }
384
385                 out_be32(&lbc->fcr, fcr);
386                 set_addr(mtd, column, page_addr, ctrl->oob);
387                 return;
388         }
389
390         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
391         case NAND_CMD_PAGEPROG: {
392                 int full_page;
393                 dev_vdbg(ctrl->dev,
394                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
395                          "writing %d bytes.\n", ctrl->index);
396
397                 /* if the write did not start at 0 or is not a full page
398                  * then set the exact length, otherwise use a full page
399                  * write so the HW generates the ECC.
400                  */
401                 if (ctrl->oob || ctrl->column != 0 ||
402                     ctrl->index != mtd->writesize + mtd->oobsize) {
403                         out_be32(&lbc->fbcr, ctrl->index);
404                         full_page = 0;
405                 } else {
406                         out_be32(&lbc->fbcr, 0);
407                         full_page = 1;
408                 }
409
410                 fsl_elbc_run_command(mtd);
411
412                 /* Read back the page in order to fill in the ECC for the
413                  * caller.  Is this really needed?
414                  */
415                 if (full_page && ctrl->oob_poi) {
416                         out_be32(&lbc->fbcr, 3);
417                         set_addr(mtd, 6, page_addr, 1);
418
419                         ctrl->read_bytes = mtd->writesize + 9;
420
421                         fsl_elbc_do_read(chip, 1);
422                         fsl_elbc_run_command(mtd);
423
424                         memcpy_fromio(ctrl->oob_poi + 6,
425                                       &ctrl->addr[ctrl->index], 3);
426                         ctrl->index += 3;
427                 }
428
429                 ctrl->oob_poi = NULL;
430                 return;
431         }
432
433         /* CMD_STATUS must read the status byte while CEB is active */
434         /* Note - it does not wait for the ready line */
435         case NAND_CMD_STATUS:
436                 out_be32(&lbc->fir,
437                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
438                          (FIR_OP_RBW << FIR_OP1_SHIFT));
439                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
440                 out_be32(&lbc->fbcr, 1);
441                 set_addr(mtd, 0, 0, 0);
442                 ctrl->read_bytes = 1;
443
444                 fsl_elbc_run_command(mtd);
445
446                 /* The chip always seems to report that it is
447                  * write-protected, even when it is not.
448                  */
449                 setbits8(ctrl->addr, NAND_STATUS_WP);
450                 return;
451
452         /* RESET without waiting for the ready line */
453         case NAND_CMD_RESET:
454                 dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
455                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
456                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
457                 fsl_elbc_run_command(mtd);
458                 return;
459
460         default:
461                 dev_err(ctrl->dev,
462                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
463                         command);
464         }
465 }
466
467 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
468 {
469         /* The hardware does not seem to support multiple
470          * chips per bank.
471          */
472 }
473
474 /*
475  * Write buf to the FCM Controller Data Buffer
476  */
477 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
478 {
479         struct nand_chip *chip = mtd->priv;
480         struct fsl_elbc_mtd *priv = chip->priv;
481         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
482         unsigned int bufsize = mtd->writesize + mtd->oobsize;
483
484         if (len < 0) {
485                 dev_err(ctrl->dev, "write_buf of %d bytes", len);
486                 ctrl->status = 0;
487                 return;
488         }
489
490         if ((unsigned int)len > bufsize - ctrl->index) {
491                 dev_err(ctrl->dev,
492                         "write_buf beyond end of buffer "
493                         "(%d requested, %u available)\n",
494                         len, bufsize - ctrl->index);
495                 len = bufsize - ctrl->index;
496         }
497
498         memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
499         ctrl->index += len;
500 }
501
502 /*
503  * read a byte from either the FCM hardware buffer if it has any data left
504  * otherwise issue a command to read a single byte.
505  */
506 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
507 {
508         struct nand_chip *chip = mtd->priv;
509         struct fsl_elbc_mtd *priv = chip->priv;
510         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
511
512         /* If there are still bytes in the FCM, then use the next byte. */
513         if (ctrl->index < ctrl->read_bytes)
514                 return in_8(&ctrl->addr[ctrl->index++]);
515
516         dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
517         return ERR_BYTE;
518 }
519
520 /*
521  * Read from the FCM Controller Data Buffer
522  */
523 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
524 {
525         struct nand_chip *chip = mtd->priv;
526         struct fsl_elbc_mtd *priv = chip->priv;
527         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
528         int avail;
529
530         if (len < 0)
531                 return;
532
533         avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
534         memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
535         ctrl->index += avail;
536
537         if (len > avail)
538                 dev_err(ctrl->dev,
539                         "read_buf beyond end of buffer "
540                         "(%d requested, %d available)\n",
541                         len, avail);
542 }
543
544 /*
545  * Verify buffer against the FCM Controller Data Buffer
546  */
547 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
548 {
549         struct nand_chip *chip = mtd->priv;
550         struct fsl_elbc_mtd *priv = chip->priv;
551         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
552         int i;
553
554         if (len < 0) {
555                 dev_err(ctrl->dev, "write_buf of %d bytes", len);
556                 return -EINVAL;
557         }
558
559         if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
560                 dev_err(ctrl->dev,
561                         "verify_buf beyond end of buffer "
562                         "(%d requested, %u available)\n",
563                         len, ctrl->read_bytes - ctrl->index);
564
565                 ctrl->index = ctrl->read_bytes;
566                 return -EINVAL;
567         }
568
569         for (i = 0; i < len; i++)
570                 if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
571                         break;
572
573         ctrl->index += len;
574         return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
575 }
576
577 /* This function is called after Program and Erase Operations to
578  * check for success or failure.
579  */
580 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
581 {
582         struct fsl_elbc_mtd *priv = chip->priv;
583         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
584         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
585
586         if (ctrl->status != LTESR_CC)
587                 return NAND_STATUS_FAIL;
588
589         /* Use READ_STATUS command, but wait for the device to be ready */
590         ctrl->use_mdr = 0;
591         out_be32(&lbc->fir,
592                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
593                  (FIR_OP_RBW << FIR_OP1_SHIFT));
594         out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
595         out_be32(&lbc->fbcr, 1);
596         set_addr(mtd, 0, 0, 0);
597         ctrl->read_bytes = 1;
598
599         fsl_elbc_run_command(mtd);
600
601         if (ctrl->status != LTESR_CC)
602                 return NAND_STATUS_FAIL;
603
604         /* The chip always seems to report that it is
605          * write-protected, even when it is not.
606          */
607         setbits8(ctrl->addr, NAND_STATUS_WP);
608         return fsl_elbc_read_byte(mtd);
609 }
610
611 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
612 {
613         struct nand_chip *chip = mtd->priv;
614         struct fsl_elbc_mtd *priv = chip->priv;
615         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
616         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
617         unsigned int al;
618
619         /* calculate FMR Address Length field */
620         al = 0;
621         if (chip->pagemask & 0xffff0000)
622                 al++;
623         if (chip->pagemask & 0xff000000)
624                 al++;
625
626         /* add to ECCM mode set in fsl_elbc_init */
627         priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
628                      (al << FMR_AL_SHIFT);
629
630         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
631                 chip->numchips);
632         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
633                 chip->chipsize);
634         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
635                 chip->pagemask);
636         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
637                 chip->chip_delay);
638         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
639                 chip->badblockpos);
640         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
641                 chip->chip_shift);
642         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
643                 chip->page_shift);
644         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
645                 chip->phys_erase_shift);
646         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
647                 chip->ecclayout);
648         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
649                 chip->ecc.mode);
650         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
651                 chip->ecc.steps);
652         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
653                 chip->ecc.bytes);
654         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
655                 chip->ecc.total);
656         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
657                 chip->ecc.layout);
658         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
659         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
660         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
661                 mtd->erasesize);
662         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
663                 mtd->writesize);
664         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
665                 mtd->oobsize);
666
667         /* adjust Option Register and ECC to match Flash page size */
668         if (mtd->writesize == 512) {
669                 priv->page_size = 0;
670                 clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
671         } else if (mtd->writesize == 2048) {
672                 priv->page_size = 1;
673                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
674                 /* adjust ecc setup if needed */
675                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
676                     BR_DECC_CHK_GEN) {
677                         chip->ecc.size = 512;
678                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
679                                            &fsl_elbc_oob_lp_eccm1 :
680                                            &fsl_elbc_oob_lp_eccm0;
681                         mtd->ecclayout = chip->ecc.layout;
682                         mtd->oobavail = chip->ecc.layout->oobavail;
683                 }
684         } else {
685                 dev_err(ctrl->dev,
686                         "fsl_elbc_init: page size %d is not supported\n",
687                         mtd->writesize);
688                 return -1;
689         }
690
691         /* The default u-boot configuration on MPC8313ERDB causes errors;
692          * more delay is needed.  This should be safe for other boards
693          * as well.
694          */
695         setbits32(&lbc->bank[priv->bank].or, 0x70);
696         return 0;
697 }
698
699 static int fsl_elbc_read_page(struct mtd_info *mtd,
700                               struct nand_chip *chip,
701                               uint8_t *buf)
702 {
703         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
704         fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
705
706         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
707                 mtd->ecc_stats.failed++;
708
709         return 0;
710 }
711
712 /* ECC will be calculated automatically, and errors will be detected in
713  * waitfunc.
714  */
715 static void fsl_elbc_write_page(struct mtd_info *mtd,
716                                 struct nand_chip *chip,
717                                 const uint8_t *buf)
718 {
719         struct fsl_elbc_mtd *priv = chip->priv;
720         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
721
722         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
723         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
724
725         ctrl->oob_poi = chip->oob_poi;
726 }
727
728 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
729 {
730         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
731         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
732         struct nand_chip *chip = &priv->chip;
733
734         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
735
736         /* Fill in fsl_elbc_mtd structure */
737         priv->mtd.priv = chip;
738         priv->mtd.owner = THIS_MODULE;
739         priv->fmr = 0; /* rest filled in later */
740
741         /* fill in nand_chip structure */
742         /* set up function call table */
743         chip->read_byte = fsl_elbc_read_byte;
744         chip->write_buf = fsl_elbc_write_buf;
745         chip->read_buf = fsl_elbc_read_buf;
746         chip->verify_buf = fsl_elbc_verify_buf;
747         chip->select_chip = fsl_elbc_select_chip;
748         chip->cmdfunc = fsl_elbc_cmdfunc;
749         chip->waitfunc = fsl_elbc_wait;
750
751         /* set up nand options */
752         chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
753
754         chip->controller = &ctrl->controller;
755         chip->priv = priv;
756
757         chip->ecc.read_page = fsl_elbc_read_page;
758         chip->ecc.write_page = fsl_elbc_write_page;
759
760         /* If CS Base Register selects full hardware ECC then use it */
761         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
762             BR_DECC_CHK_GEN) {
763                 chip->ecc.mode = NAND_ECC_HW;
764                 /* put in small page settings and adjust later if needed */
765                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
766                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
767                 chip->ecc.size = 512;
768                 chip->ecc.bytes = 3;
769         } else {
770                 /* otherwise fall back to default software ECC */
771                 chip->ecc.mode = NAND_ECC_SOFT;
772         }
773
774         return 0;
775 }
776
777 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
778 {
779         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
780
781         nand_release(&priv->mtd);
782
783         kfree(priv->mtd.name);
784
785         if (priv->vbase)
786                 iounmap(priv->vbase);
787
788         ctrl->chips[priv->bank] = NULL;
789         kfree(priv);
790
791         return 0;
792 }
793
794 static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
795                                struct device_node *node)
796 {
797         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
798         struct fsl_elbc_mtd *priv;
799         struct resource res;
800 #ifdef CONFIG_MTD_PARTITIONS
801         static const char *part_probe_types[]
802                 = { "cmdlinepart", "RedBoot", NULL };
803         struct mtd_partition *parts;
804 #endif
805         int ret;
806         int bank;
807
808         /* get, allocate and map the memory resource */
809         ret = of_address_to_resource(node, 0, &res);
810         if (ret) {
811                 dev_err(ctrl->dev, "failed to get resource\n");
812                 return ret;
813         }
814
815         /* find which chip select it is connected to */
816         for (bank = 0; bank < MAX_BANKS; bank++)
817                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
818                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
819                     (in_be32(&lbc->bank[bank].br) &
820                      in_be32(&lbc->bank[bank].or) & BR_BA)
821                      == res.start)
822                         break;
823
824         if (bank >= MAX_BANKS) {
825                 dev_err(ctrl->dev, "address did not match any chip selects\n");
826                 return -ENODEV;
827         }
828
829         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
830         if (!priv)
831                 return -ENOMEM;
832
833         ctrl->chips[bank] = priv;
834         priv->bank = bank;
835         priv->ctrl = ctrl;
836         priv->dev = ctrl->dev;
837
838         priv->vbase = ioremap(res.start, res.end - res.start + 1);
839         if (!priv->vbase) {
840                 dev_err(ctrl->dev, "failed to map chip region\n");
841                 ret = -ENOMEM;
842                 goto err;
843         }
844
845         priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", res.start);
846         if (!priv->mtd.name) {
847                 ret = -ENOMEM;
848                 goto err;
849         }
850
851         ret = fsl_elbc_chip_init(priv);
852         if (ret)
853                 goto err;
854
855         ret = nand_scan_ident(&priv->mtd, 1);
856         if (ret)
857                 goto err;
858
859         ret = fsl_elbc_chip_init_tail(&priv->mtd);
860         if (ret)
861                 goto err;
862
863         ret = nand_scan_tail(&priv->mtd);
864         if (ret)
865                 goto err;
866
867 #ifdef CONFIG_MTD_PARTITIONS
868         /* First look for RedBoot table or partitions on the command
869          * line, these take precedence over device tree information */
870         ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
871         if (ret < 0)
872                 goto err;
873
874 #ifdef CONFIG_MTD_OF_PARTS
875         if (ret == 0) {
876                 ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
877                                               node, &parts);
878                 if (ret < 0)
879                         goto err;
880         }
881 #endif
882
883         if (ret > 0)
884                 add_mtd_partitions(&priv->mtd, parts, ret);
885         else
886 #endif
887                 add_mtd_device(&priv->mtd);
888
889         printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
890                res.start, priv->bank);
891         return 0;
892
893 err:
894         fsl_elbc_chip_remove(priv);
895         return ret;
896 }
897
898 static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
899 {
900         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
901
902         /* clear event registers */
903         setbits32(&lbc->ltesr, LTESR_NAND_MASK);
904         out_be32(&lbc->lteatr, 0);
905
906         /* Enable interrupts for any detected events */
907         out_be32(&lbc->lteir, LTESR_NAND_MASK);
908
909         ctrl->read_bytes = 0;
910         ctrl->index = 0;
911         ctrl->addr = NULL;
912
913         return 0;
914 }
915
916 static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
917 {
918         struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
919         int i;
920
921         for (i = 0; i < MAX_BANKS; i++)
922                 if (ctrl->chips[i])
923                         fsl_elbc_chip_remove(ctrl->chips[i]);
924
925         if (ctrl->irq)
926                 free_irq(ctrl->irq, ctrl);
927
928         if (ctrl->regs)
929                 iounmap(ctrl->regs);
930
931         dev_set_drvdata(&ofdev->dev, NULL);
932         kfree(ctrl);
933         return 0;
934 }
935
936 /* NOTE: This interrupt is also used to report other localbus events,
937  * such as transaction errors on other chipselects.  If we want to
938  * capture those, we'll need to move the IRQ code into a shared
939  * LBC driver.
940  */
941
942 static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
943 {
944         struct fsl_elbc_ctrl *ctrl = data;
945         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
946         __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
947
948         if (status) {
949                 out_be32(&lbc->ltesr, status);
950                 out_be32(&lbc->lteatr, 0);
951
952                 ctrl->irq_status = status;
953                 smp_wmb();
954                 wake_up(&ctrl->irq_wait);
955
956                 return IRQ_HANDLED;
957         }
958
959         return IRQ_NONE;
960 }
961
962 /* fsl_elbc_ctrl_probe
963  *
964  * called by device layer when it finds a device matching
965  * one our driver can handled. This code allocates all of
966  * the resources needed for the controller only.  The
967  * resources for the NAND banks themselves are allocated
968  * in the chip probe function.
969 */
970
971 static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
972                                          const struct of_device_id *match)
973 {
974         struct device_node *child;
975         struct fsl_elbc_ctrl *ctrl;
976         int ret;
977
978         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
979         if (!ctrl)
980                 return -ENOMEM;
981
982         dev_set_drvdata(&ofdev->dev, ctrl);
983
984         spin_lock_init(&ctrl->controller.lock);
985         init_waitqueue_head(&ctrl->controller.wq);
986         init_waitqueue_head(&ctrl->irq_wait);
987
988         ctrl->regs = of_iomap(ofdev->node, 0);
989         if (!ctrl->regs) {
990                 dev_err(&ofdev->dev, "failed to get memory region\n");
991                 ret = -ENODEV;
992                 goto err;
993         }
994
995         ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
996         if (ctrl->irq == NO_IRQ) {
997                 dev_err(&ofdev->dev, "failed to get irq resource\n");
998                 ret = -ENODEV;
999                 goto err;
1000         }
1001
1002         ctrl->dev = &ofdev->dev;
1003
1004         ret = fsl_elbc_ctrl_init(ctrl);
1005         if (ret < 0)
1006                 goto err;
1007
1008         ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1009         if (ret != 0) {
1010                 dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1011                         ctrl->irq);
1012                 ret = ctrl->irq;
1013                 goto err;
1014         }
1015
1016         for_each_child_of_node(ofdev->node, child)
1017                 if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1018                         fsl_elbc_chip_probe(ctrl, child);
1019
1020         return 0;
1021
1022 err:
1023         fsl_elbc_ctrl_remove(ofdev);
1024         return ret;
1025 }
1026
1027 static const struct of_device_id fsl_elbc_match[] = {
1028         {
1029                 .compatible = "fsl,elbc",
1030         },
1031         {}
1032 };
1033
1034 static struct of_platform_driver fsl_elbc_ctrl_driver = {
1035         .driver = {
1036                 .name   = "fsl-elbc",
1037         },
1038         .match_table = fsl_elbc_match,
1039         .probe = fsl_elbc_ctrl_probe,
1040         .remove = __devexit_p(fsl_elbc_ctrl_remove),
1041 };
1042
1043 static int __init fsl_elbc_init(void)
1044 {
1045         return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1046 }
1047
1048 static void __exit fsl_elbc_exit(void)
1049 {
1050         of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1051 }
1052
1053 module_init(fsl_elbc_init);
1054 module_exit(fsl_elbc_exit);
1055
1056 MODULE_LICENSE("GPL");
1057 MODULE_AUTHOR("Freescale");
1058 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");