dm thin: fix documentation relative to low water mark threshold
[pandora-kernel.git] / Documentation / device-mapper / thin-provisioning.txt
1 Introduction
2 ============
3
4 This document descibes a collection of device-mapper targets that
5 between them implement thin-provisioning and snapshots.
6
7 The main highlight of this implementation, compared to the previous
8 implementation of snapshots, is that it allows many virtual devices to
9 be stored on the same data volume.  This simplifies administration and
10 allows the sharing of data between volumes, thus reducing disk usage.
11
12 Another significant feature is support for an arbitrary depth of
13 recursive snapshots (snapshots of snapshots of snapshots ...).  The
14 previous implementation of snapshots did this by chaining together
15 lookup tables, and so performance was O(depth).  This new
16 implementation uses a single data structure to avoid this degradation
17 with depth.  Fragmentation may still be an issue, however, in some
18 scenarios.
19
20 Metadata is stored on a separate device from data, giving the
21 administrator some freedom, for example to:
22
23 - Improve metadata resilience by storing metadata on a mirrored volume
24   but data on a non-mirrored one.
25
26 - Improve performance by storing the metadata on SSD.
27
28 Status
29 ======
30
31 These targets are very much still in the EXPERIMENTAL state.  Please
32 do not yet rely on them in production.  But do experiment and offer us
33 feedback.  Different use cases will have different performance
34 characteristics, for example due to fragmentation of the data volume.
35
36 If you find this software is not performing as expected please mail
37 dm-devel@redhat.com with details and we'll try our best to improve
38 things for you.
39
40 Userspace tools for checking and repairing the metadata are under
41 development.
42
43 Cookbook
44 ========
45
46 This section describes some quick recipes for using thin provisioning.
47 They use the dmsetup program to control the device-mapper driver
48 directly.  End users will be advised to use a higher-level volume
49 manager such as LVM2 once support has been added.
50
51 Pool device
52 -----------
53
54 The pool device ties together the metadata volume and the data volume.
55 It maps I/O linearly to the data volume and updates the metadata via
56 two mechanisms:
57
58 - Function calls from the thin targets
59
60 - Device-mapper 'messages' from userspace which control the creation of new
61   virtual devices amongst other things.
62
63 Setting up a fresh pool device
64 ------------------------------
65
66 Setting up a pool device requires a valid metadata device, and a
67 data device.  If you do not have an existing metadata device you can
68 make one by zeroing the first 4k to indicate empty metadata.
69
70     dd if=/dev/zero of=$metadata_dev bs=4096 count=1
71
72 The amount of metadata you need will vary according to how many blocks
73 are shared between thin devices (i.e. through snapshots).  If you have
74 less sharing than average you'll need a larger-than-average metadata device.
75
76 As a guide, we suggest you calculate the number of bytes to use in the
77 metadata device as 48 * $data_dev_size / $data_block_size but round it up
78 to 2MB if the answer is smaller.  The largest size supported is 16GB.
79
80 If you're creating large numbers of snapshots which are recording large
81 amounts of change, you may need find you need to increase this.
82
83 Reloading a pool table
84 ----------------------
85
86 You may reload a pool's table, indeed this is how the pool is resized
87 if it runs out of space.  (N.B. While specifying a different metadata
88 device when reloading is not forbidden at the moment, things will go
89 wrong if it does not route I/O to exactly the same on-disk location as
90 previously.)
91
92 Using an existing pool device
93 -----------------------------
94
95     dmsetup create pool \
96         --table "0 20971520 thin-pool $metadata_dev $data_dev \
97                  $data_block_size $low_water_mark"
98
99 $data_block_size gives the smallest unit of disk space that can be
100 allocated at a time expressed in units of 512-byte sectors.  People
101 primarily interested in thin provisioning may want to use a value such
102 as 1024 (512KB).  People doing lots of snapshotting may want a smaller value
103 such as 128 (64KB).  If you are not zeroing newly-allocated data,
104 a larger $data_block_size in the region of 256000 (128MB) is suggested.
105 $data_block_size must be the same for the lifetime of the
106 metadata device.
107
108 $low_water_mark is expressed in blocks of size $data_block_size.  If
109 free space on the data device drops below this level then a dm event
110 will be triggered which a userspace daemon should catch allowing it to
111 extend the pool device.  Only one such event will be sent.
112
113 No special event is triggered if a just resumed device's free space is below
114 the low water mark. However, resuming a device always triggers an
115 event; a userspace daemon should verify that free space exceeds the low
116 water mark when handling this event.
117
118 Thin provisioning
119 -----------------
120
121 i) Creating a new thinly-provisioned volume.
122
123   To create a new thinly- provisioned volume you must send a message to an
124   active pool device, /dev/mapper/pool in this example.
125
126     dmsetup message /dev/mapper/pool 0 "create_thin 0"
127
128   Here '0' is an identifier for the volume, a 24-bit number.  It's up
129   to the caller to allocate and manage these identifiers.  If the
130   identifier is already in use, the message will fail with -EEXIST.
131
132 ii) Using a thinly-provisioned volume.
133
134   Thinly-provisioned volumes are activated using the 'thin' target:
135
136     dmsetup create thin --table "0 2097152 thin /dev/mapper/pool 0"
137
138   The last parameter is the identifier for the thinp device.
139
140 Internal snapshots
141 ------------------
142
143 i) Creating an internal snapshot.
144
145   Snapshots are created with another message to the pool.
146
147   N.B.  If the origin device that you wish to snapshot is active, you
148   must suspend it before creating the snapshot to avoid corruption.
149   This is NOT enforced at the moment, so please be careful!
150
151     dmsetup suspend /dev/mapper/thin
152     dmsetup message /dev/mapper/pool 0 "create_snap 1 0"
153     dmsetup resume /dev/mapper/thin
154
155   Here '1' is the identifier for the volume, a 24-bit number.  '0' is the
156   identifier for the origin device.
157
158 ii) Using an internal snapshot.
159
160   Once created, the user doesn't have to worry about any connection
161   between the origin and the snapshot.  Indeed the snapshot is no
162   different from any other thinly-provisioned device and can be
163   snapshotted itself via the same method.  It's perfectly legal to
164   have only one of them active, and there's no ordering requirement on
165   activating or removing them both.  (This differs from conventional
166   device-mapper snapshots.)
167
168   Activate it exactly the same way as any other thinly-provisioned volume:
169
170     dmsetup create snap --table "0 2097152 thin /dev/mapper/pool 1"
171
172 Deactivation
173 ------------
174
175 All devices using a pool must be deactivated before the pool itself
176 can be.
177
178     dmsetup remove thin
179     dmsetup remove snap
180     dmsetup remove pool
181
182 Reference
183 =========
184
185 'thin-pool' target
186 ------------------
187
188 i) Constructor
189
190     thin-pool <metadata dev> <data dev> <data block size (sectors)> \
191               <low water mark (blocks)> [<number of feature args> [<arg>]*]
192
193     Optional feature arguments:
194     - 'skip_block_zeroing': skips the zeroing of newly-provisioned blocks.
195
196     Data block size must be between 64KB (128 sectors) and 1GB
197     (2097152 sectors) inclusive.
198
199
200 ii) Status
201
202     <transaction id> <used metadata blocks>/<total metadata blocks>
203     <used data blocks>/<total data blocks> <held metadata root>
204
205
206     transaction id:
207         A 64-bit number used by userspace to help synchronise with metadata
208         from volume managers.
209
210     used data blocks / total data blocks
211         If the number of free blocks drops below the pool's low water mark a
212         dm event will be sent to userspace.  This event is edge-triggered and
213         it will occur only once after each resume so volume manager writers
214         should register for the event and then check the target's status.
215
216     held metadata root:
217         The location, in sectors, of the metadata root that has been
218         'held' for userspace read access.  '-' indicates there is no
219         held root.  This feature is not yet implemented so '-' is
220         always returned.
221
222 iii) Messages
223
224     create_thin <dev id>
225
226         Create a new thinly-provisioned device.
227         <dev id> is an arbitrary unique 24-bit identifier chosen by
228         the caller.
229
230     create_snap <dev id> <origin id>
231
232         Create a new snapshot of another thinly-provisioned device.
233         <dev id> is an arbitrary unique 24-bit identifier chosen by
234         the caller.
235         <origin id> is the identifier of the thinly-provisioned device
236         of which the new device will be a snapshot.
237
238     delete <dev id>
239
240         Deletes a thin device.  Irreversible.
241
242     trim <dev id> <new size in sectors>
243
244         Delete mappings from the end of a thin device.  Irreversible.
245         You might want to use this if you're reducing the size of
246         your thinly-provisioned device.  In many cases, due to the
247         sharing of blocks between devices, it is not possible to
248         determine in advance how much space 'trim' will release.  (In
249         future a userspace tool might be able to perform this
250         calculation.)
251
252     set_transaction_id <current id> <new id>
253
254         Userland volume managers, such as LVM, need a way to
255         synchronise their external metadata with the internal metadata of the
256         pool target.  The thin-pool target offers to store an
257         arbitrary 64-bit transaction id and return it on the target's
258         status line.  To avoid races you must provide what you think
259         the current transaction id is when you change it with this
260         compare-and-swap message.
261
262 'thin' target
263 -------------
264
265 i) Constructor
266
267     thin <pool dev> <dev id>
268
269     pool dev:
270         the thin-pool device, e.g. /dev/mapper/my_pool or 253:0
271
272     dev id:
273         the internal device identifier of the device to be
274         activated.
275
276 The pool doesn't store any size against the thin devices.  If you
277 load a thin target that is smaller than you've been using previously,
278 then you'll have no access to blocks mapped beyond the end.  If you
279 load a target that is bigger than before, then extra blocks will be
280 provisioned as and when needed.
281
282 If you wish to reduce the size of your thin device and potentially
283 regain some space then send the 'trim' message to the pool.
284
285 ii) Status
286
287      <nr mapped sectors> <highest mapped sector>