Merge branch 'for-linus' of git://linux-nfs.org/~bfields/linux
[pandora-kernel.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright (c) 2006-2007 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/ioport.h>
29 #include <linux/of_platform.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/mtd/partitions.h>
37
38 #include <asm/io.h>
39
40
41 #define MAX_BANKS 8
42 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
44
45 struct elbc_bank {
46         __be32 br;             /**< Base Register  */
47 #define BR_BA           0xFFFF8000
48 #define BR_BA_SHIFT             15
49 #define BR_PS           0x00001800
50 #define BR_PS_SHIFT             11
51 #define BR_PS_8         0x00000800  /* Port Size 8 bit */
52 #define BR_PS_16        0x00001000  /* Port Size 16 bit */
53 #define BR_PS_32        0x00001800  /* Port Size 32 bit */
54 #define BR_DECC         0x00000600
55 #define BR_DECC_SHIFT            9
56 #define BR_DECC_OFF     0x00000000  /* HW ECC checking and generation off */
57 #define BR_DECC_CHK     0x00000200  /* HW ECC checking on, generation off */
58 #define BR_DECC_CHK_GEN 0x00000400  /* HW ECC checking and generation on */
59 #define BR_WP           0x00000100
60 #define BR_WP_SHIFT              8
61 #define BR_MSEL         0x000000E0
62 #define BR_MSEL_SHIFT            5
63 #define BR_MS_GPCM      0x00000000  /* GPCM */
64 #define BR_MS_FCM       0x00000020  /* FCM */
65 #define BR_MS_SDRAM     0x00000060  /* SDRAM */
66 #define BR_MS_UPMA      0x00000080  /* UPMA */
67 #define BR_MS_UPMB      0x000000A0  /* UPMB */
68 #define BR_MS_UPMC      0x000000C0  /* UPMC */
69 #define BR_V            0x00000001
70 #define BR_V_SHIFT               0
71 #define BR_RES          ~(BR_BA|BR_PS|BR_DECC|BR_WP|BR_MSEL|BR_V)
72
73         __be32 or;             /**< Base Register  */
74 #define OR0 0x5004
75 #define OR1 0x500C
76 #define OR2 0x5014
77 #define OR3 0x501C
78 #define OR4 0x5024
79 #define OR5 0x502C
80 #define OR6 0x5034
81 #define OR7 0x503C
82
83 #define OR_FCM_AM               0xFFFF8000
84 #define OR_FCM_AM_SHIFT                 15
85 #define OR_FCM_BCTLD            0x00001000
86 #define OR_FCM_BCTLD_SHIFT              12
87 #define OR_FCM_PGS              0x00000400
88 #define OR_FCM_PGS_SHIFT                10
89 #define OR_FCM_CSCT             0x00000200
90 #define OR_FCM_CSCT_SHIFT                9
91 #define OR_FCM_CST              0x00000100
92 #define OR_FCM_CST_SHIFT                 8
93 #define OR_FCM_CHT              0x00000080
94 #define OR_FCM_CHT_SHIFT                 7
95 #define OR_FCM_SCY              0x00000070
96 #define OR_FCM_SCY_SHIFT                 4
97 #define OR_FCM_SCY_1            0x00000010
98 #define OR_FCM_SCY_2            0x00000020
99 #define OR_FCM_SCY_3            0x00000030
100 #define OR_FCM_SCY_4            0x00000040
101 #define OR_FCM_SCY_5            0x00000050
102 #define OR_FCM_SCY_6            0x00000060
103 #define OR_FCM_SCY_7            0x00000070
104 #define OR_FCM_RST              0x00000008
105 #define OR_FCM_RST_SHIFT                 3
106 #define OR_FCM_TRLX             0x00000004
107 #define OR_FCM_TRLX_SHIFT                2
108 #define OR_FCM_EHTR             0x00000002
109 #define OR_FCM_EHTR_SHIFT                1
110 };
111
112 struct elbc_regs {
113         struct elbc_bank bank[8];
114         u8 res0[0x28];
115         __be32 mar;             /**< UPM Address Register */
116         u8 res1[0x4];
117         __be32 mamr;            /**< UPMA Mode Register */
118         __be32 mbmr;            /**< UPMB Mode Register */
119         __be32 mcmr;            /**< UPMC Mode Register */
120         u8 res2[0x8];
121         __be32 mrtpr;           /**< Memory Refresh Timer Prescaler Register */
122         __be32 mdr;             /**< UPM Data Register */
123         u8 res3[0x4];
124         __be32 lsor;            /**< Special Operation Initiation Register */
125         __be32 lsdmr;           /**< SDRAM Mode Register */
126         u8 res4[0x8];
127         __be32 lurt;            /**< UPM Refresh Timer */
128         __be32 lsrt;            /**< SDRAM Refresh Timer */
129         u8 res5[0x8];
130         __be32 ltesr;           /**< Transfer Error Status Register */
131 #define LTESR_BM   0x80000000
132 #define LTESR_FCT  0x40000000
133 #define LTESR_PAR  0x20000000
134 #define LTESR_WP   0x04000000
135 #define LTESR_ATMW 0x00800000
136 #define LTESR_ATMR 0x00400000
137 #define LTESR_CS   0x00080000
138 #define LTESR_CC   0x00000001
139 #define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
140         __be32 ltedr;           /**< Transfer Error Disable Register */
141         __be32 lteir;           /**< Transfer Error Interrupt Register */
142         __be32 lteatr;          /**< Transfer Error Attributes Register */
143         __be32 ltear;           /**< Transfer Error Address Register */
144         u8 res6[0xC];
145         __be32 lbcr;            /**< Configuration Register */
146 #define LBCR_LDIS  0x80000000
147 #define LBCR_LDIS_SHIFT    31
148 #define LBCR_BCTLC 0x00C00000
149 #define LBCR_BCTLC_SHIFT   22
150 #define LBCR_AHD   0x00200000
151 #define LBCR_LPBSE 0x00020000
152 #define LBCR_LPBSE_SHIFT   17
153 #define LBCR_EPAR  0x00010000
154 #define LBCR_EPAR_SHIFT    16
155 #define LBCR_BMT   0x0000FF00
156 #define LBCR_BMT_SHIFT      8
157 #define LBCR_INIT  0x00040000
158         __be32 lcrr;            /**< Clock Ratio Register */
159 #define LCRR_DBYP    0x80000000
160 #define LCRR_DBYP_SHIFT      31
161 #define LCRR_BUFCMDC 0x30000000
162 #define LCRR_BUFCMDC_SHIFT   28
163 #define LCRR_ECL     0x03000000
164 #define LCRR_ECL_SHIFT       24
165 #define LCRR_EADC    0x00030000
166 #define LCRR_EADC_SHIFT      16
167 #define LCRR_CLKDIV  0x0000000F
168 #define LCRR_CLKDIV_SHIFT     0
169         u8 res7[0x8];
170         __be32 fmr;             /**< Flash Mode Register */
171 #define FMR_CWTO     0x0000F000
172 #define FMR_CWTO_SHIFT       12
173 #define FMR_BOOT     0x00000800
174 #define FMR_ECCM     0x00000100
175 #define FMR_AL       0x00000030
176 #define FMR_AL_SHIFT          4
177 #define FMR_OP       0x00000003
178 #define FMR_OP_SHIFT          0
179         __be32 fir;             /**< Flash Instruction Register */
180 #define FIR_OP0      0xF0000000
181 #define FIR_OP0_SHIFT        28
182 #define FIR_OP1      0x0F000000
183 #define FIR_OP1_SHIFT        24
184 #define FIR_OP2      0x00F00000
185 #define FIR_OP2_SHIFT        20
186 #define FIR_OP3      0x000F0000
187 #define FIR_OP3_SHIFT        16
188 #define FIR_OP4      0x0000F000
189 #define FIR_OP4_SHIFT        12
190 #define FIR_OP5      0x00000F00
191 #define FIR_OP5_SHIFT         8
192 #define FIR_OP6      0x000000F0
193 #define FIR_OP6_SHIFT         4
194 #define FIR_OP7      0x0000000F
195 #define FIR_OP7_SHIFT         0
196 #define FIR_OP_NOP   0x0        /* No operation and end of sequence */
197 #define FIR_OP_CA    0x1        /* Issue current column address */
198 #define FIR_OP_PA    0x2        /* Issue current block+page address */
199 #define FIR_OP_UA    0x3        /* Issue user defined address */
200 #define FIR_OP_CM0   0x4        /* Issue command from FCR[CMD0] */
201 #define FIR_OP_CM1   0x5        /* Issue command from FCR[CMD1] */
202 #define FIR_OP_CM2   0x6        /* Issue command from FCR[CMD2] */
203 #define FIR_OP_CM3   0x7        /* Issue command from FCR[CMD3] */
204 #define FIR_OP_WB    0x8        /* Write FBCR bytes from FCM buffer */
205 #define FIR_OP_WS    0x9        /* Write 1 or 2 bytes from MDR[AS] */
206 #define FIR_OP_RB    0xA        /* Read FBCR bytes to FCM buffer */
207 #define FIR_OP_RS    0xB        /* Read 1 or 2 bytes to MDR[AS] */
208 #define FIR_OP_CW0   0xC        /* Wait then issue FCR[CMD0] */
209 #define FIR_OP_CW1   0xD        /* Wait then issue FCR[CMD1] */
210 #define FIR_OP_RBW   0xE        /* Wait then read FBCR bytes */
211 #define FIR_OP_RSW   0xE        /* Wait then read 1 or 2 bytes */
212         __be32 fcr;             /**< Flash Command Register */
213 #define FCR_CMD0     0xFF000000
214 #define FCR_CMD0_SHIFT       24
215 #define FCR_CMD1     0x00FF0000
216 #define FCR_CMD1_SHIFT       16
217 #define FCR_CMD2     0x0000FF00
218 #define FCR_CMD2_SHIFT        8
219 #define FCR_CMD3     0x000000FF
220 #define FCR_CMD3_SHIFT        0
221         __be32 fbar;            /**< Flash Block Address Register */
222 #define FBAR_BLK     0x00FFFFFF
223         __be32 fpar;            /**< Flash Page Address Register */
224 #define FPAR_SP_PI   0x00007C00
225 #define FPAR_SP_PI_SHIFT     10
226 #define FPAR_SP_MS   0x00000200
227 #define FPAR_SP_CI   0x000001FF
228 #define FPAR_SP_CI_SHIFT      0
229 #define FPAR_LP_PI   0x0003F000
230 #define FPAR_LP_PI_SHIFT     12
231 #define FPAR_LP_MS   0x00000800
232 #define FPAR_LP_CI   0x000007FF
233 #define FPAR_LP_CI_SHIFT      0
234         __be32 fbcr;            /**< Flash Byte Count Register */
235 #define FBCR_BC      0x00000FFF
236         u8 res11[0x8];
237         u8 res8[0xF00];
238 };
239
240 struct fsl_elbc_ctrl;
241
242 /* mtd information per set */
243
244 struct fsl_elbc_mtd {
245         struct mtd_info mtd;
246         struct nand_chip chip;
247         struct fsl_elbc_ctrl *ctrl;
248
249         struct device *dev;
250         int bank;               /* Chip select bank number           */
251         u8 __iomem *vbase;      /* Chip select base virtual address  */
252         int page_size;          /* NAND page size (0=512, 1=2048)    */
253         unsigned int fmr;       /* FCM Flash Mode Register value     */
254 };
255
256 /* overview of the fsl elbc controller */
257
258 struct fsl_elbc_ctrl {
259         struct nand_hw_control controller;
260         struct fsl_elbc_mtd *chips[MAX_BANKS];
261
262         /* device info */
263         struct device *dev;
264         struct elbc_regs __iomem *regs;
265         int irq;
266         wait_queue_head_t irq_wait;
267         unsigned int irq_status; /* status read from LTESR by irq handler */
268         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
269         unsigned int page;       /* Last page written to / read from      */
270         unsigned int read_bytes; /* Number of bytes read during command   */
271         unsigned int column;     /* Saved column from SEQIN               */
272         unsigned int index;      /* Pointer to next byte to 'read'        */
273         unsigned int status;     /* status read from LTESR after last op  */
274         unsigned int mdr;        /* UPM/FCM Data Register value           */
275         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
276         unsigned int oob;        /* Non zero if operating on OOB data     */
277         char *oob_poi;           /* Place to write ECC after read back    */
278 };
279
280 /* These map to the positions used by the FCM hardware ECC generator */
281
282 /* Small Page FLASH with FMR[ECCM] = 0 */
283 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
284         .eccbytes = 3,
285         .eccpos = {6, 7, 8},
286         .oobfree = { {0, 5}, {9, 7} },
287         .oobavail = 12,
288 };
289
290 /* Small Page FLASH with FMR[ECCM] = 1 */
291 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
292         .eccbytes = 3,
293         .eccpos = {8, 9, 10},
294         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
295         .oobavail = 12,
296 };
297
298 /* Large Page FLASH with FMR[ECCM] = 0 */
299 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
300         .eccbytes = 12,
301         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
302         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
303         .oobavail = 48,
304 };
305
306 /* Large Page FLASH with FMR[ECCM] = 1 */
307 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
308         .eccbytes = 12,
309         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
310         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
311         .oobavail = 48,
312 };
313
314 /*=================================*/
315
316 /*
317  * Set up the FCM hardware block and page address fields, and the fcm
318  * structure addr field to point to the correct FCM buffer in memory
319  */
320 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
321 {
322         struct nand_chip *chip = mtd->priv;
323         struct fsl_elbc_mtd *priv = chip->priv;
324         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
325         struct elbc_regs __iomem *lbc = ctrl->regs;
326         int buf_num;
327
328         ctrl->page = page_addr;
329
330         out_be32(&lbc->fbar,
331                  page_addr >> (chip->phys_erase_shift - chip->page_shift));
332
333         if (priv->page_size) {
334                 out_be32(&lbc->fpar,
335                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
336                          (oob ? FPAR_LP_MS : 0) | column);
337                 buf_num = (page_addr & 1) << 2;
338         } else {
339                 out_be32(&lbc->fpar,
340                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
341                          (oob ? FPAR_SP_MS : 0) | column);
342                 buf_num = page_addr & 7;
343         }
344
345         ctrl->addr = priv->vbase + buf_num * 1024;
346         ctrl->index = column;
347
348         /* for OOB data point to the second half of the buffer */
349         if (oob)
350                 ctrl->index += priv->page_size ? 2048 : 512;
351
352         dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
353                             "index %x, pes %d ps %d\n",
354                  buf_num, ctrl->addr, priv->vbase, ctrl->index,
355                  chip->phys_erase_shift, chip->page_shift);
356 }
357
358 /*
359  * execute FCM command and wait for it to complete
360  */
361 static int fsl_elbc_run_command(struct mtd_info *mtd)
362 {
363         struct nand_chip *chip = mtd->priv;
364         struct fsl_elbc_mtd *priv = chip->priv;
365         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
366         struct elbc_regs __iomem *lbc = ctrl->regs;
367
368         /* Setup the FMR[OP] to execute without write protection */
369         out_be32(&lbc->fmr, priv->fmr | 3);
370         if (ctrl->use_mdr)
371                 out_be32(&lbc->mdr, ctrl->mdr);
372
373         dev_vdbg(ctrl->dev,
374                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
375                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
376         dev_vdbg(ctrl->dev,
377                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
378                  "fbcr=%08x bank=%d\n",
379                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
380                  in_be32(&lbc->fbcr), priv->bank);
381
382         /* execute special operation */
383         out_be32(&lbc->lsor, priv->bank);
384
385         /* wait for FCM complete flag or timeout */
386         ctrl->irq_status = 0;
387         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
388                            FCM_TIMEOUT_MSECS * HZ/1000);
389         ctrl->status = ctrl->irq_status;
390
391         /* store mdr value in case it was needed */
392         if (ctrl->use_mdr)
393                 ctrl->mdr = in_be32(&lbc->mdr);
394
395         ctrl->use_mdr = 0;
396
397         dev_vdbg(ctrl->dev,
398                  "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
399                  ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
400
401         /* returns 0 on success otherwise non-zero) */
402         return ctrl->status == LTESR_CC ? 0 : -EIO;
403 }
404
405 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
406 {
407         struct fsl_elbc_mtd *priv = chip->priv;
408         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
409         struct elbc_regs __iomem *lbc = ctrl->regs;
410
411         if (priv->page_size) {
412                 out_be32(&lbc->fir,
413                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
414                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
415                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
416                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
417                          (FIR_OP_RBW << FIR_OP4_SHIFT));
418
419                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
420                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
421         } else {
422                 out_be32(&lbc->fir,
423                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
424                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
425                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
426                          (FIR_OP_RBW << FIR_OP3_SHIFT));
427
428                 if (oob)
429                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
430                 else
431                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
432         }
433 }
434
435 /* cmdfunc send commands to the FCM */
436 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
437                              int column, int page_addr)
438 {
439         struct nand_chip *chip = mtd->priv;
440         struct fsl_elbc_mtd *priv = chip->priv;
441         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
442         struct elbc_regs __iomem *lbc = ctrl->regs;
443
444         ctrl->use_mdr = 0;
445
446         /* clear the read buffer */
447         ctrl->read_bytes = 0;
448         if (command != NAND_CMD_PAGEPROG)
449                 ctrl->index = 0;
450
451         switch (command) {
452         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
453         case NAND_CMD_READ1:
454                 column += 256;
455
456         /* fall-through */
457         case NAND_CMD_READ0:
458                 dev_dbg(ctrl->dev,
459                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
460                         " 0x%x, column: 0x%x.\n", page_addr, column);
461
462
463                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
464                 set_addr(mtd, 0, page_addr, 0);
465
466                 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
467                 ctrl->index += column;
468
469                 fsl_elbc_do_read(chip, 0);
470                 fsl_elbc_run_command(mtd);
471                 return;
472
473         /* READOOB reads only the OOB because no ECC is performed. */
474         case NAND_CMD_READOOB:
475                 dev_vdbg(ctrl->dev,
476                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
477                          " 0x%x, column: 0x%x.\n", page_addr, column);
478
479                 out_be32(&lbc->fbcr, mtd->oobsize - column);
480                 set_addr(mtd, column, page_addr, 1);
481
482                 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
483
484                 fsl_elbc_do_read(chip, 1);
485                 fsl_elbc_run_command(mtd);
486                 return;
487
488         /* READID must read all 5 possible bytes while CEB is active */
489         case NAND_CMD_READID:
490                 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
491
492                 out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
493                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
494                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
495                 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
496                 /* 5 bytes for manuf, device and exts */
497                 out_be32(&lbc->fbcr, 5);
498                 ctrl->read_bytes = 5;
499                 ctrl->use_mdr = 1;
500                 ctrl->mdr = 0;
501
502                 set_addr(mtd, 0, 0, 0);
503                 fsl_elbc_run_command(mtd);
504                 return;
505
506         /* ERASE1 stores the block and page address */
507         case NAND_CMD_ERASE1:
508                 dev_vdbg(ctrl->dev,
509                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
510                          "page_addr: 0x%x.\n", page_addr);
511                 set_addr(mtd, 0, page_addr, 0);
512                 return;
513
514         /* ERASE2 uses the block and page address from ERASE1 */
515         case NAND_CMD_ERASE2:
516                 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
517
518                 out_be32(&lbc->fir,
519                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
520                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
521                          (FIR_OP_CM1 << FIR_OP2_SHIFT));
522
523                 out_be32(&lbc->fcr,
524                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
525                          (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
526
527                 out_be32(&lbc->fbcr, 0);
528                 ctrl->read_bytes = 0;
529
530                 fsl_elbc_run_command(mtd);
531                 return;
532
533         /* SEQIN sets up the addr buffer and all registers except the length */
534         case NAND_CMD_SEQIN: {
535                 __be32 fcr;
536                 dev_vdbg(ctrl->dev,
537                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
538                          "page_addr: 0x%x, column: 0x%x.\n",
539                          page_addr, column);
540
541                 ctrl->column = column;
542                 ctrl->oob = 0;
543
544                 fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
545                       (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
546
547                 if (priv->page_size) {
548                         out_be32(&lbc->fir,
549                                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
550                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
551                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
552                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
553                                  (FIR_OP_CW1 << FIR_OP4_SHIFT));
554
555                         fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
556                 } else {
557                         out_be32(&lbc->fir,
558                                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
559                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
560                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
561                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
562                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
563                                  (FIR_OP_CW1 << FIR_OP5_SHIFT));
564
565                         if (column >= mtd->writesize) {
566                                 /* OOB area --> READOOB */
567                                 column -= mtd->writesize;
568                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
569                                 ctrl->oob = 1;
570                         } else if (column < 256) {
571                                 /* First 256 bytes --> READ0 */
572                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
573                         } else {
574                                 /* Second 256 bytes --> READ1 */
575                                 fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
576                         }
577                 }
578
579                 out_be32(&lbc->fcr, fcr);
580                 set_addr(mtd, column, page_addr, ctrl->oob);
581                 return;
582         }
583
584         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
585         case NAND_CMD_PAGEPROG: {
586                 int full_page;
587                 dev_vdbg(ctrl->dev,
588                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
589                          "writing %d bytes.\n", ctrl->index);
590
591                 /* if the write did not start at 0 or is not a full page
592                  * then set the exact length, otherwise use a full page
593                  * write so the HW generates the ECC.
594                  */
595                 if (ctrl->oob || ctrl->column != 0 ||
596                     ctrl->index != mtd->writesize + mtd->oobsize) {
597                         out_be32(&lbc->fbcr, ctrl->index);
598                         full_page = 0;
599                 } else {
600                         out_be32(&lbc->fbcr, 0);
601                         full_page = 1;
602                 }
603
604                 fsl_elbc_run_command(mtd);
605
606                 /* Read back the page in order to fill in the ECC for the
607                  * caller.  Is this really needed?
608                  */
609                 if (full_page && ctrl->oob_poi) {
610                         out_be32(&lbc->fbcr, 3);
611                         set_addr(mtd, 6, page_addr, 1);
612
613                         ctrl->read_bytes = mtd->writesize + 9;
614
615                         fsl_elbc_do_read(chip, 1);
616                         fsl_elbc_run_command(mtd);
617
618                         memcpy_fromio(ctrl->oob_poi + 6,
619                                       &ctrl->addr[ctrl->index], 3);
620                         ctrl->index += 3;
621                 }
622
623                 ctrl->oob_poi = NULL;
624                 return;
625         }
626
627         /* CMD_STATUS must read the status byte while CEB is active */
628         /* Note - it does not wait for the ready line */
629         case NAND_CMD_STATUS:
630                 out_be32(&lbc->fir,
631                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
632                          (FIR_OP_RBW << FIR_OP1_SHIFT));
633                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
634                 out_be32(&lbc->fbcr, 1);
635                 set_addr(mtd, 0, 0, 0);
636                 ctrl->read_bytes = 1;
637
638                 fsl_elbc_run_command(mtd);
639
640                 /* The chip always seems to report that it is
641                  * write-protected, even when it is not.
642                  */
643                 setbits8(ctrl->addr, NAND_STATUS_WP);
644                 return;
645
646         /* RESET without waiting for the ready line */
647         case NAND_CMD_RESET:
648                 dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
649                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
650                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
651                 fsl_elbc_run_command(mtd);
652                 return;
653
654         default:
655                 dev_err(ctrl->dev,
656                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
657                         command);
658         }
659 }
660
661 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
662 {
663         /* The hardware does not seem to support multiple
664          * chips per bank.
665          */
666 }
667
668 /*
669  * Write buf to the FCM Controller Data Buffer
670  */
671 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
672 {
673         struct nand_chip *chip = mtd->priv;
674         struct fsl_elbc_mtd *priv = chip->priv;
675         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
676         unsigned int bufsize = mtd->writesize + mtd->oobsize;
677
678         if (len < 0) {
679                 dev_err(ctrl->dev, "write_buf of %d bytes", len);
680                 ctrl->status = 0;
681                 return;
682         }
683
684         if ((unsigned int)len > bufsize - ctrl->index) {
685                 dev_err(ctrl->dev,
686                         "write_buf beyond end of buffer "
687                         "(%d requested, %u available)\n",
688                         len, bufsize - ctrl->index);
689                 len = bufsize - ctrl->index;
690         }
691
692         memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
693         ctrl->index += len;
694 }
695
696 /*
697  * read a byte from either the FCM hardware buffer if it has any data left
698  * otherwise issue a command to read a single byte.
699  */
700 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
701 {
702         struct nand_chip *chip = mtd->priv;
703         struct fsl_elbc_mtd *priv = chip->priv;
704         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
705
706         /* If there are still bytes in the FCM, then use the next byte. */
707         if (ctrl->index < ctrl->read_bytes)
708                 return in_8(&ctrl->addr[ctrl->index++]);
709
710         dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
711         return ERR_BYTE;
712 }
713
714 /*
715  * Read from the FCM Controller Data Buffer
716  */
717 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
718 {
719         struct nand_chip *chip = mtd->priv;
720         struct fsl_elbc_mtd *priv = chip->priv;
721         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
722         int avail;
723
724         if (len < 0)
725                 return;
726
727         avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
728         memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
729         ctrl->index += avail;
730
731         if (len > avail)
732                 dev_err(ctrl->dev,
733                         "read_buf beyond end of buffer "
734                         "(%d requested, %d available)\n",
735                         len, avail);
736 }
737
738 /*
739  * Verify buffer against the FCM Controller Data Buffer
740  */
741 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
742 {
743         struct nand_chip *chip = mtd->priv;
744         struct fsl_elbc_mtd *priv = chip->priv;
745         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
746         int i;
747
748         if (len < 0) {
749                 dev_err(ctrl->dev, "write_buf of %d bytes", len);
750                 return -EINVAL;
751         }
752
753         if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
754                 dev_err(ctrl->dev,
755                         "verify_buf beyond end of buffer "
756                         "(%d requested, %u available)\n",
757                         len, ctrl->read_bytes - ctrl->index);
758
759                 ctrl->index = ctrl->read_bytes;
760                 return -EINVAL;
761         }
762
763         for (i = 0; i < len; i++)
764                 if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
765                         break;
766
767         ctrl->index += len;
768         return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
769 }
770
771 /* This function is called after Program and Erase Operations to
772  * check for success or failure.
773  */
774 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
775 {
776         struct fsl_elbc_mtd *priv = chip->priv;
777         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
778         struct elbc_regs __iomem *lbc = ctrl->regs;
779
780         if (ctrl->status != LTESR_CC)
781                 return NAND_STATUS_FAIL;
782
783         /* Use READ_STATUS command, but wait for the device to be ready */
784         ctrl->use_mdr = 0;
785         out_be32(&lbc->fir,
786                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
787                  (FIR_OP_RBW << FIR_OP1_SHIFT));
788         out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
789         out_be32(&lbc->fbcr, 1);
790         set_addr(mtd, 0, 0, 0);
791         ctrl->read_bytes = 1;
792
793         fsl_elbc_run_command(mtd);
794
795         if (ctrl->status != LTESR_CC)
796                 return NAND_STATUS_FAIL;
797
798         /* The chip always seems to report that it is
799          * write-protected, even when it is not.
800          */
801         setbits8(ctrl->addr, NAND_STATUS_WP);
802         return fsl_elbc_read_byte(mtd);
803 }
804
805 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
806 {
807         struct nand_chip *chip = mtd->priv;
808         struct fsl_elbc_mtd *priv = chip->priv;
809         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
810         struct elbc_regs __iomem *lbc = ctrl->regs;
811         unsigned int al;
812
813         /* calculate FMR Address Length field */
814         al = 0;
815         if (chip->pagemask & 0xffff0000)
816                 al++;
817         if (chip->pagemask & 0xff000000)
818                 al++;
819
820         /* add to ECCM mode set in fsl_elbc_init */
821         priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
822                      (al << FMR_AL_SHIFT);
823
824         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
825                 chip->numchips);
826         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
827                 chip->chipsize);
828         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
829                 chip->pagemask);
830         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
831                 chip->chip_delay);
832         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
833                 chip->badblockpos);
834         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
835                 chip->chip_shift);
836         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
837                 chip->page_shift);
838         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
839                 chip->phys_erase_shift);
840         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
841                 chip->ecclayout);
842         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
843                 chip->ecc.mode);
844         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
845                 chip->ecc.steps);
846         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
847                 chip->ecc.bytes);
848         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
849                 chip->ecc.total);
850         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
851                 chip->ecc.layout);
852         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
853         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
854         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
855                 mtd->erasesize);
856         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
857                 mtd->writesize);
858         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
859                 mtd->oobsize);
860
861         /* adjust Option Register and ECC to match Flash page size */
862         if (mtd->writesize == 512) {
863                 priv->page_size = 0;
864                 clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
865         } else if (mtd->writesize == 2048) {
866                 priv->page_size = 1;
867                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
868                 /* adjust ecc setup if needed */
869                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
870                     BR_DECC_CHK_GEN) {
871                         chip->ecc.size = 512;
872                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
873                                            &fsl_elbc_oob_lp_eccm1 :
874                                            &fsl_elbc_oob_lp_eccm0;
875                         mtd->ecclayout = chip->ecc.layout;
876                         mtd->oobavail = chip->ecc.layout->oobavail;
877                 }
878         } else {
879                 dev_err(ctrl->dev,
880                         "fsl_elbc_init: page size %d is not supported\n",
881                         mtd->writesize);
882                 return -1;
883         }
884
885         /* The default u-boot configuration on MPC8313ERDB causes errors;
886          * more delay is needed.  This should be safe for other boards
887          * as well.
888          */
889         setbits32(&lbc->bank[priv->bank].or, 0x70);
890         return 0;
891 }
892
893 static int fsl_elbc_read_page(struct mtd_info *mtd,
894                               struct nand_chip *chip,
895                               uint8_t *buf)
896 {
897         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
898         fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
899
900         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
901                 mtd->ecc_stats.failed++;
902
903         return 0;
904 }
905
906 /* ECC will be calculated automatically, and errors will be detected in
907  * waitfunc.
908  */
909 static void fsl_elbc_write_page(struct mtd_info *mtd,
910                                 struct nand_chip *chip,
911                                 const uint8_t *buf)
912 {
913         struct fsl_elbc_mtd *priv = chip->priv;
914         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
915
916         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
917         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
918
919         ctrl->oob_poi = chip->oob_poi;
920 }
921
922 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
923 {
924         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
925         struct elbc_regs __iomem *lbc = ctrl->regs;
926         struct nand_chip *chip = &priv->chip;
927
928         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
929
930         /* Fill in fsl_elbc_mtd structure */
931         priv->mtd.priv = chip;
932         priv->mtd.owner = THIS_MODULE;
933         priv->fmr = 0; /* rest filled in later */
934
935         /* fill in nand_chip structure */
936         /* set up function call table */
937         chip->read_byte = fsl_elbc_read_byte;
938         chip->write_buf = fsl_elbc_write_buf;
939         chip->read_buf = fsl_elbc_read_buf;
940         chip->verify_buf = fsl_elbc_verify_buf;
941         chip->select_chip = fsl_elbc_select_chip;
942         chip->cmdfunc = fsl_elbc_cmdfunc;
943         chip->waitfunc = fsl_elbc_wait;
944
945         /* set up nand options */
946         chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
947
948         chip->controller = &ctrl->controller;
949         chip->priv = priv;
950
951         chip->ecc.read_page = fsl_elbc_read_page;
952         chip->ecc.write_page = fsl_elbc_write_page;
953
954         /* If CS Base Register selects full hardware ECC then use it */
955         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
956             BR_DECC_CHK_GEN) {
957                 chip->ecc.mode = NAND_ECC_HW;
958                 /* put in small page settings and adjust later if needed */
959                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
960                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
961                 chip->ecc.size = 512;
962                 chip->ecc.bytes = 3;
963         } else {
964                 /* otherwise fall back to default software ECC */
965                 chip->ecc.mode = NAND_ECC_SOFT;
966         }
967
968         return 0;
969 }
970
971 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
972 {
973         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
974
975         nand_release(&priv->mtd);
976
977         if (priv->vbase)
978                 iounmap(priv->vbase);
979
980         ctrl->chips[priv->bank] = NULL;
981         kfree(priv);
982
983         return 0;
984 }
985
986 static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
987                                struct device_node *node)
988 {
989         struct elbc_regs __iomem *lbc = ctrl->regs;
990         struct fsl_elbc_mtd *priv;
991         struct resource res;
992 #ifdef CONFIG_MTD_PARTITIONS
993         static const char *part_probe_types[]
994                 = { "cmdlinepart", "RedBoot", NULL };
995         struct mtd_partition *parts;
996 #endif
997         int ret;
998         int bank;
999
1000         /* get, allocate and map the memory resource */
1001         ret = of_address_to_resource(node, 0, &res);
1002         if (ret) {
1003                 dev_err(ctrl->dev, "failed to get resource\n");
1004                 return ret;
1005         }
1006
1007         /* find which chip select it is connected to */
1008         for (bank = 0; bank < MAX_BANKS; bank++)
1009                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
1010                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
1011                     (in_be32(&lbc->bank[bank].br) &
1012                      in_be32(&lbc->bank[bank].or) & BR_BA)
1013                      == res.start)
1014                         break;
1015
1016         if (bank >= MAX_BANKS) {
1017                 dev_err(ctrl->dev, "address did not match any chip selects\n");
1018                 return -ENODEV;
1019         }
1020
1021         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1022         if (!priv)
1023                 return -ENOMEM;
1024
1025         ctrl->chips[bank] = priv;
1026         priv->bank = bank;
1027         priv->ctrl = ctrl;
1028         priv->dev = ctrl->dev;
1029
1030         priv->vbase = ioremap(res.start, res.end - res.start + 1);
1031         if (!priv->vbase) {
1032                 dev_err(ctrl->dev, "failed to map chip region\n");
1033                 ret = -ENOMEM;
1034                 goto err;
1035         }
1036
1037         ret = fsl_elbc_chip_init(priv);
1038         if (ret)
1039                 goto err;
1040
1041         ret = nand_scan_ident(&priv->mtd, 1);
1042         if (ret)
1043                 goto err;
1044
1045         ret = fsl_elbc_chip_init_tail(&priv->mtd);
1046         if (ret)
1047                 goto err;
1048
1049         ret = nand_scan_tail(&priv->mtd);
1050         if (ret)
1051                 goto err;
1052
1053 #ifdef CONFIG_MTD_PARTITIONS
1054         /* First look for RedBoot table or partitions on the command
1055          * line, these take precedence over device tree information */
1056         ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
1057         if (ret < 0)
1058                 goto err;
1059
1060 #ifdef CONFIG_MTD_OF_PARTS
1061         if (ret == 0) {
1062                 ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
1063                                               node, &parts);
1064                 if (ret < 0)
1065                         goto err;
1066         }
1067 #endif
1068
1069         if (ret > 0)
1070                 add_mtd_partitions(&priv->mtd, parts, ret);
1071         else
1072 #endif
1073                 add_mtd_device(&priv->mtd);
1074
1075         printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
1076                res.start, priv->bank);
1077         return 0;
1078
1079 err:
1080         fsl_elbc_chip_remove(priv);
1081         return ret;
1082 }
1083
1084 static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
1085 {
1086         struct elbc_regs __iomem *lbc = ctrl->regs;
1087
1088         /* clear event registers */
1089         setbits32(&lbc->ltesr, LTESR_NAND_MASK);
1090         out_be32(&lbc->lteatr, 0);
1091
1092         /* Enable interrupts for any detected events */
1093         out_be32(&lbc->lteir, LTESR_NAND_MASK);
1094
1095         ctrl->read_bytes = 0;
1096         ctrl->index = 0;
1097         ctrl->addr = NULL;
1098
1099         return 0;
1100 }
1101
1102 static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
1103 {
1104         struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
1105         int i;
1106
1107         for (i = 0; i < MAX_BANKS; i++)
1108                 if (ctrl->chips[i])
1109                         fsl_elbc_chip_remove(ctrl->chips[i]);
1110
1111         if (ctrl->irq)
1112                 free_irq(ctrl->irq, ctrl);
1113
1114         if (ctrl->regs)
1115                 iounmap(ctrl->regs);
1116
1117         dev_set_drvdata(&ofdev->dev, NULL);
1118         kfree(ctrl);
1119         return 0;
1120 }
1121
1122 /* NOTE: This interrupt is also used to report other localbus events,
1123  * such as transaction errors on other chipselects.  If we want to
1124  * capture those, we'll need to move the IRQ code into a shared
1125  * LBC driver.
1126  */
1127
1128 static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
1129 {
1130         struct fsl_elbc_ctrl *ctrl = data;
1131         struct elbc_regs __iomem *lbc = ctrl->regs;
1132         __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
1133
1134         if (status) {
1135                 out_be32(&lbc->ltesr, status);
1136                 out_be32(&lbc->lteatr, 0);
1137
1138                 ctrl->irq_status = status;
1139                 smp_wmb();
1140                 wake_up(&ctrl->irq_wait);
1141
1142                 return IRQ_HANDLED;
1143         }
1144
1145         return IRQ_NONE;
1146 }
1147
1148 /* fsl_elbc_ctrl_probe
1149  *
1150  * called by device layer when it finds a device matching
1151  * one our driver can handled. This code allocates all of
1152  * the resources needed for the controller only.  The
1153  * resources for the NAND banks themselves are allocated
1154  * in the chip probe function.
1155 */
1156
1157 static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
1158                                          const struct of_device_id *match)
1159 {
1160         struct device_node *child;
1161         struct fsl_elbc_ctrl *ctrl;
1162         int ret;
1163
1164         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1165         if (!ctrl)
1166                 return -ENOMEM;
1167
1168         dev_set_drvdata(&ofdev->dev, ctrl);
1169
1170         spin_lock_init(&ctrl->controller.lock);
1171         init_waitqueue_head(&ctrl->controller.wq);
1172         init_waitqueue_head(&ctrl->irq_wait);
1173
1174         ctrl->regs = of_iomap(ofdev->node, 0);
1175         if (!ctrl->regs) {
1176                 dev_err(&ofdev->dev, "failed to get memory region\n");
1177                 ret = -ENODEV;
1178                 goto err;
1179         }
1180
1181         ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
1182         if (ctrl->irq == NO_IRQ) {
1183                 dev_err(&ofdev->dev, "failed to get irq resource\n");
1184                 ret = -ENODEV;
1185                 goto err;
1186         }
1187
1188         ctrl->dev = &ofdev->dev;
1189
1190         ret = fsl_elbc_ctrl_init(ctrl);
1191         if (ret < 0)
1192                 goto err;
1193
1194         ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1195         if (ret != 0) {
1196                 dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1197                         ctrl->irq);
1198                 ret = ctrl->irq;
1199                 goto err;
1200         }
1201
1202         for_each_child_of_node(ofdev->node, child)
1203                 if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1204                         fsl_elbc_chip_probe(ctrl, child);
1205
1206         return 0;
1207
1208 err:
1209         fsl_elbc_ctrl_remove(ofdev);
1210         return ret;
1211 }
1212
1213 static const struct of_device_id fsl_elbc_match[] = {
1214         {
1215                 .compatible = "fsl,elbc",
1216         },
1217         {}
1218 };
1219
1220 static struct of_platform_driver fsl_elbc_ctrl_driver = {
1221         .driver = {
1222                 .name   = "fsl-elbc",
1223         },
1224         .match_table = fsl_elbc_match,
1225         .probe = fsl_elbc_ctrl_probe,
1226         .remove = __devexit_p(fsl_elbc_ctrl_remove),
1227 };
1228
1229 static int __init fsl_elbc_init(void)
1230 {
1231         return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1232 }
1233
1234 static void __exit fsl_elbc_exit(void)
1235 {
1236         of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1237 }
1238
1239 module_init(fsl_elbc_init);
1240 module_exit(fsl_elbc_exit);
1241
1242 MODULE_LICENSE("GPL");
1243 MODULE_AUTHOR("Freescale");
1244 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");