Revert "arm: mm: hugetlb WT hack"
[pandora-kernel.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19
20 #include <asm/cputype.h>
21 #include <asm/sections.h>
22 #include <asm/cachetype.h>
23 #include <asm/setup.h>
24 #include <asm/sizes.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28 #include <asm/traps.h>
29
30 #include <asm/mach/arch.h>
31 #include <asm/mach/map.h>
32
33 #include "mm.h"
34
35 /*
36  * empty_zero_page is a special page that is used for
37  * zero-initialized data and COW.
38  */
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
41
42 /*
43  * The pmd table for the upper-most set of pages.
44  */
45 pmd_t *top_pmd;
46
47 #define CPOLICY_UNCACHED        0
48 #define CPOLICY_BUFFERED        1
49 #define CPOLICY_WRITETHROUGH    2
50 #define CPOLICY_WRITEBACK       3
51 #define CPOLICY_WRITEALLOC      4
52
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
57
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
60
61 struct cachepolicy {
62         const char      policy[16];
63         unsigned int    cr_mask;
64         pmdval_t        pmd;
65         pteval_t        pte;
66 };
67
68 static struct cachepolicy cache_policies[] __initdata = {
69         {
70                 .policy         = "uncached",
71                 .cr_mask        = CR_W|CR_C,
72                 .pmd            = PMD_SECT_UNCACHED,
73                 .pte            = L_PTE_MT_UNCACHED,
74         }, {
75                 .policy         = "buffered",
76                 .cr_mask        = CR_C,
77                 .pmd            = PMD_SECT_BUFFERED,
78                 .pte            = L_PTE_MT_BUFFERABLE,
79         }, {
80                 .policy         = "writethrough",
81                 .cr_mask        = 0,
82                 .pmd            = PMD_SECT_WT,
83                 .pte            = L_PTE_MT_WRITETHROUGH,
84         }, {
85                 .policy         = "writeback",
86                 .cr_mask        = 0,
87                 .pmd            = PMD_SECT_WB,
88                 .pte            = L_PTE_MT_WRITEBACK,
89         }, {
90                 .policy         = "writealloc",
91                 .cr_mask        = 0,
92                 .pmd            = PMD_SECT_WBWA,
93                 .pte            = L_PTE_MT_WRITEALLOC,
94         }
95 };
96
97 /*
98  * These are useful for identifying cache coherency
99  * problems by allowing the cache or the cache and
100  * writebuffer to be turned off.  (Note: the write
101  * buffer should not be on and the cache off).
102  */
103 static int __init early_cachepolicy(char *p)
104 {
105         int i;
106
107         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108                 int len = strlen(cache_policies[i].policy);
109
110                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
111                         cachepolicy = i;
112                         cr_alignment &= ~cache_policies[i].cr_mask;
113                         cr_no_alignment &= ~cache_policies[i].cr_mask;
114                         break;
115                 }
116         }
117         if (i == ARRAY_SIZE(cache_policies))
118                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119         /*
120          * This restriction is partly to do with the way we boot; it is
121          * unpredictable to have memory mapped using two different sets of
122          * memory attributes (shared, type, and cache attribs).  We can not
123          * change these attributes once the initial assembly has setup the
124          * page tables.
125          */
126         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128                 cachepolicy = CPOLICY_WRITEBACK;
129         }
130         flush_cache_all();
131         set_cr(cr_alignment);
132         return 0;
133 }
134 early_param("cachepolicy", early_cachepolicy);
135
136 static int __init early_nocache(char *__unused)
137 {
138         char *p = "buffered";
139         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140         early_cachepolicy(p);
141         return 0;
142 }
143 early_param("nocache", early_nocache);
144
145 static int __init early_nowrite(char *__unused)
146 {
147         char *p = "uncached";
148         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149         early_cachepolicy(p);
150         return 0;
151 }
152 early_param("nowb", early_nowrite);
153
154 #ifndef CONFIG_ARM_LPAE
155 static int __init early_ecc(char *p)
156 {
157         if (memcmp(p, "on", 2) == 0)
158                 ecc_mask = PMD_PROTECTION;
159         else if (memcmp(p, "off", 3) == 0)
160                 ecc_mask = 0;
161         return 0;
162 }
163 early_param("ecc", early_ecc);
164 #endif
165
166 static int __init noalign_setup(char *__unused)
167 {
168         cr_alignment &= ~CR_A;
169         cr_no_alignment &= ~CR_A;
170         set_cr(cr_alignment);
171         return 1;
172 }
173 __setup("noalign", noalign_setup);
174
175 #ifndef CONFIG_SMP
176 void adjust_cr(unsigned long mask, unsigned long set)
177 {
178         unsigned long flags;
179
180         mask &= ~CR_A;
181
182         set &= mask;
183
184         local_irq_save(flags);
185
186         cr_no_alignment = (cr_no_alignment & ~mask) | set;
187         cr_alignment = (cr_alignment & ~mask) | set;
188
189         set_cr((get_cr() & ~mask) | set);
190
191         local_irq_restore(flags);
192 }
193 #endif
194
195 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
196 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
197
198 static struct mem_type mem_types[] = {
199         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
200                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
201                                   L_PTE_SHARED,
202                 .prot_l1        = PMD_TYPE_TABLE,
203                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
204                 .domain         = DOMAIN_IO,
205         },
206         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
207                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
208                 .prot_l1        = PMD_TYPE_TABLE,
209                 .prot_sect      = PROT_SECT_DEVICE,
210                 .domain         = DOMAIN_IO,
211         },
212         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
213                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
214                 .prot_l1        = PMD_TYPE_TABLE,
215                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
216                 .domain         = DOMAIN_IO,
217         },      
218         [MT_DEVICE_WC] = {      /* ioremap_wc */
219                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
220                 .prot_l1        = PMD_TYPE_TABLE,
221                 .prot_sect      = PROT_SECT_DEVICE,
222                 .domain         = DOMAIN_IO,
223         },
224         [MT_UNCACHED] = {
225                 .prot_pte       = PROT_PTE_DEVICE,
226                 .prot_l1        = PMD_TYPE_TABLE,
227                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
228                 .domain         = DOMAIN_IO,
229         },
230         [MT_CACHECLEAN] = {
231                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
232                 .domain    = DOMAIN_KERNEL,
233         },
234 #ifndef CONFIG_ARM_LPAE
235         [MT_MINICLEAN] = {
236                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
237                 .domain    = DOMAIN_KERNEL,
238         },
239 #endif
240         [MT_LOW_VECTORS] = {
241                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
242                                 L_PTE_RDONLY,
243                 .prot_l1   = PMD_TYPE_TABLE,
244                 .domain    = DOMAIN_USER,
245         },
246         [MT_HIGH_VECTORS] = {
247                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
248                                 L_PTE_USER | L_PTE_RDONLY,
249                 .prot_l1   = PMD_TYPE_TABLE,
250                 .domain    = DOMAIN_USER,
251         },
252         [MT_MEMORY] = {
253                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
254                 .prot_l1   = PMD_TYPE_TABLE,
255                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
256                 .domain    = DOMAIN_KERNEL,
257         },
258         [MT_ROM] = {
259                 .prot_sect = PMD_TYPE_SECT,
260                 .domain    = DOMAIN_KERNEL,
261         },
262         [MT_MEMORY_NONCACHED] = {
263                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
264                                 L_PTE_MT_BUFFERABLE,
265                 .prot_l1   = PMD_TYPE_TABLE,
266                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
267                 .domain    = DOMAIN_KERNEL,
268         },
269         [MT_MEMORY_DTCM] = {
270                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
271                                 L_PTE_XN,
272                 .prot_l1   = PMD_TYPE_TABLE,
273                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
274                 .domain    = DOMAIN_KERNEL,
275         },
276         [MT_MEMORY_ITCM] = {
277                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
278                 .prot_l1   = PMD_TYPE_TABLE,
279                 .domain    = DOMAIN_KERNEL,
280         },
281         [MT_MEMORY_SO] = {
282                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
283                                 L_PTE_MT_UNCACHED,
284                 .prot_l1   = PMD_TYPE_TABLE,
285                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
286                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
287                 .domain    = DOMAIN_KERNEL,
288         },
289         [MT_MEMORY_DMA_READY] = {
290                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
291                 .prot_l1   = PMD_TYPE_TABLE,
292                 .domain    = DOMAIN_KERNEL,
293         },
294 };
295
296 const struct mem_type *get_mem_type(unsigned int type)
297 {
298         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
299 }
300 EXPORT_SYMBOL(get_mem_type);
301
302 /*
303  * If the system supports huge pages and we are running with short descriptors,
304  * then compute the pmd and linux pte prot values for a huge page.
305  *
306  * These values are used by both the HugeTLB and THP code.
307  */
308 #if defined(CONFIG_SYS_SUPPORTS_HUGETLBFS) && !defined(CONFIG_ARM_LPAE)
309 pmdval_t arm_hugepmdprotval;
310 EXPORT_SYMBOL(arm_hugepmdprotval);
311
312 pteval_t arm_hugepteprotval;
313 EXPORT_SYMBOL(arm_hugepteprotval);
314 #endif
315
316
317 /*
318  * Adjust the PMD section entries according to the CPU in use.
319  */
320 static void __init build_mem_type_table(void)
321 {
322         struct cachepolicy *cp;
323         unsigned int cr = get_cr();
324         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
325         int cpu_arch = cpu_architecture();
326         int i;
327
328         if (cpu_arch < CPU_ARCH_ARMv6) {
329 #if defined(CONFIG_CPU_DCACHE_DISABLE)
330                 if (cachepolicy > CPOLICY_BUFFERED)
331                         cachepolicy = CPOLICY_BUFFERED;
332 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
333                 if (cachepolicy > CPOLICY_WRITETHROUGH)
334                         cachepolicy = CPOLICY_WRITETHROUGH;
335 #endif
336         }
337         if (cpu_arch < CPU_ARCH_ARMv5) {
338                 if (cachepolicy >= CPOLICY_WRITEALLOC)
339                         cachepolicy = CPOLICY_WRITEBACK;
340                 ecc_mask = 0;
341         }
342         if (is_smp())
343                 cachepolicy = CPOLICY_WRITEALLOC;
344
345         /*
346          * Strip out features not present on earlier architectures.
347          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
348          * without extended page tables don't have the 'Shared' bit.
349          */
350         if (cpu_arch < CPU_ARCH_ARMv5)
351                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
352                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
353         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
354                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
355                         mem_types[i].prot_sect &= ~PMD_SECT_S;
356
357         /*
358          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
359          * "update-able on write" bit on ARM610).  However, Xscale and
360          * Xscale3 require this bit to be cleared.
361          */
362         if (cpu_is_xscale() || cpu_is_xsc3()) {
363                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
364                         mem_types[i].prot_sect &= ~PMD_BIT4;
365                         mem_types[i].prot_l1 &= ~PMD_BIT4;
366                 }
367         } else if (cpu_arch < CPU_ARCH_ARMv6) {
368                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
369                         if (mem_types[i].prot_l1)
370                                 mem_types[i].prot_l1 |= PMD_BIT4;
371                         if (mem_types[i].prot_sect)
372                                 mem_types[i].prot_sect |= PMD_BIT4;
373                 }
374         }
375
376         /*
377          * Mark the device areas according to the CPU/architecture.
378          */
379         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
380                 if (!cpu_is_xsc3()) {
381                         /*
382                          * Mark device regions on ARMv6+ as execute-never
383                          * to prevent speculative instruction fetches.
384                          */
385                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
386                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
387                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
388                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
389                 }
390                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
391                         /*
392                          * For ARMv7 with TEX remapping,
393                          * - shared device is SXCB=1100
394                          * - nonshared device is SXCB=0100
395                          * - write combine device mem is SXCB=0001
396                          * (Uncached Normal memory)
397                          */
398                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
399                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
400                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
401                 } else if (cpu_is_xsc3()) {
402                         /*
403                          * For Xscale3,
404                          * - shared device is TEXCB=00101
405                          * - nonshared device is TEXCB=01000
406                          * - write combine device mem is TEXCB=00100
407                          * (Inner/Outer Uncacheable in xsc3 parlance)
408                          */
409                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
410                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
411                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
412                 } else {
413                         /*
414                          * For ARMv6 and ARMv7 without TEX remapping,
415                          * - shared device is TEXCB=00001
416                          * - nonshared device is TEXCB=01000
417                          * - write combine device mem is TEXCB=00100
418                          * (Uncached Normal in ARMv6 parlance).
419                          */
420                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
421                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
422                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
423                 }
424         } else {
425                 /*
426                  * On others, write combining is "Uncached/Buffered"
427                  */
428                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
429         }
430
431         /*
432          * Now deal with the memory-type mappings
433          */
434         cp = &cache_policies[cachepolicy];
435         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
436
437         /*
438          * Only use write-through for non-SMP systems
439          */
440         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
441                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
442
443         /*
444          * Enable CPU-specific coherency if supported.
445          * (Only available on XSC3 at the moment.)
446          */
447         if (arch_is_coherent() && cpu_is_xsc3()) {
448                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
449                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
450                 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
451                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
452                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
453         }
454         /*
455          * We don't use domains on ARMv6 (since this causes problems with
456          * v6/v7 kernels), so we must use a separate memory type for user
457          * r/o, kernel r/w to map the vectors page.
458          */
459         if (cpu_arch == CPU_ARCH_ARMv6)
460                 vecs_pgprot |= L_PTE_MT_VECTORS;
461
462         /*
463          * ARMv6 and above have extended page tables.
464          */
465         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
466 #ifndef CONFIG_ARM_LPAE
467                 /*
468                  * Mark cache clean areas and XIP ROM read only
469                  * from SVC mode and no access from userspace.
470                  */
471                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
472                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
473                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
474 #endif
475
476                 if (is_smp()) {
477                         /*
478                          * Mark memory with the "shared" attribute
479                          * for SMP systems
480                          */
481                         user_pgprot |= L_PTE_SHARED;
482                         kern_pgprot |= L_PTE_SHARED;
483                         vecs_pgprot |= L_PTE_SHARED;
484                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
485                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
486                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
487                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
488                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
489                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
490                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
491                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
492                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
493                 }
494         }
495
496         /*
497          * Non-cacheable Normal - intended for memory areas that must
498          * not cause dirty cache line writebacks when used
499          */
500         if (cpu_arch >= CPU_ARCH_ARMv6) {
501                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
502                         /* Non-cacheable Normal is XCB = 001 */
503                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
504                                 PMD_SECT_BUFFERED;
505                 } else {
506                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
507                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
508                                 PMD_SECT_TEX(1);
509                 }
510         } else {
511                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
512         }
513
514 #ifdef CONFIG_ARM_LPAE
515         /*
516          * Do not generate access flag faults for the kernel mappings.
517          */
518         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
519                 mem_types[i].prot_pte |= PTE_EXT_AF;
520                 mem_types[i].prot_sect |= PMD_SECT_AF;
521         }
522         kern_pgprot |= PTE_EXT_AF;
523         vecs_pgprot |= PTE_EXT_AF;
524 #endif
525
526         for (i = 0; i < 16; i++) {
527                 pteval_t v = pgprot_val(protection_map[i]);
528                 protection_map[i] = __pgprot(v | user_pgprot);
529         }
530
531         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
532         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
533
534         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
535         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
536                                  L_PTE_DIRTY | kern_pgprot);
537
538         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
539         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
540         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
541         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
542         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
543         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
544         mem_types[MT_ROM].prot_sect |= cp->pmd;
545
546         switch (cp->pmd) {
547         case PMD_SECT_WT:
548                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
549                 break;
550         case PMD_SECT_WB:
551         case PMD_SECT_WBWA:
552                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
553                 break;
554         }
555         printk("Memory policy: ECC %sabled, Data cache %s\n",
556                 ecc_mask ? "en" : "dis", cp->policy);
557
558         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
559                 struct mem_type *t = &mem_types[i];
560                 if (t->prot_l1)
561                         t->prot_l1 |= PMD_DOMAIN(t->domain);
562                 if (t->prot_sect)
563                         t->prot_sect |= PMD_DOMAIN(t->domain);
564         }
565
566 #if defined(CONFIG_SYS_SUPPORTS_HUGETLBFS) && !defined(CONFIG_ARM_LPAE)
567         /*
568          * we assume all huge pages are user pages and that hardware access
569          * flag updates are disabled (i.e. SCTLR.AFE == 0b).
570          */
571         arm_hugepteprotval = mem_types[MT_MEMORY].prot_pte | L_PTE_USER | L_PTE_VALID;
572
573         arm_hugepmdprotval = mem_types[MT_MEMORY].prot_sect | PMD_SECT_AP_READ
574                                 | PMD_SECT_nG;
575 #endif
576
577 }
578
579 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
580 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
581                               unsigned long size, pgprot_t vma_prot)
582 {
583         if (!pfn_valid(pfn))
584                 return pgprot_noncached(vma_prot);
585         else if (file->f_flags & O_SYNC)
586                 return pgprot_writecombine(vma_prot);
587         return vma_prot;
588 }
589 EXPORT_SYMBOL(phys_mem_access_prot);
590 #endif
591
592 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
593
594 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
595 {
596         void *ptr = __va(memblock_alloc(sz, align));
597         memset(ptr, 0, sz);
598         return ptr;
599 }
600
601 static void __init *early_alloc(unsigned long sz)
602 {
603         return early_alloc_aligned(sz, sz);
604 }
605
606 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
607 {
608         if (pmd_none(*pmd)) {
609                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
610                 __pmd_populate(pmd, __pa(pte), prot);
611         }
612         BUG_ON(pmd_bad(*pmd));
613         return pte_offset_kernel(pmd, addr);
614 }
615
616 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
617                                   unsigned long end, unsigned long pfn,
618                                   const struct mem_type *type)
619 {
620         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
621         do {
622                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
623                 pfn++;
624         } while (pte++, addr += PAGE_SIZE, addr != end);
625 }
626
627 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
628                                       unsigned long end, phys_addr_t phys,
629                                       const struct mem_type *type)
630 {
631         pmd_t *pmd = pmd_offset(pud, addr);
632
633         /*
634          * Try a section mapping - end, addr and phys must all be aligned
635          * to a section boundary.  Note that PMDs refer to the individual
636          * L1 entries, whereas PGDs refer to a group of L1 entries making
637          * up one logical pointer to an L2 table.
638          */
639         if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
640                 pmd_t *p = pmd;
641
642 #ifndef CONFIG_ARM_LPAE
643                 if (addr & SECTION_SIZE)
644                         pmd++;
645 #endif
646
647                 do {
648                         *pmd = __pmd(phys | type->prot_sect);
649                         phys += SECTION_SIZE;
650                 } while (pmd++, addr += SECTION_SIZE, addr != end);
651
652                 flush_pmd_entry(p);
653         } else {
654                 /*
655                  * No need to loop; pte's aren't interested in the
656                  * individual L1 entries.
657                  */
658                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
659         }
660 }
661
662 static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
663         unsigned long phys, const struct mem_type *type)
664 {
665         pud_t *pud = pud_offset(pgd, addr);
666         unsigned long next;
667
668         do {
669                 next = pud_addr_end(addr, end);
670                 alloc_init_section(pud, addr, next, phys, type);
671                 phys += next - addr;
672         } while (pud++, addr = next, addr != end);
673 }
674
675 #ifndef CONFIG_ARM_LPAE
676 static void __init create_36bit_mapping(struct map_desc *md,
677                                         const struct mem_type *type)
678 {
679         unsigned long addr, length, end;
680         phys_addr_t phys;
681         pgd_t *pgd;
682
683         addr = md->virtual;
684         phys = __pfn_to_phys(md->pfn);
685         length = PAGE_ALIGN(md->length);
686
687         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
688                 printk(KERN_ERR "MM: CPU does not support supersection "
689                        "mapping for 0x%08llx at 0x%08lx\n",
690                        (long long)__pfn_to_phys((u64)md->pfn), addr);
691                 return;
692         }
693
694         /* N.B. ARMv6 supersections are only defined to work with domain 0.
695          *      Since domain assignments can in fact be arbitrary, the
696          *      'domain == 0' check below is required to insure that ARMv6
697          *      supersections are only allocated for domain 0 regardless
698          *      of the actual domain assignments in use.
699          */
700         if (type->domain) {
701                 printk(KERN_ERR "MM: invalid domain in supersection "
702                        "mapping for 0x%08llx at 0x%08lx\n",
703                        (long long)__pfn_to_phys((u64)md->pfn), addr);
704                 return;
705         }
706
707         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
708                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
709                        " at 0x%08lx invalid alignment\n",
710                        (long long)__pfn_to_phys((u64)md->pfn), addr);
711                 return;
712         }
713
714         /*
715          * Shift bits [35:32] of address into bits [23:20] of PMD
716          * (See ARMv6 spec).
717          */
718         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
719
720         pgd = pgd_offset_k(addr);
721         end = addr + length;
722         do {
723                 pud_t *pud = pud_offset(pgd, addr);
724                 pmd_t *pmd = pmd_offset(pud, addr);
725                 int i;
726
727                 for (i = 0; i < 16; i++)
728                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
729
730                 addr += SUPERSECTION_SIZE;
731                 phys += SUPERSECTION_SIZE;
732                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
733         } while (addr != end);
734 }
735 #endif  /* !CONFIG_ARM_LPAE */
736
737 /*
738  * Create the page directory entries and any necessary
739  * page tables for the mapping specified by `md'.  We
740  * are able to cope here with varying sizes and address
741  * offsets, and we take full advantage of sections and
742  * supersections.
743  */
744 static void __init create_mapping(struct map_desc *md)
745 {
746         unsigned long addr, length, end;
747         phys_addr_t phys;
748         const struct mem_type *type;
749         pgd_t *pgd;
750
751         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
752                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
753                        " at 0x%08lx in user region\n",
754                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
755                 return;
756         }
757
758         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
759             md->virtual >= PAGE_OFFSET &&
760             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
761                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
762                        " at 0x%08lx out of vmalloc space\n",
763                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
764         }
765
766         type = &mem_types[md->type];
767
768 #ifndef CONFIG_ARM_LPAE
769         /*
770          * Catch 36-bit addresses
771          */
772         if (md->pfn >= 0x100000) {
773                 create_36bit_mapping(md, type);
774                 return;
775         }
776 #endif
777
778         addr = md->virtual & PAGE_MASK;
779         phys = __pfn_to_phys(md->pfn);
780         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
781
782         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
783                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
784                        "be mapped using pages, ignoring.\n",
785                        (long long)__pfn_to_phys(md->pfn), addr);
786                 return;
787         }
788
789         pgd = pgd_offset_k(addr);
790         end = addr + length;
791         do {
792                 unsigned long next = pgd_addr_end(addr, end);
793
794                 alloc_init_pud(pgd, addr, next, phys, type);
795
796                 phys += next - addr;
797                 addr = next;
798         } while (pgd++, addr != end);
799 }
800
801 /*
802  * Create the architecture specific mappings
803  */
804 void __init iotable_init(struct map_desc *io_desc, int nr)
805 {
806         struct map_desc *md;
807         struct vm_struct *vm;
808
809         if (!nr)
810                 return;
811
812         vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
813
814         for (md = io_desc; nr; md++, nr--) {
815                 create_mapping(md);
816                 vm->addr = (void *)(md->virtual & PAGE_MASK);
817                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
818                 vm->phys_addr = __pfn_to_phys(md->pfn); 
819                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 
820                 vm->flags |= VM_ARM_MTYPE(md->type);
821                 vm->caller = iotable_init;
822                 vm_area_add_early(vm++);
823         }
824 }
825
826 static void * __initdata vmalloc_min =
827         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
828
829 /*
830  * vmalloc=size forces the vmalloc area to be exactly 'size'
831  * bytes. This can be used to increase (or decrease) the vmalloc
832  * area - the default is 240m.
833  */
834 static int __init early_vmalloc(char *arg)
835 {
836         unsigned long vmalloc_reserve = memparse(arg, NULL);
837
838         if (vmalloc_reserve < SZ_16M) {
839                 vmalloc_reserve = SZ_16M;
840                 printk(KERN_WARNING
841                         "vmalloc area too small, limiting to %luMB\n",
842                         vmalloc_reserve >> 20);
843         }
844
845         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
846                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
847                 printk(KERN_WARNING
848                         "vmalloc area is too big, limiting to %luMB\n",
849                         vmalloc_reserve >> 20);
850         }
851
852         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
853         return 0;
854 }
855 early_param("vmalloc", early_vmalloc);
856
857 phys_addr_t arm_lowmem_limit __initdata = 0;
858
859 void __init sanity_check_meminfo(void)
860 {
861         int i, j, highmem = 0;
862
863         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
864                 struct membank *bank = &meminfo.bank[j];
865                 *bank = meminfo.bank[i];
866
867                 if (bank->start > ULONG_MAX)
868                         highmem = 1;
869
870 #ifdef CONFIG_HIGHMEM
871                 if (__va(bank->start) >= vmalloc_min ||
872                     __va(bank->start) < (void *)PAGE_OFFSET)
873                         highmem = 1;
874
875                 bank->highmem = highmem;
876
877                 /*
878                  * Split those memory banks which are partially overlapping
879                  * the vmalloc area greatly simplifying things later.
880                  */
881                 if (!highmem && __va(bank->start) < vmalloc_min &&
882                     bank->size > vmalloc_min - __va(bank->start)) {
883                         if (meminfo.nr_banks >= NR_BANKS) {
884                                 printk(KERN_CRIT "NR_BANKS too low, "
885                                                  "ignoring high memory\n");
886                         } else {
887                                 memmove(bank + 1, bank,
888                                         (meminfo.nr_banks - i) * sizeof(*bank));
889                                 meminfo.nr_banks++;
890                                 i++;
891                                 bank[1].size -= vmalloc_min - __va(bank->start);
892                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
893                                 bank[1].highmem = highmem = 1;
894                                 j++;
895                         }
896                         bank->size = vmalloc_min - __va(bank->start);
897                 }
898 #else
899                 bank->highmem = highmem;
900
901                 /*
902                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
903                  */
904                 if (highmem) {
905                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
906                                "(!CONFIG_HIGHMEM).\n",
907                                (unsigned long long)bank->start,
908                                (unsigned long long)bank->start + bank->size - 1);
909                         continue;
910                 }
911
912                 /*
913                  * Check whether this memory bank would entirely overlap
914                  * the vmalloc area.
915                  */
916                 if (__va(bank->start) >= vmalloc_min ||
917                     __va(bank->start) < (void *)PAGE_OFFSET) {
918                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
919                                "(vmalloc region overlap).\n",
920                                (unsigned long long)bank->start,
921                                (unsigned long long)bank->start + bank->size - 1);
922                         continue;
923                 }
924
925                 /*
926                  * Check whether this memory bank would partially overlap
927                  * the vmalloc area.
928                  */
929                 if (__va(bank->start + bank->size) > vmalloc_min ||
930                     __va(bank->start + bank->size) < __va(bank->start)) {
931                         unsigned long newsize = vmalloc_min - __va(bank->start);
932                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
933                                "to -%.8llx (vmalloc region overlap).\n",
934                                (unsigned long long)bank->start,
935                                (unsigned long long)bank->start + bank->size - 1,
936                                (unsigned long long)bank->start + newsize - 1);
937                         bank->size = newsize;
938                 }
939 #endif
940                 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
941                         arm_lowmem_limit = bank->start + bank->size;
942
943                 j++;
944         }
945 #ifdef CONFIG_HIGHMEM
946         if (highmem) {
947                 const char *reason = NULL;
948
949                 if (cache_is_vipt_aliasing()) {
950                         /*
951                          * Interactions between kmap and other mappings
952                          * make highmem support with aliasing VIPT caches
953                          * rather difficult.
954                          */
955                         reason = "with VIPT aliasing cache";
956                 }
957                 if (reason) {
958                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
959                                 reason);
960                         while (j > 0 && meminfo.bank[j - 1].highmem)
961                                 j--;
962                 }
963         }
964 #endif
965         meminfo.nr_banks = j;
966         high_memory = __va(arm_lowmem_limit - 1) + 1;
967         memblock_set_current_limit(arm_lowmem_limit);
968 }
969
970 static inline void prepare_page_table(void)
971 {
972         unsigned long addr;
973         phys_addr_t end;
974
975         /*
976          * Clear out all the mappings below the kernel image.
977          */
978         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
979                 pmd_clear(pmd_off_k(addr));
980
981 #ifdef CONFIG_XIP_KERNEL
982         /* The XIP kernel is mapped in the module area -- skip over it */
983         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
984 #endif
985         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
986                 pmd_clear(pmd_off_k(addr));
987
988         /*
989          * Find the end of the first block of lowmem.
990          */
991         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
992         if (end >= arm_lowmem_limit)
993                 end = arm_lowmem_limit;
994
995         /*
996          * Clear out all the kernel space mappings, except for the first
997          * memory bank, up to the vmalloc region.
998          */
999         for (addr = __phys_to_virt(end);
1000              addr < VMALLOC_START; addr += PMD_SIZE)
1001                 pmd_clear(pmd_off_k(addr));
1002 }
1003
1004 #ifdef CONFIG_ARM_LPAE
1005 /* the first page is reserved for pgd */
1006 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1007                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1008 #else
1009 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1010 #endif
1011
1012 /*
1013  * Reserve the special regions of memory
1014  */
1015 void __init arm_mm_memblock_reserve(void)
1016 {
1017         /*
1018          * Reserve the page tables.  These are already in use,
1019          * and can only be in node 0.
1020          */
1021         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1022
1023 #ifdef CONFIG_SA1111
1024         /*
1025          * Because of the SA1111 DMA bug, we want to preserve our
1026          * precious DMA-able memory...
1027          */
1028         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1029 #endif
1030 }
1031
1032 /*
1033  * Set up the device mappings.  Since we clear out the page tables for all
1034  * mappings above VMALLOC_START, we will remove any debug device mappings.
1035  * This means you have to be careful how you debug this function, or any
1036  * called function.  This means you can't use any function or debugging
1037  * method which may touch any device, otherwise the kernel _will_ crash.
1038  */
1039 static void __init devicemaps_init(struct machine_desc *mdesc)
1040 {
1041         struct map_desc map;
1042         unsigned long addr;
1043
1044         /*
1045          * Allocate the vector page early.
1046          */
1047         vectors_page = early_alloc(PAGE_SIZE);
1048
1049         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1050                 pmd_clear(pmd_off_k(addr));
1051
1052         /*
1053          * Map the kernel if it is XIP.
1054          * It is always first in the modulearea.
1055          */
1056 #ifdef CONFIG_XIP_KERNEL
1057         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1058         map.virtual = MODULES_VADDR;
1059         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1060         map.type = MT_ROM;
1061         create_mapping(&map);
1062 #endif
1063
1064         /*
1065          * Map the cache flushing regions.
1066          */
1067 #ifdef FLUSH_BASE
1068         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1069         map.virtual = FLUSH_BASE;
1070         map.length = SZ_1M;
1071         map.type = MT_CACHECLEAN;
1072         create_mapping(&map);
1073 #endif
1074 #ifdef FLUSH_BASE_MINICACHE
1075         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1076         map.virtual = FLUSH_BASE_MINICACHE;
1077         map.length = SZ_1M;
1078         map.type = MT_MINICLEAN;
1079         create_mapping(&map);
1080 #endif
1081
1082         /*
1083          * Create a mapping for the machine vectors at the high-vectors
1084          * location (0xffff0000).  If we aren't using high-vectors, also
1085          * create a mapping at the low-vectors virtual address.
1086          */
1087         map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
1088         map.virtual = 0xffff0000;
1089         map.length = PAGE_SIZE;
1090         map.type = MT_HIGH_VECTORS;
1091         create_mapping(&map);
1092
1093         if (!vectors_high()) {
1094                 map.virtual = 0;
1095                 map.type = MT_LOW_VECTORS;
1096                 create_mapping(&map);
1097         }
1098
1099         /*
1100          * Ask the machine support to map in the statically mapped devices.
1101          */
1102         if (mdesc->map_io)
1103                 mdesc->map_io();
1104
1105         /*
1106          * Finally flush the caches and tlb to ensure that we're in a
1107          * consistent state wrt the writebuffer.  This also ensures that
1108          * any write-allocated cache lines in the vector page are written
1109          * back.  After this point, we can start to touch devices again.
1110          */
1111         local_flush_tlb_all();
1112         flush_cache_all();
1113 }
1114
1115 static void __init kmap_init(void)
1116 {
1117 #ifdef CONFIG_HIGHMEM
1118         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1119                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1120 #endif
1121 }
1122
1123 static void __init map_lowmem(void)
1124 {
1125         struct memblock_region *reg;
1126
1127         /* Map all the lowmem memory banks. */
1128         for_each_memblock(memory, reg) {
1129                 phys_addr_t start = reg->base;
1130                 phys_addr_t end = start + reg->size;
1131                 struct map_desc map;
1132
1133                 if (end > arm_lowmem_limit)
1134                         end = arm_lowmem_limit;
1135                 if (start >= end)
1136                         break;
1137
1138                 map.pfn = __phys_to_pfn(start);
1139                 map.virtual = __phys_to_virt(start);
1140                 map.length = end - start;
1141                 map.type = MT_MEMORY;
1142
1143                 create_mapping(&map);
1144         }
1145 }
1146
1147 /*
1148  * paging_init() sets up the page tables, initialises the zone memory
1149  * maps, and sets up the zero page, bad page and bad page tables.
1150  */
1151 void __init paging_init(struct machine_desc *mdesc)
1152 {
1153         void *zero_page;
1154
1155         memblock_set_current_limit(arm_lowmem_limit);
1156
1157         build_mem_type_table();
1158         prepare_page_table();
1159         map_lowmem();
1160         dma_contiguous_remap();
1161         devicemaps_init(mdesc);
1162         kmap_init();
1163
1164         top_pmd = pmd_off_k(0xffff0000);
1165
1166         /* allocate the zero page. */
1167         zero_page = early_alloc(PAGE_SIZE);
1168
1169         bootmem_init();
1170
1171         empty_zero_page = virt_to_page(zero_page);
1172         __flush_dcache_page(NULL, empty_zero_page);
1173 }