KVM: x86: use the fast way to invalidate all pages
[pandora-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
203
204         access &= ACC_WRITE_MASK | ACC_USER_MASK;
205
206         sp->mmio_cached = true;
207         trace_mark_mmio_spte(sptep, gfn, access);
208         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209 }
210
211 static bool is_mmio_spte(u64 spte)
212 {
213         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214 }
215
216 static gfn_t get_mmio_spte_gfn(u64 spte)
217 {
218         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219 }
220
221 static unsigned get_mmio_spte_access(u64 spte)
222 {
223         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224 }
225
226 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227 {
228         if (unlikely(is_noslot_pfn(pfn))) {
229                 mark_mmio_spte(sptep, gfn, access);
230                 return true;
231         }
232
233         return false;
234 }
235
236 static inline u64 rsvd_bits(int s, int e)
237 {
238         return ((1ULL << (e - s + 1)) - 1) << s;
239 }
240
241 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
242                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
243 {
244         shadow_user_mask = user_mask;
245         shadow_accessed_mask = accessed_mask;
246         shadow_dirty_mask = dirty_mask;
247         shadow_nx_mask = nx_mask;
248         shadow_x_mask = x_mask;
249 }
250 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251
252 static int is_cpuid_PSE36(void)
253 {
254         return 1;
255 }
256
257 static int is_nx(struct kvm_vcpu *vcpu)
258 {
259         return vcpu->arch.efer & EFER_NX;
260 }
261
262 static int is_shadow_present_pte(u64 pte)
263 {
264         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
265 }
266
267 static int is_large_pte(u64 pte)
268 {
269         return pte & PT_PAGE_SIZE_MASK;
270 }
271
272 static int is_dirty_gpte(unsigned long pte)
273 {
274         return pte & PT_DIRTY_MASK;
275 }
276
277 static int is_rmap_spte(u64 pte)
278 {
279         return is_shadow_present_pte(pte);
280 }
281
282 static int is_last_spte(u64 pte, int level)
283 {
284         if (level == PT_PAGE_TABLE_LEVEL)
285                 return 1;
286         if (is_large_pte(pte))
287                 return 1;
288         return 0;
289 }
290
291 static pfn_t spte_to_pfn(u64 pte)
292 {
293         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
294 }
295
296 static gfn_t pse36_gfn_delta(u32 gpte)
297 {
298         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299
300         return (gpte & PT32_DIR_PSE36_MASK) << shift;
301 }
302
303 #ifdef CONFIG_X86_64
304 static void __set_spte(u64 *sptep, u64 spte)
305 {
306         *sptep = spte;
307 }
308
309 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
310 {
311         *sptep = spte;
312 }
313
314 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315 {
316         return xchg(sptep, spte);
317 }
318
319 static u64 __get_spte_lockless(u64 *sptep)
320 {
321         return ACCESS_ONCE(*sptep);
322 }
323
324 static bool __check_direct_spte_mmio_pf(u64 spte)
325 {
326         /* It is valid if the spte is zapped. */
327         return spte == 0ull;
328 }
329 #else
330 union split_spte {
331         struct {
332                 u32 spte_low;
333                 u32 spte_high;
334         };
335         u64 spte;
336 };
337
338 static void count_spte_clear(u64 *sptep, u64 spte)
339 {
340         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
341
342         if (is_shadow_present_pte(spte))
343                 return;
344
345         /* Ensure the spte is completely set before we increase the count */
346         smp_wmb();
347         sp->clear_spte_count++;
348 }
349
350 static void __set_spte(u64 *sptep, u64 spte)
351 {
352         union split_spte *ssptep, sspte;
353
354         ssptep = (union split_spte *)sptep;
355         sspte = (union split_spte)spte;
356
357         ssptep->spte_high = sspte.spte_high;
358
359         /*
360          * If we map the spte from nonpresent to present, We should store
361          * the high bits firstly, then set present bit, so cpu can not
362          * fetch this spte while we are setting the spte.
363          */
364         smp_wmb();
365
366         ssptep->spte_low = sspte.spte_low;
367 }
368
369 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370 {
371         union split_spte *ssptep, sspte;
372
373         ssptep = (union split_spte *)sptep;
374         sspte = (union split_spte)spte;
375
376         ssptep->spte_low = sspte.spte_low;
377
378         /*
379          * If we map the spte from present to nonpresent, we should clear
380          * present bit firstly to avoid vcpu fetch the old high bits.
381          */
382         smp_wmb();
383
384         ssptep->spte_high = sspte.spte_high;
385         count_spte_clear(sptep, spte);
386 }
387
388 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389 {
390         union split_spte *ssptep, sspte, orig;
391
392         ssptep = (union split_spte *)sptep;
393         sspte = (union split_spte)spte;
394
395         /* xchg acts as a barrier before the setting of the high bits */
396         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
397         orig.spte_high = ssptep->spte_high;
398         ssptep->spte_high = sspte.spte_high;
399         count_spte_clear(sptep, spte);
400
401         return orig.spte;
402 }
403
404 /*
405  * The idea using the light way get the spte on x86_32 guest is from
406  * gup_get_pte(arch/x86/mm/gup.c).
407  * The difference is we can not catch the spte tlb flush if we leave
408  * guest mode, so we emulate it by increase clear_spte_count when spte
409  * is cleared.
410  */
411 static u64 __get_spte_lockless(u64 *sptep)
412 {
413         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
414         union split_spte spte, *orig = (union split_spte *)sptep;
415         int count;
416
417 retry:
418         count = sp->clear_spte_count;
419         smp_rmb();
420
421         spte.spte_low = orig->spte_low;
422         smp_rmb();
423
424         spte.spte_high = orig->spte_high;
425         smp_rmb();
426
427         if (unlikely(spte.spte_low != orig->spte_low ||
428               count != sp->clear_spte_count))
429                 goto retry;
430
431         return spte.spte;
432 }
433
434 static bool __check_direct_spte_mmio_pf(u64 spte)
435 {
436         union split_spte sspte = (union split_spte)spte;
437         u32 high_mmio_mask = shadow_mmio_mask >> 32;
438
439         /* It is valid if the spte is zapped. */
440         if (spte == 0ull)
441                 return true;
442
443         /* It is valid if the spte is being zapped. */
444         if (sspte.spte_low == 0ull &&
445             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446                 return true;
447
448         return false;
449 }
450 #endif
451
452 static bool spte_is_locklessly_modifiable(u64 spte)
453 {
454         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
456 }
457
458 static bool spte_has_volatile_bits(u64 spte)
459 {
460         /*
461          * Always atomicly update spte if it can be updated
462          * out of mmu-lock, it can ensure dirty bit is not lost,
463          * also, it can help us to get a stable is_writable_pte()
464          * to ensure tlb flush is not missed.
465          */
466         if (spte_is_locklessly_modifiable(spte))
467                 return true;
468
469         if (!shadow_accessed_mask)
470                 return false;
471
472         if (!is_shadow_present_pte(spte))
473                 return false;
474
475         if ((spte & shadow_accessed_mask) &&
476               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
477                 return false;
478
479         return true;
480 }
481
482 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483 {
484         return (old_spte & bit_mask) && !(new_spte & bit_mask);
485 }
486
487 /* Rules for using mmu_spte_set:
488  * Set the sptep from nonpresent to present.
489  * Note: the sptep being assigned *must* be either not present
490  * or in a state where the hardware will not attempt to update
491  * the spte.
492  */
493 static void mmu_spte_set(u64 *sptep, u64 new_spte)
494 {
495         WARN_ON(is_shadow_present_pte(*sptep));
496         __set_spte(sptep, new_spte);
497 }
498
499 /* Rules for using mmu_spte_update:
500  * Update the state bits, it means the mapped pfn is not changged.
501  *
502  * Whenever we overwrite a writable spte with a read-only one we
503  * should flush remote TLBs. Otherwise rmap_write_protect
504  * will find a read-only spte, even though the writable spte
505  * might be cached on a CPU's TLB, the return value indicates this
506  * case.
507  */
508 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
509 {
510         u64 old_spte = *sptep;
511         bool ret = false;
512
513         WARN_ON(!is_rmap_spte(new_spte));
514
515         if (!is_shadow_present_pte(old_spte)) {
516                 mmu_spte_set(sptep, new_spte);
517                 return ret;
518         }
519
520         if (!spte_has_volatile_bits(old_spte))
521                 __update_clear_spte_fast(sptep, new_spte);
522         else
523                 old_spte = __update_clear_spte_slow(sptep, new_spte);
524
525         /*
526          * For the spte updated out of mmu-lock is safe, since
527          * we always atomicly update it, see the comments in
528          * spte_has_volatile_bits().
529          */
530         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531                 ret = true;
532
533         if (!shadow_accessed_mask)
534                 return ret;
535
536         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
540
541         return ret;
542 }
543
544 /*
545  * Rules for using mmu_spte_clear_track_bits:
546  * It sets the sptep from present to nonpresent, and track the
547  * state bits, it is used to clear the last level sptep.
548  */
549 static int mmu_spte_clear_track_bits(u64 *sptep)
550 {
551         pfn_t pfn;
552         u64 old_spte = *sptep;
553
554         if (!spte_has_volatile_bits(old_spte))
555                 __update_clear_spte_fast(sptep, 0ull);
556         else
557                 old_spte = __update_clear_spte_slow(sptep, 0ull);
558
559         if (!is_rmap_spte(old_spte))
560                 return 0;
561
562         pfn = spte_to_pfn(old_spte);
563
564         /*
565          * KVM does not hold the refcount of the page used by
566          * kvm mmu, before reclaiming the page, we should
567          * unmap it from mmu first.
568          */
569         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570
571         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572                 kvm_set_pfn_accessed(pfn);
573         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574                 kvm_set_pfn_dirty(pfn);
575         return 1;
576 }
577
578 /*
579  * Rules for using mmu_spte_clear_no_track:
580  * Directly clear spte without caring the state bits of sptep,
581  * it is used to set the upper level spte.
582  */
583 static void mmu_spte_clear_no_track(u64 *sptep)
584 {
585         __update_clear_spte_fast(sptep, 0ull);
586 }
587
588 static u64 mmu_spte_get_lockless(u64 *sptep)
589 {
590         return __get_spte_lockless(sptep);
591 }
592
593 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594 {
595         /*
596          * Prevent page table teardown by making any free-er wait during
597          * kvm_flush_remote_tlbs() IPI to all active vcpus.
598          */
599         local_irq_disable();
600         vcpu->mode = READING_SHADOW_PAGE_TABLES;
601         /*
602          * Make sure a following spte read is not reordered ahead of the write
603          * to vcpu->mode.
604          */
605         smp_mb();
606 }
607
608 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609 {
610         /*
611          * Make sure the write to vcpu->mode is not reordered in front of
612          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
613          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614          */
615         smp_mb();
616         vcpu->mode = OUTSIDE_GUEST_MODE;
617         local_irq_enable();
618 }
619
620 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
621                                   struct kmem_cache *base_cache, int min)
622 {
623         void *obj;
624
625         if (cache->nobjs >= min)
626                 return 0;
627         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
628                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
629                 if (!obj)
630                         return -ENOMEM;
631                 cache->objects[cache->nobjs++] = obj;
632         }
633         return 0;
634 }
635
636 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637 {
638         return cache->nobjs;
639 }
640
641 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642                                   struct kmem_cache *cache)
643 {
644         while (mc->nobjs)
645                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
646 }
647
648 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
649                                        int min)
650 {
651         void *page;
652
653         if (cache->nobjs >= min)
654                 return 0;
655         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
656                 page = (void *)__get_free_page(GFP_KERNEL);
657                 if (!page)
658                         return -ENOMEM;
659                 cache->objects[cache->nobjs++] = page;
660         }
661         return 0;
662 }
663
664 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665 {
666         while (mc->nobjs)
667                 free_page((unsigned long)mc->objects[--mc->nobjs]);
668 }
669
670 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
671 {
672         int r;
673
674         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
675                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
676         if (r)
677                 goto out;
678         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
679         if (r)
680                 goto out;
681         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
682                                    mmu_page_header_cache, 4);
683 out:
684         return r;
685 }
686
687 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688 {
689         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690                                 pte_list_desc_cache);
691         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
692         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693                                 mmu_page_header_cache);
694 }
695
696 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
697 {
698         void *p;
699
700         BUG_ON(!mc->nobjs);
701         p = mc->objects[--mc->nobjs];
702         return p;
703 }
704
705 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
706 {
707         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
708 }
709
710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711 {
712         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
713 }
714
715 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716 {
717         if (!sp->role.direct)
718                 return sp->gfns[index];
719
720         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721 }
722
723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724 {
725         if (sp->role.direct)
726                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727         else
728                 sp->gfns[index] = gfn;
729 }
730
731 /*
732  * Return the pointer to the large page information for a given gfn,
733  * handling slots that are not large page aligned.
734  */
735 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736                                               struct kvm_memory_slot *slot,
737                                               int level)
738 {
739         unsigned long idx;
740
741         idx = gfn_to_index(gfn, slot->base_gfn, level);
742         return &slot->arch.lpage_info[level - 2][idx];
743 }
744
745 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746 {
747         struct kvm_memory_slot *slot;
748         struct kvm_lpage_info *linfo;
749         int i;
750
751         slot = gfn_to_memslot(kvm, gfn);
752         for (i = PT_DIRECTORY_LEVEL;
753              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
754                 linfo = lpage_info_slot(gfn, slot, i);
755                 linfo->write_count += 1;
756         }
757         kvm->arch.indirect_shadow_pages++;
758 }
759
760 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761 {
762         struct kvm_memory_slot *slot;
763         struct kvm_lpage_info *linfo;
764         int i;
765
766         slot = gfn_to_memslot(kvm, gfn);
767         for (i = PT_DIRECTORY_LEVEL;
768              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
769                 linfo = lpage_info_slot(gfn, slot, i);
770                 linfo->write_count -= 1;
771                 WARN_ON(linfo->write_count < 0);
772         }
773         kvm->arch.indirect_shadow_pages--;
774 }
775
776 static int has_wrprotected_page(struct kvm *kvm,
777                                 gfn_t gfn,
778                                 int level)
779 {
780         struct kvm_memory_slot *slot;
781         struct kvm_lpage_info *linfo;
782
783         slot = gfn_to_memslot(kvm, gfn);
784         if (slot) {
785                 linfo = lpage_info_slot(gfn, slot, level);
786                 return linfo->write_count;
787         }
788
789         return 1;
790 }
791
792 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
793 {
794         unsigned long page_size;
795         int i, ret = 0;
796
797         page_size = kvm_host_page_size(kvm, gfn);
798
799         for (i = PT_PAGE_TABLE_LEVEL;
800              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801                 if (page_size >= KVM_HPAGE_SIZE(i))
802                         ret = i;
803                 else
804                         break;
805         }
806
807         return ret;
808 }
809
810 static struct kvm_memory_slot *
811 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812                             bool no_dirty_log)
813 {
814         struct kvm_memory_slot *slot;
815
816         slot = gfn_to_memslot(vcpu->kvm, gfn);
817         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818               (no_dirty_log && slot->dirty_bitmap))
819                 slot = NULL;
820
821         return slot;
822 }
823
824 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825 {
826         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
827 }
828
829 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830 {
831         int host_level, level, max_level;
832
833         host_level = host_mapping_level(vcpu->kvm, large_gfn);
834
835         if (host_level == PT_PAGE_TABLE_LEVEL)
836                 return host_level;
837
838         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
839
840         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
841                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842                         break;
843
844         return level - 1;
845 }
846
847 /*
848  * Pte mapping structures:
849  *
850  * If pte_list bit zero is zero, then pte_list point to the spte.
851  *
852  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853  * pte_list_desc containing more mappings.
854  *
855  * Returns the number of pte entries before the spte was added or zero if
856  * the spte was not added.
857  *
858  */
859 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860                         unsigned long *pte_list)
861 {
862         struct pte_list_desc *desc;
863         int i, count = 0;
864
865         if (!*pte_list) {
866                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867                 *pte_list = (unsigned long)spte;
868         } else if (!(*pte_list & 1)) {
869                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870                 desc = mmu_alloc_pte_list_desc(vcpu);
871                 desc->sptes[0] = (u64 *)*pte_list;
872                 desc->sptes[1] = spte;
873                 *pte_list = (unsigned long)desc | 1;
874                 ++count;
875         } else {
876                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
879                         desc = desc->more;
880                         count += PTE_LIST_EXT;
881                 }
882                 if (desc->sptes[PTE_LIST_EXT-1]) {
883                         desc->more = mmu_alloc_pte_list_desc(vcpu);
884                         desc = desc->more;
885                 }
886                 for (i = 0; desc->sptes[i]; ++i)
887                         ++count;
888                 desc->sptes[i] = spte;
889         }
890         return count;
891 }
892
893 static void
894 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895                            int i, struct pte_list_desc *prev_desc)
896 {
897         int j;
898
899         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
900                 ;
901         desc->sptes[i] = desc->sptes[j];
902         desc->sptes[j] = NULL;
903         if (j != 0)
904                 return;
905         if (!prev_desc && !desc->more)
906                 *pte_list = (unsigned long)desc->sptes[0];
907         else
908                 if (prev_desc)
909                         prev_desc->more = desc->more;
910                 else
911                         *pte_list = (unsigned long)desc->more | 1;
912         mmu_free_pte_list_desc(desc);
913 }
914
915 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
916 {
917         struct pte_list_desc *desc;
918         struct pte_list_desc *prev_desc;
919         int i;
920
921         if (!*pte_list) {
922                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
923                 BUG();
924         } else if (!(*pte_list & 1)) {
925                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
926                 if ((u64 *)*pte_list != spte) {
927                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
928                         BUG();
929                 }
930                 *pte_list = 0;
931         } else {
932                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
933                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
934                 prev_desc = NULL;
935                 while (desc) {
936                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
937                                 if (desc->sptes[i] == spte) {
938                                         pte_list_desc_remove_entry(pte_list,
939                                                                desc, i,
940                                                                prev_desc);
941                                         return;
942                                 }
943                         prev_desc = desc;
944                         desc = desc->more;
945                 }
946                 pr_err("pte_list_remove: %p many->many\n", spte);
947                 BUG();
948         }
949 }
950
951 typedef void (*pte_list_walk_fn) (u64 *spte);
952 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953 {
954         struct pte_list_desc *desc;
955         int i;
956
957         if (!*pte_list)
958                 return;
959
960         if (!(*pte_list & 1))
961                 return fn((u64 *)*pte_list);
962
963         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964         while (desc) {
965                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966                         fn(desc->sptes[i]);
967                 desc = desc->more;
968         }
969 }
970
971 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
972                                     struct kvm_memory_slot *slot)
973 {
974         unsigned long idx;
975
976         idx = gfn_to_index(gfn, slot->base_gfn, level);
977         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
978 }
979
980 /*
981  * Take gfn and return the reverse mapping to it.
982  */
983 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984 {
985         struct kvm_memory_slot *slot;
986
987         slot = gfn_to_memslot(kvm, gfn);
988         return __gfn_to_rmap(gfn, level, slot);
989 }
990
991 static bool rmap_can_add(struct kvm_vcpu *vcpu)
992 {
993         struct kvm_mmu_memory_cache *cache;
994
995         cache = &vcpu->arch.mmu_pte_list_desc_cache;
996         return mmu_memory_cache_free_objects(cache);
997 }
998
999 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000 {
1001         struct kvm_mmu_page *sp;
1002         unsigned long *rmapp;
1003
1004         sp = page_header(__pa(spte));
1005         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007         return pte_list_add(vcpu, spte, rmapp);
1008 }
1009
1010 static void rmap_remove(struct kvm *kvm, u64 *spte)
1011 {
1012         struct kvm_mmu_page *sp;
1013         gfn_t gfn;
1014         unsigned long *rmapp;
1015
1016         sp = page_header(__pa(spte));
1017         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019         pte_list_remove(spte, rmapp);
1020 }
1021
1022 /*
1023  * Used by the following functions to iterate through the sptes linked by a
1024  * rmap.  All fields are private and not assumed to be used outside.
1025  */
1026 struct rmap_iterator {
1027         /* private fields */
1028         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1029         int pos;                        /* index of the sptep */
1030 };
1031
1032 /*
1033  * Iteration must be started by this function.  This should also be used after
1034  * removing/dropping sptes from the rmap link because in such cases the
1035  * information in the itererator may not be valid.
1036  *
1037  * Returns sptep if found, NULL otherwise.
1038  */
1039 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040 {
1041         if (!rmap)
1042                 return NULL;
1043
1044         if (!(rmap & 1)) {
1045                 iter->desc = NULL;
1046                 return (u64 *)rmap;
1047         }
1048
1049         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050         iter->pos = 0;
1051         return iter->desc->sptes[iter->pos];
1052 }
1053
1054 /*
1055  * Must be used with a valid iterator: e.g. after rmap_get_first().
1056  *
1057  * Returns sptep if found, NULL otherwise.
1058  */
1059 static u64 *rmap_get_next(struct rmap_iterator *iter)
1060 {
1061         if (iter->desc) {
1062                 if (iter->pos < PTE_LIST_EXT - 1) {
1063                         u64 *sptep;
1064
1065                         ++iter->pos;
1066                         sptep = iter->desc->sptes[iter->pos];
1067                         if (sptep)
1068                                 return sptep;
1069                 }
1070
1071                 iter->desc = iter->desc->more;
1072
1073                 if (iter->desc) {
1074                         iter->pos = 0;
1075                         /* desc->sptes[0] cannot be NULL */
1076                         return iter->desc->sptes[iter->pos];
1077                 }
1078         }
1079
1080         return NULL;
1081 }
1082
1083 static void drop_spte(struct kvm *kvm, u64 *sptep)
1084 {
1085         if (mmu_spte_clear_track_bits(sptep))
1086                 rmap_remove(kvm, sptep);
1087 }
1088
1089
1090 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091 {
1092         if (is_large_pte(*sptep)) {
1093                 WARN_ON(page_header(__pa(sptep))->role.level ==
1094                         PT_PAGE_TABLE_LEVEL);
1095                 drop_spte(kvm, sptep);
1096                 --kvm->stat.lpages;
1097                 return true;
1098         }
1099
1100         return false;
1101 }
1102
1103 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104 {
1105         if (__drop_large_spte(vcpu->kvm, sptep))
1106                 kvm_flush_remote_tlbs(vcpu->kvm);
1107 }
1108
1109 /*
1110  * Write-protect on the specified @sptep, @pt_protect indicates whether
1111  * spte writ-protection is caused by protecting shadow page table.
1112  * @flush indicates whether tlb need be flushed.
1113  *
1114  * Note: write protection is difference between drity logging and spte
1115  * protection:
1116  * - for dirty logging, the spte can be set to writable at anytime if
1117  *   its dirty bitmap is properly set.
1118  * - for spte protection, the spte can be writable only after unsync-ing
1119  *   shadow page.
1120  *
1121  * Return true if the spte is dropped.
1122  */
1123 static bool
1124 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1125 {
1126         u64 spte = *sptep;
1127
1128         if (!is_writable_pte(spte) &&
1129               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1130                 return false;
1131
1132         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
1134         if (__drop_large_spte(kvm, sptep)) {
1135                 *flush |= true;
1136                 return true;
1137         }
1138
1139         if (pt_protect)
1140                 spte &= ~SPTE_MMU_WRITEABLE;
1141         spte = spte & ~PT_WRITABLE_MASK;
1142
1143         *flush |= mmu_spte_update(sptep, spte);
1144         return false;
1145 }
1146
1147 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1148                                  bool pt_protect)
1149 {
1150         u64 *sptep;
1151         struct rmap_iterator iter;
1152         bool flush = false;
1153
1154         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1156                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157                         sptep = rmap_get_first(*rmapp, &iter);
1158                         continue;
1159                 }
1160
1161                 sptep = rmap_get_next(&iter);
1162         }
1163
1164         return flush;
1165 }
1166
1167 /**
1168  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169  * @kvm: kvm instance
1170  * @slot: slot to protect
1171  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172  * @mask: indicates which pages we should protect
1173  *
1174  * Used when we do not need to care about huge page mappings: e.g. during dirty
1175  * logging we do not have any such mappings.
1176  */
1177 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178                                      struct kvm_memory_slot *slot,
1179                                      gfn_t gfn_offset, unsigned long mask)
1180 {
1181         unsigned long *rmapp;
1182
1183         while (mask) {
1184                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185                                       PT_PAGE_TABLE_LEVEL, slot);
1186                 __rmap_write_protect(kvm, rmapp, false);
1187
1188                 /* clear the first set bit */
1189                 mask &= mask - 1;
1190         }
1191 }
1192
1193 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1194 {
1195         struct kvm_memory_slot *slot;
1196         unsigned long *rmapp;
1197         int i;
1198         bool write_protected = false;
1199
1200         slot = gfn_to_memslot(kvm, gfn);
1201
1202         for (i = PT_PAGE_TABLE_LEVEL;
1203              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204                 rmapp = __gfn_to_rmap(gfn, i, slot);
1205                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1206         }
1207
1208         return write_protected;
1209 }
1210
1211 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1212                            struct kvm_memory_slot *slot, unsigned long data)
1213 {
1214         u64 *sptep;
1215         struct rmap_iterator iter;
1216         int need_tlb_flush = 0;
1217
1218         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222                 drop_spte(kvm, sptep);
1223                 need_tlb_flush = 1;
1224         }
1225
1226         return need_tlb_flush;
1227 }
1228
1229 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1230                              struct kvm_memory_slot *slot, unsigned long data)
1231 {
1232         u64 *sptep;
1233         struct rmap_iterator iter;
1234         int need_flush = 0;
1235         u64 new_spte;
1236         pte_t *ptep = (pte_t *)data;
1237         pfn_t new_pfn;
1238
1239         WARN_ON(pte_huge(*ptep));
1240         new_pfn = pte_pfn(*ptep);
1241
1242         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243                 BUG_ON(!is_shadow_present_pte(*sptep));
1244                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
1246                 need_flush = 1;
1247
1248                 if (pte_write(*ptep)) {
1249                         drop_spte(kvm, sptep);
1250                         sptep = rmap_get_first(*rmapp, &iter);
1251                 } else {
1252                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1253                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255                         new_spte &= ~PT_WRITABLE_MASK;
1256                         new_spte &= ~SPTE_HOST_WRITEABLE;
1257                         new_spte &= ~shadow_accessed_mask;
1258
1259                         mmu_spte_clear_track_bits(sptep);
1260                         mmu_spte_set(sptep, new_spte);
1261                         sptep = rmap_get_next(&iter);
1262                 }
1263         }
1264
1265         if (need_flush)
1266                 kvm_flush_remote_tlbs(kvm);
1267
1268         return 0;
1269 }
1270
1271 static int kvm_handle_hva_range(struct kvm *kvm,
1272                                 unsigned long start,
1273                                 unsigned long end,
1274                                 unsigned long data,
1275                                 int (*handler)(struct kvm *kvm,
1276                                                unsigned long *rmapp,
1277                                                struct kvm_memory_slot *slot,
1278                                                unsigned long data))
1279 {
1280         int j;
1281         int ret = 0;
1282         struct kvm_memslots *slots;
1283         struct kvm_memory_slot *memslot;
1284
1285         slots = kvm_memslots(kvm);
1286
1287         kvm_for_each_memslot(memslot, slots) {
1288                 unsigned long hva_start, hva_end;
1289                 gfn_t gfn_start, gfn_end;
1290
1291                 hva_start = max(start, memslot->userspace_addr);
1292                 hva_end = min(end, memslot->userspace_addr +
1293                                         (memslot->npages << PAGE_SHIFT));
1294                 if (hva_start >= hva_end)
1295                         continue;
1296                 /*
1297                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1298                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1299                  */
1300                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1301                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1302
1303                 for (j = PT_PAGE_TABLE_LEVEL;
1304                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305                         unsigned long idx, idx_end;
1306                         unsigned long *rmapp;
1307
1308                         /*
1309                          * {idx(page_j) | page_j intersects with
1310                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311                          */
1312                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1314
1315                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1316
1317                         for (; idx <= idx_end; ++idx)
1318                                 ret |= handler(kvm, rmapp++, memslot, data);
1319                 }
1320         }
1321
1322         return ret;
1323 }
1324
1325 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326                           unsigned long data,
1327                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1328                                          struct kvm_memory_slot *slot,
1329                                          unsigned long data))
1330 {
1331         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1332 }
1333
1334 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335 {
1336         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337 }
1338
1339 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340 {
1341         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342 }
1343
1344 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345 {
1346         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1347 }
1348
1349 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1350                          struct kvm_memory_slot *slot, unsigned long data)
1351 {
1352         u64 *sptep;
1353         struct rmap_iterator uninitialized_var(iter);
1354         int young = 0;
1355
1356         /*
1357          * In case of absence of EPT Access and Dirty Bits supports,
1358          * emulate the accessed bit for EPT, by checking if this page has
1359          * an EPT mapping, and clearing it if it does. On the next access,
1360          * a new EPT mapping will be established.
1361          * This has some overhead, but not as much as the cost of swapping
1362          * out actively used pages or breaking up actively used hugepages.
1363          */
1364         if (!shadow_accessed_mask) {
1365                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366                 goto out;
1367         }
1368
1369         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370              sptep = rmap_get_next(&iter)) {
1371                 BUG_ON(!is_shadow_present_pte(*sptep));
1372
1373                 if (*sptep & shadow_accessed_mask) {
1374                         young = 1;
1375                         clear_bit((ffs(shadow_accessed_mask) - 1),
1376                                  (unsigned long *)sptep);
1377                 }
1378         }
1379 out:
1380         /* @data has hva passed to kvm_age_hva(). */
1381         trace_kvm_age_page(data, slot, young);
1382         return young;
1383 }
1384
1385 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1386                               struct kvm_memory_slot *slot, unsigned long data)
1387 {
1388         u64 *sptep;
1389         struct rmap_iterator iter;
1390         int young = 0;
1391
1392         /*
1393          * If there's no access bit in the secondary pte set by the
1394          * hardware it's up to gup-fast/gup to set the access bit in
1395          * the primary pte or in the page structure.
1396          */
1397         if (!shadow_accessed_mask)
1398                 goto out;
1399
1400         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401              sptep = rmap_get_next(&iter)) {
1402                 BUG_ON(!is_shadow_present_pte(*sptep));
1403
1404                 if (*sptep & shadow_accessed_mask) {
1405                         young = 1;
1406                         break;
1407                 }
1408         }
1409 out:
1410         return young;
1411 }
1412
1413 #define RMAP_RECYCLE_THRESHOLD 1000
1414
1415 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1416 {
1417         unsigned long *rmapp;
1418         struct kvm_mmu_page *sp;
1419
1420         sp = page_header(__pa(spte));
1421
1422         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1423
1424         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1425         kvm_flush_remote_tlbs(vcpu->kvm);
1426 }
1427
1428 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429 {
1430         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1431 }
1432
1433 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434 {
1435         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436 }
1437
1438 #ifdef MMU_DEBUG
1439 static int is_empty_shadow_page(u64 *spt)
1440 {
1441         u64 *pos;
1442         u64 *end;
1443
1444         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1445                 if (is_shadow_present_pte(*pos)) {
1446                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1447                                pos, *pos);
1448                         return 0;
1449                 }
1450         return 1;
1451 }
1452 #endif
1453
1454 /*
1455  * This value is the sum of all of the kvm instances's
1456  * kvm->arch.n_used_mmu_pages values.  We need a global,
1457  * aggregate version in order to make the slab shrinker
1458  * faster
1459  */
1460 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461 {
1462         kvm->arch.n_used_mmu_pages += nr;
1463         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464 }
1465
1466 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1467 {
1468         ASSERT(is_empty_shadow_page(sp->spt));
1469         hlist_del(&sp->hash_link);
1470         list_del(&sp->link);
1471         free_page((unsigned long)sp->spt);
1472         if (!sp->role.direct)
1473                 free_page((unsigned long)sp->gfns);
1474         kmem_cache_free(mmu_page_header_cache, sp);
1475 }
1476
1477 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478 {
1479         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1480 }
1481
1482 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1483                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1484 {
1485         if (!parent_pte)
1486                 return;
1487
1488         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1489 }
1490
1491 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1492                                        u64 *parent_pte)
1493 {
1494         pte_list_remove(parent_pte, &sp->parent_ptes);
1495 }
1496
1497 static void drop_parent_pte(struct kvm_mmu_page *sp,
1498                             u64 *parent_pte)
1499 {
1500         mmu_page_remove_parent_pte(sp, parent_pte);
1501         mmu_spte_clear_no_track(parent_pte);
1502 }
1503
1504 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1505                                                u64 *parent_pte, int direct)
1506 {
1507         struct kvm_mmu_page *sp;
1508
1509         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1510         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1511         if (!direct)
1512                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1513         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1514
1515         /*
1516          * The active_mmu_pages list is the FIFO list, do not move the
1517          * page until it is zapped. kvm_zap_obsolete_pages depends on
1518          * this feature. See the comments in kvm_zap_obsolete_pages().
1519          */
1520         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1521         sp->parent_ptes = 0;
1522         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1523         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1524         return sp;
1525 }
1526
1527 static void mark_unsync(u64 *spte);
1528 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1529 {
1530         pte_list_walk(&sp->parent_ptes, mark_unsync);
1531 }
1532
1533 static void mark_unsync(u64 *spte)
1534 {
1535         struct kvm_mmu_page *sp;
1536         unsigned int index;
1537
1538         sp = page_header(__pa(spte));
1539         index = spte - sp->spt;
1540         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1541                 return;
1542         if (sp->unsync_children++)
1543                 return;
1544         kvm_mmu_mark_parents_unsync(sp);
1545 }
1546
1547 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1548                                struct kvm_mmu_page *sp)
1549 {
1550         return 1;
1551 }
1552
1553 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1554 {
1555 }
1556
1557 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1558                                  struct kvm_mmu_page *sp, u64 *spte,
1559                                  const void *pte)
1560 {
1561         WARN_ON(1);
1562 }
1563
1564 #define KVM_PAGE_ARRAY_NR 16
1565
1566 struct kvm_mmu_pages {
1567         struct mmu_page_and_offset {
1568                 struct kvm_mmu_page *sp;
1569                 unsigned int idx;
1570         } page[KVM_PAGE_ARRAY_NR];
1571         unsigned int nr;
1572 };
1573
1574 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1575                          int idx)
1576 {
1577         int i;
1578
1579         if (sp->unsync)
1580                 for (i=0; i < pvec->nr; i++)
1581                         if (pvec->page[i].sp == sp)
1582                                 return 0;
1583
1584         pvec->page[pvec->nr].sp = sp;
1585         pvec->page[pvec->nr].idx = idx;
1586         pvec->nr++;
1587         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1588 }
1589
1590 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1591                            struct kvm_mmu_pages *pvec)
1592 {
1593         int i, ret, nr_unsync_leaf = 0;
1594
1595         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1596                 struct kvm_mmu_page *child;
1597                 u64 ent = sp->spt[i];
1598
1599                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1600                         goto clear_child_bitmap;
1601
1602                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1603
1604                 if (child->unsync_children) {
1605                         if (mmu_pages_add(pvec, child, i))
1606                                 return -ENOSPC;
1607
1608                         ret = __mmu_unsync_walk(child, pvec);
1609                         if (!ret)
1610                                 goto clear_child_bitmap;
1611                         else if (ret > 0)
1612                                 nr_unsync_leaf += ret;
1613                         else
1614                                 return ret;
1615                 } else if (child->unsync) {
1616                         nr_unsync_leaf++;
1617                         if (mmu_pages_add(pvec, child, i))
1618                                 return -ENOSPC;
1619                 } else
1620                          goto clear_child_bitmap;
1621
1622                 continue;
1623
1624 clear_child_bitmap:
1625                 __clear_bit(i, sp->unsync_child_bitmap);
1626                 sp->unsync_children--;
1627                 WARN_ON((int)sp->unsync_children < 0);
1628         }
1629
1630
1631         return nr_unsync_leaf;
1632 }
1633
1634 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1635                            struct kvm_mmu_pages *pvec)
1636 {
1637         if (!sp->unsync_children)
1638                 return 0;
1639
1640         mmu_pages_add(pvec, sp, 0);
1641         return __mmu_unsync_walk(sp, pvec);
1642 }
1643
1644 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1645 {
1646         WARN_ON(!sp->unsync);
1647         trace_kvm_mmu_sync_page(sp);
1648         sp->unsync = 0;
1649         --kvm->stat.mmu_unsync;
1650 }
1651
1652 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1653                                     struct list_head *invalid_list);
1654 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1655                                     struct list_head *invalid_list);
1656
1657 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1658         hlist_for_each_entry(_sp,                                       \
1659           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1660                 if ((_sp)->gfn != (_gfn)) {} else
1661
1662 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1663         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1664                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1665
1666 /* @sp->gfn should be write-protected at the call site */
1667 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1668                            struct list_head *invalid_list, bool clear_unsync)
1669 {
1670         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1671                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1672                 return 1;
1673         }
1674
1675         if (clear_unsync)
1676                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1677
1678         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1679                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1680                 return 1;
1681         }
1682
1683         kvm_mmu_flush_tlb(vcpu);
1684         return 0;
1685 }
1686
1687 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1688                                    struct kvm_mmu_page *sp)
1689 {
1690         LIST_HEAD(invalid_list);
1691         int ret;
1692
1693         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1694         if (ret)
1695                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1696
1697         return ret;
1698 }
1699
1700 #ifdef CONFIG_KVM_MMU_AUDIT
1701 #include "mmu_audit.c"
1702 #else
1703 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1704 static void mmu_audit_disable(void) { }
1705 #endif
1706
1707 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1708                          struct list_head *invalid_list)
1709 {
1710         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1711 }
1712
1713 /* @gfn should be write-protected at the call site */
1714 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1715 {
1716         struct kvm_mmu_page *s;
1717         LIST_HEAD(invalid_list);
1718         bool flush = false;
1719
1720         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1721                 if (!s->unsync)
1722                         continue;
1723
1724                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1725                 kvm_unlink_unsync_page(vcpu->kvm, s);
1726                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1727                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1728                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1729                         continue;
1730                 }
1731                 flush = true;
1732         }
1733
1734         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1735         if (flush)
1736                 kvm_mmu_flush_tlb(vcpu);
1737 }
1738
1739 struct mmu_page_path {
1740         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1741         unsigned int idx[PT64_ROOT_LEVEL-1];
1742 };
1743
1744 #define for_each_sp(pvec, sp, parents, i)                       \
1745                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1746                         sp = pvec.page[i].sp;                   \
1747                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1748                         i = mmu_pages_next(&pvec, &parents, i))
1749
1750 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1751                           struct mmu_page_path *parents,
1752                           int i)
1753 {
1754         int n;
1755
1756         for (n = i+1; n < pvec->nr; n++) {
1757                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1758
1759                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1760                         parents->idx[0] = pvec->page[n].idx;
1761                         return n;
1762                 }
1763
1764                 parents->parent[sp->role.level-2] = sp;
1765                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1766         }
1767
1768         return n;
1769 }
1770
1771 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1772 {
1773         struct kvm_mmu_page *sp;
1774         unsigned int level = 0;
1775
1776         do {
1777                 unsigned int idx = parents->idx[level];
1778
1779                 sp = parents->parent[level];
1780                 if (!sp)
1781                         return;
1782
1783                 --sp->unsync_children;
1784                 WARN_ON((int)sp->unsync_children < 0);
1785                 __clear_bit(idx, sp->unsync_child_bitmap);
1786                 level++;
1787         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1788 }
1789
1790 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1791                                struct mmu_page_path *parents,
1792                                struct kvm_mmu_pages *pvec)
1793 {
1794         parents->parent[parent->role.level-1] = NULL;
1795         pvec->nr = 0;
1796 }
1797
1798 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1799                               struct kvm_mmu_page *parent)
1800 {
1801         int i;
1802         struct kvm_mmu_page *sp;
1803         struct mmu_page_path parents;
1804         struct kvm_mmu_pages pages;
1805         LIST_HEAD(invalid_list);
1806
1807         kvm_mmu_pages_init(parent, &parents, &pages);
1808         while (mmu_unsync_walk(parent, &pages)) {
1809                 bool protected = false;
1810
1811                 for_each_sp(pages, sp, parents, i)
1812                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1813
1814                 if (protected)
1815                         kvm_flush_remote_tlbs(vcpu->kvm);
1816
1817                 for_each_sp(pages, sp, parents, i) {
1818                         kvm_sync_page(vcpu, sp, &invalid_list);
1819                         mmu_pages_clear_parents(&parents);
1820                 }
1821                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1822                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1823                 kvm_mmu_pages_init(parent, &parents, &pages);
1824         }
1825 }
1826
1827 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1828 {
1829         int i;
1830
1831         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1832                 sp->spt[i] = 0ull;
1833 }
1834
1835 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1836 {
1837         sp->write_flooding_count = 0;
1838 }
1839
1840 static void clear_sp_write_flooding_count(u64 *spte)
1841 {
1842         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1843
1844         __clear_sp_write_flooding_count(sp);
1845 }
1846
1847 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1848 {
1849         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1850 }
1851
1852 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1853                                              gfn_t gfn,
1854                                              gva_t gaddr,
1855                                              unsigned level,
1856                                              int direct,
1857                                              unsigned access,
1858                                              u64 *parent_pte)
1859 {
1860         union kvm_mmu_page_role role;
1861         unsigned quadrant;
1862         struct kvm_mmu_page *sp;
1863         bool need_sync = false;
1864
1865         role = vcpu->arch.mmu.base_role;
1866         role.level = level;
1867         role.direct = direct;
1868         if (role.direct)
1869                 role.cr4_pae = 0;
1870         role.access = access;
1871         if (!vcpu->arch.mmu.direct_map
1872             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1873                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1874                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1875                 role.quadrant = quadrant;
1876         }
1877         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1878                 if (!need_sync && sp->unsync)
1879                         need_sync = true;
1880
1881                 if (sp->role.word != role.word)
1882                         continue;
1883
1884                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1885                         break;
1886
1887                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1888                 if (sp->unsync_children) {
1889                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1890                         kvm_mmu_mark_parents_unsync(sp);
1891                 } else if (sp->unsync)
1892                         kvm_mmu_mark_parents_unsync(sp);
1893
1894                 __clear_sp_write_flooding_count(sp);
1895                 trace_kvm_mmu_get_page(sp, false);
1896                 return sp;
1897         }
1898         ++vcpu->kvm->stat.mmu_cache_miss;
1899         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1900         if (!sp)
1901                 return sp;
1902         sp->gfn = gfn;
1903         sp->role = role;
1904         hlist_add_head(&sp->hash_link,
1905                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1906         if (!direct) {
1907                 if (rmap_write_protect(vcpu->kvm, gfn))
1908                         kvm_flush_remote_tlbs(vcpu->kvm);
1909                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1910                         kvm_sync_pages(vcpu, gfn);
1911
1912                 account_shadowed(vcpu->kvm, gfn);
1913         }
1914         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1915         init_shadow_page_table(sp);
1916         trace_kvm_mmu_get_page(sp, true);
1917         return sp;
1918 }
1919
1920 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1921                              struct kvm_vcpu *vcpu, u64 addr)
1922 {
1923         iterator->addr = addr;
1924         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1925         iterator->level = vcpu->arch.mmu.shadow_root_level;
1926
1927         if (iterator->level == PT64_ROOT_LEVEL &&
1928             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1929             !vcpu->arch.mmu.direct_map)
1930                 --iterator->level;
1931
1932         if (iterator->level == PT32E_ROOT_LEVEL) {
1933                 iterator->shadow_addr
1934                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1935                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1936                 --iterator->level;
1937                 if (!iterator->shadow_addr)
1938                         iterator->level = 0;
1939         }
1940 }
1941
1942 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1943 {
1944         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1945                 return false;
1946
1947         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1948         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1949         return true;
1950 }
1951
1952 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1953                                u64 spte)
1954 {
1955         if (is_last_spte(spte, iterator->level)) {
1956                 iterator->level = 0;
1957                 return;
1958         }
1959
1960         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1961         --iterator->level;
1962 }
1963
1964 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1965 {
1966         return __shadow_walk_next(iterator, *iterator->sptep);
1967 }
1968
1969 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1970 {
1971         u64 spte;
1972
1973         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1974                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1975
1976         mmu_spte_set(sptep, spte);
1977 }
1978
1979 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1980                                    unsigned direct_access)
1981 {
1982         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1983                 struct kvm_mmu_page *child;
1984
1985                 /*
1986                  * For the direct sp, if the guest pte's dirty bit
1987                  * changed form clean to dirty, it will corrupt the
1988                  * sp's access: allow writable in the read-only sp,
1989                  * so we should update the spte at this point to get
1990                  * a new sp with the correct access.
1991                  */
1992                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1993                 if (child->role.access == direct_access)
1994                         return;
1995
1996                 drop_parent_pte(child, sptep);
1997                 kvm_flush_remote_tlbs(vcpu->kvm);
1998         }
1999 }
2000
2001 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2002                              u64 *spte)
2003 {
2004         u64 pte;
2005         struct kvm_mmu_page *child;
2006
2007         pte = *spte;
2008         if (is_shadow_present_pte(pte)) {
2009                 if (is_last_spte(pte, sp->role.level)) {
2010                         drop_spte(kvm, spte);
2011                         if (is_large_pte(pte))
2012                                 --kvm->stat.lpages;
2013                 } else {
2014                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2015                         drop_parent_pte(child, spte);
2016                 }
2017                 return true;
2018         }
2019
2020         if (is_mmio_spte(pte))
2021                 mmu_spte_clear_no_track(spte);
2022
2023         return false;
2024 }
2025
2026 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2027                                          struct kvm_mmu_page *sp)
2028 {
2029         unsigned i;
2030
2031         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2032                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2033 }
2034
2035 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2036 {
2037         mmu_page_remove_parent_pte(sp, parent_pte);
2038 }
2039
2040 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2041 {
2042         u64 *sptep;
2043         struct rmap_iterator iter;
2044
2045         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2046                 drop_parent_pte(sp, sptep);
2047 }
2048
2049 static int mmu_zap_unsync_children(struct kvm *kvm,
2050                                    struct kvm_mmu_page *parent,
2051                                    struct list_head *invalid_list)
2052 {
2053         int i, zapped = 0;
2054         struct mmu_page_path parents;
2055         struct kvm_mmu_pages pages;
2056
2057         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2058                 return 0;
2059
2060         kvm_mmu_pages_init(parent, &parents, &pages);
2061         while (mmu_unsync_walk(parent, &pages)) {
2062                 struct kvm_mmu_page *sp;
2063
2064                 for_each_sp(pages, sp, parents, i) {
2065                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2066                         mmu_pages_clear_parents(&parents);
2067                         zapped++;
2068                 }
2069                 kvm_mmu_pages_init(parent, &parents, &pages);
2070         }
2071
2072         return zapped;
2073 }
2074
2075 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2076                                     struct list_head *invalid_list)
2077 {
2078         int ret;
2079
2080         trace_kvm_mmu_prepare_zap_page(sp);
2081         ++kvm->stat.mmu_shadow_zapped;
2082         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2083         kvm_mmu_page_unlink_children(kvm, sp);
2084         kvm_mmu_unlink_parents(kvm, sp);
2085
2086         if (!sp->role.invalid && !sp->role.direct)
2087                 unaccount_shadowed(kvm, sp->gfn);
2088
2089         if (sp->unsync)
2090                 kvm_unlink_unsync_page(kvm, sp);
2091         if (!sp->root_count) {
2092                 /* Count self */
2093                 ret++;
2094                 list_move(&sp->link, invalid_list);
2095                 kvm_mod_used_mmu_pages(kvm, -1);
2096         } else {
2097                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2098                 kvm_reload_remote_mmus(kvm);
2099         }
2100
2101         sp->role.invalid = 1;
2102         return ret;
2103 }
2104
2105 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2106                                     struct list_head *invalid_list)
2107 {
2108         struct kvm_mmu_page *sp, *nsp;
2109
2110         if (list_empty(invalid_list))
2111                 return;
2112
2113         /*
2114          * wmb: make sure everyone sees our modifications to the page tables
2115          * rmb: make sure we see changes to vcpu->mode
2116          */
2117         smp_mb();
2118
2119         /*
2120          * Wait for all vcpus to exit guest mode and/or lockless shadow
2121          * page table walks.
2122          */
2123         kvm_flush_remote_tlbs(kvm);
2124
2125         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2126                 WARN_ON(!sp->role.invalid || sp->root_count);
2127                 kvm_mmu_free_page(sp);
2128         }
2129 }
2130
2131 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2132                                         struct list_head *invalid_list)
2133 {
2134         struct kvm_mmu_page *sp;
2135
2136         if (list_empty(&kvm->arch.active_mmu_pages))
2137                 return false;
2138
2139         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2140                         struct kvm_mmu_page, link);
2141         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2142
2143         return true;
2144 }
2145
2146 /*
2147  * Changing the number of mmu pages allocated to the vm
2148  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2149  */
2150 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2151 {
2152         LIST_HEAD(invalid_list);
2153
2154         spin_lock(&kvm->mmu_lock);
2155
2156         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2157                 /* Need to free some mmu pages to achieve the goal. */
2158                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2159                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2160                                 break;
2161
2162                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2163                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2164         }
2165
2166         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2167
2168         spin_unlock(&kvm->mmu_lock);
2169 }
2170
2171 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2172 {
2173         struct kvm_mmu_page *sp;
2174         LIST_HEAD(invalid_list);
2175         int r;
2176
2177         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2178         r = 0;
2179         spin_lock(&kvm->mmu_lock);
2180         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2181                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2182                          sp->role.word);
2183                 r = 1;
2184                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2185         }
2186         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2187         spin_unlock(&kvm->mmu_lock);
2188
2189         return r;
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2192
2193 /*
2194  * The function is based on mtrr_type_lookup() in
2195  * arch/x86/kernel/cpu/mtrr/generic.c
2196  */
2197 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2198                          u64 start, u64 end)
2199 {
2200         int i;
2201         u64 base, mask;
2202         u8 prev_match, curr_match;
2203         int num_var_ranges = KVM_NR_VAR_MTRR;
2204
2205         if (!mtrr_state->enabled)
2206                 return 0xFF;
2207
2208         /* Make end inclusive end, instead of exclusive */
2209         end--;
2210
2211         /* Look in fixed ranges. Just return the type as per start */
2212         if (mtrr_state->have_fixed && (start < 0x100000)) {
2213                 int idx;
2214
2215                 if (start < 0x80000) {
2216                         idx = 0;
2217                         idx += (start >> 16);
2218                         return mtrr_state->fixed_ranges[idx];
2219                 } else if (start < 0xC0000) {
2220                         idx = 1 * 8;
2221                         idx += ((start - 0x80000) >> 14);
2222                         return mtrr_state->fixed_ranges[idx];
2223                 } else if (start < 0x1000000) {
2224                         idx = 3 * 8;
2225                         idx += ((start - 0xC0000) >> 12);
2226                         return mtrr_state->fixed_ranges[idx];
2227                 }
2228         }
2229
2230         /*
2231          * Look in variable ranges
2232          * Look of multiple ranges matching this address and pick type
2233          * as per MTRR precedence
2234          */
2235         if (!(mtrr_state->enabled & 2))
2236                 return mtrr_state->def_type;
2237
2238         prev_match = 0xFF;
2239         for (i = 0; i < num_var_ranges; ++i) {
2240                 unsigned short start_state, end_state;
2241
2242                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2243                         continue;
2244
2245                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2246                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2247                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2248                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2249
2250                 start_state = ((start & mask) == (base & mask));
2251                 end_state = ((end & mask) == (base & mask));
2252                 if (start_state != end_state)
2253                         return 0xFE;
2254
2255                 if ((start & mask) != (base & mask))
2256                         continue;
2257
2258                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2259                 if (prev_match == 0xFF) {
2260                         prev_match = curr_match;
2261                         continue;
2262                 }
2263
2264                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2265                     curr_match == MTRR_TYPE_UNCACHABLE)
2266                         return MTRR_TYPE_UNCACHABLE;
2267
2268                 if ((prev_match == MTRR_TYPE_WRBACK &&
2269                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2270                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2271                      curr_match == MTRR_TYPE_WRBACK)) {
2272                         prev_match = MTRR_TYPE_WRTHROUGH;
2273                         curr_match = MTRR_TYPE_WRTHROUGH;
2274                 }
2275
2276                 if (prev_match != curr_match)
2277                         return MTRR_TYPE_UNCACHABLE;
2278         }
2279
2280         if (prev_match != 0xFF)
2281                 return prev_match;
2282
2283         return mtrr_state->def_type;
2284 }
2285
2286 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2287 {
2288         u8 mtrr;
2289
2290         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2291                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2292         if (mtrr == 0xfe || mtrr == 0xff)
2293                 mtrr = MTRR_TYPE_WRBACK;
2294         return mtrr;
2295 }
2296 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2297
2298 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2299 {
2300         trace_kvm_mmu_unsync_page(sp);
2301         ++vcpu->kvm->stat.mmu_unsync;
2302         sp->unsync = 1;
2303
2304         kvm_mmu_mark_parents_unsync(sp);
2305 }
2306
2307 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2308 {
2309         struct kvm_mmu_page *s;
2310
2311         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2312                 if (s->unsync)
2313                         continue;
2314                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2315                 __kvm_unsync_page(vcpu, s);
2316         }
2317 }
2318
2319 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2320                                   bool can_unsync)
2321 {
2322         struct kvm_mmu_page *s;
2323         bool need_unsync = false;
2324
2325         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2326                 if (!can_unsync)
2327                         return 1;
2328
2329                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2330                         return 1;
2331
2332                 if (!s->unsync)
2333                         need_unsync = true;
2334         }
2335         if (need_unsync)
2336                 kvm_unsync_pages(vcpu, gfn);
2337         return 0;
2338 }
2339
2340 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2341                     unsigned pte_access, int level,
2342                     gfn_t gfn, pfn_t pfn, bool speculative,
2343                     bool can_unsync, bool host_writable)
2344 {
2345         u64 spte;
2346         int ret = 0;
2347
2348         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2349                 return 0;
2350
2351         spte = PT_PRESENT_MASK;
2352         if (!speculative)
2353                 spte |= shadow_accessed_mask;
2354
2355         if (pte_access & ACC_EXEC_MASK)
2356                 spte |= shadow_x_mask;
2357         else
2358                 spte |= shadow_nx_mask;
2359
2360         if (pte_access & ACC_USER_MASK)
2361                 spte |= shadow_user_mask;
2362
2363         if (level > PT_PAGE_TABLE_LEVEL)
2364                 spte |= PT_PAGE_SIZE_MASK;
2365         if (tdp_enabled)
2366                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2367                         kvm_is_mmio_pfn(pfn));
2368
2369         if (host_writable)
2370                 spte |= SPTE_HOST_WRITEABLE;
2371         else
2372                 pte_access &= ~ACC_WRITE_MASK;
2373
2374         spte |= (u64)pfn << PAGE_SHIFT;
2375
2376         if (pte_access & ACC_WRITE_MASK) {
2377
2378                 /*
2379                  * Other vcpu creates new sp in the window between
2380                  * mapping_level() and acquiring mmu-lock. We can
2381                  * allow guest to retry the access, the mapping can
2382                  * be fixed if guest refault.
2383                  */
2384                 if (level > PT_PAGE_TABLE_LEVEL &&
2385                     has_wrprotected_page(vcpu->kvm, gfn, level))
2386                         goto done;
2387
2388                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2389
2390                 /*
2391                  * Optimization: for pte sync, if spte was writable the hash
2392                  * lookup is unnecessary (and expensive). Write protection
2393                  * is responsibility of mmu_get_page / kvm_sync_page.
2394                  * Same reasoning can be applied to dirty page accounting.
2395                  */
2396                 if (!can_unsync && is_writable_pte(*sptep))
2397                         goto set_pte;
2398
2399                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2400                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2401                                  __func__, gfn);
2402                         ret = 1;
2403                         pte_access &= ~ACC_WRITE_MASK;
2404                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2405                 }
2406         }
2407
2408         if (pte_access & ACC_WRITE_MASK)
2409                 mark_page_dirty(vcpu->kvm, gfn);
2410
2411 set_pte:
2412         if (mmu_spte_update(sptep, spte))
2413                 kvm_flush_remote_tlbs(vcpu->kvm);
2414 done:
2415         return ret;
2416 }
2417
2418 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2419                          unsigned pte_access, int write_fault, int *emulate,
2420                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2421                          bool host_writable)
2422 {
2423         int was_rmapped = 0;
2424         int rmap_count;
2425
2426         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2427                  *sptep, write_fault, gfn);
2428
2429         if (is_rmap_spte(*sptep)) {
2430                 /*
2431                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2432                  * the parent of the now unreachable PTE.
2433                  */
2434                 if (level > PT_PAGE_TABLE_LEVEL &&
2435                     !is_large_pte(*sptep)) {
2436                         struct kvm_mmu_page *child;
2437                         u64 pte = *sptep;
2438
2439                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2440                         drop_parent_pte(child, sptep);
2441                         kvm_flush_remote_tlbs(vcpu->kvm);
2442                 } else if (pfn != spte_to_pfn(*sptep)) {
2443                         pgprintk("hfn old %llx new %llx\n",
2444                                  spte_to_pfn(*sptep), pfn);
2445                         drop_spte(vcpu->kvm, sptep);
2446                         kvm_flush_remote_tlbs(vcpu->kvm);
2447                 } else
2448                         was_rmapped = 1;
2449         }
2450
2451         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2452               true, host_writable)) {
2453                 if (write_fault)
2454                         *emulate = 1;
2455                 kvm_mmu_flush_tlb(vcpu);
2456         }
2457
2458         if (unlikely(is_mmio_spte(*sptep) && emulate))
2459                 *emulate = 1;
2460
2461         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2462         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2463                  is_large_pte(*sptep)? "2MB" : "4kB",
2464                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2465                  *sptep, sptep);
2466         if (!was_rmapped && is_large_pte(*sptep))
2467                 ++vcpu->kvm->stat.lpages;
2468
2469         if (is_shadow_present_pte(*sptep)) {
2470                 if (!was_rmapped) {
2471                         rmap_count = rmap_add(vcpu, sptep, gfn);
2472                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2473                                 rmap_recycle(vcpu, sptep, gfn);
2474                 }
2475         }
2476
2477         kvm_release_pfn_clean(pfn);
2478 }
2479
2480 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2481 {
2482         mmu_free_roots(vcpu);
2483 }
2484
2485 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2486 {
2487         int bit7;
2488
2489         bit7 = (gpte >> 7) & 1;
2490         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2491 }
2492
2493 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2494                                      bool no_dirty_log)
2495 {
2496         struct kvm_memory_slot *slot;
2497
2498         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2499         if (!slot)
2500                 return KVM_PFN_ERR_FAULT;
2501
2502         return gfn_to_pfn_memslot_atomic(slot, gfn);
2503 }
2504
2505 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2506                                   struct kvm_mmu_page *sp, u64 *spte,
2507                                   u64 gpte)
2508 {
2509         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2510                 goto no_present;
2511
2512         if (!is_present_gpte(gpte))
2513                 goto no_present;
2514
2515         if (!(gpte & PT_ACCESSED_MASK))
2516                 goto no_present;
2517
2518         return false;
2519
2520 no_present:
2521         drop_spte(vcpu->kvm, spte);
2522         return true;
2523 }
2524
2525 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2526                                     struct kvm_mmu_page *sp,
2527                                     u64 *start, u64 *end)
2528 {
2529         struct page *pages[PTE_PREFETCH_NUM];
2530         unsigned access = sp->role.access;
2531         int i, ret;
2532         gfn_t gfn;
2533
2534         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2535         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2536                 return -1;
2537
2538         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2539         if (ret <= 0)
2540                 return -1;
2541
2542         for (i = 0; i < ret; i++, gfn++, start++)
2543                 mmu_set_spte(vcpu, start, access, 0, NULL,
2544                              sp->role.level, gfn, page_to_pfn(pages[i]),
2545                              true, true);
2546
2547         return 0;
2548 }
2549
2550 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2551                                   struct kvm_mmu_page *sp, u64 *sptep)
2552 {
2553         u64 *spte, *start = NULL;
2554         int i;
2555
2556         WARN_ON(!sp->role.direct);
2557
2558         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2559         spte = sp->spt + i;
2560
2561         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2562                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2563                         if (!start)
2564                                 continue;
2565                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2566                                 break;
2567                         start = NULL;
2568                 } else if (!start)
2569                         start = spte;
2570         }
2571 }
2572
2573 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2574 {
2575         struct kvm_mmu_page *sp;
2576
2577         /*
2578          * Since it's no accessed bit on EPT, it's no way to
2579          * distinguish between actually accessed translations
2580          * and prefetched, so disable pte prefetch if EPT is
2581          * enabled.
2582          */
2583         if (!shadow_accessed_mask)
2584                 return;
2585
2586         sp = page_header(__pa(sptep));
2587         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2588                 return;
2589
2590         __direct_pte_prefetch(vcpu, sp, sptep);
2591 }
2592
2593 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2594                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2595                         bool prefault)
2596 {
2597         struct kvm_shadow_walk_iterator iterator;
2598         struct kvm_mmu_page *sp;
2599         int emulate = 0;
2600         gfn_t pseudo_gfn;
2601
2602         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2603                 if (iterator.level == level) {
2604                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2605                                      write, &emulate, level, gfn, pfn,
2606                                      prefault, map_writable);
2607                         direct_pte_prefetch(vcpu, iterator.sptep);
2608                         ++vcpu->stat.pf_fixed;
2609                         break;
2610                 }
2611
2612                 if (!is_shadow_present_pte(*iterator.sptep)) {
2613                         u64 base_addr = iterator.addr;
2614
2615                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2616                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2617                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2618                                               iterator.level - 1,
2619                                               1, ACC_ALL, iterator.sptep);
2620
2621                         link_shadow_page(iterator.sptep, sp);
2622                 }
2623         }
2624         return emulate;
2625 }
2626
2627 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2628 {
2629         siginfo_t info;
2630
2631         info.si_signo   = SIGBUS;
2632         info.si_errno   = 0;
2633         info.si_code    = BUS_MCEERR_AR;
2634         info.si_addr    = (void __user *)address;
2635         info.si_addr_lsb = PAGE_SHIFT;
2636
2637         send_sig_info(SIGBUS, &info, tsk);
2638 }
2639
2640 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2641 {
2642         /*
2643          * Do not cache the mmio info caused by writing the readonly gfn
2644          * into the spte otherwise read access on readonly gfn also can
2645          * caused mmio page fault and treat it as mmio access.
2646          * Return 1 to tell kvm to emulate it.
2647          */
2648         if (pfn == KVM_PFN_ERR_RO_FAULT)
2649                 return 1;
2650
2651         if (pfn == KVM_PFN_ERR_HWPOISON) {
2652                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2653                 return 0;
2654         }
2655
2656         return -EFAULT;
2657 }
2658
2659 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2660                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2661 {
2662         pfn_t pfn = *pfnp;
2663         gfn_t gfn = *gfnp;
2664         int level = *levelp;
2665
2666         /*
2667          * Check if it's a transparent hugepage. If this would be an
2668          * hugetlbfs page, level wouldn't be set to
2669          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2670          * here.
2671          */
2672         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2673             level == PT_PAGE_TABLE_LEVEL &&
2674             PageTransCompound(pfn_to_page(pfn)) &&
2675             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2676                 unsigned long mask;
2677                 /*
2678                  * mmu_notifier_retry was successful and we hold the
2679                  * mmu_lock here, so the pmd can't become splitting
2680                  * from under us, and in turn
2681                  * __split_huge_page_refcount() can't run from under
2682                  * us and we can safely transfer the refcount from
2683                  * PG_tail to PG_head as we switch the pfn to tail to
2684                  * head.
2685                  */
2686                 *levelp = level = PT_DIRECTORY_LEVEL;
2687                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2688                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2689                 if (pfn & mask) {
2690                         gfn &= ~mask;
2691                         *gfnp = gfn;
2692                         kvm_release_pfn_clean(pfn);
2693                         pfn &= ~mask;
2694                         kvm_get_pfn(pfn);
2695                         *pfnp = pfn;
2696                 }
2697         }
2698 }
2699
2700 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2701                                 pfn_t pfn, unsigned access, int *ret_val)
2702 {
2703         bool ret = true;
2704
2705         /* The pfn is invalid, report the error! */
2706         if (unlikely(is_error_pfn(pfn))) {
2707                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2708                 goto exit;
2709         }
2710
2711         if (unlikely(is_noslot_pfn(pfn)))
2712                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2713
2714         ret = false;
2715 exit:
2716         return ret;
2717 }
2718
2719 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2720 {
2721         /*
2722          * #PF can be fast only if the shadow page table is present and it
2723          * is caused by write-protect, that means we just need change the
2724          * W bit of the spte which can be done out of mmu-lock.
2725          */
2726         if (!(error_code & PFERR_PRESENT_MASK) ||
2727               !(error_code & PFERR_WRITE_MASK))
2728                 return false;
2729
2730         return true;
2731 }
2732
2733 static bool
2734 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2735 {
2736         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2737         gfn_t gfn;
2738
2739         WARN_ON(!sp->role.direct);
2740
2741         /*
2742          * The gfn of direct spte is stable since it is calculated
2743          * by sp->gfn.
2744          */
2745         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2746
2747         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2748                 mark_page_dirty(vcpu->kvm, gfn);
2749
2750         return true;
2751 }
2752
2753 /*
2754  * Return value:
2755  * - true: let the vcpu to access on the same address again.
2756  * - false: let the real page fault path to fix it.
2757  */
2758 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2759                             u32 error_code)
2760 {
2761         struct kvm_shadow_walk_iterator iterator;
2762         bool ret = false;
2763         u64 spte = 0ull;
2764
2765         if (!page_fault_can_be_fast(vcpu, error_code))
2766                 return false;
2767
2768         walk_shadow_page_lockless_begin(vcpu);
2769         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2770                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2771                         break;
2772
2773         /*
2774          * If the mapping has been changed, let the vcpu fault on the
2775          * same address again.
2776          */
2777         if (!is_rmap_spte(spte)) {
2778                 ret = true;
2779                 goto exit;
2780         }
2781
2782         if (!is_last_spte(spte, level))
2783                 goto exit;
2784
2785         /*
2786          * Check if it is a spurious fault caused by TLB lazily flushed.
2787          *
2788          * Need not check the access of upper level table entries since
2789          * they are always ACC_ALL.
2790          */
2791          if (is_writable_pte(spte)) {
2792                 ret = true;
2793                 goto exit;
2794         }
2795
2796         /*
2797          * Currently, to simplify the code, only the spte write-protected
2798          * by dirty-log can be fast fixed.
2799          */
2800         if (!spte_is_locklessly_modifiable(spte))
2801                 goto exit;
2802
2803         /*
2804          * Currently, fast page fault only works for direct mapping since
2805          * the gfn is not stable for indirect shadow page.
2806          * See Documentation/virtual/kvm/locking.txt to get more detail.
2807          */
2808         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2809 exit:
2810         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2811                               spte, ret);
2812         walk_shadow_page_lockless_end(vcpu);
2813
2814         return ret;
2815 }
2816
2817 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2818                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2819 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2820
2821 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2822                          gfn_t gfn, bool prefault)
2823 {
2824         int r;
2825         int level;
2826         int force_pt_level;
2827         pfn_t pfn;
2828         unsigned long mmu_seq;
2829         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2830
2831         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2832         if (likely(!force_pt_level)) {
2833                 level = mapping_level(vcpu, gfn);
2834                 /*
2835                  * This path builds a PAE pagetable - so we can map
2836                  * 2mb pages at maximum. Therefore check if the level
2837                  * is larger than that.
2838                  */
2839                 if (level > PT_DIRECTORY_LEVEL)
2840                         level = PT_DIRECTORY_LEVEL;
2841
2842                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2843         } else
2844                 level = PT_PAGE_TABLE_LEVEL;
2845
2846         if (fast_page_fault(vcpu, v, level, error_code))
2847                 return 0;
2848
2849         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2850         smp_rmb();
2851
2852         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2853                 return 0;
2854
2855         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2856                 return r;
2857
2858         spin_lock(&vcpu->kvm->mmu_lock);
2859         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2860                 goto out_unlock;
2861         make_mmu_pages_available(vcpu);
2862         if (likely(!force_pt_level))
2863                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2864         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2865                          prefault);
2866         spin_unlock(&vcpu->kvm->mmu_lock);
2867
2868
2869         return r;
2870
2871 out_unlock:
2872         spin_unlock(&vcpu->kvm->mmu_lock);
2873         kvm_release_pfn_clean(pfn);
2874         return 0;
2875 }
2876
2877
2878 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2879 {
2880         int i;
2881         struct kvm_mmu_page *sp;
2882         LIST_HEAD(invalid_list);
2883
2884         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2885                 return;
2886
2887         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2888             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2889              vcpu->arch.mmu.direct_map)) {
2890                 hpa_t root = vcpu->arch.mmu.root_hpa;
2891
2892                 spin_lock(&vcpu->kvm->mmu_lock);
2893                 sp = page_header(root);
2894                 --sp->root_count;
2895                 if (!sp->root_count && sp->role.invalid) {
2896                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2897                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2898                 }
2899                 spin_unlock(&vcpu->kvm->mmu_lock);
2900                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2901                 return;
2902         }
2903
2904         spin_lock(&vcpu->kvm->mmu_lock);
2905         for (i = 0; i < 4; ++i) {
2906                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2907
2908                 if (root) {
2909                         root &= PT64_BASE_ADDR_MASK;
2910                         sp = page_header(root);
2911                         --sp->root_count;
2912                         if (!sp->root_count && sp->role.invalid)
2913                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2914                                                          &invalid_list);
2915                 }
2916                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2917         }
2918         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2919         spin_unlock(&vcpu->kvm->mmu_lock);
2920         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2921 }
2922
2923 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2924 {
2925         int ret = 0;
2926
2927         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2928                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2929                 ret = 1;
2930         }
2931
2932         return ret;
2933 }
2934
2935 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2936 {
2937         struct kvm_mmu_page *sp;
2938         unsigned i;
2939
2940         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2941                 spin_lock(&vcpu->kvm->mmu_lock);
2942                 make_mmu_pages_available(vcpu);
2943                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2944                                       1, ACC_ALL, NULL);
2945                 ++sp->root_count;
2946                 spin_unlock(&vcpu->kvm->mmu_lock);
2947                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2948         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2949                 for (i = 0; i < 4; ++i) {
2950                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2951
2952                         ASSERT(!VALID_PAGE(root));
2953                         spin_lock(&vcpu->kvm->mmu_lock);
2954                         make_mmu_pages_available(vcpu);
2955                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2956                                               i << 30,
2957                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2958                                               NULL);
2959                         root = __pa(sp->spt);
2960                         ++sp->root_count;
2961                         spin_unlock(&vcpu->kvm->mmu_lock);
2962                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2963                 }
2964                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2965         } else
2966                 BUG();
2967
2968         return 0;
2969 }
2970
2971 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2972 {
2973         struct kvm_mmu_page *sp;
2974         u64 pdptr, pm_mask;
2975         gfn_t root_gfn;
2976         int i;
2977
2978         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2979
2980         if (mmu_check_root(vcpu, root_gfn))
2981                 return 1;
2982
2983         /*
2984          * Do we shadow a long mode page table? If so we need to
2985          * write-protect the guests page table root.
2986          */
2987         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2988                 hpa_t root = vcpu->arch.mmu.root_hpa;
2989
2990                 ASSERT(!VALID_PAGE(root));
2991
2992                 spin_lock(&vcpu->kvm->mmu_lock);
2993                 make_mmu_pages_available(vcpu);
2994                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2995                                       0, ACC_ALL, NULL);
2996                 root = __pa(sp->spt);
2997                 ++sp->root_count;
2998                 spin_unlock(&vcpu->kvm->mmu_lock);
2999                 vcpu->arch.mmu.root_hpa = root;
3000                 return 0;
3001         }
3002
3003         /*
3004          * We shadow a 32 bit page table. This may be a legacy 2-level
3005          * or a PAE 3-level page table. In either case we need to be aware that
3006          * the shadow page table may be a PAE or a long mode page table.
3007          */
3008         pm_mask = PT_PRESENT_MASK;
3009         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3010                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3011
3012         for (i = 0; i < 4; ++i) {
3013                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3014
3015                 ASSERT(!VALID_PAGE(root));
3016                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3017                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3018                         if (!is_present_gpte(pdptr)) {
3019                                 vcpu->arch.mmu.pae_root[i] = 0;
3020                                 continue;
3021                         }
3022                         root_gfn = pdptr >> PAGE_SHIFT;
3023                         if (mmu_check_root(vcpu, root_gfn))
3024                                 return 1;
3025                 }
3026                 spin_lock(&vcpu->kvm->mmu_lock);
3027                 make_mmu_pages_available(vcpu);
3028                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3029                                       PT32_ROOT_LEVEL, 0,
3030                                       ACC_ALL, NULL);
3031                 root = __pa(sp->spt);
3032                 ++sp->root_count;
3033                 spin_unlock(&vcpu->kvm->mmu_lock);
3034
3035                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3036         }
3037         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3038
3039         /*
3040          * If we shadow a 32 bit page table with a long mode page
3041          * table we enter this path.
3042          */
3043         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3044                 if (vcpu->arch.mmu.lm_root == NULL) {
3045                         /*
3046                          * The additional page necessary for this is only
3047                          * allocated on demand.
3048                          */
3049
3050                         u64 *lm_root;
3051
3052                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3053                         if (lm_root == NULL)
3054                                 return 1;
3055
3056                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3057
3058                         vcpu->arch.mmu.lm_root = lm_root;
3059                 }
3060
3061                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3062         }
3063
3064         return 0;
3065 }
3066
3067 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3068 {
3069         if (vcpu->arch.mmu.direct_map)
3070                 return mmu_alloc_direct_roots(vcpu);
3071         else
3072                 return mmu_alloc_shadow_roots(vcpu);
3073 }
3074
3075 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3076 {
3077         int i;
3078         struct kvm_mmu_page *sp;
3079
3080         if (vcpu->arch.mmu.direct_map)
3081                 return;
3082
3083         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3084                 return;
3085
3086         vcpu_clear_mmio_info(vcpu, ~0ul);
3087         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3088         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3089                 hpa_t root = vcpu->arch.mmu.root_hpa;
3090                 sp = page_header(root);
3091                 mmu_sync_children(vcpu, sp);
3092                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3093                 return;
3094         }
3095         for (i = 0; i < 4; ++i) {
3096                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3097
3098                 if (root && VALID_PAGE(root)) {
3099                         root &= PT64_BASE_ADDR_MASK;
3100                         sp = page_header(root);
3101                         mmu_sync_children(vcpu, sp);
3102                 }
3103         }
3104         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3105 }
3106
3107 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3108 {
3109         spin_lock(&vcpu->kvm->mmu_lock);
3110         mmu_sync_roots(vcpu);
3111         spin_unlock(&vcpu->kvm->mmu_lock);
3112 }
3113
3114 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3115                                   u32 access, struct x86_exception *exception)
3116 {
3117         if (exception)
3118                 exception->error_code = 0;
3119         return vaddr;
3120 }
3121
3122 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3123                                          u32 access,
3124                                          struct x86_exception *exception)
3125 {
3126         if (exception)
3127                 exception->error_code = 0;
3128         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3129 }
3130
3131 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3132 {
3133         if (direct)
3134                 return vcpu_match_mmio_gpa(vcpu, addr);
3135
3136         return vcpu_match_mmio_gva(vcpu, addr);
3137 }
3138
3139
3140 /*
3141  * On direct hosts, the last spte is only allows two states
3142  * for mmio page fault:
3143  *   - It is the mmio spte
3144  *   - It is zapped or it is being zapped.
3145  *
3146  * This function completely checks the spte when the last spte
3147  * is not the mmio spte.
3148  */
3149 static bool check_direct_spte_mmio_pf(u64 spte)
3150 {
3151         return __check_direct_spte_mmio_pf(spte);
3152 }
3153
3154 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3155 {
3156         struct kvm_shadow_walk_iterator iterator;
3157         u64 spte = 0ull;
3158
3159         walk_shadow_page_lockless_begin(vcpu);
3160         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3161                 if (!is_shadow_present_pte(spte))
3162                         break;
3163         walk_shadow_page_lockless_end(vcpu);
3164
3165         return spte;
3166 }
3167
3168 /*
3169  * If it is a real mmio page fault, return 1 and emulat the instruction
3170  * directly, return 0 to let CPU fault again on the address, -1 is
3171  * returned if bug is detected.
3172  */
3173 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3174 {
3175         u64 spte;
3176
3177         if (quickly_check_mmio_pf(vcpu, addr, direct))
3178                 return 1;
3179
3180         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3181
3182         if (is_mmio_spte(spte)) {
3183                 gfn_t gfn = get_mmio_spte_gfn(spte);
3184                 unsigned access = get_mmio_spte_access(spte);
3185
3186                 if (direct)
3187                         addr = 0;
3188
3189                 trace_handle_mmio_page_fault(addr, gfn, access);
3190                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3191                 return 1;
3192         }
3193
3194         /*
3195          * It's ok if the gva is remapped by other cpus on shadow guest,
3196          * it's a BUG if the gfn is not a mmio page.
3197          */
3198         if (direct && !check_direct_spte_mmio_pf(spte))
3199                 return -1;
3200
3201         /*
3202          * If the page table is zapped by other cpus, let CPU fault again on
3203          * the address.
3204          */
3205         return 0;
3206 }
3207 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3208
3209 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3210                                   u32 error_code, bool direct)
3211 {
3212         int ret;
3213
3214         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3215         WARN_ON(ret < 0);
3216         return ret;
3217 }
3218
3219 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3220                                 u32 error_code, bool prefault)
3221 {
3222         gfn_t gfn;
3223         int r;
3224
3225         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3226
3227         if (unlikely(error_code & PFERR_RSVD_MASK))
3228                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3229
3230         r = mmu_topup_memory_caches(vcpu);
3231         if (r)
3232                 return r;
3233
3234         ASSERT(vcpu);
3235         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3236
3237         gfn = gva >> PAGE_SHIFT;
3238
3239         return nonpaging_map(vcpu, gva & PAGE_MASK,
3240                              error_code, gfn, prefault);
3241 }
3242
3243 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3244 {
3245         struct kvm_arch_async_pf arch;
3246
3247         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3248         arch.gfn = gfn;
3249         arch.direct_map = vcpu->arch.mmu.direct_map;
3250         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3251
3252         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3253 }
3254
3255 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3256 {
3257         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3258                      kvm_event_needs_reinjection(vcpu)))
3259                 return false;
3260
3261         return kvm_x86_ops->interrupt_allowed(vcpu);
3262 }
3263
3264 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3265                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3266 {
3267         bool async;
3268
3269         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3270
3271         if (!async)
3272                 return false; /* *pfn has correct page already */
3273
3274         if (!prefault && can_do_async_pf(vcpu)) {
3275                 trace_kvm_try_async_get_page(gva, gfn);
3276                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3277                         trace_kvm_async_pf_doublefault(gva, gfn);
3278                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3279                         return true;
3280                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3281                         return true;
3282         }
3283
3284         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3285
3286         return false;
3287 }
3288
3289 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3290                           bool prefault)
3291 {
3292         pfn_t pfn;
3293         int r;
3294         int level;
3295         int force_pt_level;
3296         gfn_t gfn = gpa >> PAGE_SHIFT;
3297         unsigned long mmu_seq;
3298         int write = error_code & PFERR_WRITE_MASK;
3299         bool map_writable;
3300
3301         ASSERT(vcpu);
3302         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3303
3304         if (unlikely(error_code & PFERR_RSVD_MASK))
3305                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3306
3307         r = mmu_topup_memory_caches(vcpu);
3308         if (r)
3309                 return r;
3310
3311         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3312         if (likely(!force_pt_level)) {
3313                 level = mapping_level(vcpu, gfn);
3314                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3315         } else
3316                 level = PT_PAGE_TABLE_LEVEL;
3317
3318         if (fast_page_fault(vcpu, gpa, level, error_code))
3319                 return 0;
3320
3321         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3322         smp_rmb();
3323
3324         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3325                 return 0;
3326
3327         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3328                 return r;
3329
3330         spin_lock(&vcpu->kvm->mmu_lock);
3331         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3332                 goto out_unlock;
3333         make_mmu_pages_available(vcpu);
3334         if (likely(!force_pt_level))
3335                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3336         r = __direct_map(vcpu, gpa, write, map_writable,
3337                          level, gfn, pfn, prefault);
3338         spin_unlock(&vcpu->kvm->mmu_lock);
3339
3340         return r;
3341
3342 out_unlock:
3343         spin_unlock(&vcpu->kvm->mmu_lock);
3344         kvm_release_pfn_clean(pfn);
3345         return 0;
3346 }
3347
3348 static void nonpaging_free(struct kvm_vcpu *vcpu)
3349 {
3350         mmu_free_roots(vcpu);
3351 }
3352
3353 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3354                                   struct kvm_mmu *context)
3355 {
3356         context->new_cr3 = nonpaging_new_cr3;
3357         context->page_fault = nonpaging_page_fault;
3358         context->gva_to_gpa = nonpaging_gva_to_gpa;
3359         context->free = nonpaging_free;
3360         context->sync_page = nonpaging_sync_page;
3361         context->invlpg = nonpaging_invlpg;
3362         context->update_pte = nonpaging_update_pte;
3363         context->root_level = 0;
3364         context->shadow_root_level = PT32E_ROOT_LEVEL;
3365         context->root_hpa = INVALID_PAGE;
3366         context->direct_map = true;
3367         context->nx = false;
3368         return 0;
3369 }
3370
3371 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3372 {
3373         ++vcpu->stat.tlb_flush;
3374         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3375 }
3376
3377 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3378 {
3379         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3380         mmu_free_roots(vcpu);
3381 }
3382
3383 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3384 {
3385         return kvm_read_cr3(vcpu);
3386 }
3387
3388 static void inject_page_fault(struct kvm_vcpu *vcpu,
3389                               struct x86_exception *fault)
3390 {
3391         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3392 }
3393
3394 static void paging_free(struct kvm_vcpu *vcpu)
3395 {
3396         nonpaging_free(vcpu);
3397 }
3398
3399 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3400 {
3401         unsigned mask;
3402
3403         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3404
3405         mask = (unsigned)~ACC_WRITE_MASK;
3406         /* Allow write access to dirty gptes */
3407         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3408         *access &= mask;
3409 }
3410
3411 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3412                            int *nr_present)
3413 {
3414         if (unlikely(is_mmio_spte(*sptep))) {
3415                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3416                         mmu_spte_clear_no_track(sptep);
3417                         return true;
3418                 }
3419
3420                 (*nr_present)++;
3421                 mark_mmio_spte(sptep, gfn, access);
3422                 return true;
3423         }
3424
3425         return false;
3426 }
3427
3428 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3429 {
3430         unsigned access;
3431
3432         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3433         access &= ~(gpte >> PT64_NX_SHIFT);
3434
3435         return access;
3436 }
3437
3438 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3439 {
3440         unsigned index;
3441
3442         index = level - 1;
3443         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3444         return mmu->last_pte_bitmap & (1 << index);
3445 }
3446
3447 #define PTTYPE 64
3448 #include "paging_tmpl.h"
3449 #undef PTTYPE
3450
3451 #define PTTYPE 32
3452 #include "paging_tmpl.h"
3453 #undef PTTYPE
3454
3455 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3456                                   struct kvm_mmu *context)
3457 {
3458         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3459         u64 exb_bit_rsvd = 0;
3460
3461         if (!context->nx)
3462                 exb_bit_rsvd = rsvd_bits(63, 63);
3463         switch (context->root_level) {
3464         case PT32_ROOT_LEVEL:
3465                 /* no rsvd bits for 2 level 4K page table entries */
3466                 context->rsvd_bits_mask[0][1] = 0;
3467                 context->rsvd_bits_mask[0][0] = 0;
3468                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3469
3470                 if (!is_pse(vcpu)) {
3471                         context->rsvd_bits_mask[1][1] = 0;
3472                         break;
3473                 }
3474
3475                 if (is_cpuid_PSE36())
3476                         /* 36bits PSE 4MB page */
3477                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3478                 else
3479                         /* 32 bits PSE 4MB page */
3480                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3481                 break;
3482         case PT32E_ROOT_LEVEL:
3483                 context->rsvd_bits_mask[0][2] =
3484                         rsvd_bits(maxphyaddr, 63) |
3485                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3486                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3487                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3488                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3489                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3490                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3491                         rsvd_bits(maxphyaddr, 62) |
3492                         rsvd_bits(13, 20);              /* large page */
3493                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3494                 break;
3495         case PT64_ROOT_LEVEL:
3496                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3497                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3498                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3499                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3500                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3501                         rsvd_bits(maxphyaddr, 51);
3502                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3503                         rsvd_bits(maxphyaddr, 51);
3504                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3505                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3506                         rsvd_bits(maxphyaddr, 51) |
3507                         rsvd_bits(13, 29);
3508                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3509                         rsvd_bits(maxphyaddr, 51) |
3510                         rsvd_bits(13, 20);              /* large page */
3511                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3512                 break;
3513         }
3514 }
3515
3516 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3517 {
3518         unsigned bit, byte, pfec;
3519         u8 map;
3520         bool fault, x, w, u, wf, uf, ff, smep;
3521
3522         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3523         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3524                 pfec = byte << 1;
3525                 map = 0;
3526                 wf = pfec & PFERR_WRITE_MASK;
3527                 uf = pfec & PFERR_USER_MASK;
3528                 ff = pfec & PFERR_FETCH_MASK;
3529                 for (bit = 0; bit < 8; ++bit) {
3530                         x = bit & ACC_EXEC_MASK;
3531                         w = bit & ACC_WRITE_MASK;
3532                         u = bit & ACC_USER_MASK;
3533
3534                         /* Not really needed: !nx will cause pte.nx to fault */
3535                         x |= !mmu->nx;
3536                         /* Allow supervisor writes if !cr0.wp */
3537                         w |= !is_write_protection(vcpu) && !uf;
3538                         /* Disallow supervisor fetches of user code if cr4.smep */
3539                         x &= !(smep && u && !uf);
3540
3541                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3542                         map |= fault << bit;
3543                 }
3544                 mmu->permissions[byte] = map;
3545         }
3546 }
3547
3548 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3549 {
3550         u8 map;
3551         unsigned level, root_level = mmu->root_level;
3552         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3553
3554         if (root_level == PT32E_ROOT_LEVEL)
3555                 --root_level;
3556         /* PT_PAGE_TABLE_LEVEL always terminates */
3557         map = 1 | (1 << ps_set_index);
3558         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3559                 if (level <= PT_PDPE_LEVEL
3560                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3561                         map |= 1 << (ps_set_index | (level - 1));
3562         }
3563         mmu->last_pte_bitmap = map;
3564 }
3565
3566 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3567                                         struct kvm_mmu *context,
3568                                         int level)
3569 {
3570         context->nx = is_nx(vcpu);
3571         context->root_level = level;
3572
3573         reset_rsvds_bits_mask(vcpu, context);
3574         update_permission_bitmask(vcpu, context);
3575         update_last_pte_bitmap(vcpu, context);
3576
3577         ASSERT(is_pae(vcpu));
3578         context->new_cr3 = paging_new_cr3;
3579         context->page_fault = paging64_page_fault;
3580         context->gva_to_gpa = paging64_gva_to_gpa;
3581         context->sync_page = paging64_sync_page;
3582         context->invlpg = paging64_invlpg;
3583         context->update_pte = paging64_update_pte;
3584         context->free = paging_free;
3585         context->shadow_root_level = level;
3586         context->root_hpa = INVALID_PAGE;
3587         context->direct_map = false;
3588         return 0;
3589 }
3590
3591 static int paging64_init_context(struct kvm_vcpu *vcpu,
3592                                  struct kvm_mmu *context)
3593 {
3594         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3595 }
3596
3597 static int paging32_init_context(struct kvm_vcpu *vcpu,
3598                                  struct kvm_mmu *context)
3599 {
3600         context->nx = false;
3601         context->root_level = PT32_ROOT_LEVEL;
3602
3603         reset_rsvds_bits_mask(vcpu, context);
3604         update_permission_bitmask(vcpu, context);
3605         update_last_pte_bitmap(vcpu, context);
3606
3607         context->new_cr3 = paging_new_cr3;
3608         context->page_fault = paging32_page_fault;
3609         context->gva_to_gpa = paging32_gva_to_gpa;
3610         context->free = paging_free;
3611         context->sync_page = paging32_sync_page;
3612         context->invlpg = paging32_invlpg;
3613         context->update_pte = paging32_update_pte;
3614         context->shadow_root_level = PT32E_ROOT_LEVEL;
3615         context->root_hpa = INVALID_PAGE;
3616         context->direct_map = false;
3617         return 0;
3618 }
3619
3620 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3621                                   struct kvm_mmu *context)
3622 {
3623         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3624 }
3625
3626 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3627 {
3628         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3629
3630         context->base_role.word = 0;
3631         context->new_cr3 = nonpaging_new_cr3;
3632         context->page_fault = tdp_page_fault;
3633         context->free = nonpaging_free;
3634         context->sync_page = nonpaging_sync_page;
3635         context->invlpg = nonpaging_invlpg;
3636         context->update_pte = nonpaging_update_pte;
3637         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3638         context->root_hpa = INVALID_PAGE;
3639         context->direct_map = true;
3640         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3641         context->get_cr3 = get_cr3;
3642         context->get_pdptr = kvm_pdptr_read;
3643         context->inject_page_fault = kvm_inject_page_fault;
3644
3645         if (!is_paging(vcpu)) {
3646                 context->nx = false;
3647                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3648                 context->root_level = 0;
3649         } else if (is_long_mode(vcpu)) {
3650                 context->nx = is_nx(vcpu);
3651                 context->root_level = PT64_ROOT_LEVEL;
3652                 reset_rsvds_bits_mask(vcpu, context);
3653                 context->gva_to_gpa = paging64_gva_to_gpa;
3654         } else if (is_pae(vcpu)) {
3655                 context->nx = is_nx(vcpu);
3656                 context->root_level = PT32E_ROOT_LEVEL;
3657                 reset_rsvds_bits_mask(vcpu, context);
3658                 context->gva_to_gpa = paging64_gva_to_gpa;
3659         } else {
3660                 context->nx = false;
3661                 context->root_level = PT32_ROOT_LEVEL;
3662                 reset_rsvds_bits_mask(vcpu, context);
3663                 context->gva_to_gpa = paging32_gva_to_gpa;
3664         }
3665
3666         update_permission_bitmask(vcpu, context);
3667         update_last_pte_bitmap(vcpu, context);
3668
3669         return 0;
3670 }
3671
3672 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3673 {
3674         int r;
3675         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3676         ASSERT(vcpu);
3677         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3678
3679         if (!is_paging(vcpu))
3680                 r = nonpaging_init_context(vcpu, context);
3681         else if (is_long_mode(vcpu))
3682                 r = paging64_init_context(vcpu, context);
3683         else if (is_pae(vcpu))
3684                 r = paging32E_init_context(vcpu, context);
3685         else
3686                 r = paging32_init_context(vcpu, context);
3687
3688         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3689         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3690         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3691         vcpu->arch.mmu.base_role.smep_andnot_wp
3692                 = smep && !is_write_protection(vcpu);
3693
3694         return r;
3695 }
3696 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3697
3698 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3699 {
3700         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3701
3702         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3703         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3704         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3705         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3706
3707         return r;
3708 }
3709
3710 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3711 {
3712         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3713
3714         g_context->get_cr3           = get_cr3;
3715         g_context->get_pdptr         = kvm_pdptr_read;
3716         g_context->inject_page_fault = kvm_inject_page_fault;
3717
3718         /*
3719          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3720          * translation of l2_gpa to l1_gpa addresses is done using the
3721          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3722          * functions between mmu and nested_mmu are swapped.
3723          */
3724         if (!is_paging(vcpu)) {
3725                 g_context->nx = false;
3726                 g_context->root_level = 0;
3727                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3728         } else if (is_long_mode(vcpu)) {
3729                 g_context->nx = is_nx(vcpu);
3730                 g_context->root_level = PT64_ROOT_LEVEL;
3731                 reset_rsvds_bits_mask(vcpu, g_context);
3732                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3733         } else if (is_pae(vcpu)) {
3734                 g_context->nx = is_nx(vcpu);
3735                 g_context->root_level = PT32E_ROOT_LEVEL;
3736                 reset_rsvds_bits_mask(vcpu, g_context);
3737                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3738         } else {
3739                 g_context->nx = false;
3740                 g_context->root_level = PT32_ROOT_LEVEL;
3741                 reset_rsvds_bits_mask(vcpu, g_context);
3742                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3743         }
3744
3745         update_permission_bitmask(vcpu, g_context);
3746         update_last_pte_bitmap(vcpu, g_context);
3747
3748         return 0;
3749 }
3750
3751 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3752 {
3753         if (mmu_is_nested(vcpu))
3754                 return init_kvm_nested_mmu(vcpu);
3755         else if (tdp_enabled)
3756                 return init_kvm_tdp_mmu(vcpu);
3757         else
3758                 return init_kvm_softmmu(vcpu);
3759 }
3760
3761 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3762 {
3763         ASSERT(vcpu);
3764         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3765                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3766                 vcpu->arch.mmu.free(vcpu);
3767 }
3768
3769 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3770 {
3771         destroy_kvm_mmu(vcpu);
3772         return init_kvm_mmu(vcpu);
3773 }
3774 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3775
3776 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3777 {
3778         int r;
3779
3780         r = mmu_topup_memory_caches(vcpu);
3781         if (r)
3782                 goto out;
3783         r = mmu_alloc_roots(vcpu);
3784         kvm_mmu_sync_roots(vcpu);
3785         if (r)
3786                 goto out;
3787         /* set_cr3() should ensure TLB has been flushed */
3788         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3789 out:
3790         return r;
3791 }
3792 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3793
3794 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3795 {
3796         mmu_free_roots(vcpu);
3797 }
3798 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3799
3800 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3801                                   struct kvm_mmu_page *sp, u64 *spte,
3802                                   const void *new)
3803 {
3804         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3805                 ++vcpu->kvm->stat.mmu_pde_zapped;
3806                 return;
3807         }
3808
3809         ++vcpu->kvm->stat.mmu_pte_updated;
3810         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3811 }
3812
3813 static bool need_remote_flush(u64 old, u64 new)
3814 {
3815         if (!is_shadow_present_pte(old))
3816                 return false;
3817         if (!is_shadow_present_pte(new))
3818                 return true;
3819         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3820                 return true;
3821         old ^= PT64_NX_MASK;
3822         new ^= PT64_NX_MASK;
3823         return (old & ~new & PT64_PERM_MASK) != 0;
3824 }
3825
3826 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3827                                     bool remote_flush, bool local_flush)
3828 {
3829         if (zap_page)
3830                 return;
3831
3832         if (remote_flush)
3833                 kvm_flush_remote_tlbs(vcpu->kvm);
3834         else if (local_flush)
3835                 kvm_mmu_flush_tlb(vcpu);
3836 }
3837
3838 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3839                                     const u8 *new, int *bytes)
3840 {
3841         u64 gentry;
3842         int r;
3843
3844         /*
3845          * Assume that the pte write on a page table of the same type
3846          * as the current vcpu paging mode since we update the sptes only
3847          * when they have the same mode.
3848          */
3849         if (is_pae(vcpu) && *bytes == 4) {
3850                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3851                 *gpa &= ~(gpa_t)7;
3852                 *bytes = 8;
3853                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3854                 if (r)
3855                         gentry = 0;
3856                 new = (const u8 *)&gentry;
3857         }
3858
3859         switch (*bytes) {
3860         case 4:
3861                 gentry = *(const u32 *)new;
3862                 break;
3863         case 8:
3864                 gentry = *(const u64 *)new;
3865                 break;
3866         default:
3867                 gentry = 0;
3868                 break;
3869         }
3870
3871         return gentry;
3872 }
3873
3874 /*
3875  * If we're seeing too many writes to a page, it may no longer be a page table,
3876  * or we may be forking, in which case it is better to unmap the page.
3877  */
3878 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3879 {
3880         /*
3881          * Skip write-flooding detected for the sp whose level is 1, because
3882          * it can become unsync, then the guest page is not write-protected.
3883          */
3884         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3885                 return false;
3886
3887         return ++sp->write_flooding_count >= 3;
3888 }
3889
3890 /*
3891  * Misaligned accesses are too much trouble to fix up; also, they usually
3892  * indicate a page is not used as a page table.
3893  */
3894 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3895                                     int bytes)
3896 {
3897         unsigned offset, pte_size, misaligned;
3898
3899         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3900                  gpa, bytes, sp->role.word);
3901
3902         offset = offset_in_page(gpa);
3903         pte_size = sp->role.cr4_pae ? 8 : 4;
3904
3905         /*
3906          * Sometimes, the OS only writes the last one bytes to update status
3907          * bits, for example, in linux, andb instruction is used in clear_bit().
3908          */
3909         if (!(offset & (pte_size - 1)) && bytes == 1)
3910                 return false;
3911
3912         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3913         misaligned |= bytes < 4;
3914
3915         return misaligned;
3916 }
3917
3918 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3919 {
3920         unsigned page_offset, quadrant;
3921         u64 *spte;
3922         int level;
3923
3924         page_offset = offset_in_page(gpa);
3925         level = sp->role.level;
3926         *nspte = 1;
3927         if (!sp->role.cr4_pae) {
3928                 page_offset <<= 1;      /* 32->64 */
3929                 /*
3930                  * A 32-bit pde maps 4MB while the shadow pdes map
3931                  * only 2MB.  So we need to double the offset again
3932                  * and zap two pdes instead of one.
3933                  */
3934                 if (level == PT32_ROOT_LEVEL) {
3935                         page_offset &= ~7; /* kill rounding error */
3936                         page_offset <<= 1;
3937                         *nspte = 2;
3938                 }
3939                 quadrant = page_offset >> PAGE_SHIFT;
3940                 page_offset &= ~PAGE_MASK;
3941                 if (quadrant != sp->role.quadrant)
3942                         return NULL;
3943         }
3944
3945         spte = &sp->spt[page_offset / sizeof(*spte)];
3946         return spte;
3947 }
3948
3949 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3950                        const u8 *new, int bytes)
3951 {
3952         gfn_t gfn = gpa >> PAGE_SHIFT;
3953         union kvm_mmu_page_role mask = { .word = 0 };
3954         struct kvm_mmu_page *sp;
3955         LIST_HEAD(invalid_list);
3956         u64 entry, gentry, *spte;
3957         int npte;
3958         bool remote_flush, local_flush, zap_page;
3959
3960         /*
3961          * If we don't have indirect shadow pages, it means no page is
3962          * write-protected, so we can exit simply.
3963          */
3964         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3965                 return;
3966
3967         zap_page = remote_flush = local_flush = false;
3968
3969         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3970
3971         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3972
3973         /*
3974          * No need to care whether allocation memory is successful
3975          * or not since pte prefetch is skiped if it does not have
3976          * enough objects in the cache.
3977          */
3978         mmu_topup_memory_caches(vcpu);
3979
3980         spin_lock(&vcpu->kvm->mmu_lock);
3981         ++vcpu->kvm->stat.mmu_pte_write;
3982         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3983
3984         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3985         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
3986                 if (detect_write_misaligned(sp, gpa, bytes) ||
3987                       detect_write_flooding(sp)) {
3988                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3989                                                      &invalid_list);
3990                         ++vcpu->kvm->stat.mmu_flooded;
3991                         continue;
3992                 }
3993
3994                 spte = get_written_sptes(sp, gpa, &npte);
3995                 if (!spte)
3996                         continue;
3997
3998                 local_flush = true;
3999                 while (npte--) {
4000                         entry = *spte;
4001                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4002                         if (gentry &&
4003                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4004                               & mask.word) && rmap_can_add(vcpu))
4005                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4006                         if (need_remote_flush(entry, *spte))
4007                                 remote_flush = true;
4008                         ++spte;
4009                 }
4010         }
4011         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4012         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4013         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4014         spin_unlock(&vcpu->kvm->mmu_lock);
4015 }
4016
4017 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4018 {
4019         gpa_t gpa;
4020         int r;
4021
4022         if (vcpu->arch.mmu.direct_map)
4023                 return 0;
4024
4025         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4026
4027         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4028
4029         return r;
4030 }
4031 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4032
4033 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4034 {
4035         LIST_HEAD(invalid_list);
4036
4037         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4038                 return;
4039
4040         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4041                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4042                         break;
4043
4044                 ++vcpu->kvm->stat.mmu_recycled;
4045         }
4046         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4047 }
4048
4049 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4050 {
4051         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4052                 return vcpu_match_mmio_gpa(vcpu, addr);
4053
4054         return vcpu_match_mmio_gva(vcpu, addr);
4055 }
4056
4057 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4058                        void *insn, int insn_len)
4059 {
4060         int r, emulation_type = EMULTYPE_RETRY;
4061         enum emulation_result er;
4062
4063         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4064         if (r < 0)
4065                 goto out;
4066
4067         if (!r) {
4068                 r = 1;
4069                 goto out;
4070         }
4071
4072         if (is_mmio_page_fault(vcpu, cr2))
4073                 emulation_type = 0;
4074
4075         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4076
4077         switch (er) {
4078         case EMULATE_DONE:
4079                 return 1;
4080         case EMULATE_DO_MMIO:
4081                 ++vcpu->stat.mmio_exits;
4082                 /* fall through */
4083         case EMULATE_FAIL:
4084                 return 0;
4085         default:
4086                 BUG();
4087         }
4088 out:
4089         return r;
4090 }
4091 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4092
4093 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4094 {
4095         vcpu->arch.mmu.invlpg(vcpu, gva);
4096         kvm_mmu_flush_tlb(vcpu);
4097         ++vcpu->stat.invlpg;
4098 }
4099 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4100
4101 void kvm_enable_tdp(void)
4102 {
4103         tdp_enabled = true;
4104 }
4105 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4106
4107 void kvm_disable_tdp(void)
4108 {
4109         tdp_enabled = false;
4110 }
4111 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4112
4113 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4114 {
4115         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4116         if (vcpu->arch.mmu.lm_root != NULL)
4117                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4118 }
4119
4120 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4121 {
4122         struct page *page;
4123         int i;
4124
4125         ASSERT(vcpu);
4126
4127         /*
4128          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4129          * Therefore we need to allocate shadow page tables in the first
4130          * 4GB of memory, which happens to fit the DMA32 zone.
4131          */
4132         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4133         if (!page)
4134                 return -ENOMEM;
4135
4136         vcpu->arch.mmu.pae_root = page_address(page);
4137         for (i = 0; i < 4; ++i)
4138                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4139
4140         return 0;
4141 }
4142
4143 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4144 {
4145         ASSERT(vcpu);
4146
4147         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4148         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4149         vcpu->arch.mmu.translate_gpa = translate_gpa;
4150         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4151
4152         return alloc_mmu_pages(vcpu);
4153 }
4154
4155 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4156 {
4157         ASSERT(vcpu);
4158         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4159
4160         return init_kvm_mmu(vcpu);
4161 }
4162
4163 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4164 {
4165         struct kvm_memory_slot *memslot;
4166         gfn_t last_gfn;
4167         int i;
4168
4169         memslot = id_to_memslot(kvm->memslots, slot);
4170         last_gfn = memslot->base_gfn + memslot->npages - 1;
4171
4172         spin_lock(&kvm->mmu_lock);
4173
4174         for (i = PT_PAGE_TABLE_LEVEL;
4175              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4176                 unsigned long *rmapp;
4177                 unsigned long last_index, index;
4178
4179                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4180                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4181
4182                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4183                         if (*rmapp)
4184                                 __rmap_write_protect(kvm, rmapp, false);
4185
4186                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4187                                 kvm_flush_remote_tlbs(kvm);
4188                                 cond_resched_lock(&kvm->mmu_lock);
4189                         }
4190                 }
4191         }
4192
4193         kvm_flush_remote_tlbs(kvm);
4194         spin_unlock(&kvm->mmu_lock);
4195 }
4196
4197 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4198 {
4199         struct kvm_mmu_page *sp, *node;
4200         LIST_HEAD(invalid_list);
4201
4202 restart:
4203         list_for_each_entry_safe_reverse(sp, node,
4204               &kvm->arch.active_mmu_pages, link) {
4205                 /*
4206                  * No obsolete page exists before new created page since
4207                  * active_mmu_pages is the FIFO list.
4208                  */
4209                 if (!is_obsolete_sp(kvm, sp))
4210                         break;
4211
4212                 /*
4213                  * Do not repeatedly zap a root page to avoid unnecessary
4214                  * KVM_REQ_MMU_RELOAD, otherwise we may not be able to
4215                  * progress:
4216                  *    vcpu 0                        vcpu 1
4217                  *                         call vcpu_enter_guest():
4218                  *                            1): handle KVM_REQ_MMU_RELOAD
4219                  *                                and require mmu-lock to
4220                  *                                load mmu
4221                  * repeat:
4222                  *    1): zap root page and
4223                  *        send KVM_REQ_MMU_RELOAD
4224                  *
4225                  *    2): if (cond_resched_lock(mmu-lock))
4226                  *
4227                  *                            2): hold mmu-lock and load mmu
4228                  *
4229                  *                            3): see KVM_REQ_MMU_RELOAD bit
4230                  *                                on vcpu->requests is set
4231                  *                                then return 1 to call
4232                  *                                vcpu_enter_guest() again.
4233                  *            goto repeat;
4234                  *
4235                  * Since we are reversely walking the list and the invalid
4236                  * list will be moved to the head, skip the invalid page
4237                  * can help us to avoid the infinity list walking.
4238                  */
4239                 if (sp->role.invalid)
4240                         continue;
4241
4242                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4243                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4244                         cond_resched_lock(&kvm->mmu_lock);
4245                         goto restart;
4246                 }
4247
4248                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4249                         goto restart;
4250         }
4251
4252         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4253 }
4254
4255 /*
4256  * Fast invalidate all shadow pages and use lock-break technique
4257  * to zap obsolete pages.
4258  *
4259  * It's required when memslot is being deleted or VM is being
4260  * destroyed, in these cases, we should ensure that KVM MMU does
4261  * not use any resource of the being-deleted slot or all slots
4262  * after calling the function.
4263  */
4264 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4265 {
4266         spin_lock(&kvm->mmu_lock);
4267         kvm->arch.mmu_valid_gen++;
4268
4269         kvm_zap_obsolete_pages(kvm);
4270         spin_unlock(&kvm->mmu_lock);
4271 }
4272
4273 void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4274 {
4275         struct kvm_mmu_page *sp, *node;
4276         LIST_HEAD(invalid_list);
4277
4278         spin_lock(&kvm->mmu_lock);
4279 restart:
4280         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4281                 if (!sp->mmio_cached)
4282                         continue;
4283                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4284                         goto restart;
4285         }
4286
4287         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4288         spin_unlock(&kvm->mmu_lock);
4289 }
4290
4291 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4292 {
4293         struct kvm *kvm;
4294         int nr_to_scan = sc->nr_to_scan;
4295
4296         if (nr_to_scan == 0)
4297                 goto out;
4298
4299         raw_spin_lock(&kvm_lock);
4300
4301         list_for_each_entry(kvm, &vm_list, vm_list) {
4302                 int idx;
4303                 LIST_HEAD(invalid_list);
4304
4305                 /*
4306                  * Never scan more than sc->nr_to_scan VM instances.
4307                  * Will not hit this condition practically since we do not try
4308                  * to shrink more than one VM and it is very unlikely to see
4309                  * !n_used_mmu_pages so many times.
4310                  */
4311                 if (!nr_to_scan--)
4312                         break;
4313                 /*
4314                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4315                  * here. We may skip a VM instance errorneosly, but we do not
4316                  * want to shrink a VM that only started to populate its MMU
4317                  * anyway.
4318                  */
4319                 if (!kvm->arch.n_used_mmu_pages)
4320                         continue;
4321
4322                 idx = srcu_read_lock(&kvm->srcu);
4323                 spin_lock(&kvm->mmu_lock);
4324
4325                 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4326                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4327
4328                 spin_unlock(&kvm->mmu_lock);
4329                 srcu_read_unlock(&kvm->srcu, idx);
4330
4331                 list_move_tail(&kvm->vm_list, &vm_list);
4332                 break;
4333         }
4334
4335         raw_spin_unlock(&kvm_lock);
4336
4337 out:
4338         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4339 }
4340
4341 static struct shrinker mmu_shrinker = {
4342         .shrink = mmu_shrink,
4343         .seeks = DEFAULT_SEEKS * 10,
4344 };
4345
4346 static void mmu_destroy_caches(void)
4347 {
4348         if (pte_list_desc_cache)
4349                 kmem_cache_destroy(pte_list_desc_cache);
4350         if (mmu_page_header_cache)
4351                 kmem_cache_destroy(mmu_page_header_cache);
4352 }
4353
4354 int kvm_mmu_module_init(void)
4355 {
4356         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4357                                             sizeof(struct pte_list_desc),
4358                                             0, 0, NULL);
4359         if (!pte_list_desc_cache)
4360                 goto nomem;
4361
4362         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4363                                                   sizeof(struct kvm_mmu_page),
4364                                                   0, 0, NULL);
4365         if (!mmu_page_header_cache)
4366                 goto nomem;
4367
4368         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4369                 goto nomem;
4370
4371         register_shrinker(&mmu_shrinker);
4372
4373         return 0;
4374
4375 nomem:
4376         mmu_destroy_caches();
4377         return -ENOMEM;
4378 }
4379
4380 /*
4381  * Caculate mmu pages needed for kvm.
4382  */
4383 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4384 {
4385         unsigned int nr_mmu_pages;
4386         unsigned int  nr_pages = 0;
4387         struct kvm_memslots *slots;
4388         struct kvm_memory_slot *memslot;
4389
4390         slots = kvm_memslots(kvm);
4391
4392         kvm_for_each_memslot(memslot, slots)
4393                 nr_pages += memslot->npages;
4394
4395         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4396         nr_mmu_pages = max(nr_mmu_pages,
4397                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4398
4399         return nr_mmu_pages;
4400 }
4401
4402 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4403 {
4404         struct kvm_shadow_walk_iterator iterator;
4405         u64 spte;
4406         int nr_sptes = 0;
4407
4408         walk_shadow_page_lockless_begin(vcpu);
4409         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4410                 sptes[iterator.level-1] = spte;
4411                 nr_sptes++;
4412                 if (!is_shadow_present_pte(spte))
4413                         break;
4414         }
4415         walk_shadow_page_lockless_end(vcpu);
4416
4417         return nr_sptes;
4418 }
4419 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4420
4421 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4422 {
4423         ASSERT(vcpu);
4424
4425         destroy_kvm_mmu(vcpu);
4426         free_mmu_pages(vcpu);
4427         mmu_free_memory_caches(vcpu);
4428 }
4429
4430 void kvm_mmu_module_exit(void)
4431 {
4432         mmu_destroy_caches();
4433         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4434         unregister_shrinker(&mmu_shrinker);
4435         mmu_audit_disable();
4436 }