pandora: defconfig: update
[pandora-kernel.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright © 2006-2007, 2010 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *          Jack Lan <jack.lan@freescale.com>
8  *          Roy Zang <tie-fei.zang@freescale.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  */
24
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
43
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
47
48 /* mtd information per set */
49
50 struct fsl_elbc_mtd {
51         struct mtd_info mtd;
52         struct nand_chip chip;
53         struct fsl_lbc_ctrl *ctrl;
54
55         struct device *dev;
56         int bank;               /* Chip select bank number           */
57         u8 __iomem *vbase;      /* Chip select base virtual address  */
58         int page_size;          /* NAND page size (0=512, 1=2048)    */
59         unsigned int fmr;       /* FCM Flash Mode Register value     */
60 };
61
62 /* Freescale eLBC FCM controller information */
63
64 struct fsl_elbc_fcm_ctrl {
65         struct nand_hw_control controller;
66         struct fsl_elbc_mtd *chips[MAX_BANKS];
67
68         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
69         unsigned int page;       /* Last page written to / read from      */
70         unsigned int read_bytes; /* Number of bytes read during command   */
71         unsigned int column;     /* Saved column from SEQIN               */
72         unsigned int index;      /* Pointer to next byte to 'read'        */
73         unsigned int status;     /* status read from LTESR after last op  */
74         unsigned int mdr;        /* UPM/FCM Data Register value           */
75         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
76         unsigned int oob;        /* Non zero if operating on OOB data     */
77         unsigned int counter;    /* counter for the initializations       */
78 };
79
80 /* These map to the positions used by the FCM hardware ECC generator */
81
82 /* Small Page FLASH with FMR[ECCM] = 0 */
83 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
84         .eccbytes = 3,
85         .eccpos = {6, 7, 8},
86         .oobfree = { {0, 5}, {9, 7} },
87 };
88
89 /* Small Page FLASH with FMR[ECCM] = 1 */
90 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
91         .eccbytes = 3,
92         .eccpos = {8, 9, 10},
93         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
94 };
95
96 /* Large Page FLASH with FMR[ECCM] = 0 */
97 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
98         .eccbytes = 12,
99         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
100         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
101 };
102
103 /* Large Page FLASH with FMR[ECCM] = 1 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
105         .eccbytes = 12,
106         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
107         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
108 };
109
110 /*
111  * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
112  * 1, so we have to adjust bad block pattern. This pattern should be used for
113  * x8 chips only. So far hardware does not support x16 chips anyway.
114  */
115 static u8 scan_ff_pattern[] = { 0xff, };
116
117 static struct nand_bbt_descr largepage_memorybased = {
118         .options = 0,
119         .offs = 0,
120         .len = 1,
121         .pattern = scan_ff_pattern,
122 };
123
124 /*
125  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
126  * interfere with ECC positions, that's why we implement our own descriptors.
127  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
128  */
129 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
130 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
131
132 static struct nand_bbt_descr bbt_main_descr = {
133         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
134                    NAND_BBT_2BIT | NAND_BBT_VERSION,
135         .offs = 11,
136         .len = 4,
137         .veroffs = 15,
138         .maxblocks = 4,
139         .pattern = bbt_pattern,
140 };
141
142 static struct nand_bbt_descr bbt_mirror_descr = {
143         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
144                    NAND_BBT_2BIT | NAND_BBT_VERSION,
145         .offs = 11,
146         .len = 4,
147         .veroffs = 15,
148         .maxblocks = 4,
149         .pattern = mirror_pattern,
150 };
151
152 /*=================================*/
153
154 /*
155  * Set up the FCM hardware block and page address fields, and the fcm
156  * structure addr field to point to the correct FCM buffer in memory
157  */
158 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
159 {
160         struct nand_chip *chip = mtd->priv;
161         struct fsl_elbc_mtd *priv = chip->priv;
162         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
163         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
164         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
165         int buf_num;
166
167         elbc_fcm_ctrl->page = page_addr;
168
169         out_be32(&lbc->fbar,
170                  page_addr >> (chip->phys_erase_shift - chip->page_shift));
171
172         if (priv->page_size) {
173                 out_be32(&lbc->fpar,
174                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
175                          (oob ? FPAR_LP_MS : 0) | column);
176                 buf_num = (page_addr & 1) << 2;
177         } else {
178                 out_be32(&lbc->fpar,
179                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
180                          (oob ? FPAR_SP_MS : 0) | column);
181                 buf_num = page_addr & 7;
182         }
183
184         elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
185         elbc_fcm_ctrl->index = column;
186
187         /* for OOB data point to the second half of the buffer */
188         if (oob)
189                 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
190
191         dev_vdbg(priv->dev, "set_addr: bank=%d, "
192                             "elbc_fcm_ctrl->addr=0x%p (0x%p), "
193                             "index %x, pes %d ps %d\n",
194                  buf_num, elbc_fcm_ctrl->addr, priv->vbase,
195                  elbc_fcm_ctrl->index,
196                  chip->phys_erase_shift, chip->page_shift);
197 }
198
199 /*
200  * execute FCM command and wait for it to complete
201  */
202 static int fsl_elbc_run_command(struct mtd_info *mtd)
203 {
204         struct nand_chip *chip = mtd->priv;
205         struct fsl_elbc_mtd *priv = chip->priv;
206         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
207         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
208         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
209
210         /* Setup the FMR[OP] to execute without write protection */
211         out_be32(&lbc->fmr, priv->fmr | 3);
212         if (elbc_fcm_ctrl->use_mdr)
213                 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
214
215         dev_vdbg(priv->dev,
216                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
217                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
218         dev_vdbg(priv->dev,
219                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
220                  "fbcr=%08x bank=%d\n",
221                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
222                  in_be32(&lbc->fbcr), priv->bank);
223
224         ctrl->irq_status = 0;
225         /* execute special operation */
226         out_be32(&lbc->lsor, priv->bank);
227
228         /* wait for FCM complete flag or timeout */
229         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
230                            FCM_TIMEOUT_MSECS * HZ/1000);
231         elbc_fcm_ctrl->status = ctrl->irq_status;
232         /* store mdr value in case it was needed */
233         if (elbc_fcm_ctrl->use_mdr)
234                 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
235
236         elbc_fcm_ctrl->use_mdr = 0;
237
238         if (elbc_fcm_ctrl->status != LTESR_CC) {
239                 dev_info(priv->dev,
240                          "command failed: fir %x fcr %x status %x mdr %x\n",
241                          in_be32(&lbc->fir), in_be32(&lbc->fcr),
242                          elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
243                 return -EIO;
244         }
245
246         if (chip->ecc.mode != NAND_ECC_HW)
247                 return 0;
248
249         if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
250                 uint32_t lteccr = in_be32(&lbc->lteccr);
251                 /*
252                  * if command was a full page read and the ELBC
253                  * has the LTECCR register, then bits 12-15 (ppc order) of
254                  * LTECCR indicates which 512 byte sub-pages had fixed errors.
255                  * bits 28-31 are uncorrectable errors, marked elsewhere.
256                  * for small page nand only 1 bit is used.
257                  * if the ELBC doesn't have the lteccr register it reads 0
258                  */
259                 if (lteccr & 0x000F000F)
260                         out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
261                 if (lteccr & 0x000F0000)
262                         mtd->ecc_stats.corrected++;
263         }
264
265         return 0;
266 }
267
268 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
269 {
270         struct fsl_elbc_mtd *priv = chip->priv;
271         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
272         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
273
274         if (priv->page_size) {
275                 out_be32(&lbc->fir,
276                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
277                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
278                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
279                          (FIR_OP_CM1 << FIR_OP3_SHIFT) |
280                          (FIR_OP_RBW << FIR_OP4_SHIFT));
281
282                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
283                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
284         } else {
285                 out_be32(&lbc->fir,
286                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
287                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
288                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
289                          (FIR_OP_RBW << FIR_OP3_SHIFT));
290
291                 if (oob)
292                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
293                 else
294                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
295         }
296 }
297
298 /* cmdfunc send commands to the FCM */
299 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
300                              int column, int page_addr)
301 {
302         struct nand_chip *chip = mtd->priv;
303         struct fsl_elbc_mtd *priv = chip->priv;
304         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
305         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
306         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
307
308         elbc_fcm_ctrl->use_mdr = 0;
309
310         /* clear the read buffer */
311         elbc_fcm_ctrl->read_bytes = 0;
312         if (command != NAND_CMD_PAGEPROG)
313                 elbc_fcm_ctrl->index = 0;
314
315         switch (command) {
316         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
317         case NAND_CMD_READ1:
318                 column += 256;
319
320         /* fall-through */
321         case NAND_CMD_READ0:
322                 dev_dbg(priv->dev,
323                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
324                         " 0x%x, column: 0x%x.\n", page_addr, column);
325
326
327                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
328                 set_addr(mtd, 0, page_addr, 0);
329
330                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
331                 elbc_fcm_ctrl->index += column;
332
333                 fsl_elbc_do_read(chip, 0);
334                 fsl_elbc_run_command(mtd);
335                 return;
336
337         /* READOOB reads only the OOB because no ECC is performed. */
338         case NAND_CMD_READOOB:
339                 dev_vdbg(priv->dev,
340                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
341                          " 0x%x, column: 0x%x.\n", page_addr, column);
342
343                 out_be32(&lbc->fbcr, mtd->oobsize - column);
344                 set_addr(mtd, column, page_addr, 1);
345
346                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
347
348                 fsl_elbc_do_read(chip, 1);
349                 fsl_elbc_run_command(mtd);
350                 return;
351
352         /* READID must read all 5 possible bytes while CEB is active */
353         case NAND_CMD_READID:
354                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
355
356                 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
357                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
358                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
359                 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
360                 /* nand_get_flash_type() reads 8 bytes of entire ID string */
361                 out_be32(&lbc->fbcr, 8);
362                 elbc_fcm_ctrl->read_bytes = 8;
363                 elbc_fcm_ctrl->use_mdr = 1;
364                 elbc_fcm_ctrl->mdr = 0;
365
366                 set_addr(mtd, 0, 0, 0);
367                 fsl_elbc_run_command(mtd);
368                 return;
369
370         /* ERASE1 stores the block and page address */
371         case NAND_CMD_ERASE1:
372                 dev_vdbg(priv->dev,
373                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
374                          "page_addr: 0x%x.\n", page_addr);
375                 set_addr(mtd, 0, page_addr, 0);
376                 return;
377
378         /* ERASE2 uses the block and page address from ERASE1 */
379         case NAND_CMD_ERASE2:
380                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
381
382                 out_be32(&lbc->fir,
383                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
384                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
385                          (FIR_OP_CM2 << FIR_OP2_SHIFT) |
386                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
387                          (FIR_OP_RS  << FIR_OP4_SHIFT));
388
389                 out_be32(&lbc->fcr,
390                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
391                          (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
392                          (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
393
394                 out_be32(&lbc->fbcr, 0);
395                 elbc_fcm_ctrl->read_bytes = 0;
396                 elbc_fcm_ctrl->use_mdr = 1;
397
398                 fsl_elbc_run_command(mtd);
399                 return;
400
401         /* SEQIN sets up the addr buffer and all registers except the length */
402         case NAND_CMD_SEQIN: {
403                 __be32 fcr;
404                 dev_vdbg(priv->dev,
405                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
406                          "page_addr: 0x%x, column: 0x%x.\n",
407                          page_addr, column);
408
409                 elbc_fcm_ctrl->column = column;
410                 elbc_fcm_ctrl->oob = 0;
411                 elbc_fcm_ctrl->use_mdr = 1;
412
413                 fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
414                       (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
415                       (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
416
417                 if (priv->page_size) {
418                         out_be32(&lbc->fir,
419                                  (FIR_OP_CM2 << FIR_OP0_SHIFT) |
420                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
421                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
422                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
423                                  (FIR_OP_CM3 << FIR_OP4_SHIFT) |
424                                  (FIR_OP_CW1 << FIR_OP5_SHIFT) |
425                                  (FIR_OP_RS  << FIR_OP6_SHIFT));
426                 } else {
427                         out_be32(&lbc->fir,
428                                  (FIR_OP_CM0 << FIR_OP0_SHIFT) |
429                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
430                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
431                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
432                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
433                                  (FIR_OP_CM3 << FIR_OP5_SHIFT) |
434                                  (FIR_OP_CW1 << FIR_OP6_SHIFT) |
435                                  (FIR_OP_RS  << FIR_OP7_SHIFT));
436
437                         if (column >= mtd->writesize) {
438                                 /* OOB area --> READOOB */
439                                 column -= mtd->writesize;
440                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
441                                 elbc_fcm_ctrl->oob = 1;
442                         } else {
443                                 WARN_ON(column != 0);
444                                 /* First 256 bytes --> READ0 */
445                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
446                         }
447                 }
448
449                 out_be32(&lbc->fcr, fcr);
450                 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
451                 return;
452         }
453
454         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
455         case NAND_CMD_PAGEPROG: {
456                 dev_vdbg(priv->dev,
457                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
458                          "writing %d bytes.\n", elbc_fcm_ctrl->index);
459
460                 /* if the write did not start at 0 or is not a full page
461                  * then set the exact length, otherwise use a full page
462                  * write so the HW generates the ECC.
463                  */
464                 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
465                     elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
466                         out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
467                 else
468                         out_be32(&lbc->fbcr, 0);
469
470                 fsl_elbc_run_command(mtd);
471                 return;
472         }
473
474         /* CMD_STATUS must read the status byte while CEB is active */
475         /* Note - it does not wait for the ready line */
476         case NAND_CMD_STATUS:
477                 out_be32(&lbc->fir,
478                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
479                          (FIR_OP_RBW << FIR_OP1_SHIFT));
480                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
481                 out_be32(&lbc->fbcr, 1);
482                 set_addr(mtd, 0, 0, 0);
483                 elbc_fcm_ctrl->read_bytes = 1;
484
485                 fsl_elbc_run_command(mtd);
486
487                 /* The chip always seems to report that it is
488                  * write-protected, even when it is not.
489                  */
490                 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
491                 return;
492
493         /* RESET without waiting for the ready line */
494         case NAND_CMD_RESET:
495                 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
496                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
497                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
498                 fsl_elbc_run_command(mtd);
499                 return;
500
501         default:
502                 dev_err(priv->dev,
503                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
504                         command);
505         }
506 }
507
508 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
509 {
510         /* The hardware does not seem to support multiple
511          * chips per bank.
512          */
513 }
514
515 /*
516  * Write buf to the FCM Controller Data Buffer
517  */
518 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
519 {
520         struct nand_chip *chip = mtd->priv;
521         struct fsl_elbc_mtd *priv = chip->priv;
522         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
523         unsigned int bufsize = mtd->writesize + mtd->oobsize;
524
525         if (len <= 0) {
526                 dev_err(priv->dev, "write_buf of %d bytes", len);
527                 elbc_fcm_ctrl->status = 0;
528                 return;
529         }
530
531         if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
532                 dev_err(priv->dev,
533                         "write_buf beyond end of buffer "
534                         "(%d requested, %u available)\n",
535                         len, bufsize - elbc_fcm_ctrl->index);
536                 len = bufsize - elbc_fcm_ctrl->index;
537         }
538
539         memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
540         /*
541          * This is workaround for the weird elbc hangs during nand write,
542          * Scott Wood says: "...perhaps difference in how long it takes a
543          * write to make it through the localbus compared to a write to IMMR
544          * is causing problems, and sync isn't helping for some reason."
545          * Reading back the last byte helps though.
546          */
547         in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
548
549         elbc_fcm_ctrl->index += len;
550 }
551
552 /*
553  * read a byte from either the FCM hardware buffer if it has any data left
554  * otherwise issue a command to read a single byte.
555  */
556 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
557 {
558         struct nand_chip *chip = mtd->priv;
559         struct fsl_elbc_mtd *priv = chip->priv;
560         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
561
562         /* If there are still bytes in the FCM, then use the next byte. */
563         if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
564                 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
565
566         dev_err(priv->dev, "read_byte beyond end of buffer\n");
567         return ERR_BYTE;
568 }
569
570 /*
571  * Read from the FCM Controller Data Buffer
572  */
573 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
574 {
575         struct nand_chip *chip = mtd->priv;
576         struct fsl_elbc_mtd *priv = chip->priv;
577         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
578         int avail;
579
580         if (len < 0)
581                 return;
582
583         avail = min((unsigned int)len,
584                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
585         memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
586         elbc_fcm_ctrl->index += avail;
587
588         if (len > avail)
589                 dev_err(priv->dev,
590                         "read_buf beyond end of buffer "
591                         "(%d requested, %d available)\n",
592                         len, avail);
593 }
594
595 /*
596  * Verify buffer against the FCM Controller Data Buffer
597  */
598 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
599 {
600         struct nand_chip *chip = mtd->priv;
601         struct fsl_elbc_mtd *priv = chip->priv;
602         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
603         int i;
604
605         if (len < 0) {
606                 dev_err(priv->dev, "write_buf of %d bytes", len);
607                 return -EINVAL;
608         }
609
610         if ((unsigned int)len >
611                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
612                 dev_err(priv->dev,
613                         "verify_buf beyond end of buffer "
614                         "(%d requested, %u available)\n",
615                         len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
616
617                 elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
618                 return -EINVAL;
619         }
620
621         for (i = 0; i < len; i++)
622                 if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
623                                 != buf[i])
624                         break;
625
626         elbc_fcm_ctrl->index += len;
627         return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
628 }
629
630 /* This function is called after Program and Erase Operations to
631  * check for success or failure.
632  */
633 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
634 {
635         struct fsl_elbc_mtd *priv = chip->priv;
636         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
637
638         if (elbc_fcm_ctrl->status != LTESR_CC)
639                 return NAND_STATUS_FAIL;
640
641         /* The chip always seems to report that it is
642          * write-protected, even when it is not.
643          */
644         return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
645 }
646
647 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
648 {
649         struct nand_chip *chip = mtd->priv;
650         struct fsl_elbc_mtd *priv = chip->priv;
651         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
652         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
653         unsigned int al;
654
655         /* calculate FMR Address Length field */
656         al = 0;
657         if (chip->pagemask & 0xffff0000)
658                 al++;
659         if (chip->pagemask & 0xff000000)
660                 al++;
661
662         /* add to ECCM mode set in fsl_elbc_init */
663         priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
664                      (al << FMR_AL_SHIFT);
665
666         dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
667                 chip->numchips);
668         dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
669                 chip->chipsize);
670         dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
671                 chip->pagemask);
672         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
673                 chip->chip_delay);
674         dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
675                 chip->badblockpos);
676         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
677                 chip->chip_shift);
678         dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
679                 chip->page_shift);
680         dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
681                 chip->phys_erase_shift);
682         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
683                 chip->ecclayout);
684         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
685                 chip->ecc.mode);
686         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
687                 chip->ecc.steps);
688         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
689                 chip->ecc.bytes);
690         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
691                 chip->ecc.total);
692         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
693                 chip->ecc.layout);
694         dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
695         dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
696         dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
697                 mtd->erasesize);
698         dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
699                 mtd->writesize);
700         dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
701                 mtd->oobsize);
702
703         /* adjust Option Register and ECC to match Flash page size */
704         if (mtd->writesize == 512) {
705                 priv->page_size = 0;
706                 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
707         } else if (mtd->writesize == 2048) {
708                 priv->page_size = 1;
709                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
710                 /* adjust ecc setup if needed */
711                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
712                     BR_DECC_CHK_GEN) {
713                         chip->ecc.size = 512;
714                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
715                                            &fsl_elbc_oob_lp_eccm1 :
716                                            &fsl_elbc_oob_lp_eccm0;
717                         chip->badblock_pattern = &largepage_memorybased;
718                 }
719         } else {
720                 dev_err(priv->dev,
721                         "fsl_elbc_init: page size %d is not supported\n",
722                         mtd->writesize);
723                 return -1;
724         }
725
726         return 0;
727 }
728
729 static int fsl_elbc_read_page(struct mtd_info *mtd,
730                               struct nand_chip *chip,
731                               uint8_t *buf,
732                               int page)
733 {
734         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
735         fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
736
737         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
738                 mtd->ecc_stats.failed++;
739
740         return 0;
741 }
742
743 /* ECC will be calculated automatically, and errors will be detected in
744  * waitfunc.
745  */
746 static void fsl_elbc_write_page(struct mtd_info *mtd,
747                                 struct nand_chip *chip,
748                                 const uint8_t *buf)
749 {
750         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
751         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
752 }
753
754 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
755 {
756         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
757         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
758         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
759         struct nand_chip *chip = &priv->chip;
760
761         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
762
763         /* Fill in fsl_elbc_mtd structure */
764         priv->mtd.priv = chip;
765         priv->mtd.owner = THIS_MODULE;
766
767         /* Set the ECCM according to the settings in bootloader.*/
768         priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
769
770         /* fill in nand_chip structure */
771         /* set up function call table */
772         chip->read_byte = fsl_elbc_read_byte;
773         chip->write_buf = fsl_elbc_write_buf;
774         chip->read_buf = fsl_elbc_read_buf;
775         chip->verify_buf = fsl_elbc_verify_buf;
776         chip->select_chip = fsl_elbc_select_chip;
777         chip->cmdfunc = fsl_elbc_cmdfunc;
778         chip->waitfunc = fsl_elbc_wait;
779
780         chip->bbt_td = &bbt_main_descr;
781         chip->bbt_md = &bbt_mirror_descr;
782
783         /* set up nand options */
784         chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
785         chip->bbt_options = NAND_BBT_USE_FLASH;
786
787         chip->controller = &elbc_fcm_ctrl->controller;
788         chip->priv = priv;
789
790         chip->ecc.read_page = fsl_elbc_read_page;
791         chip->ecc.write_page = fsl_elbc_write_page;
792
793         /* If CS Base Register selects full hardware ECC then use it */
794         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
795             BR_DECC_CHK_GEN) {
796                 chip->ecc.mode = NAND_ECC_HW;
797                 /* put in small page settings and adjust later if needed */
798                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
799                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
800                 chip->ecc.size = 512;
801                 chip->ecc.bytes = 3;
802         } else {
803                 /* otherwise fall back to default software ECC */
804                 chip->ecc.mode = NAND_ECC_SOFT;
805         }
806
807         return 0;
808 }
809
810 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
811 {
812         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
813         nand_release(&priv->mtd);
814
815         kfree(priv->mtd.name);
816
817         if (priv->vbase)
818                 iounmap(priv->vbase);
819
820         elbc_fcm_ctrl->chips[priv->bank] = NULL;
821         kfree(priv);
822         return 0;
823 }
824
825 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
826
827 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
828 {
829         struct fsl_lbc_regs __iomem *lbc;
830         struct fsl_elbc_mtd *priv;
831         struct resource res;
832         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
833         static const char *part_probe_types[]
834                 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
835         int ret;
836         int bank;
837         struct device *dev;
838         struct device_node *node = pdev->dev.of_node;
839         struct mtd_part_parser_data ppdata;
840
841         ppdata.of_node = pdev->dev.of_node;
842         if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
843                 return -ENODEV;
844         lbc = fsl_lbc_ctrl_dev->regs;
845         dev = fsl_lbc_ctrl_dev->dev;
846
847         /* get, allocate and map the memory resource */
848         ret = of_address_to_resource(node, 0, &res);
849         if (ret) {
850                 dev_err(dev, "failed to get resource\n");
851                 return ret;
852         }
853
854         /* find which chip select it is connected to */
855         for (bank = 0; bank < MAX_BANKS; bank++)
856                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
857                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
858                     (in_be32(&lbc->bank[bank].br) &
859                      in_be32(&lbc->bank[bank].or) & BR_BA)
860                      == fsl_lbc_addr(res.start))
861                         break;
862
863         if (bank >= MAX_BANKS) {
864                 dev_err(dev, "address did not match any chip selects\n");
865                 return -ENODEV;
866         }
867
868         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
869         if (!priv)
870                 return -ENOMEM;
871
872         mutex_lock(&fsl_elbc_nand_mutex);
873         if (!fsl_lbc_ctrl_dev->nand) {
874                 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
875                 if (!elbc_fcm_ctrl) {
876                         dev_err(dev, "failed to allocate memory\n");
877                         mutex_unlock(&fsl_elbc_nand_mutex);
878                         ret = -ENOMEM;
879                         goto err;
880                 }
881                 elbc_fcm_ctrl->counter++;
882
883                 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
884                 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
885                 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
886         } else {
887                 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
888         }
889         mutex_unlock(&fsl_elbc_nand_mutex);
890
891         elbc_fcm_ctrl->chips[bank] = priv;
892         priv->bank = bank;
893         priv->ctrl = fsl_lbc_ctrl_dev;
894         priv->dev = dev;
895
896         priv->vbase = ioremap(res.start, resource_size(&res));
897         if (!priv->vbase) {
898                 dev_err(dev, "failed to map chip region\n");
899                 ret = -ENOMEM;
900                 goto err;
901         }
902
903         priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
904         if (!priv->mtd.name) {
905                 ret = -ENOMEM;
906                 goto err;
907         }
908
909         ret = fsl_elbc_chip_init(priv);
910         if (ret)
911                 goto err;
912
913         ret = nand_scan_ident(&priv->mtd, 1, NULL);
914         if (ret)
915                 goto err;
916
917         ret = fsl_elbc_chip_init_tail(&priv->mtd);
918         if (ret)
919                 goto err;
920
921         ret = nand_scan_tail(&priv->mtd);
922         if (ret)
923                 goto err;
924
925         /* First look for RedBoot table or partitions on the command
926          * line, these take precedence over device tree information */
927         mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
928                                   NULL, 0);
929
930         printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
931                (unsigned long long)res.start, priv->bank);
932         return 0;
933
934 err:
935         fsl_elbc_chip_remove(priv);
936         return ret;
937 }
938
939 static int fsl_elbc_nand_remove(struct platform_device *pdev)
940 {
941         int i;
942         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
943         for (i = 0; i < MAX_BANKS; i++)
944                 if (elbc_fcm_ctrl->chips[i])
945                         fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
946
947         mutex_lock(&fsl_elbc_nand_mutex);
948         elbc_fcm_ctrl->counter--;
949         if (!elbc_fcm_ctrl->counter) {
950                 fsl_lbc_ctrl_dev->nand = NULL;
951                 kfree(elbc_fcm_ctrl);
952         }
953         mutex_unlock(&fsl_elbc_nand_mutex);
954
955         return 0;
956
957 }
958
959 static const struct of_device_id fsl_elbc_nand_match[] = {
960         { .compatible = "fsl,elbc-fcm-nand", },
961         {}
962 };
963
964 static struct platform_driver fsl_elbc_nand_driver = {
965         .driver = {
966                 .name = "fsl,elbc-fcm-nand",
967                 .owner = THIS_MODULE,
968                 .of_match_table = fsl_elbc_nand_match,
969         },
970         .probe = fsl_elbc_nand_probe,
971         .remove = fsl_elbc_nand_remove,
972 };
973
974 static int __init fsl_elbc_nand_init(void)
975 {
976         return platform_driver_register(&fsl_elbc_nand_driver);
977 }
978
979 static void __exit fsl_elbc_nand_exit(void)
980 {
981         platform_driver_unregister(&fsl_elbc_nand_driver);
982 }
983
984 module_init(fsl_elbc_nand_init);
985 module_exit(fsl_elbc_nand_exit);
986
987 MODULE_LICENSE("GPL");
988 MODULE_AUTHOR("Freescale");
989 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");