perf hist: Make event__totals per hists
[pandora-kernel.git] / tools / perf / util / session.c
1 #define _FILE_OFFSET_BITS 64
2
3 #include <linux/kernel.h>
4
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8
9 #include "session.h"
10 #include "sort.h"
11 #include "util.h"
12
13 static int perf_session__open(struct perf_session *self, bool force)
14 {
15         struct stat input_stat;
16
17         if (!strcmp(self->filename, "-")) {
18                 self->fd_pipe = true;
19                 self->fd = STDIN_FILENO;
20
21                 if (perf_header__read(self, self->fd) < 0)
22                         pr_err("incompatible file format");
23
24                 return 0;
25         }
26
27         self->fd = open(self->filename, O_RDONLY);
28         if (self->fd < 0) {
29                 pr_err("failed to open file: %s", self->filename);
30                 if (!strcmp(self->filename, "perf.data"))
31                         pr_err("  (try 'perf record' first)");
32                 pr_err("\n");
33                 return -errno;
34         }
35
36         if (fstat(self->fd, &input_stat) < 0)
37                 goto out_close;
38
39         if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
40                 pr_err("file %s not owned by current user or root\n",
41                        self->filename);
42                 goto out_close;
43         }
44
45         if (!input_stat.st_size) {
46                 pr_info("zero-sized file (%s), nothing to do!\n",
47                         self->filename);
48                 goto out_close;
49         }
50
51         if (perf_header__read(self, self->fd) < 0) {
52                 pr_err("incompatible file format");
53                 goto out_close;
54         }
55
56         self->size = input_stat.st_size;
57         return 0;
58
59 out_close:
60         close(self->fd);
61         self->fd = -1;
62         return -1;
63 }
64
65 void perf_session__update_sample_type(struct perf_session *self)
66 {
67         self->sample_type = perf_header__sample_type(&self->header);
68 }
69
70 int perf_session__create_kernel_maps(struct perf_session *self)
71 {
72         int ret = machine__create_kernel_maps(&self->host_machine);
73
74         if (ret >= 0)
75                 ret = machines__create_guest_kernel_maps(&self->machines);
76         return ret;
77 }
78
79 struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
80 {
81         size_t len = filename ? strlen(filename) + 1 : 0;
82         struct perf_session *self = zalloc(sizeof(*self) + len);
83
84         if (self == NULL)
85                 goto out;
86
87         if (perf_header__init(&self->header) < 0)
88                 goto out_free;
89
90         memcpy(self->filename, filename, len);
91         self->threads = RB_ROOT;
92         self->hists_tree = RB_ROOT;
93         self->last_match = NULL;
94         self->mmap_window = 32;
95         self->cwd = NULL;
96         self->cwdlen = 0;
97         self->machines = RB_ROOT;
98         self->repipe = repipe;
99         INIT_LIST_HEAD(&self->ordered_samples.samples_head);
100         machine__init(&self->host_machine, "", HOST_KERNEL_ID);
101
102         if (mode == O_RDONLY) {
103                 if (perf_session__open(self, force) < 0)
104                         goto out_delete;
105         } else if (mode == O_WRONLY) {
106                 /*
107                  * In O_RDONLY mode this will be performed when reading the
108                  * kernel MMAP event, in event__process_mmap().
109                  */
110                 if (perf_session__create_kernel_maps(self) < 0)
111                         goto out_delete;
112         }
113
114         perf_session__update_sample_type(self);
115 out:
116         return self;
117 out_free:
118         free(self);
119         return NULL;
120 out_delete:
121         perf_session__delete(self);
122         return NULL;
123 }
124
125 void perf_session__delete(struct perf_session *self)
126 {
127         perf_header__exit(&self->header);
128         close(self->fd);
129         free(self->cwd);
130         free(self);
131 }
132
133 static bool symbol__match_parent_regex(struct symbol *sym)
134 {
135         if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
136                 return 1;
137
138         return 0;
139 }
140
141 struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
142                                                    struct thread *thread,
143                                                    struct ip_callchain *chain,
144                                                    struct symbol **parent)
145 {
146         u8 cpumode = PERF_RECORD_MISC_USER;
147         unsigned int i;
148         struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
149
150         if (!syms)
151                 return NULL;
152
153         for (i = 0; i < chain->nr; i++) {
154                 u64 ip = chain->ips[i];
155                 struct addr_location al;
156
157                 if (ip >= PERF_CONTEXT_MAX) {
158                         switch (ip) {
159                         case PERF_CONTEXT_HV:
160                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;  break;
161                         case PERF_CONTEXT_KERNEL:
162                                 cpumode = PERF_RECORD_MISC_KERNEL;      break;
163                         case PERF_CONTEXT_USER:
164                                 cpumode = PERF_RECORD_MISC_USER;        break;
165                         default:
166                                 break;
167                         }
168                         continue;
169                 }
170
171                 al.filtered = false;
172                 thread__find_addr_location(thread, self, cpumode,
173                                 MAP__FUNCTION, thread->pid, ip, &al, NULL);
174                 if (al.sym != NULL) {
175                         if (sort__has_parent && !*parent &&
176                             symbol__match_parent_regex(al.sym))
177                                 *parent = al.sym;
178                         if (!symbol_conf.use_callchain)
179                                 break;
180                         syms[i].map = al.map;
181                         syms[i].sym = al.sym;
182                 }
183         }
184
185         return syms;
186 }
187
188 static int process_event_stub(event_t *event __used,
189                               struct perf_session *session __used)
190 {
191         dump_printf(": unhandled!\n");
192         return 0;
193 }
194
195 static int process_finished_round_stub(event_t *event __used,
196                                        struct perf_session *session __used,
197                                        struct perf_event_ops *ops __used)
198 {
199         dump_printf(": unhandled!\n");
200         return 0;
201 }
202
203 static int process_finished_round(event_t *event,
204                                   struct perf_session *session,
205                                   struct perf_event_ops *ops);
206
207 static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
208 {
209         if (handler->sample == NULL)
210                 handler->sample = process_event_stub;
211         if (handler->mmap == NULL)
212                 handler->mmap = process_event_stub;
213         if (handler->comm == NULL)
214                 handler->comm = process_event_stub;
215         if (handler->fork == NULL)
216                 handler->fork = process_event_stub;
217         if (handler->exit == NULL)
218                 handler->exit = process_event_stub;
219         if (handler->lost == NULL)
220                 handler->lost = process_event_stub;
221         if (handler->read == NULL)
222                 handler->read = process_event_stub;
223         if (handler->throttle == NULL)
224                 handler->throttle = process_event_stub;
225         if (handler->unthrottle == NULL)
226                 handler->unthrottle = process_event_stub;
227         if (handler->attr == NULL)
228                 handler->attr = process_event_stub;
229         if (handler->event_type == NULL)
230                 handler->event_type = process_event_stub;
231         if (handler->tracing_data == NULL)
232                 handler->tracing_data = process_event_stub;
233         if (handler->build_id == NULL)
234                 handler->build_id = process_event_stub;
235         if (handler->finished_round == NULL) {
236                 if (handler->ordered_samples)
237                         handler->finished_round = process_finished_round;
238                 else
239                         handler->finished_round = process_finished_round_stub;
240         }
241 }
242
243 void mem_bswap_64(void *src, int byte_size)
244 {
245         u64 *m = src;
246
247         while (byte_size > 0) {
248                 *m = bswap_64(*m);
249                 byte_size -= sizeof(u64);
250                 ++m;
251         }
252 }
253
254 static void event__all64_swap(event_t *self)
255 {
256         struct perf_event_header *hdr = &self->header;
257         mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
258 }
259
260 static void event__comm_swap(event_t *self)
261 {
262         self->comm.pid = bswap_32(self->comm.pid);
263         self->comm.tid = bswap_32(self->comm.tid);
264 }
265
266 static void event__mmap_swap(event_t *self)
267 {
268         self->mmap.pid   = bswap_32(self->mmap.pid);
269         self->mmap.tid   = bswap_32(self->mmap.tid);
270         self->mmap.start = bswap_64(self->mmap.start);
271         self->mmap.len   = bswap_64(self->mmap.len);
272         self->mmap.pgoff = bswap_64(self->mmap.pgoff);
273 }
274
275 static void event__task_swap(event_t *self)
276 {
277         self->fork.pid  = bswap_32(self->fork.pid);
278         self->fork.tid  = bswap_32(self->fork.tid);
279         self->fork.ppid = bswap_32(self->fork.ppid);
280         self->fork.ptid = bswap_32(self->fork.ptid);
281         self->fork.time = bswap_64(self->fork.time);
282 }
283
284 static void event__read_swap(event_t *self)
285 {
286         self->read.pid          = bswap_32(self->read.pid);
287         self->read.tid          = bswap_32(self->read.tid);
288         self->read.value        = bswap_64(self->read.value);
289         self->read.time_enabled = bswap_64(self->read.time_enabled);
290         self->read.time_running = bswap_64(self->read.time_running);
291         self->read.id           = bswap_64(self->read.id);
292 }
293
294 static void event__attr_swap(event_t *self)
295 {
296         size_t size;
297
298         self->attr.attr.type            = bswap_32(self->attr.attr.type);
299         self->attr.attr.size            = bswap_32(self->attr.attr.size);
300         self->attr.attr.config          = bswap_64(self->attr.attr.config);
301         self->attr.attr.sample_period   = bswap_64(self->attr.attr.sample_period);
302         self->attr.attr.sample_type     = bswap_64(self->attr.attr.sample_type);
303         self->attr.attr.read_format     = bswap_64(self->attr.attr.read_format);
304         self->attr.attr.wakeup_events   = bswap_32(self->attr.attr.wakeup_events);
305         self->attr.attr.bp_type         = bswap_32(self->attr.attr.bp_type);
306         self->attr.attr.bp_addr         = bswap_64(self->attr.attr.bp_addr);
307         self->attr.attr.bp_len          = bswap_64(self->attr.attr.bp_len);
308
309         size = self->header.size;
310         size -= (void *)&self->attr.id - (void *)self;
311         mem_bswap_64(self->attr.id, size);
312 }
313
314 static void event__event_type_swap(event_t *self)
315 {
316         self->event_type.event_type.event_id =
317                 bswap_64(self->event_type.event_type.event_id);
318 }
319
320 static void event__tracing_data_swap(event_t *self)
321 {
322         self->tracing_data.size = bswap_32(self->tracing_data.size);
323 }
324
325 typedef void (*event__swap_op)(event_t *self);
326
327 static event__swap_op event__swap_ops[] = {
328         [PERF_RECORD_MMAP]   = event__mmap_swap,
329         [PERF_RECORD_COMM]   = event__comm_swap,
330         [PERF_RECORD_FORK]   = event__task_swap,
331         [PERF_RECORD_EXIT]   = event__task_swap,
332         [PERF_RECORD_LOST]   = event__all64_swap,
333         [PERF_RECORD_READ]   = event__read_swap,
334         [PERF_RECORD_SAMPLE] = event__all64_swap,
335         [PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
336         [PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
337         [PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
338         [PERF_RECORD_HEADER_BUILD_ID]   = NULL,
339         [PERF_RECORD_HEADER_MAX]    = NULL,
340 };
341
342 struct sample_queue {
343         u64                     timestamp;
344         struct sample_event     *event;
345         struct list_head        list;
346 };
347
348 static void flush_sample_queue(struct perf_session *s,
349                                struct perf_event_ops *ops)
350 {
351         struct list_head *head = &s->ordered_samples.samples_head;
352         u64 limit = s->ordered_samples.next_flush;
353         struct sample_queue *tmp, *iter;
354
355         if (!ops->ordered_samples || !limit)
356                 return;
357
358         list_for_each_entry_safe(iter, tmp, head, list) {
359                 if (iter->timestamp > limit)
360                         return;
361
362                 if (iter == s->ordered_samples.last_inserted)
363                         s->ordered_samples.last_inserted = NULL;
364
365                 ops->sample((event_t *)iter->event, s);
366
367                 s->ordered_samples.last_flush = iter->timestamp;
368                 list_del(&iter->list);
369                 free(iter->event);
370                 free(iter);
371         }
372 }
373
374 /*
375  * When perf record finishes a pass on every buffers, it records this pseudo
376  * event.
377  * We record the max timestamp t found in the pass n.
378  * Assuming these timestamps are monotonic across cpus, we know that if
379  * a buffer still has events with timestamps below t, they will be all
380  * available and then read in the pass n + 1.
381  * Hence when we start to read the pass n + 2, we can safely flush every
382  * events with timestamps below t.
383  *
384  *    ============ PASS n =================
385  *       CPU 0         |   CPU 1
386  *                     |
387  *    cnt1 timestamps  |   cnt2 timestamps
388  *          1          |         2
389  *          2          |         3
390  *          -          |         4  <--- max recorded
391  *
392  *    ============ PASS n + 1 ==============
393  *       CPU 0         |   CPU 1
394  *                     |
395  *    cnt1 timestamps  |   cnt2 timestamps
396  *          3          |         5
397  *          4          |         6
398  *          5          |         7 <---- max recorded
399  *
400  *      Flush every events below timestamp 4
401  *
402  *    ============ PASS n + 2 ==============
403  *       CPU 0         |   CPU 1
404  *                     |
405  *    cnt1 timestamps  |   cnt2 timestamps
406  *          6          |         8
407  *          7          |         9
408  *          -          |         10
409  *
410  *      Flush every events below timestamp 7
411  *      etc...
412  */
413 static int process_finished_round(event_t *event __used,
414                                   struct perf_session *session,
415                                   struct perf_event_ops *ops)
416 {
417         flush_sample_queue(session, ops);
418         session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
419
420         return 0;
421 }
422
423 static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
424 {
425         struct sample_queue *iter;
426
427         list_for_each_entry_reverse(iter, head, list) {
428                 if (iter->timestamp < new->timestamp) {
429                         list_add(&new->list, &iter->list);
430                         return;
431                 }
432         }
433
434         list_add(&new->list, head);
435 }
436
437 static void __queue_sample_before(struct sample_queue *new,
438                                   struct sample_queue *iter,
439                                   struct list_head *head)
440 {
441         list_for_each_entry_continue_reverse(iter, head, list) {
442                 if (iter->timestamp < new->timestamp) {
443                         list_add(&new->list, &iter->list);
444                         return;
445                 }
446         }
447
448         list_add(&new->list, head);
449 }
450
451 static void __queue_sample_after(struct sample_queue *new,
452                                  struct sample_queue *iter,
453                                  struct list_head *head)
454 {
455         list_for_each_entry_continue(iter, head, list) {
456                 if (iter->timestamp > new->timestamp) {
457                         list_add_tail(&new->list, &iter->list);
458                         return;
459                 }
460         }
461         list_add_tail(&new->list, head);
462 }
463
464 /* The queue is ordered by time */
465 static void __queue_sample_event(struct sample_queue *new,
466                                  struct perf_session *s)
467 {
468         struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
469         struct list_head *head = &s->ordered_samples.samples_head;
470
471
472         if (!last_inserted) {
473                 __queue_sample_end(new, head);
474                 return;
475         }
476
477         /*
478          * Most of the time the current event has a timestamp
479          * very close to the last event inserted, unless we just switched
480          * to another event buffer. Having a sorting based on a list and
481          * on the last inserted event that is close to the current one is
482          * probably more efficient than an rbtree based sorting.
483          */
484         if (last_inserted->timestamp >= new->timestamp)
485                 __queue_sample_before(new, last_inserted, head);
486         else
487                 __queue_sample_after(new, last_inserted, head);
488 }
489
490 static int queue_sample_event(event_t *event, struct sample_data *data,
491                               struct perf_session *s)
492 {
493         u64 timestamp = data->time;
494         struct sample_queue *new;
495
496
497         if (timestamp < s->ordered_samples.last_flush) {
498                 printf("Warning: Timestamp below last timeslice flush\n");
499                 return -EINVAL;
500         }
501
502         new = malloc(sizeof(*new));
503         if (!new)
504                 return -ENOMEM;
505
506         new->timestamp = timestamp;
507
508         new->event = malloc(event->header.size);
509         if (!new->event) {
510                 free(new);
511                 return -ENOMEM;
512         }
513
514         memcpy(new->event, event, event->header.size);
515
516         __queue_sample_event(new, s);
517         s->ordered_samples.last_inserted = new;
518
519         if (new->timestamp > s->ordered_samples.max_timestamp)
520                 s->ordered_samples.max_timestamp = new->timestamp;
521
522         return 0;
523 }
524
525 static int perf_session__process_sample(event_t *event, struct perf_session *s,
526                                         struct perf_event_ops *ops)
527 {
528         struct sample_data data;
529
530         if (!ops->ordered_samples)
531                 return ops->sample(event, s);
532
533         bzero(&data, sizeof(struct sample_data));
534         event__parse_sample(event, s->sample_type, &data);
535
536         queue_sample_event(event, &data, s);
537
538         return 0;
539 }
540
541 static int perf_session__process_event(struct perf_session *self,
542                                        event_t *event,
543                                        struct perf_event_ops *ops,
544                                        u64 offset, u64 head)
545 {
546         trace_event(event);
547
548         if (event->header.type < PERF_RECORD_HEADER_MAX) {
549                 dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
550                             offset + head, event->header.size,
551                             event__name[event->header.type]);
552                 hists__inc_nr_events(self, event->header.type);
553         }
554
555         if (self->header.needs_swap && event__swap_ops[event->header.type])
556                 event__swap_ops[event->header.type](event);
557
558         switch (event->header.type) {
559         case PERF_RECORD_SAMPLE:
560                 return perf_session__process_sample(event, self, ops);
561         case PERF_RECORD_MMAP:
562                 return ops->mmap(event, self);
563         case PERF_RECORD_COMM:
564                 return ops->comm(event, self);
565         case PERF_RECORD_FORK:
566                 return ops->fork(event, self);
567         case PERF_RECORD_EXIT:
568                 return ops->exit(event, self);
569         case PERF_RECORD_LOST:
570                 return ops->lost(event, self);
571         case PERF_RECORD_READ:
572                 return ops->read(event, self);
573         case PERF_RECORD_THROTTLE:
574                 return ops->throttle(event, self);
575         case PERF_RECORD_UNTHROTTLE:
576                 return ops->unthrottle(event, self);
577         case PERF_RECORD_HEADER_ATTR:
578                 return ops->attr(event, self);
579         case PERF_RECORD_HEADER_EVENT_TYPE:
580                 return ops->event_type(event, self);
581         case PERF_RECORD_HEADER_TRACING_DATA:
582                 /* setup for reading amidst mmap */
583                 lseek(self->fd, offset + head, SEEK_SET);
584                 return ops->tracing_data(event, self);
585         case PERF_RECORD_HEADER_BUILD_ID:
586                 return ops->build_id(event, self);
587         case PERF_RECORD_FINISHED_ROUND:
588                 return ops->finished_round(event, self, ops);
589         default:
590                 ++self->hists.stats.nr_unknown_events;
591                 return -1;
592         }
593 }
594
595 void perf_event_header__bswap(struct perf_event_header *self)
596 {
597         self->type = bswap_32(self->type);
598         self->misc = bswap_16(self->misc);
599         self->size = bswap_16(self->size);
600 }
601
602 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
603 {
604         struct thread *thread = perf_session__findnew(self, 0);
605
606         if (thread == NULL || thread__set_comm(thread, "swapper")) {
607                 pr_err("problem inserting idle task.\n");
608                 thread = NULL;
609         }
610
611         return thread;
612 }
613
614 int do_read(int fd, void *buf, size_t size)
615 {
616         void *buf_start = buf;
617
618         while (size) {
619                 int ret = read(fd, buf, size);
620
621                 if (ret <= 0)
622                         return ret;
623
624                 size -= ret;
625                 buf += ret;
626         }
627
628         return buf - buf_start;
629 }
630
631 #define session_done()  (*(volatile int *)(&session_done))
632 volatile int session_done;
633
634 static int __perf_session__process_pipe_events(struct perf_session *self,
635                                                struct perf_event_ops *ops)
636 {
637         event_t event;
638         uint32_t size;
639         int skip = 0;
640         u64 head;
641         int err;
642         void *p;
643
644         perf_event_ops__fill_defaults(ops);
645
646         head = 0;
647 more:
648         err = do_read(self->fd, &event, sizeof(struct perf_event_header));
649         if (err <= 0) {
650                 if (err == 0)
651                         goto done;
652
653                 pr_err("failed to read event header\n");
654                 goto out_err;
655         }
656
657         if (self->header.needs_swap)
658                 perf_event_header__bswap(&event.header);
659
660         size = event.header.size;
661         if (size == 0)
662                 size = 8;
663
664         p = &event;
665         p += sizeof(struct perf_event_header);
666
667         if (size - sizeof(struct perf_event_header)) {
668                 err = do_read(self->fd, p,
669                               size - sizeof(struct perf_event_header));
670                 if (err <= 0) {
671                         if (err == 0) {
672                                 pr_err("unexpected end of event stream\n");
673                                 goto done;
674                         }
675
676                         pr_err("failed to read event data\n");
677                         goto out_err;
678                 }
679         }
680
681         if (size == 0 ||
682             (skip = perf_session__process_event(self, &event, ops,
683                                                 0, head)) < 0) {
684                 dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
685                             head, event.header.size, event.header.type);
686                 /*
687                  * assume we lost track of the stream, check alignment, and
688                  * increment a single u64 in the hope to catch on again 'soon'.
689                  */
690                 if (unlikely(head & 7))
691                         head &= ~7ULL;
692
693                 size = 8;
694         }
695
696         head += size;
697
698         dump_printf("\n%#Lx [%#x]: event: %d\n",
699                     head, event.header.size, event.header.type);
700
701         if (skip > 0)
702                 head += skip;
703
704         if (!session_done())
705                 goto more;
706 done:
707         err = 0;
708 out_err:
709         return err;
710 }
711
712 int __perf_session__process_events(struct perf_session *self,
713                                    u64 data_offset, u64 data_size,
714                                    u64 file_size, struct perf_event_ops *ops)
715 {
716         int err, mmap_prot, mmap_flags;
717         u64 head, shift;
718         u64 offset = 0;
719         size_t  page_size;
720         event_t *event;
721         uint32_t size;
722         char *buf;
723         struct ui_progress *progress = ui_progress__new("Processing events...",
724                                                         self->size);
725         if (progress == NULL)
726                 return -1;
727
728         perf_event_ops__fill_defaults(ops);
729
730         page_size = sysconf(_SC_PAGESIZE);
731
732         head = data_offset;
733         shift = page_size * (head / page_size);
734         offset += shift;
735         head -= shift;
736
737         mmap_prot  = PROT_READ;
738         mmap_flags = MAP_SHARED;
739
740         if (self->header.needs_swap) {
741                 mmap_prot  |= PROT_WRITE;
742                 mmap_flags = MAP_PRIVATE;
743         }
744 remap:
745         buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
746                    mmap_flags, self->fd, offset);
747         if (buf == MAP_FAILED) {
748                 pr_err("failed to mmap file\n");
749                 err = -errno;
750                 goto out_err;
751         }
752
753 more:
754         event = (event_t *)(buf + head);
755         ui_progress__update(progress, offset);
756
757         if (self->header.needs_swap)
758                 perf_event_header__bswap(&event->header);
759         size = event->header.size;
760         if (size == 0)
761                 size = 8;
762
763         if (head + event->header.size >= page_size * self->mmap_window) {
764                 int munmap_ret;
765
766                 shift = page_size * (head / page_size);
767
768                 munmap_ret = munmap(buf, page_size * self->mmap_window);
769                 assert(munmap_ret == 0);
770
771                 offset += shift;
772                 head -= shift;
773                 goto remap;
774         }
775
776         size = event->header.size;
777
778         dump_printf("\n%#Lx [%#x]: event: %d\n",
779                     offset + head, event->header.size, event->header.type);
780
781         if (size == 0 ||
782             perf_session__process_event(self, event, ops, offset, head) < 0) {
783                 dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
784                             offset + head, event->header.size,
785                             event->header.type);
786                 /*
787                  * assume we lost track of the stream, check alignment, and
788                  * increment a single u64 in the hope to catch on again 'soon'.
789                  */
790                 if (unlikely(head & 7))
791                         head &= ~7ULL;
792
793                 size = 8;
794         }
795
796         head += size;
797
798         if (offset + head >= data_offset + data_size)
799                 goto done;
800
801         if (offset + head < file_size)
802                 goto more;
803 done:
804         err = 0;
805         /* do the final flush for ordered samples */
806         self->ordered_samples.next_flush = ULLONG_MAX;
807         flush_sample_queue(self, ops);
808 out_err:
809         ui_progress__delete(progress);
810         return err;
811 }
812
813 int perf_session__process_events(struct perf_session *self,
814                                  struct perf_event_ops *ops)
815 {
816         int err;
817
818         if (perf_session__register_idle_thread(self) == NULL)
819                 return -ENOMEM;
820
821         if (!symbol_conf.full_paths) {
822                 char bf[PATH_MAX];
823
824                 if (getcwd(bf, sizeof(bf)) == NULL) {
825                         err = -errno;
826 out_getcwd_err:
827                         pr_err("failed to get the current directory\n");
828                         goto out_err;
829                 }
830                 self->cwd = strdup(bf);
831                 if (self->cwd == NULL) {
832                         err = -ENOMEM;
833                         goto out_getcwd_err;
834                 }
835                 self->cwdlen = strlen(self->cwd);
836         }
837
838         if (!self->fd_pipe)
839                 err = __perf_session__process_events(self,
840                                                      self->header.data_offset,
841                                                      self->header.data_size,
842                                                      self->size, ops);
843         else
844                 err = __perf_session__process_pipe_events(self, ops);
845 out_err:
846         return err;
847 }
848
849 bool perf_session__has_traces(struct perf_session *self, const char *msg)
850 {
851         if (!(self->sample_type & PERF_SAMPLE_RAW)) {
852                 pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
853                 return false;
854         }
855
856         return true;
857 }
858
859 int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
860                                              const char *symbol_name,
861                                              u64 addr)
862 {
863         char *bracket;
864         enum map_type i;
865         struct ref_reloc_sym *ref;
866
867         ref = zalloc(sizeof(struct ref_reloc_sym));
868         if (ref == NULL)
869                 return -ENOMEM;
870
871         ref->name = strdup(symbol_name);
872         if (ref->name == NULL) {
873                 free(ref);
874                 return -ENOMEM;
875         }
876
877         bracket = strchr(ref->name, ']');
878         if (bracket)
879                 *bracket = '\0';
880
881         ref->addr = addr;
882
883         for (i = 0; i < MAP__NR_TYPES; ++i) {
884                 struct kmap *kmap = map__kmap(maps[i]);
885                 kmap->ref_reloc_sym = ref;
886         }
887
888         return 0;
889 }
890
891 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
892 {
893         return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
894                __dsos__fprintf(&self->host_machine.user_dsos, fp) +
895                machines__fprintf_dsos(&self->machines, fp);
896 }