Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[pandora-kernel.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright (c) 2006-2007 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/ioport.h>
29 #include <linux/of_platform.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/mtd/partitions.h>
37
38 #include <asm/io.h>
39 #include <asm/fsl_lbc.h>
40
41 #define MAX_BANKS 8
42 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
44
45 struct fsl_elbc_ctrl;
46
47 /* mtd information per set */
48
49 struct fsl_elbc_mtd {
50         struct mtd_info mtd;
51         struct nand_chip chip;
52         struct fsl_elbc_ctrl *ctrl;
53
54         struct device *dev;
55         int bank;               /* Chip select bank number           */
56         u8 __iomem *vbase;      /* Chip select base virtual address  */
57         int page_size;          /* NAND page size (0=512, 1=2048)    */
58         unsigned int fmr;       /* FCM Flash Mode Register value     */
59 };
60
61 /* overview of the fsl elbc controller */
62
63 struct fsl_elbc_ctrl {
64         struct nand_hw_control controller;
65         struct fsl_elbc_mtd *chips[MAX_BANKS];
66
67         /* device info */
68         struct device *dev;
69         struct fsl_lbc_regs __iomem *regs;
70         int irq;
71         wait_queue_head_t irq_wait;
72         unsigned int irq_status; /* status read from LTESR by irq handler */
73         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
74         unsigned int page;       /* Last page written to / read from      */
75         unsigned int read_bytes; /* Number of bytes read during command   */
76         unsigned int column;     /* Saved column from SEQIN               */
77         unsigned int index;      /* Pointer to next byte to 'read'        */
78         unsigned int status;     /* status read from LTESR after last op  */
79         unsigned int mdr;        /* UPM/FCM Data Register value           */
80         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
81         unsigned int oob;        /* Non zero if operating on OOB data     */
82         char *oob_poi;           /* Place to write ECC after read back    */
83 };
84
85 /* These map to the positions used by the FCM hardware ECC generator */
86
87 /* Small Page FLASH with FMR[ECCM] = 0 */
88 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
89         .eccbytes = 3,
90         .eccpos = {6, 7, 8},
91         .oobfree = { {0, 5}, {9, 7} },
92         .oobavail = 12,
93 };
94
95 /* Small Page FLASH with FMR[ECCM] = 1 */
96 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
97         .eccbytes = 3,
98         .eccpos = {8, 9, 10},
99         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
100         .oobavail = 12,
101 };
102
103 /* Large Page FLASH with FMR[ECCM] = 0 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
105         .eccbytes = 12,
106         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
107         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
108         .oobavail = 48,
109 };
110
111 /* Large Page FLASH with FMR[ECCM] = 1 */
112 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
113         .eccbytes = 12,
114         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
115         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
116         .oobavail = 48,
117 };
118
119 /*=================================*/
120
121 /*
122  * Set up the FCM hardware block and page address fields, and the fcm
123  * structure addr field to point to the correct FCM buffer in memory
124  */
125 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
126 {
127         struct nand_chip *chip = mtd->priv;
128         struct fsl_elbc_mtd *priv = chip->priv;
129         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
130         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
131         int buf_num;
132
133         ctrl->page = page_addr;
134
135         out_be32(&lbc->fbar,
136                  page_addr >> (chip->phys_erase_shift - chip->page_shift));
137
138         if (priv->page_size) {
139                 out_be32(&lbc->fpar,
140                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
141                          (oob ? FPAR_LP_MS : 0) | column);
142                 buf_num = (page_addr & 1) << 2;
143         } else {
144                 out_be32(&lbc->fpar,
145                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
146                          (oob ? FPAR_SP_MS : 0) | column);
147                 buf_num = page_addr & 7;
148         }
149
150         ctrl->addr = priv->vbase + buf_num * 1024;
151         ctrl->index = column;
152
153         /* for OOB data point to the second half of the buffer */
154         if (oob)
155                 ctrl->index += priv->page_size ? 2048 : 512;
156
157         dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
158                             "index %x, pes %d ps %d\n",
159                  buf_num, ctrl->addr, priv->vbase, ctrl->index,
160                  chip->phys_erase_shift, chip->page_shift);
161 }
162
163 /*
164  * execute FCM command and wait for it to complete
165  */
166 static int fsl_elbc_run_command(struct mtd_info *mtd)
167 {
168         struct nand_chip *chip = mtd->priv;
169         struct fsl_elbc_mtd *priv = chip->priv;
170         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
171         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
172
173         /* Setup the FMR[OP] to execute without write protection */
174         out_be32(&lbc->fmr, priv->fmr | 3);
175         if (ctrl->use_mdr)
176                 out_be32(&lbc->mdr, ctrl->mdr);
177
178         dev_vdbg(ctrl->dev,
179                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
180                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
181         dev_vdbg(ctrl->dev,
182                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
183                  "fbcr=%08x bank=%d\n",
184                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
185                  in_be32(&lbc->fbcr), priv->bank);
186
187         /* execute special operation */
188         out_be32(&lbc->lsor, priv->bank);
189
190         /* wait for FCM complete flag or timeout */
191         ctrl->irq_status = 0;
192         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
193                            FCM_TIMEOUT_MSECS * HZ/1000);
194         ctrl->status = ctrl->irq_status;
195
196         /* store mdr value in case it was needed */
197         if (ctrl->use_mdr)
198                 ctrl->mdr = in_be32(&lbc->mdr);
199
200         ctrl->use_mdr = 0;
201
202         dev_vdbg(ctrl->dev,
203                  "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
204                  ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
205
206         /* returns 0 on success otherwise non-zero) */
207         return ctrl->status == LTESR_CC ? 0 : -EIO;
208 }
209
210 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
211 {
212         struct fsl_elbc_mtd *priv = chip->priv;
213         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
214         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
215
216         if (priv->page_size) {
217                 out_be32(&lbc->fir,
218                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
219                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
220                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
221                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
222                          (FIR_OP_RBW << FIR_OP4_SHIFT));
223
224                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
225                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
226         } else {
227                 out_be32(&lbc->fir,
228                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
229                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
230                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
231                          (FIR_OP_RBW << FIR_OP3_SHIFT));
232
233                 if (oob)
234                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
235                 else
236                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
237         }
238 }
239
240 /* cmdfunc send commands to the FCM */
241 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
242                              int column, int page_addr)
243 {
244         struct nand_chip *chip = mtd->priv;
245         struct fsl_elbc_mtd *priv = chip->priv;
246         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
247         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
248
249         ctrl->use_mdr = 0;
250
251         /* clear the read buffer */
252         ctrl->read_bytes = 0;
253         if (command != NAND_CMD_PAGEPROG)
254                 ctrl->index = 0;
255
256         switch (command) {
257         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
258         case NAND_CMD_READ1:
259                 column += 256;
260
261         /* fall-through */
262         case NAND_CMD_READ0:
263                 dev_dbg(ctrl->dev,
264                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
265                         " 0x%x, column: 0x%x.\n", page_addr, column);
266
267
268                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
269                 set_addr(mtd, 0, page_addr, 0);
270
271                 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
272                 ctrl->index += column;
273
274                 fsl_elbc_do_read(chip, 0);
275                 fsl_elbc_run_command(mtd);
276                 return;
277
278         /* READOOB reads only the OOB because no ECC is performed. */
279         case NAND_CMD_READOOB:
280                 dev_vdbg(ctrl->dev,
281                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
282                          " 0x%x, column: 0x%x.\n", page_addr, column);
283
284                 out_be32(&lbc->fbcr, mtd->oobsize - column);
285                 set_addr(mtd, column, page_addr, 1);
286
287                 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
288
289                 fsl_elbc_do_read(chip, 1);
290                 fsl_elbc_run_command(mtd);
291                 return;
292
293         /* READID must read all 5 possible bytes while CEB is active */
294         case NAND_CMD_READID:
295                 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
296
297                 out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
298                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
299                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
300                 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
301                 /* 5 bytes for manuf, device and exts */
302                 out_be32(&lbc->fbcr, 5);
303                 ctrl->read_bytes = 5;
304                 ctrl->use_mdr = 1;
305                 ctrl->mdr = 0;
306
307                 set_addr(mtd, 0, 0, 0);
308                 fsl_elbc_run_command(mtd);
309                 return;
310
311         /* ERASE1 stores the block and page address */
312         case NAND_CMD_ERASE1:
313                 dev_vdbg(ctrl->dev,
314                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
315                          "page_addr: 0x%x.\n", page_addr);
316                 set_addr(mtd, 0, page_addr, 0);
317                 return;
318
319         /* ERASE2 uses the block and page address from ERASE1 */
320         case NAND_CMD_ERASE2:
321                 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
322
323                 out_be32(&lbc->fir,
324                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
325                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
326                          (FIR_OP_CM1 << FIR_OP2_SHIFT));
327
328                 out_be32(&lbc->fcr,
329                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
330                          (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
331
332                 out_be32(&lbc->fbcr, 0);
333                 ctrl->read_bytes = 0;
334
335                 fsl_elbc_run_command(mtd);
336                 return;
337
338         /* SEQIN sets up the addr buffer and all registers except the length */
339         case NAND_CMD_SEQIN: {
340                 __be32 fcr;
341                 dev_vdbg(ctrl->dev,
342                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
343                          "page_addr: 0x%x, column: 0x%x.\n",
344                          page_addr, column);
345
346                 ctrl->column = column;
347                 ctrl->oob = 0;
348
349                 fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
350                       (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
351
352                 if (priv->page_size) {
353                         out_be32(&lbc->fir,
354                                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
355                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
356                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
357                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
358                                  (FIR_OP_CW1 << FIR_OP4_SHIFT));
359
360                         fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
361                 } else {
362                         out_be32(&lbc->fir,
363                                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
364                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
365                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
366                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
367                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
368                                  (FIR_OP_CW1 << FIR_OP5_SHIFT));
369
370                         if (column >= mtd->writesize) {
371                                 /* OOB area --> READOOB */
372                                 column -= mtd->writesize;
373                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
374                                 ctrl->oob = 1;
375                         } else if (column < 256) {
376                                 /* First 256 bytes --> READ0 */
377                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
378                         } else {
379                                 /* Second 256 bytes --> READ1 */
380                                 fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
381                         }
382                 }
383
384                 out_be32(&lbc->fcr, fcr);
385                 set_addr(mtd, column, page_addr, ctrl->oob);
386                 return;
387         }
388
389         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
390         case NAND_CMD_PAGEPROG: {
391                 int full_page;
392                 dev_vdbg(ctrl->dev,
393                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
394                          "writing %d bytes.\n", ctrl->index);
395
396                 /* if the write did not start at 0 or is not a full page
397                  * then set the exact length, otherwise use a full page
398                  * write so the HW generates the ECC.
399                  */
400                 if (ctrl->oob || ctrl->column != 0 ||
401                     ctrl->index != mtd->writesize + mtd->oobsize) {
402                         out_be32(&lbc->fbcr, ctrl->index);
403                         full_page = 0;
404                 } else {
405                         out_be32(&lbc->fbcr, 0);
406                         full_page = 1;
407                 }
408
409                 fsl_elbc_run_command(mtd);
410
411                 /* Read back the page in order to fill in the ECC for the
412                  * caller.  Is this really needed?
413                  */
414                 if (full_page && ctrl->oob_poi) {
415                         out_be32(&lbc->fbcr, 3);
416                         set_addr(mtd, 6, page_addr, 1);
417
418                         ctrl->read_bytes = mtd->writesize + 9;
419
420                         fsl_elbc_do_read(chip, 1);
421                         fsl_elbc_run_command(mtd);
422
423                         memcpy_fromio(ctrl->oob_poi + 6,
424                                       &ctrl->addr[ctrl->index], 3);
425                         ctrl->index += 3;
426                 }
427
428                 ctrl->oob_poi = NULL;
429                 return;
430         }
431
432         /* CMD_STATUS must read the status byte while CEB is active */
433         /* Note - it does not wait for the ready line */
434         case NAND_CMD_STATUS:
435                 out_be32(&lbc->fir,
436                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
437                          (FIR_OP_RBW << FIR_OP1_SHIFT));
438                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
439                 out_be32(&lbc->fbcr, 1);
440                 set_addr(mtd, 0, 0, 0);
441                 ctrl->read_bytes = 1;
442
443                 fsl_elbc_run_command(mtd);
444
445                 /* The chip always seems to report that it is
446                  * write-protected, even when it is not.
447                  */
448                 setbits8(ctrl->addr, NAND_STATUS_WP);
449                 return;
450
451         /* RESET without waiting for the ready line */
452         case NAND_CMD_RESET:
453                 dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
454                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
455                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
456                 fsl_elbc_run_command(mtd);
457                 return;
458
459         default:
460                 dev_err(ctrl->dev,
461                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
462                         command);
463         }
464 }
465
466 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
467 {
468         /* The hardware does not seem to support multiple
469          * chips per bank.
470          */
471 }
472
473 /*
474  * Write buf to the FCM Controller Data Buffer
475  */
476 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
477 {
478         struct nand_chip *chip = mtd->priv;
479         struct fsl_elbc_mtd *priv = chip->priv;
480         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
481         unsigned int bufsize = mtd->writesize + mtd->oobsize;
482
483         if (len < 0) {
484                 dev_err(ctrl->dev, "write_buf of %d bytes", len);
485                 ctrl->status = 0;
486                 return;
487         }
488
489         if ((unsigned int)len > bufsize - ctrl->index) {
490                 dev_err(ctrl->dev,
491                         "write_buf beyond end of buffer "
492                         "(%d requested, %u available)\n",
493                         len, bufsize - ctrl->index);
494                 len = bufsize - ctrl->index;
495         }
496
497         memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
498         ctrl->index += len;
499 }
500
501 /*
502  * read a byte from either the FCM hardware buffer if it has any data left
503  * otherwise issue a command to read a single byte.
504  */
505 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
506 {
507         struct nand_chip *chip = mtd->priv;
508         struct fsl_elbc_mtd *priv = chip->priv;
509         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
510
511         /* If there are still bytes in the FCM, then use the next byte. */
512         if (ctrl->index < ctrl->read_bytes)
513                 return in_8(&ctrl->addr[ctrl->index++]);
514
515         dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
516         return ERR_BYTE;
517 }
518
519 /*
520  * Read from the FCM Controller Data Buffer
521  */
522 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
523 {
524         struct nand_chip *chip = mtd->priv;
525         struct fsl_elbc_mtd *priv = chip->priv;
526         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
527         int avail;
528
529         if (len < 0)
530                 return;
531
532         avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
533         memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
534         ctrl->index += avail;
535
536         if (len > avail)
537                 dev_err(ctrl->dev,
538                         "read_buf beyond end of buffer "
539                         "(%d requested, %d available)\n",
540                         len, avail);
541 }
542
543 /*
544  * Verify buffer against the FCM Controller Data Buffer
545  */
546 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
547 {
548         struct nand_chip *chip = mtd->priv;
549         struct fsl_elbc_mtd *priv = chip->priv;
550         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
551         int i;
552
553         if (len < 0) {
554                 dev_err(ctrl->dev, "write_buf of %d bytes", len);
555                 return -EINVAL;
556         }
557
558         if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
559                 dev_err(ctrl->dev,
560                         "verify_buf beyond end of buffer "
561                         "(%d requested, %u available)\n",
562                         len, ctrl->read_bytes - ctrl->index);
563
564                 ctrl->index = ctrl->read_bytes;
565                 return -EINVAL;
566         }
567
568         for (i = 0; i < len; i++)
569                 if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
570                         break;
571
572         ctrl->index += len;
573         return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
574 }
575
576 /* This function is called after Program and Erase Operations to
577  * check for success or failure.
578  */
579 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
580 {
581         struct fsl_elbc_mtd *priv = chip->priv;
582         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
583         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
584
585         if (ctrl->status != LTESR_CC)
586                 return NAND_STATUS_FAIL;
587
588         /* Use READ_STATUS command, but wait for the device to be ready */
589         ctrl->use_mdr = 0;
590         out_be32(&lbc->fir,
591                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
592                  (FIR_OP_RBW << FIR_OP1_SHIFT));
593         out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
594         out_be32(&lbc->fbcr, 1);
595         set_addr(mtd, 0, 0, 0);
596         ctrl->read_bytes = 1;
597
598         fsl_elbc_run_command(mtd);
599
600         if (ctrl->status != LTESR_CC)
601                 return NAND_STATUS_FAIL;
602
603         /* The chip always seems to report that it is
604          * write-protected, even when it is not.
605          */
606         setbits8(ctrl->addr, NAND_STATUS_WP);
607         return fsl_elbc_read_byte(mtd);
608 }
609
610 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
611 {
612         struct nand_chip *chip = mtd->priv;
613         struct fsl_elbc_mtd *priv = chip->priv;
614         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
615         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
616         unsigned int al;
617
618         /* calculate FMR Address Length field */
619         al = 0;
620         if (chip->pagemask & 0xffff0000)
621                 al++;
622         if (chip->pagemask & 0xff000000)
623                 al++;
624
625         /* add to ECCM mode set in fsl_elbc_init */
626         priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
627                      (al << FMR_AL_SHIFT);
628
629         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
630                 chip->numchips);
631         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
632                 chip->chipsize);
633         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
634                 chip->pagemask);
635         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
636                 chip->chip_delay);
637         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
638                 chip->badblockpos);
639         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
640                 chip->chip_shift);
641         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
642                 chip->page_shift);
643         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
644                 chip->phys_erase_shift);
645         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
646                 chip->ecclayout);
647         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
648                 chip->ecc.mode);
649         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
650                 chip->ecc.steps);
651         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
652                 chip->ecc.bytes);
653         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
654                 chip->ecc.total);
655         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
656                 chip->ecc.layout);
657         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
658         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
659         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
660                 mtd->erasesize);
661         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
662                 mtd->writesize);
663         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
664                 mtd->oobsize);
665
666         /* adjust Option Register and ECC to match Flash page size */
667         if (mtd->writesize == 512) {
668                 priv->page_size = 0;
669                 clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
670         } else if (mtd->writesize == 2048) {
671                 priv->page_size = 1;
672                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
673                 /* adjust ecc setup if needed */
674                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
675                     BR_DECC_CHK_GEN) {
676                         chip->ecc.size = 512;
677                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
678                                            &fsl_elbc_oob_lp_eccm1 :
679                                            &fsl_elbc_oob_lp_eccm0;
680                         mtd->ecclayout = chip->ecc.layout;
681                         mtd->oobavail = chip->ecc.layout->oobavail;
682                 }
683         } else {
684                 dev_err(ctrl->dev,
685                         "fsl_elbc_init: page size %d is not supported\n",
686                         mtd->writesize);
687                 return -1;
688         }
689
690         /* The default u-boot configuration on MPC8313ERDB causes errors;
691          * more delay is needed.  This should be safe for other boards
692          * as well.
693          */
694         setbits32(&lbc->bank[priv->bank].or, 0x70);
695         return 0;
696 }
697
698 static int fsl_elbc_read_page(struct mtd_info *mtd,
699                               struct nand_chip *chip,
700                               uint8_t *buf)
701 {
702         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
703         fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
704
705         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
706                 mtd->ecc_stats.failed++;
707
708         return 0;
709 }
710
711 /* ECC will be calculated automatically, and errors will be detected in
712  * waitfunc.
713  */
714 static void fsl_elbc_write_page(struct mtd_info *mtd,
715                                 struct nand_chip *chip,
716                                 const uint8_t *buf)
717 {
718         struct fsl_elbc_mtd *priv = chip->priv;
719         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
720
721         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
722         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
723
724         ctrl->oob_poi = chip->oob_poi;
725 }
726
727 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
728 {
729         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
730         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
731         struct nand_chip *chip = &priv->chip;
732
733         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
734
735         /* Fill in fsl_elbc_mtd structure */
736         priv->mtd.priv = chip;
737         priv->mtd.owner = THIS_MODULE;
738         priv->fmr = 0; /* rest filled in later */
739
740         /* fill in nand_chip structure */
741         /* set up function call table */
742         chip->read_byte = fsl_elbc_read_byte;
743         chip->write_buf = fsl_elbc_write_buf;
744         chip->read_buf = fsl_elbc_read_buf;
745         chip->verify_buf = fsl_elbc_verify_buf;
746         chip->select_chip = fsl_elbc_select_chip;
747         chip->cmdfunc = fsl_elbc_cmdfunc;
748         chip->waitfunc = fsl_elbc_wait;
749
750         /* set up nand options */
751         chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
752
753         chip->controller = &ctrl->controller;
754         chip->priv = priv;
755
756         chip->ecc.read_page = fsl_elbc_read_page;
757         chip->ecc.write_page = fsl_elbc_write_page;
758
759         /* If CS Base Register selects full hardware ECC then use it */
760         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
761             BR_DECC_CHK_GEN) {
762                 chip->ecc.mode = NAND_ECC_HW;
763                 /* put in small page settings and adjust later if needed */
764                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
765                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
766                 chip->ecc.size = 512;
767                 chip->ecc.bytes = 3;
768         } else {
769                 /* otherwise fall back to default software ECC */
770                 chip->ecc.mode = NAND_ECC_SOFT;
771         }
772
773         return 0;
774 }
775
776 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
777 {
778         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
779
780         nand_release(&priv->mtd);
781
782         if (priv->vbase)
783                 iounmap(priv->vbase);
784
785         ctrl->chips[priv->bank] = NULL;
786         kfree(priv);
787
788         return 0;
789 }
790
791 static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
792                                struct device_node *node)
793 {
794         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
795         struct fsl_elbc_mtd *priv;
796         struct resource res;
797 #ifdef CONFIG_MTD_PARTITIONS
798         static const char *part_probe_types[]
799                 = { "cmdlinepart", "RedBoot", NULL };
800         struct mtd_partition *parts;
801 #endif
802         int ret;
803         int bank;
804
805         /* get, allocate and map the memory resource */
806         ret = of_address_to_resource(node, 0, &res);
807         if (ret) {
808                 dev_err(ctrl->dev, "failed to get resource\n");
809                 return ret;
810         }
811
812         /* find which chip select it is connected to */
813         for (bank = 0; bank < MAX_BANKS; bank++)
814                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
815                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
816                     (in_be32(&lbc->bank[bank].br) &
817                      in_be32(&lbc->bank[bank].or) & BR_BA)
818                      == res.start)
819                         break;
820
821         if (bank >= MAX_BANKS) {
822                 dev_err(ctrl->dev, "address did not match any chip selects\n");
823                 return -ENODEV;
824         }
825
826         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
827         if (!priv)
828                 return -ENOMEM;
829
830         ctrl->chips[bank] = priv;
831         priv->bank = bank;
832         priv->ctrl = ctrl;
833         priv->dev = ctrl->dev;
834
835         priv->vbase = ioremap(res.start, res.end - res.start + 1);
836         if (!priv->vbase) {
837                 dev_err(ctrl->dev, "failed to map chip region\n");
838                 ret = -ENOMEM;
839                 goto err;
840         }
841
842         ret = fsl_elbc_chip_init(priv);
843         if (ret)
844                 goto err;
845
846         ret = nand_scan_ident(&priv->mtd, 1);
847         if (ret)
848                 goto err;
849
850         ret = fsl_elbc_chip_init_tail(&priv->mtd);
851         if (ret)
852                 goto err;
853
854         ret = nand_scan_tail(&priv->mtd);
855         if (ret)
856                 goto err;
857
858 #ifdef CONFIG_MTD_PARTITIONS
859         /* First look for RedBoot table or partitions on the command
860          * line, these take precedence over device tree information */
861         ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
862         if (ret < 0)
863                 goto err;
864
865 #ifdef CONFIG_MTD_OF_PARTS
866         if (ret == 0) {
867                 ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
868                                               node, &parts);
869                 if (ret < 0)
870                         goto err;
871         }
872 #endif
873
874         if (ret > 0)
875                 add_mtd_partitions(&priv->mtd, parts, ret);
876         else
877 #endif
878                 add_mtd_device(&priv->mtd);
879
880         printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
881                res.start, priv->bank);
882         return 0;
883
884 err:
885         fsl_elbc_chip_remove(priv);
886         return ret;
887 }
888
889 static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
890 {
891         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
892
893         /* clear event registers */
894         setbits32(&lbc->ltesr, LTESR_NAND_MASK);
895         out_be32(&lbc->lteatr, 0);
896
897         /* Enable interrupts for any detected events */
898         out_be32(&lbc->lteir, LTESR_NAND_MASK);
899
900         ctrl->read_bytes = 0;
901         ctrl->index = 0;
902         ctrl->addr = NULL;
903
904         return 0;
905 }
906
907 static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
908 {
909         struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
910         int i;
911
912         for (i = 0; i < MAX_BANKS; i++)
913                 if (ctrl->chips[i])
914                         fsl_elbc_chip_remove(ctrl->chips[i]);
915
916         if (ctrl->irq)
917                 free_irq(ctrl->irq, ctrl);
918
919         if (ctrl->regs)
920                 iounmap(ctrl->regs);
921
922         dev_set_drvdata(&ofdev->dev, NULL);
923         kfree(ctrl);
924         return 0;
925 }
926
927 /* NOTE: This interrupt is also used to report other localbus events,
928  * such as transaction errors on other chipselects.  If we want to
929  * capture those, we'll need to move the IRQ code into a shared
930  * LBC driver.
931  */
932
933 static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
934 {
935         struct fsl_elbc_ctrl *ctrl = data;
936         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
937         __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
938
939         if (status) {
940                 out_be32(&lbc->ltesr, status);
941                 out_be32(&lbc->lteatr, 0);
942
943                 ctrl->irq_status = status;
944                 smp_wmb();
945                 wake_up(&ctrl->irq_wait);
946
947                 return IRQ_HANDLED;
948         }
949
950         return IRQ_NONE;
951 }
952
953 /* fsl_elbc_ctrl_probe
954  *
955  * called by device layer when it finds a device matching
956  * one our driver can handled. This code allocates all of
957  * the resources needed for the controller only.  The
958  * resources for the NAND banks themselves are allocated
959  * in the chip probe function.
960 */
961
962 static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
963                                          const struct of_device_id *match)
964 {
965         struct device_node *child;
966         struct fsl_elbc_ctrl *ctrl;
967         int ret;
968
969         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
970         if (!ctrl)
971                 return -ENOMEM;
972
973         dev_set_drvdata(&ofdev->dev, ctrl);
974
975         spin_lock_init(&ctrl->controller.lock);
976         init_waitqueue_head(&ctrl->controller.wq);
977         init_waitqueue_head(&ctrl->irq_wait);
978
979         ctrl->regs = of_iomap(ofdev->node, 0);
980         if (!ctrl->regs) {
981                 dev_err(&ofdev->dev, "failed to get memory region\n");
982                 ret = -ENODEV;
983                 goto err;
984         }
985
986         ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
987         if (ctrl->irq == NO_IRQ) {
988                 dev_err(&ofdev->dev, "failed to get irq resource\n");
989                 ret = -ENODEV;
990                 goto err;
991         }
992
993         ctrl->dev = &ofdev->dev;
994
995         ret = fsl_elbc_ctrl_init(ctrl);
996         if (ret < 0)
997                 goto err;
998
999         ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1000         if (ret != 0) {
1001                 dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1002                         ctrl->irq);
1003                 ret = ctrl->irq;
1004                 goto err;
1005         }
1006
1007         for_each_child_of_node(ofdev->node, child)
1008                 if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1009                         fsl_elbc_chip_probe(ctrl, child);
1010
1011         return 0;
1012
1013 err:
1014         fsl_elbc_ctrl_remove(ofdev);
1015         return ret;
1016 }
1017
1018 static const struct of_device_id fsl_elbc_match[] = {
1019         {
1020                 .compatible = "fsl,elbc",
1021         },
1022         {}
1023 };
1024
1025 static struct of_platform_driver fsl_elbc_ctrl_driver = {
1026         .driver = {
1027                 .name   = "fsl-elbc",
1028         },
1029         .match_table = fsl_elbc_match,
1030         .probe = fsl_elbc_ctrl_probe,
1031         .remove = __devexit_p(fsl_elbc_ctrl_remove),
1032 };
1033
1034 static int __init fsl_elbc_init(void)
1035 {
1036         return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1037 }
1038
1039 static void __exit fsl_elbc_exit(void)
1040 {
1041         of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1042 }
1043
1044 module_init(fsl_elbc_init);
1045 module_exit(fsl_elbc_exit);
1046
1047 MODULE_LICENSE("GPL");
1048 MODULE_AUTHOR("Freescale");
1049 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");