dm: ddr: socfpga: don't assign values that are not used
[pandora-u-boot.git] / drivers / ddr / altera / sequencer.c
1 // SPDX-License-Identifier: BSD-3-Clause
2 /*
3  * Copyright Altera Corporation (C) 2012-2015
4  */
5
6 #include <common.h>
7 #include <log.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include <hang.h>
12 #include "sequencer.h"
13
14 static const struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
15         (struct socfpga_sdr_rw_load_manager *)
16                 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
17 static const struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs
18         = (struct socfpga_sdr_rw_load_jump_manager *)
19                 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
20 static const struct socfpga_sdr_reg_file *sdr_reg_file =
21         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
22 static const struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
23         (struct socfpga_sdr_scc_mgr *)
24                 (SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
25 static const struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
26         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
27 static const struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
28         (struct socfpga_phy_mgr_cfg *)
29                 (SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
30 static const struct socfpga_data_mgr *data_mgr =
31         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
32 static const struct socfpga_sdr_ctrl *sdr_ctrl =
33         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
34
35 #define DELTA_D         1
36
37 /*
38  * In order to reduce ROM size, most of the selectable calibration steps are
39  * decided at compile time based on the user's calibration mode selection,
40  * as captured by the STATIC_CALIB_STEPS selection below.
41  *
42  * However, to support simulation-time selection of fast simulation mode, where
43  * we skip everything except the bare minimum, we need a few of the steps to
44  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
45  * check, which is based on the rtl-supplied value, or we dynamically compute
46  * the value to use based on the dynamically-chosen calibration mode
47  */
48
49 #define DLEVEL 0
50 #define STATIC_IN_RTL_SIM 0
51 #define STATIC_SKIP_DELAY_LOOPS 0
52
53 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
54         STATIC_SKIP_DELAY_LOOPS)
55
56 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
57         ((non_skip_value) & seq->skip_delay_mask)
58
59 bool dram_is_ddr(const u8 ddr)
60 {
61         const struct socfpga_sdram_config *cfg = socfpga_get_sdram_config();
62         const u8 type = (cfg->ctrl_cfg >> SDR_CTRLGRP_CTRLCFG_MEMTYPE_LSB) &
63                         SDR_CTRLGRP_CTRLCFG_MEMTYPE_MASK;
64
65         if (ddr == 2 && type == 1)      /* DDR2 */
66                 return true;
67
68         if (ddr == 3 && type == 2)      /* DDR3 */
69                 return true;
70
71         return false;
72 }
73
74 static void set_failing_group_stage(struct socfpga_sdrseq *seq,
75                                     u32 group, u32 stage, u32 substage)
76 {
77         /*
78          * Only set the global stage if there was not been any other
79          * failing group
80          */
81         if (seq->gbl.error_stage == CAL_STAGE_NIL)      {
82                 seq->gbl.error_substage = substage;
83                 seq->gbl.error_stage = stage;
84                 seq->gbl.error_group = group;
85         }
86 }
87
88 static void reg_file_set_group(u16 set_group)
89 {
90         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
91 }
92
93 static void reg_file_set_stage(u8 set_stage)
94 {
95         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
96 }
97
98 static void reg_file_set_sub_stage(u8 set_sub_stage)
99 {
100         set_sub_stage &= 0xff;
101         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
102 }
103
104 /**
105  * phy_mgr_initialize() - Initialize PHY Manager
106  *
107  * Initialize PHY Manager.
108  */
109 static void phy_mgr_initialize(struct socfpga_sdrseq *seq)
110 {
111         u32 ratio;
112
113         debug("%s:%d\n", __func__, __LINE__);
114         /* Calibration has control over path to memory */
115         /*
116          * In Hard PHY this is a 2-bit control:
117          * 0: AFI Mux Select
118          * 1: DDIO Mux Select
119          */
120         writel(0x3, &phy_mgr_cfg->mux_sel);
121
122         /* USER memory clock is not stable we begin initialization  */
123         writel(0, &phy_mgr_cfg->reset_mem_stbl);
124
125         /* USER calibration status all set to zero */
126         writel(0, &phy_mgr_cfg->cal_status);
127
128         writel(0, &phy_mgr_cfg->cal_debug_info);
129
130         /* Init params only if we do NOT skip calibration. */
131         if ((seq->dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
132                 return;
133
134         ratio = seq->rwcfg->mem_dq_per_read_dqs /
135                 seq->rwcfg->mem_virtual_groups_per_read_dqs;
136         seq->param.read_correct_mask_vg = (1 << ratio) - 1;
137         seq->param.write_correct_mask_vg = (1 << ratio) - 1;
138         seq->param.read_correct_mask = (1 << seq->rwcfg->mem_dq_per_read_dqs)
139                 - 1;
140         seq->param.write_correct_mask = (1 << seq->rwcfg->mem_dq_per_write_dqs)
141                 - 1;
142 }
143
144 /**
145  * set_rank_and_odt_mask() - Set Rank and ODT mask
146  * @rank:       Rank mask
147  * @odt_mode:   ODT mode, OFF or READ_WRITE
148  *
149  * Set Rank and ODT mask (On-Die Termination).
150  */
151 static void set_rank_and_odt_mask(struct socfpga_sdrseq *seq,
152                                   const u32 rank, const u32 odt_mode)
153 {
154         u32 odt_mask_0 = 0;
155         u32 odt_mask_1 = 0;
156         u32 cs_and_odt_mask;
157
158         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
159                 odt_mask_0 = 0x0;
160                 odt_mask_1 = 0x0;
161         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
162                 switch (seq->rwcfg->mem_number_of_ranks) {
163                 case 1: /* 1 Rank */
164                         /* Read: ODT = 0 ; Write: ODT = 1 */
165                         odt_mask_0 = 0x0;
166                         odt_mask_1 = 0x1;
167                         break;
168                 case 2: /* 2 Ranks */
169                         if (seq->rwcfg->mem_number_of_cs_per_dimm == 1) {
170                                 /*
171                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
172                                  *   OR
173                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
174                                  *
175                                  * Since MEM_NUMBER_OF_RANKS is 2, they
176                                  * are both single rank with 2 CS each
177                                  * (special for RDIMM).
178                                  *
179                                  * Read: Turn on ODT on the opposite rank
180                                  * Write: Turn on ODT on all ranks
181                                  */
182                                 odt_mask_0 = 0x3 & ~(1 << rank);
183                                 odt_mask_1 = 0x3;
184                                 if (dram_is_ddr(2))
185                                         odt_mask_1 &= ~(1 << rank);
186                         } else {
187                                 /*
188                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
189                                  *
190                                  * Read: Turn on ODT off on all ranks
191                                  * Write: Turn on ODT on active rank
192                                  */
193                                 odt_mask_0 = 0x0;
194                                 odt_mask_1 = 0x3 & (1 << rank);
195                         }
196                         break;
197                 case 4: /* 4 Ranks */
198                         /*
199                          * DDR3 Read, DDR2 Read/Write:
200                          * ----------+-----------------------+
201                          *           |         ODT           |
202                          *           +-----------------------+
203                          *   Rank    |  3  |  2  |  1  |  0  |
204                          * ----------+-----+-----+-----+-----+
205                          *     0     |  0  |  1  |  0  |  0  |
206                          *     1     |  1  |  0  |  0  |  0  |
207                          *     2     |  0  |  0  |  0  |  1  |
208                          *     3     |  0  |  0  |  1  |  0  |
209                          * ----------+-----+-----+-----+-----+
210                          *
211                          * DDR3 Write:
212                          * ----------+-----------------------+
213                          *           |         ODT           |
214                          * Write To  +-----------------------+
215                          *   Rank    |  3  |  2  |  1  |  0  |
216                          * ----------+-----+-----+-----+-----+
217                          *     0     |  0  |  1  |  0  |  1  |
218                          *     1     |  1  |  0  |  1  |  0  |
219                          *     2     |  0  |  1  |  0  |  1  |
220                          *     3     |  1  |  0  |  1  |  0  |
221                          * ----------+-----+-----+-----+-----+
222                          */
223                         switch (rank) {
224                         case 0:
225                                 odt_mask_0 = 0x4;
226                                 if (dram_is_ddr(2))
227                                         odt_mask_1 = 0x4;
228                                 else if (dram_is_ddr(3))
229                                         odt_mask_1 = 0x5;
230                                 break;
231                         case 1:
232                                 odt_mask_0 = 0x8;
233                                 if (dram_is_ddr(2))
234                                         odt_mask_1 = 0x8;
235                                 else if (dram_is_ddr(3))
236                                         odt_mask_1 = 0xA;
237                                 break;
238                         case 2:
239                                 odt_mask_0 = 0x1;
240                                 if (dram_is_ddr(2))
241                                         odt_mask_1 = 0x1;
242                                 else if (dram_is_ddr(3))
243                                         odt_mask_1 = 0x5;
244                                 break;
245                         case 3:
246                                 odt_mask_0 = 0x2;
247                                 if (dram_is_ddr(2))
248                                         odt_mask_1 = 0x2;
249                                 else if (dram_is_ddr(3))
250                                         odt_mask_1 = 0xA;
251                                 break;
252                         }
253                         break;
254                 }
255         }
256
257         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
258                           ((0xFF & odt_mask_0) << 8) |
259                           ((0xFF & odt_mask_1) << 16);
260         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
261                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
262 }
263
264 /**
265  * scc_mgr_set() - Set SCC Manager register
266  * @off:        Base offset in SCC Manager space
267  * @grp:        Read/Write group
268  * @val:        Value to be set
269  *
270  * This function sets the SCC Manager (Scan Chain Control Manager) register.
271  */
272 static void scc_mgr_set(u32 off, u32 grp, u32 val)
273 {
274         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
275 }
276
277 /**
278  * scc_mgr_initialize() - Initialize SCC Manager registers
279  *
280  * Initialize SCC Manager registers.
281  */
282 static void scc_mgr_initialize(void)
283 {
284         /*
285          * Clear register file for HPS. 16 (2^4) is the size of the
286          * full register file in the scc mgr:
287          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
288          *                             MEM_IF_READ_DQS_WIDTH - 1);
289          */
290         int i;
291
292         for (i = 0; i < 16; i++) {
293                 debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
294                            __func__, __LINE__, i);
295                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
296         }
297 }
298
299 static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
300 {
301         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
302 }
303
304 static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
305 {
306         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
307 }
308
309 static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
310 {
311         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
312 }
313
314 static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
315 {
316         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
317 }
318
319 static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
320 {
321         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323
324 static void scc_mgr_set_dqs_io_in_delay(struct socfpga_sdrseq *seq,
325                                         u32 delay)
326 {
327         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
328                     seq->rwcfg->mem_dq_per_write_dqs, delay);
329 }
330
331 static void scc_mgr_set_dm_in_delay(struct socfpga_sdrseq *seq, u32 dm,
332                                     u32 delay)
333 {
334         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
335                     seq->rwcfg->mem_dq_per_write_dqs + 1 + dm,
336                     delay);
337 }
338
339 static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
340 {
341         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
342 }
343
344 static void scc_mgr_set_dqs_out1_delay(struct socfpga_sdrseq *seq,
345                                        u32 delay)
346 {
347         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
348                     seq->rwcfg->mem_dq_per_write_dqs, delay);
349 }
350
351 static void scc_mgr_set_dm_out1_delay(struct socfpga_sdrseq *seq, u32 dm,
352                                       u32 delay)
353 {
354         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
355                     seq->rwcfg->mem_dq_per_write_dqs + 1 + dm,
356                     delay);
357 }
358
359 /* load up dqs config settings */
360 static void scc_mgr_load_dqs(u32 dqs)
361 {
362         writel(dqs, &sdr_scc_mgr->dqs_ena);
363 }
364
365 /* load up dqs io config settings */
366 static void scc_mgr_load_dqs_io(void)
367 {
368         writel(0, &sdr_scc_mgr->dqs_io_ena);
369 }
370
371 /* load up dq config settings */
372 static void scc_mgr_load_dq(u32 dq_in_group)
373 {
374         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
375 }
376
377 /* load up dm config settings */
378 static void scc_mgr_load_dm(u32 dm)
379 {
380         writel(dm, &sdr_scc_mgr->dm_ena);
381 }
382
383 /**
384  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
385  * @off:        Base offset in SCC Manager space
386  * @grp:        Read/Write group
387  * @val:        Value to be set
388  * @update:     If non-zero, trigger SCC Manager update for all ranks
389  *
390  * This function sets the SCC Manager (Scan Chain Control Manager) register
391  * and optionally triggers the SCC update for all ranks.
392  */
393 static void scc_mgr_set_all_ranks(struct socfpga_sdrseq *seq,
394                                   const u32 off, const u32 grp, const u32 val,
395                                   const int update)
396 {
397         u32 r;
398
399         for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
400              r += NUM_RANKS_PER_SHADOW_REG) {
401                 scc_mgr_set(off, grp, val);
402
403                 if (update || (r == 0)) {
404                         writel(grp, &sdr_scc_mgr->dqs_ena);
405                         writel(0, &sdr_scc_mgr->update);
406                 }
407         }
408 }
409
410 static void scc_mgr_set_dqs_en_phase_all_ranks(struct socfpga_sdrseq *seq,
411                                                u32 read_group, u32 phase)
412 {
413         /*
414          * USER although the h/w doesn't support different phases per
415          * shadow register, for simplicity our scc manager modeling
416          * keeps different phase settings per shadow reg, and it's
417          * important for us to keep them in sync to match h/w.
418          * for efficiency, the scan chain update should occur only
419          * once to sr0.
420          */
421         scc_mgr_set_all_ranks(seq, SCC_MGR_DQS_EN_PHASE_OFFSET,
422                               read_group, phase, 0);
423 }
424
425 static void scc_mgr_set_dqdqs_output_phase_all_ranks(struct socfpga_sdrseq *seq,
426                                                      u32 write_group, u32 phase)
427 {
428         /*
429          * USER although the h/w doesn't support different phases per
430          * shadow register, for simplicity our scc manager modeling
431          * keeps different phase settings per shadow reg, and it's
432          * important for us to keep them in sync to match h/w.
433          * for efficiency, the scan chain update should occur only
434          * once to sr0.
435          */
436         scc_mgr_set_all_ranks(seq, SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
437                               write_group, phase, 0);
438 }
439
440 static void scc_mgr_set_dqs_en_delay_all_ranks(struct socfpga_sdrseq *seq,
441                                                u32 read_group, u32 delay)
442 {
443         /*
444          * In shadow register mode, the T11 settings are stored in
445          * registers in the core, which are updated by the DQS_ENA
446          * signals. Not issuing the SCC_MGR_UPD command allows us to
447          * save lots of rank switching overhead, by calling
448          * select_shadow_regs_for_update with update_scan_chains
449          * set to 0.
450          */
451         scc_mgr_set_all_ranks(seq, SCC_MGR_DQS_EN_DELAY_OFFSET,
452                               read_group, delay, 1);
453 }
454
455 /**
456  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
457  * @write_group:        Write group
458  * @delay:              Delay value
459  *
460  * This function sets the OCT output delay in SCC manager.
461  */
462 static void scc_mgr_set_oct_out1_delay(struct socfpga_sdrseq *seq,
463                                        const u32 write_group, const u32 delay)
464 {
465         const int ratio = seq->rwcfg->mem_if_read_dqs_width /
466                          seq->rwcfg->mem_if_write_dqs_width;
467         const int base = write_group * ratio;
468         int i;
469         /*
470          * Load the setting in the SCC manager
471          * Although OCT affects only write data, the OCT delay is controlled
472          * by the DQS logic block which is instantiated once per read group.
473          * For protocols where a write group consists of multiple read groups,
474          * the setting must be set multiple times.
475          */
476         for (i = 0; i < ratio; i++)
477                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
478 }
479
480 /**
481  * scc_mgr_set_hhp_extras() - Set HHP extras.
482  *
483  * Load the fixed setting in the SCC manager HHP extras.
484  */
485 static void scc_mgr_set_hhp_extras(void)
486 {
487         /*
488          * Load the fixed setting in the SCC manager
489          * bits: 0:0 = 1'b1     - DQS bypass
490          * bits: 1:1 = 1'b1     - DQ bypass
491          * bits: 4:2 = 3'b001   - rfifo_mode
492          * bits: 6:5 = 2'b01    - rfifo clock_select
493          * bits: 7:7 = 1'b0     - separate gating from ungating setting
494          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
495          */
496         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
497                           (1 << 2) | (1 << 1) | (1 << 0);
498         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
499                          SCC_MGR_HHP_GLOBALS_OFFSET |
500                          SCC_MGR_HHP_EXTRAS_OFFSET;
501
502         debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
503                    __func__, __LINE__);
504         writel(value, addr);
505         debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
506                    __func__, __LINE__);
507 }
508
509 /**
510  * scc_mgr_zero_all() - Zero all DQS config
511  *
512  * Zero all DQS config.
513  */
514 static void scc_mgr_zero_all(struct socfpga_sdrseq *seq)
515 {
516         int i, r;
517
518         /*
519          * USER Zero all DQS config settings, across all groups and all
520          * shadow registers
521          */
522         for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
523              r += NUM_RANKS_PER_SHADOW_REG) {
524                 for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
525                         /*
526                          * The phases actually don't exist on a per-rank basis,
527                          * but there's no harm updating them several times, so
528                          * let's keep the code simple.
529                          */
530                         scc_mgr_set_dqs_bus_in_delay(i,
531                                                      seq->iocfg->dqs_in_reserve
532                                                      );
533                         scc_mgr_set_dqs_en_phase(i, 0);
534                         scc_mgr_set_dqs_en_delay(i, 0);
535                 }
536
537                 for (i = 0; i < seq->rwcfg->mem_if_write_dqs_width; i++) {
538                         scc_mgr_set_dqdqs_output_phase(i, 0);
539                         /* Arria V/Cyclone V don't have out2. */
540                         scc_mgr_set_oct_out1_delay(seq, i,
541                                                    seq->iocfg->dqs_out_reserve);
542                 }
543         }
544
545         /* Multicast to all DQS group enables. */
546         writel(0xff, &sdr_scc_mgr->dqs_ena);
547         writel(0, &sdr_scc_mgr->update);
548 }
549
550 /**
551  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
552  * @write_group:        Write group
553  *
554  * Set bypass mode and trigger SCC update.
555  */
556 static void scc_set_bypass_mode(const u32 write_group)
557 {
558         /* Multicast to all DQ enables. */
559         writel(0xff, &sdr_scc_mgr->dq_ena);
560         writel(0xff, &sdr_scc_mgr->dm_ena);
561
562         /* Update current DQS IO enable. */
563         writel(0, &sdr_scc_mgr->dqs_io_ena);
564
565         /* Update the DQS logic. */
566         writel(write_group, &sdr_scc_mgr->dqs_ena);
567
568         /* Hit update. */
569         writel(0, &sdr_scc_mgr->update);
570 }
571
572 /**
573  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
574  * @write_group:        Write group
575  *
576  * Load DQS settings for Write Group, do not trigger SCC update.
577  */
578 static void scc_mgr_load_dqs_for_write_group(struct socfpga_sdrseq *seq,
579                                              const u32 write_group)
580 {
581         const int ratio = seq->rwcfg->mem_if_read_dqs_width /
582                           seq->rwcfg->mem_if_write_dqs_width;
583         const int base = write_group * ratio;
584         int i;
585         /*
586          * Load the setting in the SCC manager
587          * Although OCT affects only write data, the OCT delay is controlled
588          * by the DQS logic block which is instantiated once per read group.
589          * For protocols where a write group consists of multiple read groups,
590          * the setting must be set multiple times.
591          */
592         for (i = 0; i < ratio; i++)
593                 writel(base + i, &sdr_scc_mgr->dqs_ena);
594 }
595
596 /**
597  * scc_mgr_zero_group() - Zero all configs for a group
598  *
599  * Zero DQ, DM, DQS and OCT configs for a group.
600  */
601 static void scc_mgr_zero_group(struct socfpga_sdrseq *seq,
602                                const u32 write_group, const int out_only)
603 {
604         int i, r;
605
606         for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
607              r += NUM_RANKS_PER_SHADOW_REG) {
608                 /* Zero all DQ config settings. */
609                 for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
610                         scc_mgr_set_dq_out1_delay(i, 0);
611                         if (!out_only)
612                                 scc_mgr_set_dq_in_delay(i, 0);
613                 }
614
615                 /* Multicast to all DQ enables. */
616                 writel(0xff, &sdr_scc_mgr->dq_ena);
617
618                 /* Zero all DM config settings. */
619                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
620                         if (!out_only)
621                                 scc_mgr_set_dm_in_delay(seq, i, 0);
622                         scc_mgr_set_dm_out1_delay(seq, i, 0);
623                 }
624
625                 /* Multicast to all DM enables. */
626                 writel(0xff, &sdr_scc_mgr->dm_ena);
627
628                 /* Zero all DQS IO settings. */
629                 if (!out_only)
630                         scc_mgr_set_dqs_io_in_delay(seq, 0);
631
632                 /* Arria V/Cyclone V don't have out2. */
633                 scc_mgr_set_dqs_out1_delay(seq, seq->iocfg->dqs_out_reserve);
634                 scc_mgr_set_oct_out1_delay(seq, write_group,
635                                            seq->iocfg->dqs_out_reserve);
636                 scc_mgr_load_dqs_for_write_group(seq, write_group);
637
638                 /* Multicast to all DQS IO enables (only 1 in total). */
639                 writel(0, &sdr_scc_mgr->dqs_io_ena);
640
641                 /* Hit update to zero everything. */
642                 writel(0, &sdr_scc_mgr->update);
643         }
644 }
645
646 /*
647  * apply and load a particular input delay for the DQ pins in a group
648  * group_bgn is the index of the first dq pin (in the write group)
649  */
650 static void scc_mgr_apply_group_dq_in_delay(struct socfpga_sdrseq *seq,
651                                             u32 group_bgn, u32 delay)
652 {
653         u32 i, p;
654
655         for (i = 0, p = group_bgn; i < seq->rwcfg->mem_dq_per_read_dqs;
656              i++, p++) {
657                 scc_mgr_set_dq_in_delay(p, delay);
658                 scc_mgr_load_dq(p);
659         }
660 }
661
662 /**
663  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the
664  * DQ pins in a group
665  * @delay:              Delay value
666  *
667  * Apply and load a particular output delay for the DQ pins in a group.
668  */
669 static void scc_mgr_apply_group_dq_out1_delay(struct socfpga_sdrseq *seq,
670                                               const u32 delay)
671 {
672         int i;
673
674         for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
675                 scc_mgr_set_dq_out1_delay(i, delay);
676                 scc_mgr_load_dq(i);
677         }
678 }
679
680 /* apply and load a particular output delay for the DM pins in a group */
681 static void scc_mgr_apply_group_dm_out1_delay(struct socfpga_sdrseq *seq,
682                                               u32 delay1)
683 {
684         u32 i;
685
686         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
687                 scc_mgr_set_dm_out1_delay(seq, i, delay1);
688                 scc_mgr_load_dm(i);
689         }
690 }
691
692
693 /* apply and load delay on both DQS and OCT out1 */
694 static void scc_mgr_apply_group_dqs_io_and_oct_out1(struct socfpga_sdrseq *seq,
695                                                     u32 write_group, u32 delay)
696 {
697         scc_mgr_set_dqs_out1_delay(seq, delay);
698         scc_mgr_load_dqs_io();
699
700         scc_mgr_set_oct_out1_delay(seq, write_group, delay);
701         scc_mgr_load_dqs_for_write_group(seq, write_group);
702 }
703
704 /**
705  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output
706  * side: DQ, DM, DQS, OCT
707  * @write_group:        Write group
708  * @delay:              Delay value
709  *
710  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
711  */
712 static void scc_mgr_apply_group_all_out_delay_add(struct socfpga_sdrseq *seq,
713                                                   const u32 write_group,
714                                                   const u32 delay)
715 {
716         u32 i, new_delay;
717
718         /* DQ shift */
719         for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++)
720                 scc_mgr_load_dq(i);
721
722         /* DM shift */
723         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
724                 scc_mgr_load_dm(i);
725
726         /* DQS shift */
727         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
728         if (new_delay > seq->iocfg->io_out2_delay_max) {
729                 debug_cond(DLEVEL >= 1,
730                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
731                            __func__, __LINE__, write_group, delay, new_delay,
732                            seq->iocfg->io_out2_delay_max,
733                            new_delay - seq->iocfg->io_out2_delay_max);
734                 new_delay -= seq->iocfg->io_out2_delay_max;
735                 scc_mgr_set_dqs_out1_delay(seq, new_delay);
736         }
737
738         scc_mgr_load_dqs_io();
739
740         /* OCT shift */
741         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
742         if (new_delay > seq->iocfg->io_out2_delay_max) {
743                 debug_cond(DLEVEL >= 1,
744                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
745                            __func__, __LINE__, write_group, delay,
746                            new_delay, seq->iocfg->io_out2_delay_max,
747                            new_delay - seq->iocfg->io_out2_delay_max);
748                 new_delay -= seq->iocfg->io_out2_delay_max;
749                 scc_mgr_set_oct_out1_delay(seq, write_group, new_delay);
750         }
751
752         scc_mgr_load_dqs_for_write_group(seq, write_group);
753 }
754
755 /**
756  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output
757  * side to all ranks
758  * @write_group:        Write group
759  * @delay:              Delay value
760  *
761  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
762  */
763 static void
764 scc_mgr_apply_group_all_out_delay_add_all_ranks(struct socfpga_sdrseq *seq,
765                                                 const u32 write_group,
766                                                 const u32 delay)
767 {
768         int r;
769
770         for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
771              r += NUM_RANKS_PER_SHADOW_REG) {
772                 scc_mgr_apply_group_all_out_delay_add(seq, write_group, delay);
773                 writel(0, &sdr_scc_mgr->update);
774         }
775 }
776
777 /**
778  * set_jump_as_return() - Return instruction optimization
779  *
780  * Optimization used to recover some slots in ddr3 inst_rom could be
781  * applied to other protocols if we wanted to
782  */
783 static void set_jump_as_return(struct socfpga_sdrseq *seq)
784 {
785         /*
786          * To save space, we replace return with jump to special shared
787          * RETURN instruction so we set the counter to large value so that
788          * we always jump.
789          */
790         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
791         writel(seq->rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
792 }
793
794 /**
795  * delay_for_n_mem_clocks() - Delay for N memory clocks
796  * @clocks:     Length of the delay
797  *
798  * Delay for N memory clocks.
799  */
800 static void delay_for_n_mem_clocks(struct socfpga_sdrseq *seq,
801                                    const u32 clocks)
802 {
803         u32 afi_clocks;
804         u16 c_loop;
805         u8 inner;
806         u8 outer;
807
808         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
809
810         /* Scale (rounding up) to get afi clocks. */
811         afi_clocks = DIV_ROUND_UP(clocks, seq->misccfg->afi_rate_ratio);
812         if (afi_clocks) /* Temporary underflow protection */
813                 afi_clocks--;
814
815         /*
816          * Note, we don't bother accounting for being off a little
817          * bit because of a few extra instructions in outer loops.
818          * Note, the loops have a test at the end, and do the test
819          * before the decrement, and so always perform the loop
820          * 1 time more than the counter value
821          */
822         c_loop = afi_clocks >> 16;
823         outer = c_loop ? 0xff : (afi_clocks >> 8);
824         inner = outer ? 0xff : afi_clocks;
825
826         /*
827          * rom instructions are structured as follows:
828          *
829          *    IDLE_LOOP2: jnz cntr0, TARGET_A
830          *    IDLE_LOOP1: jnz cntr1, TARGET_B
831          *                return
832          *
833          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
834          * TARGET_B is set to IDLE_LOOP2 as well
835          *
836          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
837          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
838          *
839          * a little confusing, but it helps save precious space in the inst_rom
840          * and sequencer rom and keeps the delays more accurate and reduces
841          * overhead
842          */
843         if (afi_clocks < 0x100) {
844                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
845                        &sdr_rw_load_mgr_regs->load_cntr1);
846
847                 writel(seq->rwcfg->idle_loop1,
848                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
849
850                 writel(seq->rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
851                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
852         } else {
853                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
854                        &sdr_rw_load_mgr_regs->load_cntr0);
855
856                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
857                        &sdr_rw_load_mgr_regs->load_cntr1);
858
859                 writel(seq->rwcfg->idle_loop2,
860                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
861
862                 writel(seq->rwcfg->idle_loop2,
863                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
864
865                 do {
866                         writel(seq->rwcfg->idle_loop2,
867                                SDR_PHYGRP_RWMGRGRP_ADDRESS |
868                                RW_MGR_RUN_SINGLE_GROUP_OFFSET);
869                 } while (c_loop-- != 0);
870         }
871         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
872 }
873
874 static void delay_for_n_ns(struct socfpga_sdrseq *seq, const u32 ns)
875 {
876         delay_for_n_mem_clocks(seq, (ns * seq->misccfg->afi_clk_freq *
877                                 seq->misccfg->afi_rate_ratio) / 1000);
878 }
879
880 /**
881  * rw_mgr_mem_init_load_regs() - Load instruction registers
882  * @cntr0:      Counter 0 value
883  * @cntr1:      Counter 1 value
884  * @cntr2:      Counter 2 value
885  * @jump:       Jump instruction value
886  *
887  * Load instruction registers.
888  */
889 static void rw_mgr_mem_init_load_regs(struct socfpga_sdrseq *seq,
890                                       u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
891 {
892         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
893                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
894
895         /* Load counters */
896         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
897                &sdr_rw_load_mgr_regs->load_cntr0);
898         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
899                &sdr_rw_load_mgr_regs->load_cntr1);
900         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
901                &sdr_rw_load_mgr_regs->load_cntr2);
902
903         /* Load jump address */
904         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
905         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
906         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
907
908         /* Execute count instruction */
909         writel(jump, grpaddr);
910 }
911
912 /**
913  * rw_mgr_mem_load_user_ddr2() - Load user calibration values for DDR2
914  * @handoff:    Indicate whether this is initialization or handoff phase
915  *
916  * Load user calibration values and optionally precharge the banks.
917  */
918 static void rw_mgr_mem_load_user_ddr2(struct socfpga_sdrseq *seq,
919                                       const int handoff)
920 {
921         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
922                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
923         u32 r;
924
925         for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
926                 /* set rank */
927                 set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
928
929                 /* precharge all banks ... */
930                 writel(seq->rwcfg->precharge_all, grpaddr);
931
932                 writel(seq->rwcfg->emr2, grpaddr);
933                 writel(seq->rwcfg->emr3, grpaddr);
934                 writel(seq->rwcfg->emr, grpaddr);
935
936                 if (handoff) {
937                         writel(seq->rwcfg->mr_user, grpaddr);
938                         continue;
939                 }
940
941                 writel(seq->rwcfg->mr_dll_reset, grpaddr);
942
943                 writel(seq->rwcfg->precharge_all, grpaddr);
944
945                 writel(seq->rwcfg->refresh, grpaddr);
946                 delay_for_n_ns(seq, 200);
947                 writel(seq->rwcfg->refresh, grpaddr);
948                 delay_for_n_ns(seq, 200);
949
950                 writel(seq->rwcfg->mr_calib, grpaddr);
951                 writel(/*seq->rwcfg->*/0x0b, grpaddr);  // EMR_OCD_ENABLE
952                 writel(seq->rwcfg->emr, grpaddr);
953                 delay_for_n_mem_clocks(seq, 200);
954         }
955 }
956
957 /**
958  * rw_mgr_mem_load_user_ddr3() - Load user calibration values
959  * @fin1:       Final instruction 1
960  * @fin2:       Final instruction 2
961  * @precharge:  If 1, precharge the banks at the end
962  *
963  * Load user calibration values and optionally precharge the banks.
964  */
965 static void rw_mgr_mem_load_user_ddr3(struct socfpga_sdrseq *seq,
966                                  const u32 fin1, const u32 fin2,
967                                  const int precharge)
968 {
969         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
970                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
971         u32 r;
972
973         for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
974                 /* set rank */
975                 set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
976
977                 /* precharge all banks ... */
978                 if (precharge)
979                         writel(seq->rwcfg->precharge_all, grpaddr);
980
981                 /*
982                  * USER Use Mirror-ed commands for odd ranks if address
983                  * mirrorring is on
984                  */
985                 if ((seq->rwcfg->mem_address_mirroring >> r) & 0x1) {
986                         set_jump_as_return(seq);
987                         writel(seq->rwcfg->mrs2_mirr, grpaddr);
988                         delay_for_n_mem_clocks(seq, 4);
989                         set_jump_as_return(seq);
990                         writel(seq->rwcfg->mrs3_mirr, grpaddr);
991                         delay_for_n_mem_clocks(seq, 4);
992                         set_jump_as_return(seq);
993                         writel(seq->rwcfg->mrs1_mirr, grpaddr);
994                         delay_for_n_mem_clocks(seq, 4);
995                         set_jump_as_return(seq);
996                         writel(fin1, grpaddr);
997                 } else {
998                         set_jump_as_return(seq);
999                         writel(seq->rwcfg->mrs2, grpaddr);
1000                         delay_for_n_mem_clocks(seq, 4);
1001                         set_jump_as_return(seq);
1002                         writel(seq->rwcfg->mrs3, grpaddr);
1003                         delay_for_n_mem_clocks(seq, 4);
1004                         set_jump_as_return(seq);
1005                         writel(seq->rwcfg->mrs1, grpaddr);
1006                         set_jump_as_return(seq);
1007                         writel(fin2, grpaddr);
1008                 }
1009
1010                 if (precharge)
1011                         continue;
1012
1013                 set_jump_as_return(seq);
1014                 writel(seq->rwcfg->zqcl, grpaddr);
1015
1016                 /* tZQinit = tDLLK = 512 ck cycles */
1017                 delay_for_n_mem_clocks(seq, 512);
1018         }
1019 }
1020
1021 /**
1022  * rw_mgr_mem_load_user() - Load user calibration values
1023  * @fin1:       Final instruction 1
1024  * @fin2:       Final instruction 2
1025  * @precharge:  If 1, precharge the banks at the end
1026  *
1027  * Load user calibration values and optionally precharge the banks.
1028  */
1029 static void rw_mgr_mem_load_user(struct socfpga_sdrseq *seq,
1030                                  const u32 fin1, const u32 fin2,
1031                                  const int precharge)
1032 {
1033         if (dram_is_ddr(2))
1034                 rw_mgr_mem_load_user_ddr2(seq, precharge);
1035         else if (dram_is_ddr(3))
1036                 rw_mgr_mem_load_user_ddr3(seq, fin1, fin2, precharge);
1037         else
1038                 hang();
1039 }
1040 /**
1041  * rw_mgr_mem_initialize() - Initialize RW Manager
1042  *
1043  * Initialize RW Manager.
1044  */
1045 static void rw_mgr_mem_initialize(struct socfpga_sdrseq *seq)
1046 {
1047         debug("%s:%d\n", __func__, __LINE__);
1048
1049         /* The reset / cke part of initialization is broadcasted to all ranks */
1050         if (dram_is_ddr(3)) {
1051                 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1052                                         RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
1053         }
1054
1055         /*
1056          * Here's how you load register for a loop
1057          * Counters are located @ 0x800
1058          * Jump address are located @ 0xC00
1059          * For both, registers 0 to 3 are selected using bits 3 and 2, like
1060          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
1061          * I know this ain't pretty, but Avalon bus throws away the 2 least
1062          * significant bits
1063          */
1064
1065         /* Start with memory RESET activated */
1066
1067         /* tINIT = 200us */
1068
1069         /*
1070          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
1071          * If a and b are the number of iteration in 2 nested loops
1072          * it takes the following number of cycles to complete the operation:
1073          * number_of_cycles = ((2 + n) * a + 2) * b
1074          * where n is the number of instruction in the inner loop
1075          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
1076          * b = 6A
1077          */
1078         rw_mgr_mem_init_load_regs(seq, seq->misccfg->tinit_cntr0_val,
1079                                   seq->misccfg->tinit_cntr1_val,
1080                                   seq->misccfg->tinit_cntr2_val,
1081                                   seq->rwcfg->init_reset_0_cke_0);
1082
1083         /* Indicate that memory is stable. */
1084         writel(1, &phy_mgr_cfg->reset_mem_stbl);
1085
1086         if (dram_is_ddr(2)) {
1087                 writel(seq->rwcfg->nop, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1088                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1089
1090                 /* Bring up clock enable. */
1091
1092                 /* tXRP < 400 ck cycles */
1093                 delay_for_n_ns(seq, 400);
1094         } else if (dram_is_ddr(3)) {
1095                 /*
1096                  * transition the RESET to high
1097                  * Wait for 500us
1098                  */
1099
1100                 /*
1101                  * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1102                  * If a and b are the number of iteration in 2 nested loops
1103                  * it takes the following number of cycles to complete the
1104                  * operation number_of_cycles = ((2 + n) * a + 2) * b
1105                  * where n is the number of instruction in the inner loop
1106                  * One possible solution is
1107                  * n = 2 , a = 131 , b = 256 => a = 83, b = FF
1108                  */
1109                 rw_mgr_mem_init_load_regs(seq, seq->misccfg->treset_cntr0_val,
1110                                           seq->misccfg->treset_cntr1_val,
1111                                           seq->misccfg->treset_cntr2_val,
1112                                           seq->rwcfg->init_reset_1_cke_0);
1113                 /* Bring up clock enable. */
1114
1115                 /* tXRP < 250 ck cycles */
1116                 delay_for_n_mem_clocks(seq, 250);
1117         }
1118
1119         rw_mgr_mem_load_user(seq, seq->rwcfg->mrs0_dll_reset_mirr,
1120                              seq->rwcfg->mrs0_dll_reset, 0);
1121 }
1122
1123 /**
1124  * rw_mgr_mem_handoff() - Hand off the memory to user
1125  *
1126  * At the end of calibration we have to program the user settings in
1127  * and hand off the memory to the user.
1128  */
1129 static void rw_mgr_mem_handoff(struct socfpga_sdrseq *seq)
1130 {
1131         rw_mgr_mem_load_user(seq, seq->rwcfg->mrs0_user_mirr,
1132                              seq->rwcfg->mrs0_user, 1);
1133         /*
1134          * Need to wait tMOD (12CK or 15ns) time before issuing other
1135          * commands, but we will have plenty of NIOS cycles before actual
1136          * handoff so its okay.
1137          */
1138 }
1139
1140 /**
1141  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1142  * @group:      Write Group
1143  * @use_dm:     Use DM
1144  *
1145  * Issue write test command. Two variants are provided, one that just tests
1146  * a write pattern and another that tests datamask functionality.
1147  */
1148 static void rw_mgr_mem_calibrate_write_test_issue(struct socfpga_sdrseq *seq,
1149                                                   u32 group, u32 test_dm)
1150 {
1151         const u32 quick_write_mode =
1152                 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1153                 seq->misccfg->enable_super_quick_calibration;
1154         u32 mcc_instruction;
1155         u32 rw_wl_nop_cycles;
1156
1157         /*
1158          * Set counter and jump addresses for the right
1159          * number of NOP cycles.
1160          * The number of supported NOP cycles can range from -1 to infinity
1161          * Three different cases are handled:
1162          *
1163          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1164          *    mechanism will be used to insert the right number of NOPs
1165          *
1166          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1167          *    issuing the write command will jump straight to the
1168          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1169          *    data (for RLD), skipping
1170          *    the NOP micro-instruction all together
1171          *
1172          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1173          *    turned on in the same micro-instruction that issues the write
1174          *    command. Then we need
1175          *    to directly jump to the micro-instruction that sends out the data
1176          *
1177          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1178          *       (2 and 3). One jump-counter (0) is used to perform multiple
1179          *       write-read operations.
1180          *       one counter left to issue this command in "multiple-group" mode
1181          */
1182
1183         rw_wl_nop_cycles = seq->gbl.rw_wl_nop_cycles;
1184
1185         if (rw_wl_nop_cycles == -1) {
1186                 /*
1187                  * CNTR 2 - We want to execute the special write operation that
1188                  * turns on DQS right away and then skip directly to the
1189                  * instruction that sends out the data. We set the counter to a
1190                  * large number so that the jump is always taken.
1191                  */
1192                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1193
1194                 /* CNTR 3 - Not used */
1195                 if (test_dm) {
1196                         mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1197                         writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_data,
1198                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1199                         writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1200                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1201                 } else {
1202                         mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0_wl_1;
1203                         writel(seq->rwcfg->lfsr_wr_rd_bank_0_data,
1204                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1205                         writel(seq->rwcfg->lfsr_wr_rd_bank_0_nop,
1206                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1207                 }
1208         } else if (rw_wl_nop_cycles == 0) {
1209                 /*
1210                  * CNTR 2 - We want to skip the NOP operation and go straight
1211                  * to the DQS enable instruction. We set the counter to a large
1212                  * number so that the jump is always taken.
1213                  */
1214                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1215
1216                 /* CNTR 3 - Not used */
1217                 if (test_dm) {
1218                         mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0;
1219                         writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1220                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1221                 } else {
1222                         mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0;
1223                         writel(seq->rwcfg->lfsr_wr_rd_bank_0_dqs,
1224                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1225                 }
1226         } else {
1227                 /*
1228                  * CNTR 2 - In this case we want to execute the next instruction
1229                  * and NOT take the jump. So we set the counter to 0. The jump
1230                  * address doesn't count.
1231                  */
1232                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1233                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1234
1235                 /*
1236                  * CNTR 3 - Set the nop counter to the number of cycles we
1237                  * need to loop for, minus 1.
1238                  */
1239                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1240                 if (test_dm) {
1241                         mcc_instruction = seq->rwcfg->lfsr_wr_rd_dm_bank_0;
1242                         writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1243                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1244                 } else {
1245                         mcc_instruction = seq->rwcfg->lfsr_wr_rd_bank_0;
1246                         writel(seq->rwcfg->lfsr_wr_rd_bank_0_nop,
1247                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1248                 }
1249         }
1250
1251         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1252                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1253
1254         if (quick_write_mode)
1255                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1256         else
1257                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1258
1259         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1260
1261         /*
1262          * CNTR 1 - This is used to ensure enough time elapses
1263          * for read data to come back.
1264          */
1265         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1266
1267         if (test_dm) {
1268                 writel(seq->rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1269                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1270         } else {
1271                 writel(seq->rwcfg->lfsr_wr_rd_bank_0_wait,
1272                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1273         }
1274
1275         writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1276                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1277                                 (group << 2));
1278 }
1279
1280 /**
1281  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple
1282  * pass
1283  * @rank_bgn:           Rank number
1284  * @write_group:        Write Group
1285  * @use_dm:             Use DM
1286  * @all_correct:        All bits must be correct in the mask
1287  * @bit_chk:            Resulting bit mask after the test
1288  * @all_ranks:          Test all ranks
1289  *
1290  * Test writes, can check for a single bit pass or multiple bit pass.
1291  */
1292 static int
1293 rw_mgr_mem_calibrate_write_test(struct socfpga_sdrseq *seq,
1294                                 const u32 rank_bgn, const u32 write_group,
1295                                 const u32 use_dm, const u32 all_correct,
1296                                 u32 *bit_chk, const u32 all_ranks)
1297 {
1298         const u32 rank_end = all_ranks ?
1299                                 seq->rwcfg->mem_number_of_ranks :
1300                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1301         const u32 shift_ratio = seq->rwcfg->mem_dq_per_write_dqs /
1302                                 seq->rwcfg->mem_virtual_groups_per_write_dqs;
1303         const u32 correct_mask_vg = seq->param.write_correct_mask_vg;
1304
1305         u32 tmp_bit_chk, base_rw_mgr, group;
1306         int vg, r;
1307
1308         *bit_chk = seq->param.write_correct_mask;
1309
1310         for (r = rank_bgn; r < rank_end; r++) {
1311                 /* Set rank */
1312                 set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
1313
1314                 tmp_bit_chk = 0;
1315                 for (vg = seq->rwcfg->mem_virtual_groups_per_write_dqs - 1;
1316                      vg >= 0; vg--) {
1317                         /* Reset the FIFOs to get pointers to known state. */
1318                         writel(0, &phy_mgr_cmd->fifo_reset);
1319
1320                         group = write_group *
1321                                 seq->rwcfg->mem_virtual_groups_per_write_dqs
1322                                 + vg;
1323                         rw_mgr_mem_calibrate_write_test_issue(seq, group,
1324                                                               use_dm);
1325
1326                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1327                         tmp_bit_chk <<= shift_ratio;
1328                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1329                 }
1330
1331                 *bit_chk &= tmp_bit_chk;
1332         }
1333
1334         set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
1335         if (all_correct) {
1336                 debug_cond(DLEVEL >= 2,
1337                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1338                            write_group, use_dm, *bit_chk,
1339                            seq->param.write_correct_mask,
1340                            *bit_chk == seq->param.write_correct_mask);
1341                 return *bit_chk == seq->param.write_correct_mask;
1342         } else {
1343                 debug_cond(DLEVEL >= 2,
1344                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1345                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1346                 return *bit_chk != 0x00;
1347         }
1348 }
1349
1350 /**
1351  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1352  * @rank_bgn:   Rank number
1353  * @group:      Read/Write Group
1354  * @all_ranks:  Test all ranks
1355  *
1356  * Performs a guaranteed read on the patterns we are going to use during a
1357  * read test to ensure memory works.
1358  */
1359 static int
1360 rw_mgr_mem_calibrate_read_test_patterns(struct socfpga_sdrseq *seq,
1361                                         const u32 rank_bgn, const u32 group,
1362                                         const u32 all_ranks)
1363 {
1364         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1365                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1366         const u32 addr_offset =
1367                          (group * seq->rwcfg->mem_virtual_groups_per_read_dqs)
1368                          << 2;
1369         const u32 rank_end = all_ranks ?
1370                                 seq->rwcfg->mem_number_of_ranks :
1371                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1372         const u32 shift_ratio = seq->rwcfg->mem_dq_per_read_dqs /
1373                                 seq->rwcfg->mem_virtual_groups_per_read_dqs;
1374         const u32 correct_mask_vg = seq->param.read_correct_mask_vg;
1375
1376         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1377         int vg, r;
1378         int ret = 0;
1379
1380         bit_chk = seq->param.read_correct_mask;
1381
1382         for (r = rank_bgn; r < rank_end; r++) {
1383                 /* Set rank */
1384                 set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
1385
1386                 /* Load up a constant bursts of read commands */
1387                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1388                 writel(seq->rwcfg->guaranteed_read,
1389                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1390
1391                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1392                 writel(seq->rwcfg->guaranteed_read_cont,
1393                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1394
1395                 tmp_bit_chk = 0;
1396                 for (vg = seq->rwcfg->mem_virtual_groups_per_read_dqs - 1;
1397                      vg >= 0; vg--) {
1398                         /* Reset the FIFOs to get pointers to known state. */
1399                         writel(0, &phy_mgr_cmd->fifo_reset);
1400                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1401                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1402                         writel(seq->rwcfg->guaranteed_read,
1403                                addr + addr_offset + (vg << 2));
1404
1405                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1406                         tmp_bit_chk <<= shift_ratio;
1407                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1408                 }
1409
1410                 bit_chk &= tmp_bit_chk;
1411         }
1412
1413         writel(seq->rwcfg->clear_dqs_enable, addr + (group << 2));
1414
1415         set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
1416
1417         if (bit_chk != seq->param.read_correct_mask)
1418                 ret = -EIO;
1419
1420         debug_cond(DLEVEL >= 1,
1421                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1422                    __func__, __LINE__, group, bit_chk,
1423                    seq->param.read_correct_mask, ret);
1424
1425         return ret;
1426 }
1427
1428 /**
1429  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read
1430  * test
1431  * @rank_bgn:   Rank number
1432  * @all_ranks:  Test all ranks
1433  *
1434  * Load up the patterns we are going to use during a read test.
1435  */
1436 static void rw_mgr_mem_calibrate_read_load_patterns(struct socfpga_sdrseq *seq,
1437                                                     const u32 rank_bgn,
1438                                                     const int all_ranks)
1439 {
1440         const u32 rank_end = all_ranks ?
1441                         seq->rwcfg->mem_number_of_ranks :
1442                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1443         u32 r;
1444
1445         debug("%s:%d\n", __func__, __LINE__);
1446
1447         for (r = rank_bgn; r < rank_end; r++) {
1448                 /* set rank */
1449                 set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
1450
1451                 /* Load up a constant bursts */
1452                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1453
1454                 writel(seq->rwcfg->guaranteed_write_wait0,
1455                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1456
1457                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1458
1459                 writel(seq->rwcfg->guaranteed_write_wait1,
1460                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1461
1462                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1463
1464                 writel(seq->rwcfg->guaranteed_write_wait2,
1465                        &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1466
1467                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1468
1469                 writel(seq->rwcfg->guaranteed_write_wait3,
1470                        &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1471
1472                 writel(seq->rwcfg->guaranteed_write,
1473                        SDR_PHYGRP_RWMGRGRP_ADDRESS |
1474                        RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1475         }
1476
1477         set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
1478 }
1479
1480 /**
1481  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1482  * @rank_bgn:           Rank number
1483  * @group:              Read/Write group
1484  * @num_tries:          Number of retries of the test
1485  * @all_correct:        All bits must be correct in the mask
1486  * @bit_chk:            Resulting bit mask after the test
1487  * @all_groups:         Test all R/W groups
1488  * @all_ranks:          Test all ranks
1489  *
1490  * Try a read and see if it returns correct data back. Test has dummy reads
1491  * inserted into the mix used to align DQS enable. Test has more thorough
1492  * checks than the regular read test.
1493  */
1494 static int
1495 rw_mgr_mem_calibrate_read_test(struct socfpga_sdrseq *seq,
1496                                const u32 rank_bgn, const u32 group,
1497                                const u32 num_tries, const u32 all_correct,
1498                                u32 *bit_chk,
1499                                const u32 all_groups, const u32 all_ranks)
1500 {
1501         const u32 rank_end = all_ranks ? seq->rwcfg->mem_number_of_ranks :
1502                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1503         const u32 quick_read_mode =
1504                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1505                  seq->misccfg->enable_super_quick_calibration);
1506         u32 correct_mask_vg = seq->param.read_correct_mask_vg;
1507         u32 tmp_bit_chk;
1508         u32 base_rw_mgr;
1509         u32 addr;
1510
1511         int r, vg, ret;
1512
1513         *bit_chk = seq->param.read_correct_mask;
1514
1515         for (r = rank_bgn; r < rank_end; r++) {
1516                 /* set rank */
1517                 set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_READ_WRITE);
1518
1519                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1520
1521                 writel(seq->rwcfg->read_b2b_wait1,
1522                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1523
1524                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1525                 writel(seq->rwcfg->read_b2b_wait2,
1526                        &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1527
1528                 if (quick_read_mode)
1529                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1530                         /* need at least two (1+1) reads to capture failures */
1531                 else if (all_groups)
1532                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1533                 else
1534                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1535
1536                 writel(seq->rwcfg->read_b2b,
1537                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1538                 if (all_groups)
1539                         writel(seq->rwcfg->mem_if_read_dqs_width *
1540                                seq->rwcfg->mem_virtual_groups_per_read_dqs - 1,
1541                                &sdr_rw_load_mgr_regs->load_cntr3);
1542                 else
1543                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1544
1545                 writel(seq->rwcfg->read_b2b,
1546                        &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1547
1548                 tmp_bit_chk = 0;
1549                 for (vg = seq->rwcfg->mem_virtual_groups_per_read_dqs - 1;
1550                      vg >= 0; vg--) {
1551                         /* Reset the FIFOs to get pointers to known state. */
1552                         writel(0, &phy_mgr_cmd->fifo_reset);
1553                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1554                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1555
1556                         if (all_groups) {
1557                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1558                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1559                         } else {
1560                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1561                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1562                         }
1563
1564                         writel(seq->rwcfg->read_b2b, addr +
1565                                ((group *
1566                                  seq->rwcfg->mem_virtual_groups_per_read_dqs +
1567                                  vg) << 2));
1568
1569                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1570                         tmp_bit_chk <<=
1571                                 seq->rwcfg->mem_dq_per_read_dqs /
1572                                 seq->rwcfg->mem_virtual_groups_per_read_dqs;
1573                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1574                 }
1575
1576                 *bit_chk &= tmp_bit_chk;
1577         }
1578
1579         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1580         writel(seq->rwcfg->clear_dqs_enable, addr + (group << 2));
1581
1582         set_rank_and_odt_mask(seq, 0, RW_MGR_ODT_MODE_OFF);
1583
1584         if (all_correct) {
1585                 ret = (*bit_chk == seq->param.read_correct_mask);
1586                 debug_cond(DLEVEL >= 2,
1587                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1588                            __func__, __LINE__, group, all_groups, *bit_chk,
1589                            seq->param.read_correct_mask, ret);
1590         } else  {
1591                 ret = (*bit_chk != 0x00);
1592                 debug_cond(DLEVEL >= 2,
1593                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1594                            __func__, __LINE__, group, all_groups, *bit_chk,
1595                            0, ret);
1596         }
1597
1598         return ret;
1599 }
1600
1601 /**
1602  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1603  * @grp:                Read/Write group
1604  * @num_tries:          Number of retries of the test
1605  * @all_correct:        All bits must be correct in the mask
1606  * @all_groups:         Test all R/W groups
1607  *
1608  * Perform a READ test across all memory ranks.
1609  */
1610 static int
1611 rw_mgr_mem_calibrate_read_test_all_ranks(struct socfpga_sdrseq *seq,
1612                                          const u32 grp, const u32 num_tries,
1613                                          const u32 all_correct,
1614                                          const u32 all_groups)
1615 {
1616         u32 bit_chk;
1617         return rw_mgr_mem_calibrate_read_test(seq, 0, grp, num_tries,
1618                                               all_correct, &bit_chk, all_groups,
1619                                               1);
1620 }
1621
1622 /**
1623  * rw_mgr_incr_vfifo() - Increase VFIFO value
1624  * @grp:        Read/Write group
1625  *
1626  * Increase VFIFO value.
1627  */
1628 static void rw_mgr_incr_vfifo(const u32 grp)
1629 {
1630         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1631 }
1632
1633 /**
1634  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1635  * @grp:        Read/Write group
1636  *
1637  * Decrease VFIFO value.
1638  */
1639 static void rw_mgr_decr_vfifo(struct socfpga_sdrseq *seq, const u32 grp)
1640 {
1641         u32 i;
1642
1643         for (i = 0; i < seq->misccfg->read_valid_fifo_size - 1; i++)
1644                 rw_mgr_incr_vfifo(grp);
1645 }
1646
1647 /**
1648  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1649  * @grp:        Read/Write group
1650  *
1651  * Push VFIFO until a failing read happens.
1652  */
1653 static int find_vfifo_failing_read(struct socfpga_sdrseq *seq,
1654                                    const u32 grp)
1655 {
1656         u32 v, ret, fail_cnt = 0;
1657
1658         for (v = 0; v < seq->misccfg->read_valid_fifo_size; v++) {
1659                 debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
1660                            __func__, __LINE__, v);
1661                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
1662                                                                PASS_ONE_BIT, 0);
1663                 if (!ret) {
1664                         fail_cnt++;
1665
1666                         if (fail_cnt == 2)
1667                                 return v;
1668                 }
1669
1670                 /* Fiddle with FIFO. */
1671                 rw_mgr_incr_vfifo(grp);
1672         }
1673
1674         /* No failing read found! Something must have gone wrong. */
1675         debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1676         return 0;
1677 }
1678
1679 /**
1680  * sdr_find_phase_delay() - Find DQS enable phase or delay
1681  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1682  * @delay:      If 1, look for delay, if 0, look for phase
1683  * @grp:        Read/Write group
1684  * @work:       Working window position
1685  * @work_inc:   Working window increment
1686  * @pd:         DQS Phase/Delay Iterator
1687  *
1688  * Find working or non-working DQS enable phase setting.
1689  */
1690 static int sdr_find_phase_delay(struct socfpga_sdrseq *seq, int working,
1691                                 int delay, const u32 grp, u32 *work,
1692                                 const u32 work_inc, u32 *pd)
1693 {
1694         const u32 max = delay ? seq->iocfg->dqs_en_delay_max :
1695                                 seq->iocfg->dqs_en_phase_max;
1696         u32 ret;
1697
1698         for (; *pd <= max; (*pd)++) {
1699                 if (delay)
1700                         scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, *pd);
1701                 else
1702                         scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, *pd);
1703
1704                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
1705                                                                PASS_ONE_BIT, 0);
1706                 if (!working)
1707                         ret = !ret;
1708
1709                 if (ret)
1710                         return 0;
1711
1712                 if (work)
1713                         *work += work_inc;
1714         }
1715
1716         return -EINVAL;
1717 }
1718 /**
1719  * sdr_find_phase() - Find DQS enable phase
1720  * @working:    If 1, look for working phase, if 0, look for non-working phase
1721  * @grp:        Read/Write group
1722  * @work:       Working window position
1723  * @i:          Iterator
1724  * @p:          DQS Phase Iterator
1725  *
1726  * Find working or non-working DQS enable phase setting.
1727  */
1728 static int sdr_find_phase(struct socfpga_sdrseq *seq, int working,
1729                           const u32 grp, u32 *work, u32 *i, u32 *p)
1730 {
1731         const u32 end = seq->misccfg->read_valid_fifo_size + (working ? 0 : 1);
1732         int ret;
1733
1734         for (; *i < end; (*i)++) {
1735                 if (working)
1736                         *p = 0;
1737
1738                 ret = sdr_find_phase_delay(seq, working, 0, grp, work,
1739                                            seq->iocfg->delay_per_opa_tap, p);
1740                 if (!ret)
1741                         return 0;
1742
1743                 if (*p > seq->iocfg->dqs_en_phase_max) {
1744                         /* Fiddle with FIFO. */
1745                         rw_mgr_incr_vfifo(grp);
1746                         if (!working)
1747                                 *p = 0;
1748                 }
1749         }
1750
1751         return -EINVAL;
1752 }
1753
1754 /**
1755  * sdr_working_phase() - Find working DQS enable phase
1756  * @grp:        Read/Write group
1757  * @work_bgn:   Working window start position
1758  * @d:          dtaps output value
1759  * @p:          DQS Phase Iterator
1760  * @i:          Iterator
1761  *
1762  * Find working DQS enable phase setting.
1763  */
1764 static int sdr_working_phase(struct socfpga_sdrseq *seq, const u32 grp,
1765                              u32 *work_bgn, u32 *d, u32 *p, u32 *i)
1766 {
1767         const u32 dtaps_per_ptap = seq->iocfg->delay_per_opa_tap /
1768                                    seq->iocfg->delay_per_dqs_en_dchain_tap;
1769         int ret;
1770
1771         *work_bgn = 0;
1772
1773         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1774                 *i = 0;
1775                 scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, *d);
1776                 ret = sdr_find_phase(seq, 1, grp, work_bgn, i, p);
1777                 if (!ret)
1778                         return 0;
1779                 *work_bgn += seq->iocfg->delay_per_dqs_en_dchain_tap;
1780         }
1781
1782         /* Cannot find working solution */
1783         debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1784                    __func__, __LINE__);
1785         return -EINVAL;
1786 }
1787
1788 /**
1789  * sdr_backup_phase() - Find DQS enable backup phase
1790  * @grp:        Read/Write group
1791  * @work_bgn:   Working window start position
1792  * @p:          DQS Phase Iterator
1793  *
1794  * Find DQS enable backup phase setting.
1795  */
1796 static void sdr_backup_phase(struct socfpga_sdrseq *seq, const u32 grp,
1797                              u32 *work_bgn, u32 *p)
1798 {
1799         u32 tmp_delay, d;
1800         int ret;
1801
1802         /* Special case code for backing up a phase */
1803         if (*p == 0) {
1804                 *p = seq->iocfg->dqs_en_phase_max;
1805                 rw_mgr_decr_vfifo(seq, grp);
1806         } else {
1807                 (*p)--;
1808         }
1809         tmp_delay = *work_bgn - seq->iocfg->delay_per_opa_tap;
1810         scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, *p);
1811
1812         for (d = 0; d <= seq->iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
1813              d++) {
1814                 scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, d);
1815
1816                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
1817                                                                PASS_ONE_BIT, 0);
1818                 if (ret) {
1819                         *work_bgn = tmp_delay;
1820                         break;
1821                 }
1822
1823                 tmp_delay += seq->iocfg->delay_per_dqs_en_dchain_tap;
1824         }
1825
1826         /* Restore VFIFO to old state before we decremented it (if needed). */
1827         (*p)++;
1828         if (*p > seq->iocfg->dqs_en_phase_max) {
1829                 *p = 0;
1830                 rw_mgr_incr_vfifo(grp);
1831         }
1832
1833         scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, 0);
1834 }
1835
1836 /**
1837  * sdr_nonworking_phase() - Find non-working DQS enable phase
1838  * @grp:        Read/Write group
1839  * @work_end:   Working window end position
1840  * @p:          DQS Phase Iterator
1841  * @i:          Iterator
1842  *
1843  * Find non-working DQS enable phase setting.
1844  */
1845 static int sdr_nonworking_phase(struct socfpga_sdrseq *seq,
1846                                 const u32 grp, u32 *work_end, u32 *p, u32 *i)
1847 {
1848         int ret;
1849
1850         (*p)++;
1851         *work_end += seq->iocfg->delay_per_opa_tap;
1852         if (*p > seq->iocfg->dqs_en_phase_max) {
1853                 /* Fiddle with FIFO. */
1854                 *p = 0;
1855                 rw_mgr_incr_vfifo(grp);
1856         }
1857
1858         ret = sdr_find_phase(seq, 0, grp, work_end, i, p);
1859         if (ret) {
1860                 /* Cannot see edge of failing read. */
1861                 debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
1862                            __func__, __LINE__);
1863         }
1864
1865         return ret;
1866 }
1867
1868 /**
1869  * sdr_find_window_center() - Find center of the working DQS window.
1870  * @grp:        Read/Write group
1871  * @work_bgn:   First working settings
1872  * @work_end:   Last working settings
1873  *
1874  * Find center of the working DQS enable window.
1875  */
1876 static int sdr_find_window_center(struct socfpga_sdrseq *seq,
1877                                   const u32 grp, const u32 work_bgn,
1878                                   const u32 work_end)
1879 {
1880         u32 work_mid;
1881         int tmp_delay = 0;
1882         int i, p, d;
1883
1884         work_mid = (work_bgn + work_end) / 2;
1885
1886         debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1887                    work_bgn, work_end, work_mid);
1888         /* Get the middle delay to be less than a VFIFO delay */
1889         tmp_delay = (seq->iocfg->dqs_en_phase_max + 1)
1890                 * seq->iocfg->delay_per_opa_tap;
1891
1892         debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
1893         work_mid %= tmp_delay;
1894         debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
1895
1896         tmp_delay = rounddown(work_mid, seq->iocfg->delay_per_opa_tap);
1897         if (tmp_delay > seq->iocfg->dqs_en_phase_max
1898                 * seq->iocfg->delay_per_opa_tap) {
1899                 tmp_delay = seq->iocfg->dqs_en_phase_max
1900                         * seq->iocfg->delay_per_opa_tap;
1901         }
1902         p = tmp_delay / seq->iocfg->delay_per_opa_tap;
1903
1904         debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1905
1906         d = DIV_ROUND_UP(work_mid - tmp_delay,
1907                          seq->iocfg->delay_per_dqs_en_dchain_tap);
1908         if (d > seq->iocfg->dqs_en_delay_max)
1909                 d = seq->iocfg->dqs_en_delay_max;
1910         tmp_delay += d * seq->iocfg->delay_per_dqs_en_dchain_tap;
1911
1912         debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1913
1914         scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
1915         scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, d);
1916
1917         /*
1918          * push vfifo until we can successfully calibrate. We can do this
1919          * because the largest possible margin in 1 VFIFO cycle.
1920          */
1921         for (i = 0; i < seq->misccfg->read_valid_fifo_size; i++) {
1922                 debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
1923                 if (rw_mgr_mem_calibrate_read_test_all_ranks(seq, grp, 1,
1924                                                              PASS_ONE_BIT,
1925                                                              0)) {
1926                         debug_cond(DLEVEL >= 2,
1927                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1928                                    __func__, __LINE__, p, d);
1929                         return 0;
1930                 }
1931
1932                 /* Fiddle with FIFO. */
1933                 rw_mgr_incr_vfifo(grp);
1934         }
1935
1936         debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
1937                    __func__, __LINE__);
1938         return -EINVAL;
1939 }
1940
1941 /**
1942  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to
1943  * use
1944  * @grp:        Read/Write Group
1945  *
1946  * Find a good DQS enable to use.
1947  */
1948 static int
1949 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(struct socfpga_sdrseq *seq,
1950                                              const u32 grp)
1951 {
1952         u32 d, p, i;
1953         u32 dtaps_per_ptap;
1954         u32 work_bgn, work_end;
1955         u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
1956         int ret;
1957
1958         debug("%s:%d %u\n", __func__, __LINE__, grp);
1959
1960         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1961
1962         scc_mgr_set_dqs_en_delay_all_ranks(seq, grp, 0);
1963         scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, 0);
1964
1965         /* Step 0: Determine number of delay taps for each phase tap. */
1966         dtaps_per_ptap = seq->iocfg->delay_per_opa_tap /
1967                          seq->iocfg->delay_per_dqs_en_dchain_tap;
1968
1969         /* Step 1: First push vfifo until we get a failing read. */
1970         find_vfifo_failing_read(seq, grp);
1971
1972         /* Step 2: Find first working phase, increment in ptaps. */
1973         work_bgn = 0;
1974         ret = sdr_working_phase(seq, grp, &work_bgn, &d, &p, &i);
1975         if (ret)
1976                 return ret;
1977
1978         work_end = work_bgn;
1979
1980         /*
1981          * If d is 0 then the working window covers a phase tap and we can
1982          * follow the old procedure. Otherwise, we've found the beginning
1983          * and we need to increment the dtaps until we find the end.
1984          */
1985         if (d == 0) {
1986                 /*
1987                  * Step 3a: If we have room, back off by one and
1988                  *          increment in dtaps.
1989                  */
1990                 sdr_backup_phase(seq, grp, &work_bgn, &p);
1991
1992                 /*
1993                  * Step 4a: go forward from working phase to non working
1994                  * phase, increment in ptaps.
1995                  */
1996                 ret = sdr_nonworking_phase(seq, grp, &work_end, &p, &i);
1997                 if (ret)
1998                         return ret;
1999
2000                 /* Step 5a: Back off one from last, increment in dtaps. */
2001
2002                 /* Special case code for backing up a phase */
2003                 if (p == 0) {
2004                         p = seq->iocfg->dqs_en_phase_max;
2005                         rw_mgr_decr_vfifo(seq, grp);
2006                 } else {
2007                         p = p - 1;
2008                 }
2009
2010                 work_end -= seq->iocfg->delay_per_opa_tap;
2011                 scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
2012
2013                 d = 0;
2014
2015                 debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
2016                            __func__, __LINE__, p);
2017         }
2018
2019         /* The dtap increment to find the failing edge is done here. */
2020         sdr_find_phase_delay(seq, 0, 1, grp, &work_end,
2021                              seq->iocfg->delay_per_dqs_en_dchain_tap, &d);
2022
2023         /* Go back to working dtap */
2024         if (d != 0)
2025                 work_end -= seq->iocfg->delay_per_dqs_en_dchain_tap;
2026
2027         debug_cond(DLEVEL >= 2,
2028                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
2029                    __func__, __LINE__, p, d - 1, work_end);
2030
2031         if (work_end < work_bgn) {
2032                 /* nil range */
2033                 debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
2034                            __func__, __LINE__);
2035                 return -EINVAL;
2036         }
2037
2038         debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
2039                    __func__, __LINE__, work_bgn, work_end);
2040
2041         /*
2042          * We need to calculate the number of dtaps that equal a ptap.
2043          * To do that we'll back up a ptap and re-find the edge of the
2044          * window using dtaps
2045          */
2046         debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
2047                    __func__, __LINE__);
2048
2049         /* Special case code for backing up a phase */
2050         if (p == 0) {
2051                 p = seq->iocfg->dqs_en_phase_max;
2052                 rw_mgr_decr_vfifo(seq, grp);
2053                 debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
2054                            __func__, __LINE__, p);
2055         } else {
2056                 p = p - 1;
2057                 debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
2058                            __func__, __LINE__, p);
2059         }
2060
2061         scc_mgr_set_dqs_en_phase_all_ranks(seq, grp, p);
2062
2063         /*
2064          * Increase dtap until we first see a passing read (in case the
2065          * window is smaller than a ptap), and then a failing read to
2066          * mark the edge of the window again.
2067          */
2068
2069         /* Find a passing read. */
2070         debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
2071                    __func__, __LINE__);
2072
2073         initial_failing_dtap = d;
2074
2075         found_passing_read = !sdr_find_phase_delay(seq, 1, 1, grp, NULL, 0, &d);
2076         if (found_passing_read) {
2077                 /* Find a failing read. */
2078                 debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
2079                            __func__, __LINE__);
2080                 d++;
2081                 found_failing_read = !sdr_find_phase_delay(seq, 0, 1, grp, NULL,
2082                                                            0, &d);
2083         } else {
2084                 debug_cond(DLEVEL >= 1,
2085                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
2086                            __func__, __LINE__);
2087         }
2088
2089         /*
2090          * The dynamically calculated dtaps_per_ptap is only valid if we
2091          * found a passing/failing read. If we didn't, it means d hit the max
2092          * (seq->iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
2093          * statically calculated value.
2094          */
2095         if (found_passing_read && found_failing_read)
2096                 dtaps_per_ptap = d - initial_failing_dtap;
2097
2098         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
2099         debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
2100                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
2101
2102         /* Step 6: Find the centre of the window. */
2103         ret = sdr_find_window_center(seq, grp, work_bgn, work_end);
2104
2105         return ret;
2106 }
2107
2108 /**
2109  * search_stop_check() - Check if the detected edge is valid
2110  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2111  * @d:                  DQS delay
2112  * @rank_bgn:           Rank number
2113  * @write_group:        Write Group
2114  * @read_group:         Read Group
2115  * @bit_chk:            Resulting bit mask after the test
2116  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2117  * @use_read_test:      Perform read test
2118  *
2119  * Test if the found edge is valid.
2120  */
2121 static u32 search_stop_check(struct socfpga_sdrseq *seq, const int write,
2122                              const int d, const int rank_bgn,
2123                              const u32 write_group, const u32 read_group,
2124                              u32 *bit_chk, u32 *sticky_bit_chk,
2125                              const u32 use_read_test)
2126 {
2127         const u32 ratio = seq->rwcfg->mem_if_read_dqs_width /
2128                           seq->rwcfg->mem_if_write_dqs_width;
2129         const u32 correct_mask = write ? seq->param.write_correct_mask :
2130                                          seq->param.read_correct_mask;
2131         const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
2132                                     seq->rwcfg->mem_dq_per_read_dqs;
2133         u32 ret;
2134         /*
2135          * Stop searching when the read test doesn't pass AND when
2136          * we've seen a passing read on every bit.
2137          */
2138         if (write) {                    /* WRITE-ONLY */
2139                 ret = !rw_mgr_mem_calibrate_write_test(seq, rank_bgn,
2140                                                          write_group, 0,
2141                                                          PASS_ONE_BIT, bit_chk,
2142                                                          0);
2143         } else if (use_read_test) {     /* READ-ONLY */
2144                 ret = !rw_mgr_mem_calibrate_read_test(seq, rank_bgn, read_group,
2145                                                         NUM_READ_PB_TESTS,
2146                                                         PASS_ONE_BIT, bit_chk,
2147                                                         0, 0);
2148         } else {                        /* READ-ONLY */
2149                 rw_mgr_mem_calibrate_write_test(seq, rank_bgn, write_group, 0,
2150                                                 PASS_ONE_BIT, bit_chk, 0);
2151                 *bit_chk = *bit_chk >> (per_dqs *
2152                         (read_group - (write_group * ratio)));
2153                 ret = (*bit_chk == 0);
2154         }
2155         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2156         ret = ret && (*sticky_bit_chk == correct_mask);
2157         debug_cond(DLEVEL >= 2,
2158                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2159                    __func__, __LINE__, d,
2160                    *sticky_bit_chk, correct_mask, ret);
2161         return ret;
2162 }
2163
2164 /**
2165  * search_left_edge() - Find left edge of DQ/DQS working phase
2166  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2167  * @rank_bgn:           Rank number
2168  * @write_group:        Write Group
2169  * @read_group:         Read Group
2170  * @test_bgn:           Rank number to begin the test
2171  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2172  * @left_edge:          Left edge of the DQ/DQS phase
2173  * @right_edge:         Right edge of the DQ/DQS phase
2174  * @use_read_test:      Perform read test
2175  *
2176  * Find left edge of DQ/DQS working phase.
2177  */
2178 static void search_left_edge(struct socfpga_sdrseq *seq, const int write,
2179                              const int rank_bgn, const u32 write_group,
2180                              const u32 read_group, const u32 test_bgn,
2181                              u32 *sticky_bit_chk, int *left_edge,
2182                              int *right_edge, const u32 use_read_test)
2183 {
2184         const u32 delay_max = write ? seq->iocfg->io_out1_delay_max :
2185                                       seq->iocfg->io_in_delay_max;
2186         const u32 dqs_max = write ? seq->iocfg->io_out1_delay_max :
2187                                     seq->iocfg->dqs_in_delay_max;
2188         const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
2189                                     seq->rwcfg->mem_dq_per_read_dqs;
2190         u32 stop, bit_chk;
2191         int i, d;
2192
2193         for (d = 0; d <= dqs_max; d++) {
2194                 if (write)
2195                         scc_mgr_apply_group_dq_out1_delay(seq, d);
2196                 else
2197                         scc_mgr_apply_group_dq_in_delay(seq, test_bgn, d);
2198
2199                 writel(0, &sdr_scc_mgr->update);
2200
2201                 stop = search_stop_check(seq, write, d, rank_bgn, write_group,
2202                                          read_group, &bit_chk, sticky_bit_chk,
2203                                          use_read_test);
2204                 if (stop == 1)
2205                         break;
2206
2207                 /* stop != 1 */
2208                 for (i = 0; i < per_dqs; i++) {
2209                         if (bit_chk & 1) {
2210                                 /*
2211                                  * Remember a passing test as
2212                                  * the left_edge.
2213                                  */
2214                                 left_edge[i] = d;
2215                         } else {
2216                                 /*
2217                                  * If a left edge has not been seen
2218                                  * yet, then a future passing test
2219                                  * will mark this edge as the right
2220                                  * edge.
2221                                  */
2222                                 if (left_edge[i] == delay_max + 1)
2223                                         right_edge[i] = -(d + 1);
2224                         }
2225                         bit_chk >>= 1;
2226                 }
2227         }
2228
2229         /* Reset DQ delay chains to 0 */
2230         if (write)
2231                 scc_mgr_apply_group_dq_out1_delay(seq, 0);
2232         else
2233                 scc_mgr_apply_group_dq_in_delay(seq, test_bgn, 0);
2234
2235         *sticky_bit_chk = 0;
2236         for (i = per_dqs - 1; i >= 0; i--) {
2237                 debug_cond(DLEVEL >= 2,
2238                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2239                            __func__, __LINE__, i, left_edge[i],
2240                            i, right_edge[i]);
2241
2242                 /*
2243                  * Check for cases where we haven't found the left edge,
2244                  * which makes our assignment of the the right edge invalid.
2245                  * Reset it to the illegal value.
2246                  */
2247                 if ((left_edge[i] == delay_max + 1) &&
2248                     (right_edge[i] != delay_max + 1)) {
2249                         right_edge[i] = delay_max + 1;
2250                         debug_cond(DLEVEL >= 2,
2251                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2252                                    __func__, __LINE__, i, right_edge[i]);
2253                 }
2254
2255                 /*
2256                  * Reset sticky bit
2257                  * READ: except for bits where we have seen both
2258                  *       the left and right edge.
2259                  * WRITE: except for bits where we have seen the
2260                  *        left edge.
2261                  */
2262                 *sticky_bit_chk <<= 1;
2263                 if (write) {
2264                         if (left_edge[i] != delay_max + 1)
2265                                 *sticky_bit_chk |= 1;
2266                 } else {
2267                         if ((left_edge[i] != delay_max + 1) &&
2268                             (right_edge[i] != delay_max + 1))
2269                                 *sticky_bit_chk |= 1;
2270                 }
2271         }
2272 }
2273
2274 /**
2275  * search_right_edge() - Find right edge of DQ/DQS working phase
2276  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2277  * @rank_bgn:           Rank number
2278  * @write_group:        Write Group
2279  * @read_group:         Read Group
2280  * @start_dqs:          DQS start phase
2281  * @start_dqs_en:       DQS enable start phase
2282  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2283  * @left_edge:          Left edge of the DQ/DQS phase
2284  * @right_edge:         Right edge of the DQ/DQS phase
2285  * @use_read_test:      Perform read test
2286  *
2287  * Find right edge of DQ/DQS working phase.
2288  */
2289 static int search_right_edge(struct socfpga_sdrseq *seq, const int write,
2290                              const int rank_bgn, const u32 write_group,
2291                              const u32 read_group, const int start_dqs,
2292                              const int start_dqs_en, u32 *sticky_bit_chk,
2293                              int *left_edge, int *right_edge,
2294                              const u32 use_read_test)
2295 {
2296         const u32 delay_max = write ? seq->iocfg->io_out1_delay_max :
2297                                       seq->iocfg->io_in_delay_max;
2298         const u32 dqs_max = write ? seq->iocfg->io_out1_delay_max :
2299                                     seq->iocfg->dqs_in_delay_max;
2300         const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
2301                                     seq->rwcfg->mem_dq_per_read_dqs;
2302         u32 stop, bit_chk;
2303         int i, d;
2304
2305         for (d = 0; d <= dqs_max - start_dqs; d++) {
2306                 if (write) {    /* WRITE-ONLY */
2307                         scc_mgr_apply_group_dqs_io_and_oct_out1(seq,
2308                                                                 write_group,
2309                                                                 d + start_dqs);
2310                 } else {        /* READ-ONLY */
2311                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2312                         if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
2313                                 u32 delay = d + start_dqs_en;
2314                                 if (delay > seq->iocfg->dqs_en_delay_max)
2315                                         delay = seq->iocfg->dqs_en_delay_max;
2316                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2317                         }
2318                         scc_mgr_load_dqs(read_group);
2319                 }
2320
2321                 writel(0, &sdr_scc_mgr->update);
2322
2323                 stop = search_stop_check(seq, write, d, rank_bgn, write_group,
2324                                          read_group, &bit_chk, sticky_bit_chk,
2325                                          use_read_test);
2326                 if (stop == 1) {
2327                         if (write && (d == 0)) {        /* WRITE-ONLY */
2328                                 for (i = 0;
2329                                      i < seq->rwcfg->mem_dq_per_write_dqs;
2330                                      i++) {
2331                                         /*
2332                                          * d = 0 failed, but it passed when
2333                                          * testing the left edge, so it must be
2334                                          * marginal, set it to -1
2335                                          */
2336                                         if (right_edge[i] == delay_max + 1 &&
2337                                             left_edge[i] != delay_max + 1)
2338                                                 right_edge[i] = -1;
2339                                 }
2340                         }
2341                         break;
2342                 }
2343
2344                 /* stop != 1 */
2345                 for (i = 0; i < per_dqs; i++) {
2346                         if (bit_chk & 1) {
2347                                 /*
2348                                  * Remember a passing test as
2349                                  * the right_edge.
2350                                  */
2351                                 right_edge[i] = d;
2352                         } else {
2353                                 if (d != 0) {
2354                                         /*
2355                                          * If a right edge has not
2356                                          * been seen yet, then a future
2357                                          * passing test will mark this
2358                                          * edge as the left edge.
2359                                          */
2360                                         if (right_edge[i] == delay_max + 1)
2361                                                 left_edge[i] = -(d + 1);
2362                                 } else {
2363                                         /*
2364                                          * d = 0 failed, but it passed
2365                                          * when testing the left edge,
2366                                          * so it must be marginal, set
2367                                          * it to -1
2368                                          */
2369                                         if (right_edge[i] == delay_max + 1 &&
2370                                             left_edge[i] != delay_max + 1)
2371                                                 right_edge[i] = -1;
2372                                         /*
2373                                          * If a right edge has not been
2374                                          * seen yet, then a future
2375                                          * passing test will mark this
2376                                          * edge as the left edge.
2377                                          */
2378                                         else if (right_edge[i] == delay_max + 1)
2379                                                 left_edge[i] = -(d + 1);
2380                                 }
2381                         }
2382
2383                         debug_cond(DLEVEL >= 2, "%s:%d center[r,d=%u]: ",
2384                                    __func__, __LINE__, d);
2385                         debug_cond(DLEVEL >= 2,
2386                                    "bit_chk_test=%i left_edge[%u]: %d ",
2387                                    bit_chk & 1, i, left_edge[i]);
2388                         debug_cond(DLEVEL >= 2, "right_edge[%u]: %d\n", i,
2389                                    right_edge[i]);
2390                         bit_chk >>= 1;
2391                 }
2392         }
2393
2394         /* Check that all bits have a window */
2395         for (i = 0; i < per_dqs; i++) {
2396                 debug_cond(DLEVEL >= 2,
2397                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2398                            __func__, __LINE__, i, left_edge[i],
2399                            i, right_edge[i]);
2400                 if ((left_edge[i] == dqs_max + 1) ||
2401                     (right_edge[i] == dqs_max + 1))
2402                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2403         }
2404
2405         return 0;
2406 }
2407
2408 /**
2409  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2410  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2411  * @left_edge:          Left edge of the DQ/DQS phase
2412  * @right_edge:         Right edge of the DQ/DQS phase
2413  * @mid_min:            Best DQ/DQS phase middle setting
2414  *
2415  * Find index and value of the middle of the DQ/DQS working phase.
2416  */
2417 static int get_window_mid_index(struct socfpga_sdrseq *seq,
2418                                 const int write, int *left_edge,
2419                                 int *right_edge, int *mid_min)
2420 {
2421         const u32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
2422                                     seq->rwcfg->mem_dq_per_read_dqs;
2423         int i, mid, min_index;
2424
2425         /* Find middle of window for each DQ bit */
2426         *mid_min = left_edge[0] - right_edge[0];
2427         min_index = 0;
2428         for (i = 1; i < per_dqs; i++) {
2429                 mid = left_edge[i] - right_edge[i];
2430                 if (mid < *mid_min) {
2431                         *mid_min = mid;
2432                         min_index = i;
2433                 }
2434         }
2435
2436         /*
2437          * -mid_min/2 represents the amount that we need to move DQS.
2438          * If mid_min is odd and positive we'll need to add one to make
2439          * sure the rounding in further calculations is correct (always
2440          * bias to the right), so just add 1 for all positive values.
2441          */
2442         if (*mid_min > 0)
2443                 (*mid_min)++;
2444         *mid_min = *mid_min / 2;
2445
2446         debug_cond(DLEVEL >= 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2447                    __func__, __LINE__, *mid_min, min_index);
2448         return min_index;
2449 }
2450
2451 /**
2452  * center_dq_windows() - Center the DQ/DQS windows
2453  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2454  * @left_edge:          Left edge of the DQ/DQS phase
2455  * @right_edge:         Right edge of the DQ/DQS phase
2456  * @mid_min:            Adjusted DQ/DQS phase middle setting
2457  * @orig_mid_min:       Original DQ/DQS phase middle setting
2458  * @min_index:          DQ/DQS phase middle setting index
2459  * @test_bgn:           Rank number to begin the test
2460  * @dq_margin:          Amount of shift for the DQ
2461  * @dqs_margin:         Amount of shift for the DQS
2462  *
2463  * Align the DQ/DQS windows in each group.
2464  */
2465 static void center_dq_windows(struct socfpga_sdrseq *seq,
2466                               const int write, int *left_edge, int *right_edge,
2467                               const int mid_min, const int orig_mid_min,
2468                               const int min_index, const int test_bgn,
2469                               int *dq_margin, int *dqs_margin)
2470 {
2471         const s32 delay_max = write ? seq->iocfg->io_out1_delay_max :
2472                                       seq->iocfg->io_in_delay_max;
2473         const s32 per_dqs = write ? seq->rwcfg->mem_dq_per_write_dqs :
2474                                     seq->rwcfg->mem_dq_per_read_dqs;
2475         const s32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2476                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2477         const s32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2478
2479         s32 temp_dq_io_delay1;
2480         int shift_dq, i, p;
2481
2482         /* Initialize data for export structures */
2483         *dqs_margin = delay_max + 1;
2484         *dq_margin  = delay_max + 1;
2485
2486         /* add delay to bring centre of all DQ windows to the same "level" */
2487         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2488                 /* Use values before divide by 2 to reduce round off error */
2489                 shift_dq = (left_edge[i] - right_edge[i] -
2490                         (left_edge[min_index] - right_edge[min_index]))/2  +
2491                         (orig_mid_min - mid_min);
2492
2493                 debug_cond(DLEVEL >= 2,
2494                            "vfifo_center: before: shift_dq[%u]=%d\n",
2495                            i, shift_dq);
2496
2497                 temp_dq_io_delay1 = readl(addr + (i << 2));
2498
2499                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2500                         shift_dq = delay_max - temp_dq_io_delay1;
2501                 else if (shift_dq + temp_dq_io_delay1 < 0)
2502                         shift_dq = -temp_dq_io_delay1;
2503
2504                 debug_cond(DLEVEL >= 2,
2505                            "vfifo_center: after: shift_dq[%u]=%d\n",
2506                            i, shift_dq);
2507
2508                 if (write)
2509                         scc_mgr_set_dq_out1_delay(i,
2510                                                   temp_dq_io_delay1 + shift_dq);
2511                 else
2512                         scc_mgr_set_dq_in_delay(p,
2513                                                 temp_dq_io_delay1 + shift_dq);
2514
2515                 scc_mgr_load_dq(p);
2516
2517                 debug_cond(DLEVEL >= 2,
2518                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2519                            left_edge[i] - shift_dq + (-mid_min),
2520                            right_edge[i] + shift_dq - (-mid_min));
2521
2522                 /* To determine values for export structures */
2523                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2524                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2525
2526                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2527                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2528         }
2529 }
2530
2531 /**
2532  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2533  * @rank_bgn:           Rank number
2534  * @rw_group:           Read/Write Group
2535  * @test_bgn:           Rank at which the test begins
2536  * @use_read_test:      Perform a read test
2537  * @update_fom:         Update FOM
2538  *
2539  * Per-bit deskew DQ and centering.
2540  */
2541 static int rw_mgr_mem_calibrate_vfifo_center(struct socfpga_sdrseq *seq,
2542                                              const u32 rank_bgn,
2543                                              const u32 rw_group,
2544                                              const u32 test_bgn,
2545                                              const int use_read_test,
2546                                              const int update_fom)
2547 {
2548         const u32 addr =
2549                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2550                 (rw_group << 2);
2551         /*
2552          * Store these as signed since there are comparisons with
2553          * signed numbers.
2554          */
2555         u32 sticky_bit_chk;
2556         s32 left_edge[seq->rwcfg->mem_dq_per_read_dqs];
2557         s32 right_edge[seq->rwcfg->mem_dq_per_read_dqs];
2558         s32 orig_mid_min, mid_min;
2559         s32 new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2560         s32 dq_margin, dqs_margin;
2561         int i, min_index;
2562         int ret;
2563
2564         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2565
2566         start_dqs = readl(addr);
2567         if (seq->iocfg->shift_dqs_en_when_shift_dqs)
2568                 start_dqs_en = readl(addr - seq->iocfg->dqs_en_delay_offset);
2569
2570         /* set the left and right edge of each bit to an illegal value */
2571         /* use (seq->iocfg->io_in_delay_max + 1) as an illegal value */
2572         sticky_bit_chk = 0;
2573         for (i = 0; i < seq->rwcfg->mem_dq_per_read_dqs; i++) {
2574                 left_edge[i]  = seq->iocfg->io_in_delay_max + 1;
2575                 right_edge[i] = seq->iocfg->io_in_delay_max + 1;
2576         }
2577
2578         /* Search for the left edge of the window for each bit */
2579         search_left_edge(seq, 0, rank_bgn, rw_group, rw_group, test_bgn,
2580                          &sticky_bit_chk,
2581                          left_edge, right_edge, use_read_test);
2582
2583
2584         /* Search for the right edge of the window for each bit */
2585         ret = search_right_edge(seq, 0, rank_bgn, rw_group, rw_group,
2586                                 start_dqs, start_dqs_en,
2587                                 &sticky_bit_chk,
2588                                 left_edge, right_edge, use_read_test);
2589         if (ret) {
2590                 /*
2591                  * Restore delay chain settings before letting the loop
2592                  * in rw_mgr_mem_calibrate_vfifo to retry different
2593                  * dqs/ck relationships.
2594                  */
2595                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2596                 if (seq->iocfg->shift_dqs_en_when_shift_dqs)
2597                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2598
2599                 scc_mgr_load_dqs(rw_group);
2600                 writel(0, &sdr_scc_mgr->update);
2601
2602                 debug_cond(DLEVEL >= 1,
2603                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2604                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2605                 if (use_read_test) {
2606                         set_failing_group_stage(seq, rw_group *
2607                                 seq->rwcfg->mem_dq_per_read_dqs + i,
2608                                 CAL_STAGE_VFIFO,
2609                                 CAL_SUBSTAGE_VFIFO_CENTER);
2610                 } else {
2611                         set_failing_group_stage(seq, rw_group *
2612                                 seq->rwcfg->mem_dq_per_read_dqs + i,
2613                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2614                                 CAL_SUBSTAGE_VFIFO_CENTER);
2615                 }
2616                 return -EIO;
2617         }
2618
2619         min_index = get_window_mid_index(seq, 0, left_edge, right_edge,
2620                                          &mid_min);
2621
2622         /* Determine the amount we can change DQS (which is -mid_min) */
2623         orig_mid_min = mid_min;
2624         new_dqs = start_dqs - mid_min;
2625         if (new_dqs > seq->iocfg->dqs_in_delay_max)
2626                 new_dqs = seq->iocfg->dqs_in_delay_max;
2627         else if (new_dqs < 0)
2628                 new_dqs = 0;
2629
2630         mid_min = start_dqs - new_dqs;
2631         debug_cond(DLEVEL >= 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2632                    mid_min, new_dqs);
2633
2634         if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
2635                 if (start_dqs_en - mid_min > seq->iocfg->dqs_en_delay_max)
2636                         mid_min += start_dqs_en - mid_min -
2637                                    seq->iocfg->dqs_en_delay_max;
2638                 else if (start_dqs_en - mid_min < 0)
2639                         mid_min += start_dqs_en - mid_min;
2640         }
2641         new_dqs = start_dqs - mid_min;
2642
2643         debug_cond(DLEVEL >= 1,
2644                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2645                    start_dqs,
2646                    seq->iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2647                    new_dqs, mid_min);
2648
2649         /* Add delay to bring centre of all DQ windows to the same "level". */
2650         center_dq_windows(seq, 0, left_edge, right_edge, mid_min, orig_mid_min,
2651                           min_index, test_bgn, &dq_margin, &dqs_margin);
2652
2653         /* Move DQS-en */
2654         if (seq->iocfg->shift_dqs_en_when_shift_dqs) {
2655                 final_dqs_en = start_dqs_en - mid_min;
2656                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2657                 scc_mgr_load_dqs(rw_group);
2658         }
2659
2660         /* Move DQS */
2661         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2662         scc_mgr_load_dqs(rw_group);
2663         debug_cond(DLEVEL >= 2,
2664                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2665                    __func__, __LINE__, dq_margin, dqs_margin);
2666
2667         /*
2668          * Do not remove this line as it makes sure all of our decisions
2669          * have been applied. Apply the update bit.
2670          */
2671         writel(0, &sdr_scc_mgr->update);
2672
2673         if ((dq_margin < 0) || (dqs_margin < 0))
2674                 return -EINVAL;
2675
2676         return 0;
2677 }
2678
2679 /**
2680  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the
2681  * device
2682  * @rw_group:   Read/Write Group
2683  * @phase:      DQ/DQS phase
2684  *
2685  * Because initially no communication ca be reliably performed with the memory
2686  * device, the sequencer uses a guaranteed write mechanism to write data into
2687  * the memory device.
2688  */
2689 static int rw_mgr_mem_calibrate_guaranteed_write(struct socfpga_sdrseq *seq,
2690                                                  const u32 rw_group,
2691                                                  const u32 phase)
2692 {
2693         int ret;
2694
2695         /* Set a particular DQ/DQS phase. */
2696         scc_mgr_set_dqdqs_output_phase_all_ranks(seq, rw_group, phase);
2697
2698         debug_cond(DLEVEL >= 1, "%s:%d guaranteed write: g=%u p=%u\n",
2699                    __func__, __LINE__, rw_group, phase);
2700
2701         /*
2702          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2703          * Load up the patterns used by read calibration using the
2704          * current DQDQS phase.
2705          */
2706         rw_mgr_mem_calibrate_read_load_patterns(seq, 0, 1);
2707
2708         if (seq->gbl.phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2709                 return 0;
2710
2711         /*
2712          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2713          * Back-to-Back reads of the patterns used for calibration.
2714          */
2715         ret = rw_mgr_mem_calibrate_read_test_patterns(seq, 0, rw_group, 1);
2716         if (ret)
2717                 debug_cond(DLEVEL >= 1,
2718                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2719                            __func__, __LINE__, rw_group, phase);
2720         return ret;
2721 }
2722
2723 /**
2724  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2725  * @rw_group:   Read/Write Group
2726  * @test_bgn:   Rank at which the test begins
2727  *
2728  * DQS enable calibration ensures reliable capture of the DQ signal without
2729  * glitches on the DQS line.
2730  */
2731 static int
2732 rw_mgr_mem_calibrate_dqs_enable_calibration(struct socfpga_sdrseq *seq,
2733                                             const u32 rw_group,
2734                                             const u32 test_bgn)
2735 {
2736         /*
2737          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2738          * DQS and DQS Eanble Signal Relationships.
2739          */
2740
2741         /* We start at zero, so have one less dq to devide among */
2742         const u32 delay_step = seq->iocfg->io_in_delay_max /
2743                                (seq->rwcfg->mem_dq_per_read_dqs - 1);
2744         int ret;
2745         u32 i, p, d, r;
2746
2747         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2748
2749         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2750         for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
2751              r += NUM_RANKS_PER_SHADOW_REG) {
2752                 for (i = 0, p = test_bgn, d = 0;
2753                      i < seq->rwcfg->mem_dq_per_read_dqs;
2754                      i++, p++, d += delay_step) {
2755                         debug_cond(DLEVEL >= 1,
2756                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2757                                    __func__, __LINE__, rw_group, r, i, p, d);
2758
2759                         scc_mgr_set_dq_in_delay(p, d);
2760                         scc_mgr_load_dq(p);
2761                 }
2762
2763                 writel(0, &sdr_scc_mgr->update);
2764         }
2765
2766         /*
2767          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2768          * dq_in_delay values
2769          */
2770         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(seq, rw_group);
2771
2772         debug_cond(DLEVEL >= 1,
2773                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2774                    __func__, __LINE__, rw_group, !ret);
2775
2776         for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
2777              r += NUM_RANKS_PER_SHADOW_REG) {
2778                 scc_mgr_apply_group_dq_in_delay(seq, test_bgn, 0);
2779                 writel(0, &sdr_scc_mgr->update);
2780         }
2781
2782         return ret;
2783 }
2784
2785 /**
2786  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2787  * @rw_group:           Read/Write Group
2788  * @test_bgn:           Rank at which the test begins
2789  * @use_read_test:      Perform a read test
2790  * @update_fom:         Update FOM
2791  *
2792  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2793  * within a group.
2794  */
2795 static int
2796 rw_mgr_mem_calibrate_dq_dqs_centering(struct socfpga_sdrseq *seq,
2797                                       const u32 rw_group, const u32 test_bgn,
2798                                       const int use_read_test,
2799                                       const int update_fom)
2800
2801 {
2802         int ret, grp_calibrated;
2803         u32 rank_bgn, sr;
2804
2805         /*
2806          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2807          * Read per-bit deskew can be done on a per shadow register basis.
2808          */
2809         grp_calibrated = 1;
2810         for (rank_bgn = 0, sr = 0;
2811              rank_bgn < seq->rwcfg->mem_number_of_ranks;
2812              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2813                 ret = rw_mgr_mem_calibrate_vfifo_center(seq, rank_bgn, rw_group,
2814                                                         test_bgn,
2815                                                         use_read_test,
2816                                                         update_fom);
2817                 if (!ret)
2818                         continue;
2819
2820                 grp_calibrated = 0;
2821         }
2822
2823         if (!grp_calibrated)
2824                 return -EIO;
2825
2826         return 0;
2827 }
2828
2829 /**
2830  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2831  * @rw_group:           Read/Write Group
2832  * @test_bgn:           Rank at which the test begins
2833  *
2834  * Stage 1: Calibrate the read valid prediction FIFO.
2835  *
2836  * This function implements UniPHY calibration Stage 1, as explained in
2837  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2838  *
2839  * - read valid prediction will consist of finding:
2840  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2841  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2842  *  - we also do a per-bit deskew on the DQ lines.
2843  */
2844 static int rw_mgr_mem_calibrate_vfifo(struct socfpga_sdrseq *seq,
2845                                       const u32 rw_group, const u32 test_bgn)
2846 {
2847         u32 p, d;
2848         u32 dtaps_per_ptap;
2849         u32 failed_substage;
2850
2851         int ret;
2852
2853         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2854
2855         /* Update info for sims */
2856         reg_file_set_group(rw_group);
2857         reg_file_set_stage(CAL_STAGE_VFIFO);
2858         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2859
2860         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2861
2862         /* USER Determine number of delay taps for each phase tap. */
2863         dtaps_per_ptap = DIV_ROUND_UP(seq->iocfg->delay_per_opa_tap,
2864                                       seq->iocfg->delay_per_dqs_en_dchain_tap)
2865                                       - 1;
2866
2867         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2868                 /*
2869                  * In RLDRAMX we may be messing the delay of pins in
2870                  * the same write rw_group but outside of the current read
2871                  * the rw_group, but that's ok because we haven't calibrated
2872                  * output side yet.
2873                  */
2874                 if (d > 0) {
2875                         scc_mgr_apply_group_all_out_delay_add_all_ranks(seq,
2876                                                                         rw_group,
2877                                                                         d);
2878                 }
2879
2880                 for (p = 0; p <= seq->iocfg->dqdqs_out_phase_max; p++) {
2881                         /* 1) Guaranteed Write */
2882                         ret = rw_mgr_mem_calibrate_guaranteed_write(seq,
2883                                                                     rw_group,
2884                                                                     p);
2885                         if (ret)
2886                                 break;
2887
2888                         /* 2) DQS Enable Calibration */
2889                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(seq,
2890                                                                           rw_group,
2891                                                                           test_bgn);
2892                         if (ret) {
2893                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2894                                 continue;
2895                         }
2896
2897                         /* 3) Centering DQ/DQS */
2898                         /*
2899                          * If doing read after write calibration, do not update
2900                          * FOM now. Do it then.
2901                          */
2902                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(seq,
2903                                                                     rw_group,
2904                                                                     test_bgn,
2905                                                                     1, 0);
2906                         if (ret) {
2907                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2908                                 continue;
2909                         }
2910
2911                         /* All done. */
2912                         goto cal_done_ok;
2913                 }
2914         }
2915
2916         /* Calibration Stage 1 failed. */
2917         set_failing_group_stage(seq, rw_group, CAL_STAGE_VFIFO,
2918                                 failed_substage);
2919         return 0;
2920
2921         /* Calibration Stage 1 completed OK. */
2922 cal_done_ok:
2923         /*
2924          * Reset the delay chains back to zero if they have moved > 1
2925          * (check for > 1 because loop will increase d even when pass in
2926          * first case).
2927          */
2928         if (d > 2)
2929                 scc_mgr_zero_group(seq, rw_group, 1);
2930
2931         return 1;
2932 }
2933
2934 /**
2935  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2936  * @rw_group:           Read/Write Group
2937  * @test_bgn:           Rank at which the test begins
2938  *
2939  * Stage 3: DQ/DQS Centering.
2940  *
2941  * This function implements UniPHY calibration Stage 3, as explained in
2942  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2943  */
2944 static int rw_mgr_mem_calibrate_vfifo_end(struct socfpga_sdrseq *seq,
2945                                           const u32 rw_group,
2946                                           const u32 test_bgn)
2947 {
2948         int ret;
2949
2950         debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2951
2952         /* Update info for sims. */
2953         reg_file_set_group(rw_group);
2954         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2955         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2956
2957         ret = rw_mgr_mem_calibrate_dq_dqs_centering(seq, rw_group, test_bgn, 0,
2958                                                     1);
2959         if (ret)
2960                 set_failing_group_stage(seq, rw_group,
2961                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2962                                         CAL_SUBSTAGE_VFIFO_CENTER);
2963         return ret;
2964 }
2965
2966 /**
2967  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2968  *
2969  * Stage 4: Minimize latency.
2970  *
2971  * This function implements UniPHY calibration Stage 4, as explained in
2972  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2973  * Calibrate LFIFO to find smallest read latency.
2974  */
2975 static u32 rw_mgr_mem_calibrate_lfifo(struct socfpga_sdrseq *seq)
2976 {
2977         int found_one = 0;
2978
2979         debug("%s:%d\n", __func__, __LINE__);
2980
2981         /* Update info for sims. */
2982         reg_file_set_stage(CAL_STAGE_LFIFO);
2983         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2984
2985         /* Load up the patterns used by read calibration for all ranks */
2986         rw_mgr_mem_calibrate_read_load_patterns(seq, 0, 1);
2987
2988         do {
2989                 writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
2990                 debug_cond(DLEVEL >= 2, "%s:%d lfifo: read_lat=%u",
2991                            __func__, __LINE__, seq->gbl.curr_read_lat);
2992
2993                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(seq, 0,
2994                                                               NUM_READ_TESTS,
2995                                                               PASS_ALL_BITS, 1))
2996                         break;
2997
2998                 found_one = 1;
2999                 /*
3000                  * Reduce read latency and see if things are
3001                  * working correctly.
3002                  */
3003                 seq->gbl.curr_read_lat--;
3004         } while (seq->gbl.curr_read_lat > 0);
3005
3006         /* Reset the fifos to get pointers to known state. */
3007         writel(0, &phy_mgr_cmd->fifo_reset);
3008
3009         if (found_one) {
3010                 /* Add a fudge factor to the read latency that was determined */
3011                 seq->gbl.curr_read_lat += 2;
3012                 writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
3013                 debug_cond(DLEVEL >= 2,
3014                            "%s:%d lfifo: success: using read_lat=%u\n",
3015                            __func__, __LINE__, seq->gbl.curr_read_lat);
3016         } else {
3017                 set_failing_group_stage(seq, 0xff, CAL_STAGE_LFIFO,
3018                                         CAL_SUBSTAGE_READ_LATENCY);
3019
3020                 debug_cond(DLEVEL >= 2,
3021                            "%s:%d lfifo: failed at initial read_lat=%u\n",
3022                            __func__, __LINE__, seq->gbl.curr_read_lat);
3023         }
3024
3025         return found_one;
3026 }
3027
3028 /**
3029  * search_window() - Search for the/part of the window with DM/DQS shift
3030  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS
3031  *                      shift
3032  * @rank_bgn:           Rank number
3033  * @write_group:        Write Group
3034  * @bgn_curr:           Current window begin
3035  * @end_curr:           Current window end
3036  * @bgn_best:           Current best window begin
3037  * @end_best:           Current best window end
3038  * @win_best:           Size of the best window
3039  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
3040  *
3041  * Search for the/part of the window with DM/DQS shift.
3042  */
3043 static void search_window(struct socfpga_sdrseq *seq,
3044                           const int search_dm, const u32 rank_bgn,
3045                           const u32 write_group, int *bgn_curr, int *end_curr,
3046                           int *bgn_best, int *end_best, int *win_best,
3047                           int new_dqs)
3048 {
3049         u32 bit_chk;
3050         const int max = seq->iocfg->io_out1_delay_max - new_dqs;
3051         int d, di;
3052
3053         /* Search for the/part of the window with DM/DQS shift. */
3054         for (di = max; di >= 0; di -= DELTA_D) {
3055                 if (search_dm) {
3056                         d = di;
3057                         scc_mgr_apply_group_dm_out1_delay(seq, d);
3058                 } else {
3059                         /* For DQS, we go from 0...max */
3060                         d = max - di;
3061                         /*
3062                          * Note: This only shifts DQS, so are we limiting
3063                          *       ourselves to width of DQ unnecessarily.
3064                          */
3065                         scc_mgr_apply_group_dqs_io_and_oct_out1(seq,
3066                                                                 write_group,
3067                                                                 d + new_dqs);
3068                 }
3069
3070                 writel(0, &sdr_scc_mgr->update);
3071
3072                 if (rw_mgr_mem_calibrate_write_test(seq, rank_bgn, write_group,
3073                                                     1, PASS_ALL_BITS, &bit_chk,
3074                                                     0)) {
3075                         /* Set current end of the window. */
3076                         *end_curr = search_dm ? -d : d;
3077
3078                         /*
3079                          * If a starting edge of our window has not been seen
3080                          * this is our current start of the DM window.
3081                          */
3082                         if (*bgn_curr == seq->iocfg->io_out1_delay_max + 1)
3083                                 *bgn_curr = search_dm ? -d : d;
3084
3085                         /*
3086                          * If current window is bigger than best seen.
3087                          * Set best seen to be current window.
3088                          */
3089                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
3090                                 *win_best = *end_curr - *bgn_curr + 1;
3091                                 *bgn_best = *bgn_curr;
3092                                 *end_best = *end_curr;
3093                         }
3094                 } else {
3095                         /* We just saw a failing test. Reset temp edge. */
3096                         *bgn_curr = seq->iocfg->io_out1_delay_max + 1;
3097                         *end_curr = seq->iocfg->io_out1_delay_max + 1;
3098
3099                         /* Early exit is only applicable to DQS. */
3100                         if (search_dm)
3101                                 continue;
3102
3103                         /*
3104                          * Early exit optimization: if the remaining delay
3105                          * chain space is less than already seen largest
3106                          * window we can exit.
3107                          */
3108                         if (*win_best - 1 > seq->iocfg->io_out1_delay_max
3109                                 - new_dqs - d)
3110                                 break;
3111                 }
3112         }
3113 }
3114
3115 /*
3116  * rw_mgr_mem_calibrate_writes_center() - Center all windows
3117  * @rank_bgn:           Rank number
3118  * @write_group:        Write group
3119  * @test_bgn:           Rank at which the test begins
3120  *
3121  * Center all windows. Do per-bit-deskew to possibly increase size of
3122  * certain windows.
3123  */
3124 static int
3125 rw_mgr_mem_calibrate_writes_center(struct socfpga_sdrseq *seq,
3126                                    const u32 rank_bgn, const u32 write_group,
3127                                    const u32 test_bgn)
3128 {
3129         int i;
3130         u32 sticky_bit_chk;
3131         u32 min_index;
3132         int left_edge[seq->rwcfg->mem_dq_per_write_dqs];
3133         int right_edge[seq->rwcfg->mem_dq_per_write_dqs];
3134         int mid;
3135         int mid_min, orig_mid_min;
3136         int new_dqs, start_dqs;
3137         int dq_margin, dqs_margin, dm_margin;
3138         int bgn_curr = seq->iocfg->io_out1_delay_max + 1;
3139         int end_curr = seq->iocfg->io_out1_delay_max + 1;
3140         int bgn_best = seq->iocfg->io_out1_delay_max + 1;
3141         int end_best = seq->iocfg->io_out1_delay_max + 1;
3142         int win_best = 0;
3143
3144         int ret;
3145
3146         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
3147
3148         dm_margin = 0;
3149
3150         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
3151                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
3152                           (seq->rwcfg->mem_dq_per_write_dqs << 2));
3153
3154         /* Per-bit deskew. */
3155
3156         /*
3157          * Set the left and right edge of each bit to an illegal value.
3158          * Use (seq->iocfg->io_out1_delay_max + 1) as an illegal value.
3159          */
3160         sticky_bit_chk = 0;
3161         for (i = 0; i < seq->rwcfg->mem_dq_per_write_dqs; i++) {
3162                 left_edge[i]  = seq->iocfg->io_out1_delay_max + 1;
3163                 right_edge[i] = seq->iocfg->io_out1_delay_max + 1;
3164         }
3165
3166         /* Search for the left edge of the window for each bit. */
3167         search_left_edge(seq, 1, rank_bgn, write_group, 0, test_bgn,
3168                          &sticky_bit_chk,
3169                          left_edge, right_edge, 0);
3170
3171         /* Search for the right edge of the window for each bit. */
3172         ret = search_right_edge(seq, 1, rank_bgn, write_group, 0,
3173                                 start_dqs, 0,
3174                                 &sticky_bit_chk,
3175                                 left_edge, right_edge, 0);
3176         if (ret) {
3177                 set_failing_group_stage(seq, test_bgn + ret - 1,
3178                                         CAL_STAGE_WRITES,
3179                                         CAL_SUBSTAGE_WRITES_CENTER);
3180                 return -EINVAL;
3181         }
3182
3183         min_index = get_window_mid_index(seq, 1, left_edge, right_edge,
3184                                          &mid_min);
3185
3186         /* Determine the amount we can change DQS (which is -mid_min). */
3187         orig_mid_min = mid_min;
3188         new_dqs = start_dqs;
3189         mid_min = 0;
3190         debug_cond(DLEVEL >= 1,
3191                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3192                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3193
3194         /* Add delay to bring centre of all DQ windows to the same "level". */
3195         center_dq_windows(seq, 1, left_edge, right_edge, mid_min, orig_mid_min,
3196                           min_index, 0, &dq_margin, &dqs_margin);
3197
3198         /* Move DQS */
3199         scc_mgr_apply_group_dqs_io_and_oct_out1(seq, write_group, new_dqs);
3200         writel(0, &sdr_scc_mgr->update);
3201
3202         /* Centre DM */
3203         debug_cond(DLEVEL >= 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3204
3205         /* Search for the/part of the window with DM shift. */
3206         search_window(seq, 1, rank_bgn, write_group, &bgn_curr, &end_curr,
3207                       &bgn_best, &end_best, &win_best, 0);
3208
3209         /* Reset DM delay chains to 0. */
3210         scc_mgr_apply_group_dm_out1_delay(seq, 0);
3211
3212         /*
3213          * Check to see if the current window nudges up aganist 0 delay.
3214          * If so we need to continue the search by shifting DQS otherwise DQS
3215          * search begins as a new search.
3216          */
3217         if (end_curr != 0) {
3218                 bgn_curr = seq->iocfg->io_out1_delay_max + 1;
3219                 end_curr = seq->iocfg->io_out1_delay_max + 1;
3220         }
3221
3222         /* Search for the/part of the window with DQS shifts. */
3223         search_window(seq, 0, rank_bgn, write_group, &bgn_curr, &end_curr,
3224                       &bgn_best, &end_best, &win_best, new_dqs);
3225
3226         /* Assign left and right edge for cal and reporting. */
3227         left_edge[0] = -1 * bgn_best;
3228         right_edge[0] = end_best;
3229
3230         debug_cond(DLEVEL >= 2, "%s:%d dm_calib: left=%d right=%d\n",
3231                    __func__, __LINE__, left_edge[0], right_edge[0]);
3232
3233         /* Move DQS (back to orig). */
3234         scc_mgr_apply_group_dqs_io_and_oct_out1(seq, write_group, new_dqs);
3235
3236         /* Move DM */
3237
3238         /* Find middle of window for the DM bit. */
3239         mid = (left_edge[0] - right_edge[0]) / 2;
3240
3241         /* Only move right, since we are not moving DQS/DQ. */
3242         if (mid < 0)
3243                 mid = 0;
3244
3245         /* dm_marign should fail if we never find a window. */
3246         if (win_best == 0)
3247                 dm_margin = -1;
3248         else
3249                 dm_margin = left_edge[0] - mid;
3250
3251         scc_mgr_apply_group_dm_out1_delay(seq, mid);
3252         writel(0, &sdr_scc_mgr->update);
3253
3254         debug_cond(DLEVEL >= 2,
3255                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3256                    __func__, __LINE__, left_edge[0], right_edge[0],
3257                    mid, dm_margin);
3258         /* Export values. */
3259         seq->gbl.fom_out += dq_margin + dqs_margin;
3260
3261         debug_cond(DLEVEL >= 2,
3262                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3263                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3264
3265         /*
3266          * Do not remove this line as it makes sure all of our
3267          * decisions have been applied.
3268          */
3269         writel(0, &sdr_scc_mgr->update);
3270
3271         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3272                 return -EINVAL;
3273
3274         return 0;
3275 }
3276
3277 /**
3278  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3279  * @rank_bgn:           Rank number
3280  * @group:              Read/Write Group
3281  * @test_bgn:           Rank at which the test begins
3282  *
3283  * Stage 2: Write Calibration Part One.
3284  *
3285  * This function implements UniPHY calibration Stage 2, as explained in
3286  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3287  */
3288 static int rw_mgr_mem_calibrate_writes(struct socfpga_sdrseq *seq,
3289                                        const u32 rank_bgn, const u32 group,
3290                                        const u32 test_bgn)
3291 {
3292         int ret;
3293
3294         /* Update info for sims */
3295         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3296
3297         reg_file_set_group(group);
3298         reg_file_set_stage(CAL_STAGE_WRITES);
3299         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3300
3301         ret = rw_mgr_mem_calibrate_writes_center(seq, rank_bgn, group,
3302                                                  test_bgn);
3303         if (ret)
3304                 set_failing_group_stage(seq, group, CAL_STAGE_WRITES,
3305                                         CAL_SUBSTAGE_WRITES_CENTER);
3306
3307         return ret;
3308 }
3309
3310 /**
3311  * mem_precharge_and_activate() - Precharge all banks and activate
3312  *
3313  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3314  */
3315 static void mem_precharge_and_activate(struct socfpga_sdrseq *seq)
3316 {
3317         int r;
3318
3319         for (r = 0; r < seq->rwcfg->mem_number_of_ranks; r++) {
3320                 /* Set rank. */
3321                 set_rank_and_odt_mask(seq, r, RW_MGR_ODT_MODE_OFF);
3322
3323                 /* Precharge all banks. */
3324                 writel(seq->rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3325                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3326
3327                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3328                 writel(seq->rwcfg->activate_0_and_1_wait1,
3329                        &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3330
3331                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3332                 writel(seq->rwcfg->activate_0_and_1_wait2,
3333                        &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3334
3335                 /* Activate rows. */
3336                 writel(seq->rwcfg->activate_0_and_1,
3337                        SDR_PHYGRP_RWMGRGRP_ADDRESS |
3338                        RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3339         }
3340 }
3341
3342 /**
3343  * mem_init_latency() - Configure memory RLAT and WLAT settings
3344  *
3345  * Configure memory RLAT and WLAT parameters.
3346  */
3347 static void mem_init_latency(struct socfpga_sdrseq *seq)
3348 {
3349         /*
3350          * For AV/CV, LFIFO is hardened and always runs at full rate
3351          * so max latency in AFI clocks, used here, is correspondingly
3352          * smaller.
3353          */
3354         const u32 max_latency = (1 << seq->misccfg->max_latency_count_width)
3355                 - 1;
3356         u32 rlat, wlat;
3357
3358         debug("%s:%d\n", __func__, __LINE__);
3359
3360         /*
3361          * Read in write latency.
3362          * WL for Hard PHY does not include additive latency.
3363          */
3364         wlat = readl(&data_mgr->t_wl_add);
3365         wlat += readl(&data_mgr->mem_t_add);
3366
3367         seq->gbl.rw_wl_nop_cycles = wlat - 1;
3368
3369         /* Read in readl latency. */
3370         rlat = readl(&data_mgr->t_rl_add);
3371
3372         /* Set a pretty high read latency initially. */
3373         seq->gbl.curr_read_lat = rlat + 16;
3374         if (seq->gbl.curr_read_lat > max_latency)
3375                 seq->gbl.curr_read_lat = max_latency;
3376
3377         writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
3378
3379         /* Advertise write latency. */
3380         writel(wlat, &phy_mgr_cfg->afi_wlat);
3381 }
3382
3383 /**
3384  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3385  *
3386  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3387  */
3388 static void mem_skip_calibrate(struct socfpga_sdrseq *seq)
3389 {
3390         u32 vfifo_offset;
3391         u32 i, j, r;
3392
3393         debug("%s:%d\n", __func__, __LINE__);
3394         /* Need to update every shadow register set used by the interface */
3395         for (r = 0; r < seq->rwcfg->mem_number_of_ranks;
3396              r += NUM_RANKS_PER_SHADOW_REG) {
3397                 /*
3398                  * Set output phase alignment settings appropriate for
3399                  * skip calibration.
3400                  */
3401                 for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
3402                         scc_mgr_set_dqs_en_phase(i, 0);
3403                         if (seq->iocfg->dll_chain_length == 6)
3404                                 scc_mgr_set_dqdqs_output_phase(i, 6);
3405                         else
3406                                 scc_mgr_set_dqdqs_output_phase(i, 7);
3407                         /*
3408                          * Case:33398
3409                          *
3410                          * Write data arrives to the I/O two cycles before write
3411                          * latency is reached (720 deg).
3412                          *   -> due to bit-slip in a/c bus
3413                          *   -> to allow board skew where dqs is longer than ck
3414                          *      -> how often can this happen!?
3415                          *      -> can claim back some ptaps for high freq
3416                          *       support if we can relax this, but i digress...
3417                          *
3418                          * The write_clk leads mem_ck by 90 deg
3419                          * The minimum ptap of the OPA is 180 deg
3420                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3421                          * The write_clk is always delayed by 2 ptaps
3422                          *
3423                          * Hence, to make DQS aligned to CK, we need to delay
3424                          * DQS by:
3425                          *    (720 - 90 - 180 - 2) *
3426                          *      (360 / seq->iocfg->dll_chain_length)
3427                          *
3428                          * Dividing the above by
3429                          (360 / seq->iocfg->dll_chain_length)
3430                          * gives us the number of ptaps, which simplies to:
3431                          *
3432                          *    (1.25 * seq->iocfg->dll_chain_length - 2)
3433                          */
3434                         scc_mgr_set_dqdqs_output_phase(i,
3435                                        ((125 * seq->iocfg->dll_chain_length)
3436                                        / 100) - 2);
3437                 }
3438                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3439                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3440
3441                 for (i = 0; i < seq->rwcfg->mem_if_write_dqs_width; i++) {
3442                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3443                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3444                 }
3445                 writel(0xff, &sdr_scc_mgr->dq_ena);
3446                 writel(0xff, &sdr_scc_mgr->dm_ena);
3447                 writel(0, &sdr_scc_mgr->update);
3448         }
3449
3450         /* Compensate for simulation model behaviour */
3451         for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
3452                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3453                 scc_mgr_load_dqs(i);
3454         }
3455         writel(0, &sdr_scc_mgr->update);
3456
3457         /*
3458          * ArriaV has hard FIFOs that can only be initialized by incrementing
3459          * in sequencer.
3460          */
3461         vfifo_offset = seq->misccfg->calib_vfifo_offset;
3462         for (j = 0; j < vfifo_offset; j++)
3463                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3464         writel(0, &phy_mgr_cmd->fifo_reset);
3465
3466         /*
3467          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3468          * setting from generation-time constant.
3469          */
3470         seq->gbl.curr_read_lat = seq->misccfg->calib_lfifo_offset;
3471         writel(seq->gbl.curr_read_lat, &phy_mgr_cfg->phy_rlat);
3472 }
3473
3474 /**
3475  * mem_calibrate() - Memory calibration entry point.
3476  *
3477  * Perform memory calibration.
3478  */
3479 static u32 mem_calibrate(struct socfpga_sdrseq *seq)
3480 {
3481         u32 i;
3482         u32 rank_bgn, sr;
3483         u32 write_group, write_test_bgn;
3484         u32 read_group, read_test_bgn;
3485         u32 run_groups, current_run;
3486         u32 failing_groups = 0;
3487         u32 group_failed = 0;
3488
3489         const u32 rwdqs_ratio = seq->rwcfg->mem_if_read_dqs_width /
3490                                 seq->rwcfg->mem_if_write_dqs_width;
3491
3492         debug("%s:%d\n", __func__, __LINE__);
3493
3494         /* Initialize the data settings */
3495         seq->gbl.error_substage = CAL_SUBSTAGE_NIL;
3496         seq->gbl.error_stage = CAL_STAGE_NIL;
3497         seq->gbl.error_group = 0xff;
3498         seq->gbl.fom_in = 0;
3499         seq->gbl.fom_out = 0;
3500
3501         /* Initialize WLAT and RLAT. */
3502         mem_init_latency(seq);
3503
3504         /* Initialize bit slips. */
3505         mem_precharge_and_activate(seq);
3506
3507         for (i = 0; i < seq->rwcfg->mem_if_read_dqs_width; i++) {
3508                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3509                           SCC_MGR_GROUP_COUNTER_OFFSET);
3510                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3511                 if (i == 0)
3512                         scc_mgr_set_hhp_extras();
3513
3514                 scc_set_bypass_mode(i);
3515         }
3516
3517         /* Calibration is skipped. */
3518         if ((seq->dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3519                 /*
3520                  * Set VFIFO and LFIFO to instant-on settings in skip
3521                  * calibration mode.
3522                  */
3523                 mem_skip_calibrate(seq);
3524
3525                 /*
3526                  * Do not remove this line as it makes sure all of our
3527                  * decisions have been applied.
3528                  */
3529                 writel(0, &sdr_scc_mgr->update);
3530                 return 1;
3531         }
3532
3533         /* Calibration is not skipped. */
3534         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3535                 /*
3536                  * Zero all delay chain/phase settings for all
3537                  * groups and all shadow register sets.
3538                  */
3539                 scc_mgr_zero_all(seq);
3540
3541                 run_groups = ~0;
3542
3543                 for (write_group = 0, write_test_bgn = 0; write_group
3544                         < seq->rwcfg->mem_if_write_dqs_width; write_group++,
3545                         write_test_bgn += seq->rwcfg->mem_dq_per_write_dqs) {
3546                         /* Initialize the group failure */
3547                         group_failed = 0;
3548
3549                         current_run = run_groups & ((1 <<
3550                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3551                         run_groups = run_groups >>
3552                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3553
3554                         if (current_run == 0)
3555                                 continue;
3556
3557                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3558                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3559                         scc_mgr_zero_group(seq, write_group, 0);
3560
3561                         for (read_group = write_group * rwdqs_ratio,
3562                              read_test_bgn = 0;
3563                              read_group < (write_group + 1) * rwdqs_ratio;
3564                              read_group++,
3565                              read_test_bgn += seq->rwcfg->mem_dq_per_read_dqs) {
3566                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3567                                         continue;
3568
3569                                 /* Calibrate the VFIFO */
3570                                 if (rw_mgr_mem_calibrate_vfifo(seq, read_group,
3571                                                                read_test_bgn))
3572                                         continue;
3573
3574                                 if (!(seq->gbl.phy_debug_mode_flags &
3575                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3576                                         return 0;
3577
3578                                 /* The group failed, we're done. */
3579                                 goto grp_failed;
3580                         }
3581
3582                         /* Calibrate the output side */
3583                         for (rank_bgn = 0, sr = 0;
3584                              rank_bgn < seq->rwcfg->mem_number_of_ranks;
3585                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3586                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3587                                         continue;
3588
3589                                 /* Not needed in quick mode! */
3590                                 if (STATIC_CALIB_STEPS &
3591                                     CALIB_SKIP_DELAY_SWEEPS)
3592                                         continue;
3593
3594                                 /* Calibrate WRITEs */
3595                                 if (!rw_mgr_mem_calibrate_writes(seq, rank_bgn,
3596                                                                  write_group,
3597                                                                  write_test_bgn))
3598                                         continue;
3599
3600                                 group_failed = 1;
3601                                 if (!(seq->gbl.phy_debug_mode_flags &
3602                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3603                                         return 0;
3604                         }
3605
3606                         /* Some group failed, we're done. */
3607                         if (group_failed)
3608                                 goto grp_failed;
3609
3610                         for (read_group = write_group * rwdqs_ratio,
3611                              read_test_bgn = 0;
3612                              read_group < (write_group + 1) * rwdqs_ratio;
3613                              read_group++,
3614                              read_test_bgn += seq->rwcfg->mem_dq_per_read_dqs) {
3615                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3616                                         continue;
3617
3618                                 if (!rw_mgr_mem_calibrate_vfifo_end(seq,
3619                                                                     read_group,
3620                                                                     read_test_bgn))
3621                                         continue;
3622
3623                                 if (!(seq->gbl.phy_debug_mode_flags &
3624                                       PHY_DEBUG_SWEEP_ALL_GROUPS))
3625                                         return 0;
3626
3627                                 /* The group failed, we're done. */
3628                                 goto grp_failed;
3629                         }
3630
3631                         /* No group failed, continue as usual. */
3632                         continue;
3633
3634 grp_failed:             /* A group failed, increment the counter. */
3635                         failing_groups++;
3636                 }
3637
3638                 /*
3639                  * USER If there are any failing groups then report
3640                  * the failure.
3641                  */
3642                 if (failing_groups != 0)
3643                         return 0;
3644
3645                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3646                         continue;
3647
3648                 /* Calibrate the LFIFO */
3649                 if (!rw_mgr_mem_calibrate_lfifo(seq))
3650                         return 0;
3651         }
3652
3653         /*
3654          * Do not remove this line as it makes sure all of our decisions
3655          * have been applied.
3656          */
3657         writel(0, &sdr_scc_mgr->update);
3658         return 1;
3659 }
3660
3661 /**
3662  * run_mem_calibrate() - Perform memory calibration
3663  *
3664  * This function triggers the entire memory calibration procedure.
3665  */
3666 static int run_mem_calibrate(struct socfpga_sdrseq *seq)
3667 {
3668         int pass;
3669         u32 ctrl_cfg;
3670
3671         debug("%s:%d\n", __func__, __LINE__);
3672
3673         /* Reset pass/fail status shown on afi_cal_success/fail */
3674         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3675
3676         /* Stop tracking manager. */
3677         ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
3678         writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
3679                &sdr_ctrl->ctrl_cfg);
3680
3681         phy_mgr_initialize(seq);
3682         rw_mgr_mem_initialize(seq);
3683
3684         /* Perform the actual memory calibration. */
3685         pass = mem_calibrate(seq);
3686
3687         mem_precharge_and_activate(seq);
3688         writel(0, &phy_mgr_cmd->fifo_reset);
3689
3690         /* Handoff. */
3691         rw_mgr_mem_handoff(seq);
3692         /*
3693          * In Hard PHY this is a 2-bit control:
3694          * 0: AFI Mux Select
3695          * 1: DDIO Mux Select
3696          */
3697         writel(0x2, &phy_mgr_cfg->mux_sel);
3698
3699         /* Start tracking manager. */
3700         writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
3701
3702         return pass;
3703 }
3704
3705 /**
3706  * debug_mem_calibrate() - Report result of memory calibration
3707  * @pass:       Value indicating whether calibration passed or failed
3708  *
3709  * This function reports the results of the memory calibration
3710  * and writes debug information into the register file.
3711  */
3712 static void debug_mem_calibrate(struct socfpga_sdrseq *seq, int pass)
3713 {
3714         u32 debug_info;
3715
3716         if (pass) {
3717                 debug("%s: CALIBRATION PASSED\n", __FILE__);
3718
3719                 seq->gbl.fom_in /= 2;
3720                 seq->gbl.fom_out /= 2;
3721
3722                 if (seq->gbl.fom_in > 0xff)
3723                         seq->gbl.fom_in = 0xff;
3724
3725                 if (seq->gbl.fom_out > 0xff)
3726                         seq->gbl.fom_out = 0xff;
3727
3728                 /* Update the FOM in the register file */
3729                 debug_info = seq->gbl.fom_in;
3730                 debug_info |= seq->gbl.fom_out << 8;
3731                 writel(debug_info, &sdr_reg_file->fom);
3732
3733                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3734                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3735         } else {
3736                 debug("%s: CALIBRATION FAILED\n", __FILE__);
3737
3738                 debug_info = seq->gbl.error_stage;
3739                 debug_info |= seq->gbl.error_substage << 8;
3740                 debug_info |= seq->gbl.error_group << 16;
3741
3742                 writel(debug_info, &sdr_reg_file->failing_stage);
3743                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3744                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3745
3746                 /* Update the failing group/stage in the register file */
3747                 debug_info = seq->gbl.error_stage;
3748                 debug_info |= seq->gbl.error_substage << 8;
3749                 debug_info |= seq->gbl.error_group << 16;
3750                 writel(debug_info, &sdr_reg_file->failing_stage);
3751         }
3752
3753         debug("%s: Calibration complete\n", __FILE__);
3754 }
3755
3756 /**
3757  * hc_initialize_rom_data() - Initialize ROM data
3758  *
3759  * Initialize ROM data.
3760  */
3761 static void hc_initialize_rom_data(void)
3762 {
3763         unsigned int nelem = 0;
3764         const u32 *rom_init;
3765         u32 i, addr;
3766
3767         socfpga_get_seq_inst_init(&rom_init, &nelem);
3768         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3769         for (i = 0; i < nelem; i++)
3770                 writel(rom_init[i], addr + (i << 2));
3771
3772         socfpga_get_seq_ac_init(&rom_init, &nelem);
3773         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3774         for (i = 0; i < nelem; i++)
3775                 writel(rom_init[i], addr + (i << 2));
3776 }
3777
3778 /**
3779  * initialize_reg_file() - Initialize SDR register file
3780  *
3781  * Initialize SDR register file.
3782  */
3783 static void initialize_reg_file(struct socfpga_sdrseq *seq)
3784 {
3785         /* Initialize the register file with the correct data */
3786         writel(seq->misccfg->reg_file_init_seq_signature,
3787                &sdr_reg_file->signature);
3788         writel(0, &sdr_reg_file->debug_data_addr);
3789         writel(0, &sdr_reg_file->cur_stage);
3790         writel(0, &sdr_reg_file->fom);
3791         writel(0, &sdr_reg_file->failing_stage);
3792         writel(0, &sdr_reg_file->debug1);
3793         writel(0, &sdr_reg_file->debug2);
3794 }
3795
3796 /**
3797  * initialize_hps_phy() - Initialize HPS PHY
3798  *
3799  * Initialize HPS PHY.
3800  */
3801 static void initialize_hps_phy(void)
3802 {
3803         u32 reg;
3804         /*
3805          * Tracking also gets configured here because it's in the
3806          * same register.
3807          */
3808         u32 trk_sample_count = 7500;
3809         u32 trk_long_idle_sample_count = (10 << 16) | 100;
3810         /*
3811          * Format is number of outer loops in the 16 MSB, sample
3812          * count in 16 LSB.
3813          */
3814
3815         reg = 0;
3816         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3817         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3818         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3819         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3820         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3821         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3822         /*
3823          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3824          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3825          */
3826         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3827         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3828                 trk_sample_count);
3829         writel(reg, &sdr_ctrl->phy_ctrl0);
3830
3831         reg = 0;
3832         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3833                 trk_sample_count >>
3834                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3835         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3836                 trk_long_idle_sample_count);
3837         writel(reg, &sdr_ctrl->phy_ctrl1);
3838
3839         reg = 0;
3840         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3841                 trk_long_idle_sample_count >>
3842                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3843         writel(reg, &sdr_ctrl->phy_ctrl2);
3844 }
3845
3846 /**
3847  * initialize_tracking() - Initialize tracking
3848  *
3849  * Initialize the register file with usable initial data.
3850  */
3851 static void initialize_tracking(struct socfpga_sdrseq *seq)
3852 {
3853         /*
3854          * Initialize the register file with the correct data.
3855          * Compute usable version of value in case we skip full
3856          * computation later.
3857          */
3858         writel(DIV_ROUND_UP(seq->iocfg->delay_per_opa_tap,
3859                             seq->iocfg->delay_per_dchain_tap) - 1,
3860                &sdr_reg_file->dtaps_per_ptap);
3861
3862         /* trk_sample_count */
3863         writel(7500, &sdr_reg_file->trk_sample_count);
3864
3865         /* longidle outer loop [15:0] */
3866         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3867
3868         /*
3869          * longidle sample count [31:24]
3870          * trfc, worst case of 933Mhz 4Gb [23:16]
3871          * trcd, worst case [15:8]
3872          * vfifo wait [7:0]
3873          */
3874         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3875                &sdr_reg_file->delays);
3876
3877         /* mux delay */
3878         if (dram_is_ddr(2)) {
3879                 writel(0, &sdr_reg_file->trk_rw_mgr_addr);
3880         } else if (dram_is_ddr(3)) {
3881                 writel((seq->rwcfg->idle << 24) |
3882                        (seq->rwcfg->activate_1 << 16) |
3883                        (seq->rwcfg->sgle_read << 8) |
3884                        (seq->rwcfg->precharge_all << 0),
3885                        &sdr_reg_file->trk_rw_mgr_addr);
3886         }
3887
3888         writel(seq->rwcfg->mem_if_read_dqs_width,
3889                &sdr_reg_file->trk_read_dqs_width);
3890
3891         /* trefi [7:0] */
3892         if (dram_is_ddr(2)) {
3893                 writel(1000 << 0, &sdr_reg_file->trk_rfsh);
3894         } else if (dram_is_ddr(3)) {
3895                 writel((seq->rwcfg->refresh_all << 24) | (1000 << 0),
3896                        &sdr_reg_file->trk_rfsh);
3897         }
3898 }
3899
3900 int sdram_calibration_full(struct socfpga_sdr *sdr)
3901 {
3902         u32 pass;
3903         struct socfpga_sdrseq seq;
3904
3905         /*
3906          * For size reasons, this file uses hard coded addresses.
3907          * Check if we are called with the correct address.
3908          */
3909         if (sdr != (struct socfpga_sdr *)SOCFPGA_SDR_ADDRESS)
3910                 return -ENODEV;
3911
3912         memset(&seq, 0, sizeof(seq));
3913
3914         seq.rwcfg = socfpga_get_sdram_rwmgr_config();
3915         seq.iocfg = socfpga_get_sdram_io_config();
3916         seq.misccfg = socfpga_get_sdram_misc_config();
3917
3918         /* Set the calibration enabled by default */
3919         seq.gbl.phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3920         /*
3921          * Only sweep all groups (regardless of fail state) by default
3922          * Set enabled read test by default.
3923          */
3924 #if DISABLE_GUARANTEED_READ
3925         seq.gbl.phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3926 #endif
3927         /* Initialize the register file */
3928         initialize_reg_file(&seq);
3929
3930         /* Initialize any PHY CSR */
3931         initialize_hps_phy();
3932
3933         scc_mgr_initialize();
3934
3935         initialize_tracking(&seq);
3936
3937         debug("%s: Preparing to start memory calibration\n", __FILE__);
3938
3939         debug("%s:%d\n", __func__, __LINE__);
3940         debug_cond(DLEVEL >= 1,
3941                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3942                    seq.rwcfg->mem_number_of_ranks,
3943                    seq.rwcfg->mem_number_of_cs_per_dimm,
3944                    seq.rwcfg->mem_dq_per_read_dqs,
3945                    seq.rwcfg->mem_dq_per_write_dqs,
3946                    seq.rwcfg->mem_virtual_groups_per_read_dqs,
3947                    seq.rwcfg->mem_virtual_groups_per_write_dqs);
3948         debug_cond(DLEVEL >= 1,
3949                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3950                    seq.rwcfg->mem_if_read_dqs_width,
3951                    seq.rwcfg->mem_if_write_dqs_width,
3952                    seq.rwcfg->mem_data_width, seq.rwcfg->mem_data_mask_width,
3953                    seq.iocfg->delay_per_opa_tap,
3954                    seq.iocfg->delay_per_dchain_tap);
3955         debug_cond(DLEVEL >= 1, "dtap_dqsen_delay=%u, dll=%u",
3956                    seq.iocfg->delay_per_dqs_en_dchain_tap,
3957                    seq.iocfg->dll_chain_length);
3958         debug_cond(DLEVEL >= 1,
3959                    "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3960                    seq.iocfg->dqs_en_phase_max, seq.iocfg->dqdqs_out_phase_max,
3961                    seq.iocfg->dqs_en_delay_max, seq.iocfg->dqs_in_delay_max);
3962         debug_cond(DLEVEL >= 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3963                    seq.iocfg->io_in_delay_max, seq.iocfg->io_out1_delay_max,
3964                    seq.iocfg->io_out2_delay_max);
3965         debug_cond(DLEVEL >= 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3966                    seq.iocfg->dqs_in_reserve, seq.iocfg->dqs_out_reserve);
3967
3968         hc_initialize_rom_data();
3969
3970         /* update info for sims */
3971         reg_file_set_stage(CAL_STAGE_NIL);
3972         reg_file_set_group(0);
3973
3974         /*
3975          * Load global needed for those actions that require
3976          * some dynamic calibration support.
3977          */
3978         seq.dyn_calib_steps = STATIC_CALIB_STEPS;
3979         /*
3980          * Load global to allow dynamic selection of delay loop settings
3981          * based on calibration mode.
3982          */
3983         if (!(seq.dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3984                 seq.skip_delay_mask = 0xff;
3985         else
3986                 seq.skip_delay_mask = 0x0;
3987
3988         pass = run_mem_calibrate(&seq);
3989         debug_mem_calibrate(&seq, pass);
3990         return pass;
3991 }