Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6
[pandora-kernel.git] / tools / perf / builtin-stat.c
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11
12     Performance counter stats for '/home/mingo/hackbench':
13
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22
23     Wall-clock time elapsed:   123.786620 msecs
24
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *   Jaswinder Singh Rajput <jaswinder@kernel.org>
36  *
37  * Released under the GPL v2. (and only v2, not any later version)
38  */
39
40 #include "perf.h"
41 #include "builtin.h"
42 #include "util/util.h"
43 #include "util/parse-options.h"
44 #include "util/parse-events.h"
45
46 #include <sys/prctl.h>
47 #include <math.h>
48
49 static struct perf_counter_attr default_attrs[] = {
50
51   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK      },
52   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
53   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS  },
54   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS     },
55
56   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES      },
57   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS    },
58   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
59   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES    },
60
61 };
62
63 #define MAX_RUN                 100
64
65 static int                      system_wide                     =  0;
66 static int                      verbose                         =  0;
67 static int                      nr_cpus                         =  0;
68 static int                      run_idx                         =  0;
69
70 static int                      run_count                       =  1;
71 static int                      inherit                         =  1;
72 static int                      scale                           =  1;
73 static int                      target_pid                      = -1;
74 static int                      null_run                        =  0;
75
76 static int                      fd[MAX_NR_CPUS][MAX_COUNTERS];
77
78 static u64                      runtime_nsecs[MAX_RUN];
79 static u64                      walltime_nsecs[MAX_RUN];
80 static u64                      runtime_cycles[MAX_RUN];
81
82 static u64                      event_res[MAX_RUN][MAX_COUNTERS][3];
83 static u64                      event_scaled[MAX_RUN][MAX_COUNTERS];
84
85 static u64                      event_res_avg[MAX_COUNTERS][3];
86 static u64                      event_res_noise[MAX_COUNTERS][3];
87
88 static u64                      event_scaled_avg[MAX_COUNTERS];
89
90 static u64                      runtime_nsecs_avg;
91 static u64                      runtime_nsecs_noise;
92
93 static u64                      walltime_nsecs_avg;
94 static u64                      walltime_nsecs_noise;
95
96 static u64                      runtime_cycles_avg;
97 static u64                      runtime_cycles_noise;
98
99 #define ERR_PERF_OPEN \
100 "Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n"
101
102 static void create_perf_stat_counter(int counter, int pid)
103 {
104         struct perf_counter_attr *attr = attrs + counter;
105
106         if (scale)
107                 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
108                                     PERF_FORMAT_TOTAL_TIME_RUNNING;
109
110         if (system_wide) {
111                 int cpu;
112                 for (cpu = 0; cpu < nr_cpus; cpu++) {
113                         fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
114                         if (fd[cpu][counter] < 0 && verbose)
115                                 fprintf(stderr, ERR_PERF_OPEN, counter,
116                                         fd[cpu][counter], strerror(errno));
117                 }
118         } else {
119                 attr->inherit        = inherit;
120                 attr->disabled       = 1;
121                 attr->enable_on_exec = 1;
122
123                 fd[0][counter] = sys_perf_counter_open(attr, pid, -1, -1, 0);
124                 if (fd[0][counter] < 0 && verbose)
125                         fprintf(stderr, ERR_PERF_OPEN, counter,
126                                 fd[0][counter], strerror(errno));
127         }
128 }
129
130 /*
131  * Does the counter have nsecs as a unit?
132  */
133 static inline int nsec_counter(int counter)
134 {
135         if (attrs[counter].type != PERF_TYPE_SOFTWARE)
136                 return 0;
137
138         if (attrs[counter].config == PERF_COUNT_SW_CPU_CLOCK)
139                 return 1;
140
141         if (attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
142                 return 1;
143
144         return 0;
145 }
146
147 /*
148  * Read out the results of a single counter:
149  */
150 static void read_counter(int counter)
151 {
152         u64 *count, single_count[3];
153         ssize_t res;
154         int cpu, nv;
155         int scaled;
156
157         count = event_res[run_idx][counter];
158
159         count[0] = count[1] = count[2] = 0;
160
161         nv = scale ? 3 : 1;
162         for (cpu = 0; cpu < nr_cpus; cpu++) {
163                 if (fd[cpu][counter] < 0)
164                         continue;
165
166                 res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
167                 assert(res == nv * sizeof(u64));
168                 close(fd[cpu][counter]);
169                 fd[cpu][counter] = -1;
170
171                 count[0] += single_count[0];
172                 if (scale) {
173                         count[1] += single_count[1];
174                         count[2] += single_count[2];
175                 }
176         }
177
178         scaled = 0;
179         if (scale) {
180                 if (count[2] == 0) {
181                         event_scaled[run_idx][counter] = -1;
182                         count[0] = 0;
183                         return;
184                 }
185
186                 if (count[2] < count[1]) {
187                         event_scaled[run_idx][counter] = 1;
188                         count[0] = (unsigned long long)
189                                 ((double)count[0] * count[1] / count[2] + 0.5);
190                 }
191         }
192         /*
193          * Save the full runtime - to allow normalization during printout:
194          */
195         if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
196                 attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK)
197                 runtime_nsecs[run_idx] = count[0];
198         if (attrs[counter].type == PERF_TYPE_HARDWARE &&
199                 attrs[counter].config == PERF_COUNT_HW_CPU_CYCLES)
200                 runtime_cycles[run_idx] = count[0];
201 }
202
203 static int run_perf_stat(int argc, const char **argv)
204 {
205         unsigned long long t0, t1;
206         int status = 0;
207         int counter;
208         int pid;
209         int child_ready_pipe[2], go_pipe[2];
210         char buf;
211
212         if (!system_wide)
213                 nr_cpus = 1;
214
215         if (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0) {
216                 perror("failed to create pipes");
217                 exit(1);
218         }
219
220         if ((pid = fork()) < 0)
221                 perror("failed to fork");
222
223         if (!pid) {
224                 close(child_ready_pipe[0]);
225                 close(go_pipe[1]);
226                 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
227
228                 /*
229                  * Do a dummy execvp to get the PLT entry resolved,
230                  * so we avoid the resolver overhead on the real
231                  * execvp call.
232                  */
233                 execvp("", (char **)argv);
234
235                 /*
236                  * Tell the parent we're ready to go
237                  */
238                 close(child_ready_pipe[1]);
239
240                 /*
241                  * Wait until the parent tells us to go.
242                  */
243                 read(go_pipe[0], &buf, 1);
244
245                 execvp(argv[0], (char **)argv);
246
247                 perror(argv[0]);
248                 exit(-1);
249         }
250
251         /*
252          * Wait for the child to be ready to exec.
253          */
254         close(child_ready_pipe[1]);
255         close(go_pipe[0]);
256         read(child_ready_pipe[0], &buf, 1);
257         close(child_ready_pipe[0]);
258
259         for (counter = 0; counter < nr_counters; counter++)
260                 create_perf_stat_counter(counter, pid);
261
262         /*
263          * Enable counters and exec the command:
264          */
265         t0 = rdclock();
266
267         close(go_pipe[1]);
268         wait(&status);
269
270         t1 = rdclock();
271
272         walltime_nsecs[run_idx] = t1 - t0;
273
274         for (counter = 0; counter < nr_counters; counter++)
275                 read_counter(counter);
276
277         return WEXITSTATUS(status);
278 }
279
280 static void print_noise(u64 *count, u64 *noise)
281 {
282         if (run_count > 1)
283                 fprintf(stderr, "   ( +- %7.3f%% )",
284                         (double)noise[0]/(count[0]+1)*100.0);
285 }
286
287 static void nsec_printout(int counter, u64 *count, u64 *noise)
288 {
289         double msecs = (double)count[0] / 1000000;
290
291         fprintf(stderr, " %14.6f  %-24s", msecs, event_name(counter));
292
293         if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
294                 attrs[counter].config == PERF_COUNT_SW_TASK_CLOCK) {
295
296                 if (walltime_nsecs_avg)
297                         fprintf(stderr, " # %10.3f CPUs ",
298                                 (double)count[0] / (double)walltime_nsecs_avg);
299         }
300         print_noise(count, noise);
301 }
302
303 static void abs_printout(int counter, u64 *count, u64 *noise)
304 {
305         fprintf(stderr, " %14Ld  %-24s", count[0], event_name(counter));
306
307         if (runtime_cycles_avg &&
308                 attrs[counter].type == PERF_TYPE_HARDWARE &&
309                         attrs[counter].config == PERF_COUNT_HW_INSTRUCTIONS) {
310
311                 fprintf(stderr, " # %10.3f IPC  ",
312                         (double)count[0] / (double)runtime_cycles_avg);
313         } else {
314                 if (runtime_nsecs_avg) {
315                         fprintf(stderr, " # %10.3f M/sec",
316                                 (double)count[0]/runtime_nsecs_avg*1000.0);
317                 }
318         }
319         print_noise(count, noise);
320 }
321
322 /*
323  * Print out the results of a single counter:
324  */
325 static void print_counter(int counter)
326 {
327         u64 *count, *noise;
328         int scaled;
329
330         count = event_res_avg[counter];
331         noise = event_res_noise[counter];
332         scaled = event_scaled_avg[counter];
333
334         if (scaled == -1) {
335                 fprintf(stderr, " %14s  %-24s\n",
336                         "<not counted>", event_name(counter));
337                 return;
338         }
339
340         if (nsec_counter(counter))
341                 nsec_printout(counter, count, noise);
342         else
343                 abs_printout(counter, count, noise);
344
345         if (scaled)
346                 fprintf(stderr, "  (scaled from %.2f%%)",
347                         (double) count[2] / count[1] * 100);
348
349         fprintf(stderr, "\n");
350 }
351
352 /*
353  * normalize_noise noise values down to stddev:
354  */
355 static void normalize_noise(u64 *val)
356 {
357         double res;
358
359         res = (double)*val / (run_count * sqrt((double)run_count));
360
361         *val = (u64)res;
362 }
363
364 static void update_avg(const char *name, int idx, u64 *avg, u64 *val)
365 {
366         *avg += *val;
367
368         if (verbose > 1)
369                 fprintf(stderr, "debug: %20s[%d]: %Ld\n", name, idx, *val);
370 }
371 /*
372  * Calculate the averages and noises:
373  */
374 static void calc_avg(void)
375 {
376         int i, j;
377
378         if (verbose > 1)
379                 fprintf(stderr, "\n");
380
381         for (i = 0; i < run_count; i++) {
382                 update_avg("runtime", 0, &runtime_nsecs_avg, runtime_nsecs + i);
383                 update_avg("walltime", 0, &walltime_nsecs_avg, walltime_nsecs + i);
384                 update_avg("runtime_cycles", 0, &runtime_cycles_avg, runtime_cycles + i);
385
386                 for (j = 0; j < nr_counters; j++) {
387                         update_avg("counter/0", j,
388                                 event_res_avg[j]+0, event_res[i][j]+0);
389                         update_avg("counter/1", j,
390                                 event_res_avg[j]+1, event_res[i][j]+1);
391                         update_avg("counter/2", j,
392                                 event_res_avg[j]+2, event_res[i][j]+2);
393                         if (event_scaled[i][j] != -1)
394                                 update_avg("scaled", j,
395                                         event_scaled_avg + j, event_scaled[i]+j);
396                         else
397                                 event_scaled_avg[j] = -1;
398                 }
399         }
400         runtime_nsecs_avg /= run_count;
401         walltime_nsecs_avg /= run_count;
402         runtime_cycles_avg /= run_count;
403
404         for (j = 0; j < nr_counters; j++) {
405                 event_res_avg[j][0] /= run_count;
406                 event_res_avg[j][1] /= run_count;
407                 event_res_avg[j][2] /= run_count;
408         }
409
410         for (i = 0; i < run_count; i++) {
411                 runtime_nsecs_noise +=
412                         abs((s64)(runtime_nsecs[i] - runtime_nsecs_avg));
413                 walltime_nsecs_noise +=
414                         abs((s64)(walltime_nsecs[i] - walltime_nsecs_avg));
415                 runtime_cycles_noise +=
416                         abs((s64)(runtime_cycles[i] - runtime_cycles_avg));
417
418                 for (j = 0; j < nr_counters; j++) {
419                         event_res_noise[j][0] +=
420                                 abs((s64)(event_res[i][j][0] - event_res_avg[j][0]));
421                         event_res_noise[j][1] +=
422                                 abs((s64)(event_res[i][j][1] - event_res_avg[j][1]));
423                         event_res_noise[j][2] +=
424                                 abs((s64)(event_res[i][j][2] - event_res_avg[j][2]));
425                 }
426         }
427
428         normalize_noise(&runtime_nsecs_noise);
429         normalize_noise(&walltime_nsecs_noise);
430         normalize_noise(&runtime_cycles_noise);
431
432         for (j = 0; j < nr_counters; j++) {
433                 normalize_noise(&event_res_noise[j][0]);
434                 normalize_noise(&event_res_noise[j][1]);
435                 normalize_noise(&event_res_noise[j][2]);
436         }
437 }
438
439 static void print_stat(int argc, const char **argv)
440 {
441         int i, counter;
442
443         calc_avg();
444
445         fflush(stdout);
446
447         fprintf(stderr, "\n");
448         fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
449
450         for (i = 1; i < argc; i++)
451                 fprintf(stderr, " %s", argv[i]);
452
453         fprintf(stderr, "\'");
454         if (run_count > 1)
455                 fprintf(stderr, " (%d runs)", run_count);
456         fprintf(stderr, ":\n\n");
457
458         for (counter = 0; counter < nr_counters; counter++)
459                 print_counter(counter);
460
461         fprintf(stderr, "\n");
462         fprintf(stderr, " %14.9f  seconds time elapsed",
463                         (double)walltime_nsecs_avg/1e9);
464         if (run_count > 1) {
465                 fprintf(stderr, "   ( +- %7.3f%% )",
466                         100.0*(double)walltime_nsecs_noise/(double)walltime_nsecs_avg);
467         }
468         fprintf(stderr, "\n\n");
469 }
470
471 static volatile int signr = -1;
472
473 static void skip_signal(int signo)
474 {
475         signr = signo;
476 }
477
478 static void sig_atexit(void)
479 {
480         if (signr == -1)
481                 return;
482
483         signal(signr, SIG_DFL);
484         kill(getpid(), signr);
485 }
486
487 static const char * const stat_usage[] = {
488         "perf stat [<options>] <command>",
489         NULL
490 };
491
492 static const struct option options[] = {
493         OPT_CALLBACK('e', "event", NULL, "event",
494                      "event selector. use 'perf list' to list available events",
495                      parse_events),
496         OPT_BOOLEAN('i', "inherit", &inherit,
497                     "child tasks inherit counters"),
498         OPT_INTEGER('p', "pid", &target_pid,
499                     "stat events on existing pid"),
500         OPT_BOOLEAN('a', "all-cpus", &system_wide,
501                     "system-wide collection from all CPUs"),
502         OPT_BOOLEAN('S', "scale", &scale,
503                     "scale/normalize counters"),
504         OPT_BOOLEAN('v', "verbose", &verbose,
505                     "be more verbose (show counter open errors, etc)"),
506         OPT_INTEGER('r', "repeat", &run_count,
507                     "repeat command and print average + stddev (max: 100)"),
508         OPT_BOOLEAN('n', "null", &null_run,
509                     "null run - dont start any counters"),
510         OPT_END()
511 };
512
513 int cmd_stat(int argc, const char **argv, const char *prefix)
514 {
515         int status;
516
517         argc = parse_options(argc, argv, options, stat_usage, 0);
518         if (!argc)
519                 usage_with_options(stat_usage, options);
520         if (run_count <= 0 || run_count > MAX_RUN)
521                 usage_with_options(stat_usage, options);
522
523         /* Set attrs and nr_counters if no event is selected and !null_run */
524         if (!null_run && !nr_counters) {
525                 memcpy(attrs, default_attrs, sizeof(default_attrs));
526                 nr_counters = ARRAY_SIZE(default_attrs);
527         }
528
529         nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
530         assert(nr_cpus <= MAX_NR_CPUS);
531         assert(nr_cpus >= 0);
532
533         /*
534          * We dont want to block the signals - that would cause
535          * child tasks to inherit that and Ctrl-C would not work.
536          * What we want is for Ctrl-C to work in the exec()-ed
537          * task, but being ignored by perf stat itself:
538          */
539         atexit(sig_atexit);
540         signal(SIGINT,  skip_signal);
541         signal(SIGALRM, skip_signal);
542         signal(SIGABRT, skip_signal);
543
544         status = 0;
545         for (run_idx = 0; run_idx < run_count; run_idx++) {
546                 if (run_count != 1 && verbose)
547                         fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
548                 status = run_perf_stat(argc, argv);
549         }
550
551         print_stat(argc, argv);
552
553         return status;
554 }