nvme: Fix endianness assignment to prp2 in nvme_identify()
[pandora-u-boot.git] / drivers / nvme / nvme.c
1 /*
2  * Copyright (C) 2017 NXP Semiconductors
3  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 #include <common.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <memalign.h>
12 #include <pci.h>
13 #include <dm/device-internal.h>
14 #include "nvme.h"
15
16 struct nvme_info *nvme_info;
17
18 #define NVME_Q_DEPTH            2
19 #define NVME_AQ_DEPTH           2
20 #define NVME_SQ_SIZE(depth)     (depth * sizeof(struct nvme_command))
21 #define NVME_CQ_SIZE(depth)     (depth * sizeof(struct nvme_completion))
22 #define ADMIN_TIMEOUT           60
23 #define IO_TIMEOUT              30
24 #define MAX_PRP_POOL            512
25
26 /*
27  * An NVM Express queue. Each device has at least two (one for admin
28  * commands and one for I/O commands).
29  */
30 struct nvme_queue {
31         struct nvme_dev *dev;
32         struct nvme_command *sq_cmds;
33         struct nvme_completion *cqes;
34         wait_queue_head_t sq_full;
35         u32 __iomem *q_db;
36         u16 q_depth;
37         s16 cq_vector;
38         u16 sq_head;
39         u16 sq_tail;
40         u16 cq_head;
41         u16 qid;
42         u8 cq_phase;
43         u8 cqe_seen;
44         unsigned long cmdid_data[];
45 };
46
47 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
48 {
49         u32 bit = enabled ? NVME_CSTS_RDY : 0;
50
51         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit)
52                 udelay(10000);
53
54         return 0;
55 }
56
57 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
58                            int total_len, u64 dma_addr)
59 {
60         u32 page_size = dev->page_size;
61         int offset = dma_addr & (page_size - 1);
62         u64 *prp_pool;
63         int length = total_len;
64         int i, nprps;
65         length -= (page_size - offset);
66
67         if (length <= 0) {
68                 *prp2 = 0;
69                 return 0;
70         }
71
72         if (length)
73                 dma_addr += (page_size - offset);
74
75         if (length <= page_size) {
76                 *prp2 = dma_addr;
77                 return 0;
78         }
79
80         nprps = DIV_ROUND_UP(length, page_size);
81
82         if (nprps > dev->prp_entry_num) {
83                 free(dev->prp_pool);
84                 dev->prp_pool = malloc(nprps << 3);
85                 if (!dev->prp_pool) {
86                         printf("Error: malloc prp_pool fail\n");
87                         return -ENOMEM;
88                 }
89                 dev->prp_entry_num = nprps;
90         }
91
92         prp_pool = dev->prp_pool;
93         i = 0;
94         while (nprps) {
95                 if (i == ((page_size >> 3) - 1)) {
96                         *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
97                                         page_size);
98                         i = 0;
99                         prp_pool += page_size;
100                 }
101                 *(prp_pool + i++) = cpu_to_le64(dma_addr);
102                 dma_addr += page_size;
103                 nprps--;
104         }
105         *prp2 = (ulong)dev->prp_pool;
106
107         return 0;
108 }
109
110 static __le16 nvme_get_cmd_id(void)
111 {
112         static unsigned short cmdid;
113
114         return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
115 }
116
117 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
118 {
119         u64 start = (ulong)&nvmeq->cqes[index];
120         u64 stop = start + sizeof(struct nvme_completion);
121
122         invalidate_dcache_range(start, stop);
123
124         return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
125 }
126
127 /**
128  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
129  *
130  * @nvmeq:      The queue to use
131  * @cmd:        The command to send
132  */
133 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
134 {
135         u16 tail = nvmeq->sq_tail;
136
137         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
138         flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
139                            (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
140
141         if (++tail == nvmeq->q_depth)
142                 tail = 0;
143         writel(tail, nvmeq->q_db);
144         nvmeq->sq_tail = tail;
145 }
146
147 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
148                                 struct nvme_command *cmd,
149                                 u32 *result, unsigned timeout)
150 {
151         u16 head = nvmeq->cq_head;
152         u16 phase = nvmeq->cq_phase;
153         u16 status;
154         ulong start_time;
155         ulong timeout_us = timeout * 100000;
156
157         cmd->common.command_id = nvme_get_cmd_id();
158         nvme_submit_cmd(nvmeq, cmd);
159
160         start_time = timer_get_us();
161
162         for (;;) {
163                 status = nvme_read_completion_status(nvmeq, head);
164                 if ((status & 0x01) == phase)
165                         break;
166                 if (timeout_us > 0 && (timer_get_us() - start_time)
167                     >= timeout_us)
168                         return -ETIMEDOUT;
169         }
170
171         status >>= 1;
172         if (status) {
173                 printf("ERROR: status = %x, phase = %d, head = %d\n",
174                        status, phase, head);
175                 status = 0;
176                 if (++head == nvmeq->q_depth) {
177                         head = 0;
178                         phase = !phase;
179                 }
180                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
181                 nvmeq->cq_head = head;
182                 nvmeq->cq_phase = phase;
183
184                 return -EIO;
185         }
186
187         if (result)
188                 *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
189
190         if (++head == nvmeq->q_depth) {
191                 head = 0;
192                 phase = !phase;
193         }
194         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
195         nvmeq->cq_head = head;
196         nvmeq->cq_phase = phase;
197
198         return status;
199 }
200
201 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
202                                  u32 *result)
203 {
204         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
205 }
206
207 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
208                                            int qid, int depth)
209 {
210         struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
211         if (!nvmeq)
212                 return NULL;
213         memset(nvmeq, 0, sizeof(*nvmeq));
214
215         nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
216         if (!nvmeq->cqes)
217                 goto free_nvmeq;
218         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
219
220         nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
221         if (!nvmeq->sq_cmds)
222                 goto free_queue;
223         memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
224
225         nvmeq->dev = dev;
226
227         nvmeq->cq_head = 0;
228         nvmeq->cq_phase = 1;
229         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
230         nvmeq->q_depth = depth;
231         nvmeq->qid = qid;
232         dev->queue_count++;
233         dev->queues[qid] = nvmeq;
234
235         return nvmeq;
236
237  free_queue:
238         free((void *)nvmeq->cqes);
239  free_nvmeq:
240         free(nvmeq);
241
242         return NULL;
243 }
244
245 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
246 {
247         struct nvme_command c;
248
249         memset(&c, 0, sizeof(c));
250         c.delete_queue.opcode = opcode;
251         c.delete_queue.qid = cpu_to_le16(id);
252
253         return nvme_submit_admin_cmd(dev, &c, NULL);
254 }
255
256 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
257 {
258         return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
259 }
260
261 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
262 {
263         return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
264 }
265
266 static int nvme_enable_ctrl(struct nvme_dev *dev)
267 {
268         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
269         dev->ctrl_config |= NVME_CC_ENABLE;
270         writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
271
272         return nvme_wait_ready(dev, true);
273 }
274
275 static int nvme_disable_ctrl(struct nvme_dev *dev)
276 {
277         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
278         dev->ctrl_config &= ~NVME_CC_ENABLE;
279         writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
280
281         return nvme_wait_ready(dev, false);
282 }
283
284 static void nvme_free_queue(struct nvme_queue *nvmeq)
285 {
286         free((void *)nvmeq->cqes);
287         free(nvmeq->sq_cmds);
288         free(nvmeq);
289 }
290
291 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
292 {
293         int i;
294
295         for (i = dev->queue_count - 1; i >= lowest; i--) {
296                 struct nvme_queue *nvmeq = dev->queues[i];
297                 dev->queue_count--;
298                 dev->queues[i] = NULL;
299                 nvme_free_queue(nvmeq);
300         }
301 }
302
303 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
304 {
305         struct nvme_dev *dev = nvmeq->dev;
306
307         nvmeq->sq_tail = 0;
308         nvmeq->cq_head = 0;
309         nvmeq->cq_phase = 1;
310         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
311         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
312         flush_dcache_range((ulong)nvmeq->cqes,
313                            (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
314         dev->online_queues++;
315 }
316
317 static int nvme_configure_admin_queue(struct nvme_dev *dev)
318 {
319         int result;
320         u32 aqa;
321         u64 cap = nvme_readq(&dev->bar->cap);
322         struct nvme_queue *nvmeq;
323         /* most architectures use 4KB as the page size */
324         unsigned page_shift = 12;
325         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
326         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
327
328         if (page_shift < dev_page_min) {
329                 debug("Device minimum page size (%u) too large for host (%u)\n",
330                       1 << dev_page_min, 1 << page_shift);
331                 return -ENODEV;
332         }
333
334         if (page_shift > dev_page_max) {
335                 debug("Device maximum page size (%u) smaller than host (%u)\n",
336                       1 << dev_page_max, 1 << page_shift);
337                 page_shift = dev_page_max;
338         }
339
340         result = nvme_disable_ctrl(dev);
341         if (result < 0)
342                 return result;
343
344         nvmeq = dev->queues[0];
345         if (!nvmeq) {
346                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
347                 if (!nvmeq)
348                         return -ENOMEM;
349         }
350
351         aqa = nvmeq->q_depth - 1;
352         aqa |= aqa << 16;
353         aqa |= aqa << 16;
354
355         dev->page_size = 1 << page_shift;
356
357         dev->ctrl_config = NVME_CC_CSS_NVM;
358         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
359         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
360         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
361
362         writel(aqa, &dev->bar->aqa);
363         nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
364         nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
365
366         result = nvme_enable_ctrl(dev);
367         if (result)
368                 goto free_nvmeq;
369
370         nvmeq->cq_vector = 0;
371
372         nvme_init_queue(dev->queues[0], 0);
373
374         return result;
375
376  free_nvmeq:
377         nvme_free_queues(dev, 0);
378
379         return result;
380 }
381
382 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
383                             struct nvme_queue *nvmeq)
384 {
385         struct nvme_command c;
386         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
387
388         memset(&c, 0, sizeof(c));
389         c.create_cq.opcode = nvme_admin_create_cq;
390         c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
391         c.create_cq.cqid = cpu_to_le16(qid);
392         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
393         c.create_cq.cq_flags = cpu_to_le16(flags);
394         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
395
396         return nvme_submit_admin_cmd(dev, &c, NULL);
397 }
398
399 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
400                             struct nvme_queue *nvmeq)
401 {
402         struct nvme_command c;
403         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
404
405         memset(&c, 0, sizeof(c));
406         c.create_sq.opcode = nvme_admin_create_sq;
407         c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
408         c.create_sq.sqid = cpu_to_le16(qid);
409         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
410         c.create_sq.sq_flags = cpu_to_le16(flags);
411         c.create_sq.cqid = cpu_to_le16(qid);
412
413         return nvme_submit_admin_cmd(dev, &c, NULL);
414 }
415
416 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
417                   unsigned cns, dma_addr_t dma_addr)
418 {
419         struct nvme_command c;
420         u32 page_size = dev->page_size;
421         int offset = dma_addr & (page_size - 1);
422         int length = sizeof(struct nvme_id_ctrl);
423
424         memset(&c, 0, sizeof(c));
425         c.identify.opcode = nvme_admin_identify;
426         c.identify.nsid = cpu_to_le32(nsid);
427         c.identify.prp1 = cpu_to_le64(dma_addr);
428
429         length -= (page_size - offset);
430         if (length <= 0) {
431                 c.identify.prp2 = 0;
432         } else {
433                 dma_addr += (page_size - offset);
434                 c.identify.prp2 = cpu_to_le64(dma_addr);
435         }
436
437         c.identify.cns = cpu_to_le32(cns);
438
439         return nvme_submit_admin_cmd(dev, &c, NULL);
440 }
441
442 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
443                       dma_addr_t dma_addr, u32 *result)
444 {
445         struct nvme_command c;
446
447         memset(&c, 0, sizeof(c));
448         c.features.opcode = nvme_admin_get_features;
449         c.features.nsid = cpu_to_le32(nsid);
450         c.features.prp1 = cpu_to_le64(dma_addr);
451         c.features.fid = cpu_to_le32(fid);
452
453         return nvme_submit_admin_cmd(dev, &c, result);
454 }
455
456 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
457                       dma_addr_t dma_addr, u32 *result)
458 {
459         struct nvme_command c;
460
461         memset(&c, 0, sizeof(c));
462         c.features.opcode = nvme_admin_set_features;
463         c.features.prp1 = cpu_to_le64(dma_addr);
464         c.features.fid = cpu_to_le32(fid);
465         c.features.dword11 = cpu_to_le32(dword11);
466
467         return nvme_submit_admin_cmd(dev, &c, result);
468 }
469
470 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
471 {
472         struct nvme_dev *dev = nvmeq->dev;
473         int result;
474
475         nvmeq->cq_vector = qid - 1;
476         result = nvme_alloc_cq(dev, qid, nvmeq);
477         if (result < 0)
478                 goto release_cq;
479
480         result = nvme_alloc_sq(dev, qid, nvmeq);
481         if (result < 0)
482                 goto release_sq;
483
484         nvme_init_queue(nvmeq, qid);
485
486         return result;
487
488  release_sq:
489         nvme_delete_sq(dev, qid);
490  release_cq:
491         nvme_delete_cq(dev, qid);
492
493         return result;
494 }
495
496 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
497 {
498         int status;
499         u32 result;
500         u32 q_count = (count - 1) | ((count - 1) << 16);
501
502         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
503                         q_count, 0, &result);
504
505         if (status < 0)
506                 return status;
507         if (status > 1)
508                 return 0;
509
510         return min(result & 0xffff, result >> 16) + 1;
511 }
512
513 static void nvme_create_io_queues(struct nvme_dev *dev)
514 {
515         unsigned int i;
516
517         for (i = dev->queue_count; i <= dev->max_qid; i++)
518                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
519                         break;
520
521         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
522                 if (nvme_create_queue(dev->queues[i], i))
523                         break;
524 }
525
526 static int nvme_setup_io_queues(struct nvme_dev *dev)
527 {
528         int nr_io_queues;
529         int result;
530
531         nr_io_queues = 1;
532         result = nvme_set_queue_count(dev, nr_io_queues);
533         if (result <= 0)
534                 return result;
535
536         if (result < nr_io_queues)
537                 nr_io_queues = result;
538
539         dev->max_qid = nr_io_queues;
540
541         /* Free previously allocated queues */
542         nvme_free_queues(dev, nr_io_queues + 1);
543         nvme_create_io_queues(dev);
544
545         return 0;
546 }
547
548 static int nvme_get_info_from_identify(struct nvme_dev *dev)
549 {
550         struct nvme_id_ctrl buf, *ctrl = &buf;
551         int ret;
552         int shift = NVME_CAP_MPSMIN(nvme_readq(&dev->bar->cap)) + 12;
553
554         ret = nvme_identify(dev, 0, 1, (dma_addr_t)ctrl);
555         if (ret)
556                 return -EIO;
557
558         dev->nn = le32_to_cpu(ctrl->nn);
559         dev->vwc = ctrl->vwc;
560         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
561         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
562         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
563         if (ctrl->mdts)
564                 dev->max_transfer_shift = (ctrl->mdts + shift);
565         else {
566                 /*
567                  * Maximum Data Transfer Size (MDTS) field indicates the maximum
568                  * data transfer size between the host and the controller. The
569                  * host should not submit a command that exceeds this transfer
570                  * size. The value is in units of the minimum memory page size
571                  * and is reported as a power of two (2^n).
572                  *
573                  * The spec also says: a value of 0h indicates no restrictions
574                  * on transfer size. But in nvme_blk_read/write() below we have
575                  * the following algorithm for maximum number of logic blocks
576                  * per transfer:
577                  *
578                  * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
579                  *
580                  * In order for lbas not to overflow, the maximum number is 15
581                  * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
582                  * Let's use 20 which provides 1MB size.
583                  */
584                 dev->max_transfer_shift = 20;
585         }
586
587         return 0;
588 }
589
590 int nvme_scan_namespace(void)
591 {
592         struct uclass *uc;
593         struct udevice *dev;
594         int ret;
595
596         ret = uclass_get(UCLASS_NVME, &uc);
597         if (ret)
598                 return ret;
599
600         uclass_foreach_dev(dev, uc) {
601                 ret = device_probe(dev);
602                 if (ret)
603                         return ret;
604         }
605
606         return 0;
607 }
608
609 static int nvme_blk_probe(struct udevice *udev)
610 {
611         struct nvme_dev *ndev = dev_get_priv(udev->parent);
612         struct blk_desc *desc = dev_get_uclass_platdata(udev);
613         struct nvme_ns *ns = dev_get_priv(udev);
614         u8 flbas;
615         struct nvme_id_ns buf, *id = &buf;
616         struct pci_child_platdata *pplat;
617
618         memset(ns, 0, sizeof(*ns));
619         ns->dev = ndev;
620         ns->ns_id = desc->devnum - ndev->blk_dev_start + 1;
621         if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)id))
622                 return -EIO;
623
624         flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
625         ns->flbas = flbas;
626         ns->lba_shift = id->lbaf[flbas].ds;
627         ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
628         ns->mode_select_block_len = 1 << ns->lba_shift;
629         list_add(&ns->list, &ndev->namespaces);
630
631         desc->lba = ns->mode_select_num_blocks;
632         desc->log2blksz = ns->lba_shift;
633         desc->blksz = 1 << ns->lba_shift;
634         desc->bdev = udev;
635         pplat = dev_get_parent_platdata(udev->parent);
636         sprintf(desc->vendor, "0x%.4x", pplat->vendor);
637         memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
638         memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
639         part_init(desc);
640
641         return 0;
642 }
643
644 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
645                            lbaint_t blkcnt, void *buffer)
646 {
647         struct nvme_ns *ns = dev_get_priv(udev);
648         struct nvme_dev *dev = ns->dev;
649         struct nvme_command c;
650         struct blk_desc *desc = dev_get_uclass_platdata(udev);
651         int status;
652         u64 prp2;
653         u64 total_len = blkcnt << desc->log2blksz;
654         u64 temp_len = total_len;
655
656         u64 slba = blknr;
657         u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
658         u64 total_lbas = blkcnt;
659
660         c.rw.opcode = nvme_cmd_read;
661         c.rw.flags = 0;
662         c.rw.nsid = cpu_to_le32(ns->ns_id);
663         c.rw.control = 0;
664         c.rw.dsmgmt = 0;
665         c.rw.reftag = 0;
666         c.rw.apptag = 0;
667         c.rw.appmask = 0;
668         c.rw.metadata = 0;
669
670         while (total_lbas) {
671                 if (total_lbas < lbas) {
672                         lbas = (u16)total_lbas;
673                         total_lbas = 0;
674                 } else {
675                         total_lbas -= lbas;
676                 }
677
678                 if (nvme_setup_prps
679                    (dev, &prp2, lbas << ns->lba_shift, (ulong)buffer))
680                         return -EIO;
681                 c.rw.slba = cpu_to_le64(slba);
682                 slba += lbas;
683                 c.rw.length = cpu_to_le16(lbas - 1);
684                 c.rw.prp1 = cpu_to_le64((ulong)buffer);
685                 c.rw.prp2 = cpu_to_le64(prp2);
686                 status = nvme_submit_sync_cmd(dev->queues[1],
687                                 &c, NULL, IO_TIMEOUT);
688                 if (status)
689                         break;
690                 temp_len -= lbas << ns->lba_shift;
691                 buffer += lbas << ns->lba_shift;
692         }
693
694         return (total_len - temp_len) >> desc->log2blksz;
695 }
696
697 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
698                             lbaint_t blkcnt, const void *buffer)
699 {
700         struct nvme_ns *ns = dev_get_priv(udev);
701         struct nvme_dev *dev = ns->dev;
702         struct nvme_command c;
703         struct blk_desc *desc = dev_get_uclass_platdata(udev);
704         int status;
705         u64 prp2;
706         u64 total_len = blkcnt << desc->log2blksz;
707         u64 temp_len = total_len;
708
709         u64 slba = blknr;
710         u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
711         u64 total_lbas = blkcnt;
712
713         c.rw.opcode = nvme_cmd_write;
714         c.rw.flags = 0;
715         c.rw.nsid = cpu_to_le32(ns->ns_id);
716         c.rw.control = 0;
717         c.rw.dsmgmt = 0;
718         c.rw.reftag = 0;
719         c.rw.apptag = 0;
720         c.rw.appmask = 0;
721         c.rw.metadata = 0;
722
723         while (total_lbas) {
724                 if (total_lbas < lbas) {
725                         lbas = (u16)total_lbas;
726                         total_lbas = 0;
727                 } else {
728                         total_lbas -= lbas;
729                 }
730
731                 if (nvme_setup_prps
732                    (dev, &prp2, lbas << ns->lba_shift, (ulong)buffer))
733                         return -EIO;
734                 c.rw.slba = cpu_to_le64(slba);
735                 slba += lbas;
736                 c.rw.length = cpu_to_le16(lbas - 1);
737                 c.rw.prp1 = cpu_to_le64((ulong)buffer);
738                 c.rw.prp2 = cpu_to_le64(prp2);
739                 status = nvme_submit_sync_cmd(dev->queues[1],
740                                 &c, NULL, IO_TIMEOUT);
741                 if (status)
742                         break;
743                 temp_len -= lbas << ns->lba_shift;
744                 buffer += lbas << ns->lba_shift;
745         }
746
747         return (total_len - temp_len) >> desc->log2blksz;
748 }
749
750 static const struct blk_ops nvme_blk_ops = {
751         .read   = nvme_blk_read,
752         .write  = nvme_blk_write,
753 };
754
755 U_BOOT_DRIVER(nvme_blk) = {
756         .name   = "nvme-blk",
757         .id     = UCLASS_BLK,
758         .probe  = nvme_blk_probe,
759         .ops    = &nvme_blk_ops,
760         .priv_auto_alloc_size = sizeof(struct nvme_ns),
761 };
762
763 static int nvme_bind(struct udevice *udev)
764 {
765         char name[20];
766         sprintf(name, "nvme#%d", nvme_info->ndev_num++);
767
768         return device_set_name(udev, name);
769 }
770
771 static int nvme_probe(struct udevice *udev)
772 {
773         int ret;
774         struct nvme_dev *ndev = dev_get_priv(udev);
775         u64 cap;
776
777         ndev->instance = trailing_strtol(udev->name);
778
779         INIT_LIST_HEAD(&ndev->namespaces);
780         ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
781                         PCI_REGION_MEM);
782         if (readl(&ndev->bar->csts) == -1) {
783                 ret = -ENODEV;
784                 printf("Error: %s: Out of memory!\n", udev->name);
785                 goto free_nvme;
786         }
787
788         ndev->queues = malloc(2 * sizeof(struct nvme_queue *));
789         if (!ndev->queues) {
790                 ret = -ENOMEM;
791                 printf("Error: %s: Out of memory!\n", udev->name);
792                 goto free_nvme;
793         }
794         memset(ndev->queues, 0, sizeof(2 * sizeof(struct nvme_queue *)));
795
796         ndev->prp_pool = malloc(MAX_PRP_POOL);
797         if (!ndev->prp_pool) {
798                 ret = -ENOMEM;
799                 printf("Error: %s: Out of memory!\n", udev->name);
800                 goto free_nvme;
801         }
802         ndev->prp_entry_num = MAX_PRP_POOL >> 3;
803
804         cap = nvme_readq(&ndev->bar->cap);
805         ndev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
806         ndev->db_stride = 1 << NVME_CAP_STRIDE(cap);
807         ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
808
809         ret = nvme_configure_admin_queue(ndev);
810         if (ret)
811                 goto free_queue;
812
813         ret = nvme_setup_io_queues(ndev);
814         if (ret)
815                 goto free_queue;
816
817         nvme_get_info_from_identify(ndev);
818         ndev->blk_dev_start = nvme_info->ns_num;
819         list_add(&ndev->node, &nvme_info->dev_list);
820
821         return 0;
822
823 free_queue:
824         free((void *)ndev->queues);
825 free_nvme:
826         return ret;
827 }
828
829 U_BOOT_DRIVER(nvme) = {
830         .name   = "nvme",
831         .id     = UCLASS_NVME,
832         .bind   = nvme_bind,
833         .probe  = nvme_probe,
834         .priv_auto_alloc_size = sizeof(struct nvme_dev),
835 };
836
837 struct pci_device_id nvme_supported[] = {
838         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
839         {}
840 };
841
842 U_BOOT_PCI_DEVICE(nvme, nvme_supported);