Merge branches 'imx/pata' and 'imx/sata' into next/driver
[pandora-kernel.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9 #include "util/session.h"
10
11 #include "util/parse-options.h"
12 #include "util/trace-event.h"
13
14 #include "util/debug.h"
15
16 #include <sys/prctl.h>
17
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21
22 static char                     const *input_name = "perf.data";
23
24 static char                     default_sort_order[] = "avg, max, switch, runtime";
25 static const char               *sort_order = default_sort_order;
26
27 static int                      profile_cpu = -1;
28
29 #define PR_SET_NAME             15               /* Set process name */
30 #define MAX_CPUS                4096
31
32 static u64                      run_measurement_overhead;
33 static u64                      sleep_measurement_overhead;
34
35 #define COMM_LEN                20
36 #define SYM_LEN                 129
37
38 #define MAX_PID                 65536
39
40 static unsigned long            nr_tasks;
41
42 struct sched_atom;
43
44 struct task_desc {
45         unsigned long           nr;
46         unsigned long           pid;
47         char                    comm[COMM_LEN];
48
49         unsigned long           nr_events;
50         unsigned long           curr_event;
51         struct sched_atom       **atoms;
52
53         pthread_t               thread;
54         sem_t                   sleep_sem;
55
56         sem_t                   ready_for_work;
57         sem_t                   work_done_sem;
58
59         u64                     cpu_usage;
60 };
61
62 enum sched_event_type {
63         SCHED_EVENT_RUN,
64         SCHED_EVENT_SLEEP,
65         SCHED_EVENT_WAKEUP,
66         SCHED_EVENT_MIGRATION,
67 };
68
69 struct sched_atom {
70         enum sched_event_type   type;
71         int                     specific_wait;
72         u64                     timestamp;
73         u64                     duration;
74         unsigned long           nr;
75         sem_t                   *wait_sem;
76         struct task_desc        *wakee;
77 };
78
79 static struct task_desc         *pid_to_task[MAX_PID];
80
81 static struct task_desc         **tasks;
82
83 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
84 static u64                      start_time;
85
86 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
87
88 static unsigned long            nr_run_events;
89 static unsigned long            nr_sleep_events;
90 static unsigned long            nr_wakeup_events;
91
92 static unsigned long            nr_sleep_corrections;
93 static unsigned long            nr_run_events_optimized;
94
95 static unsigned long            targetless_wakeups;
96 static unsigned long            multitarget_wakeups;
97
98 static u64                      cpu_usage;
99 static u64                      runavg_cpu_usage;
100 static u64                      parent_cpu_usage;
101 static u64                      runavg_parent_cpu_usage;
102
103 static unsigned long            nr_runs;
104 static u64                      sum_runtime;
105 static u64                      sum_fluct;
106 static u64                      run_avg;
107
108 static unsigned int             replay_repeat = 10;
109 static unsigned long            nr_timestamps;
110 static unsigned long            nr_unordered_timestamps;
111 static unsigned long            nr_state_machine_bugs;
112 static unsigned long            nr_context_switch_bugs;
113 static unsigned long            nr_events;
114 static unsigned long            nr_lost_chunks;
115 static unsigned long            nr_lost_events;
116
117 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
118
119 enum thread_state {
120         THREAD_SLEEPING = 0,
121         THREAD_WAIT_CPU,
122         THREAD_SCHED_IN,
123         THREAD_IGNORE
124 };
125
126 struct work_atom {
127         struct list_head        list;
128         enum thread_state       state;
129         u64                     sched_out_time;
130         u64                     wake_up_time;
131         u64                     sched_in_time;
132         u64                     runtime;
133 };
134
135 struct work_atoms {
136         struct list_head        work_list;
137         struct thread           *thread;
138         struct rb_node          node;
139         u64                     max_lat;
140         u64                     max_lat_at;
141         u64                     total_lat;
142         u64                     nb_atoms;
143         u64                     total_runtime;
144 };
145
146 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
147
148 static struct rb_root           atom_root, sorted_atom_root;
149
150 static u64                      all_runtime;
151 static u64                      all_count;
152
153
154 static u64 get_nsecs(void)
155 {
156         struct timespec ts;
157
158         clock_gettime(CLOCK_MONOTONIC, &ts);
159
160         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
161 }
162
163 static void burn_nsecs(u64 nsecs)
164 {
165         u64 T0 = get_nsecs(), T1;
166
167         do {
168                 T1 = get_nsecs();
169         } while (T1 + run_measurement_overhead < T0 + nsecs);
170 }
171
172 static void sleep_nsecs(u64 nsecs)
173 {
174         struct timespec ts;
175
176         ts.tv_nsec = nsecs % 999999999;
177         ts.tv_sec = nsecs / 999999999;
178
179         nanosleep(&ts, NULL);
180 }
181
182 static void calibrate_run_measurement_overhead(void)
183 {
184         u64 T0, T1, delta, min_delta = 1000000000ULL;
185         int i;
186
187         for (i = 0; i < 10; i++) {
188                 T0 = get_nsecs();
189                 burn_nsecs(0);
190                 T1 = get_nsecs();
191                 delta = T1-T0;
192                 min_delta = min(min_delta, delta);
193         }
194         run_measurement_overhead = min_delta;
195
196         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
197 }
198
199 static void calibrate_sleep_measurement_overhead(void)
200 {
201         u64 T0, T1, delta, min_delta = 1000000000ULL;
202         int i;
203
204         for (i = 0; i < 10; i++) {
205                 T0 = get_nsecs();
206                 sleep_nsecs(10000);
207                 T1 = get_nsecs();
208                 delta = T1-T0;
209                 min_delta = min(min_delta, delta);
210         }
211         min_delta -= 10000;
212         sleep_measurement_overhead = min_delta;
213
214         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
215 }
216
217 static struct sched_atom *
218 get_new_event(struct task_desc *task, u64 timestamp)
219 {
220         struct sched_atom *event = zalloc(sizeof(*event));
221         unsigned long idx = task->nr_events;
222         size_t size;
223
224         event->timestamp = timestamp;
225         event->nr = idx;
226
227         task->nr_events++;
228         size = sizeof(struct sched_atom *) * task->nr_events;
229         task->atoms = realloc(task->atoms, size);
230         BUG_ON(!task->atoms);
231
232         task->atoms[idx] = event;
233
234         return event;
235 }
236
237 static struct sched_atom *last_event(struct task_desc *task)
238 {
239         if (!task->nr_events)
240                 return NULL;
241
242         return task->atoms[task->nr_events - 1];
243 }
244
245 static void
246 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
247 {
248         struct sched_atom *event, *curr_event = last_event(task);
249
250         /*
251          * optimize an existing RUN event by merging this one
252          * to it:
253          */
254         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
255                 nr_run_events_optimized++;
256                 curr_event->duration += duration;
257                 return;
258         }
259
260         event = get_new_event(task, timestamp);
261
262         event->type = SCHED_EVENT_RUN;
263         event->duration = duration;
264
265         nr_run_events++;
266 }
267
268 static void
269 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
270                        struct task_desc *wakee)
271 {
272         struct sched_atom *event, *wakee_event;
273
274         event = get_new_event(task, timestamp);
275         event->type = SCHED_EVENT_WAKEUP;
276         event->wakee = wakee;
277
278         wakee_event = last_event(wakee);
279         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
280                 targetless_wakeups++;
281                 return;
282         }
283         if (wakee_event->wait_sem) {
284                 multitarget_wakeups++;
285                 return;
286         }
287
288         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
289         sem_init(wakee_event->wait_sem, 0, 0);
290         wakee_event->specific_wait = 1;
291         event->wait_sem = wakee_event->wait_sem;
292
293         nr_wakeup_events++;
294 }
295
296 static void
297 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
298                       u64 task_state __used)
299 {
300         struct sched_atom *event = get_new_event(task, timestamp);
301
302         event->type = SCHED_EVENT_SLEEP;
303
304         nr_sleep_events++;
305 }
306
307 static struct task_desc *register_pid(unsigned long pid, const char *comm)
308 {
309         struct task_desc *task;
310
311         BUG_ON(pid >= MAX_PID);
312
313         task = pid_to_task[pid];
314
315         if (task)
316                 return task;
317
318         task = zalloc(sizeof(*task));
319         task->pid = pid;
320         task->nr = nr_tasks;
321         strcpy(task->comm, comm);
322         /*
323          * every task starts in sleeping state - this gets ignored
324          * if there's no wakeup pointing to this sleep state:
325          */
326         add_sched_event_sleep(task, 0, 0);
327
328         pid_to_task[pid] = task;
329         nr_tasks++;
330         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
331         BUG_ON(!tasks);
332         tasks[task->nr] = task;
333
334         if (verbose)
335                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
336
337         return task;
338 }
339
340
341 static void print_task_traces(void)
342 {
343         struct task_desc *task;
344         unsigned long i;
345
346         for (i = 0; i < nr_tasks; i++) {
347                 task = tasks[i];
348                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
349                         task->nr, task->comm, task->pid, task->nr_events);
350         }
351 }
352
353 static void add_cross_task_wakeups(void)
354 {
355         struct task_desc *task1, *task2;
356         unsigned long i, j;
357
358         for (i = 0; i < nr_tasks; i++) {
359                 task1 = tasks[i];
360                 j = i + 1;
361                 if (j == nr_tasks)
362                         j = 0;
363                 task2 = tasks[j];
364                 add_sched_event_wakeup(task1, 0, task2);
365         }
366 }
367
368 static void
369 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
370 {
371         int ret = 0;
372
373         switch (atom->type) {
374                 case SCHED_EVENT_RUN:
375                         burn_nsecs(atom->duration);
376                         break;
377                 case SCHED_EVENT_SLEEP:
378                         if (atom->wait_sem)
379                                 ret = sem_wait(atom->wait_sem);
380                         BUG_ON(ret);
381                         break;
382                 case SCHED_EVENT_WAKEUP:
383                         if (atom->wait_sem)
384                                 ret = sem_post(atom->wait_sem);
385                         BUG_ON(ret);
386                         break;
387                 case SCHED_EVENT_MIGRATION:
388                         break;
389                 default:
390                         BUG_ON(1);
391         }
392 }
393
394 static u64 get_cpu_usage_nsec_parent(void)
395 {
396         struct rusage ru;
397         u64 sum;
398         int err;
399
400         err = getrusage(RUSAGE_SELF, &ru);
401         BUG_ON(err);
402
403         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
404         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
405
406         return sum;
407 }
408
409 static int self_open_counters(void)
410 {
411         struct perf_event_attr attr;
412         int fd;
413
414         memset(&attr, 0, sizeof(attr));
415
416         attr.type = PERF_TYPE_SOFTWARE;
417         attr.config = PERF_COUNT_SW_TASK_CLOCK;
418
419         fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
420
421         if (fd < 0)
422                 die("Error: sys_perf_event_open() syscall returned"
423                     "with %d (%s)\n", fd, strerror(errno));
424         return fd;
425 }
426
427 static u64 get_cpu_usage_nsec_self(int fd)
428 {
429         u64 runtime;
430         int ret;
431
432         ret = read(fd, &runtime, sizeof(runtime));
433         BUG_ON(ret != sizeof(runtime));
434
435         return runtime;
436 }
437
438 static void *thread_func(void *ctx)
439 {
440         struct task_desc *this_task = ctx;
441         u64 cpu_usage_0, cpu_usage_1;
442         unsigned long i, ret;
443         char comm2[22];
444         int fd;
445
446         sprintf(comm2, ":%s", this_task->comm);
447         prctl(PR_SET_NAME, comm2);
448         fd = self_open_counters();
449
450 again:
451         ret = sem_post(&this_task->ready_for_work);
452         BUG_ON(ret);
453         ret = pthread_mutex_lock(&start_work_mutex);
454         BUG_ON(ret);
455         ret = pthread_mutex_unlock(&start_work_mutex);
456         BUG_ON(ret);
457
458         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
459
460         for (i = 0; i < this_task->nr_events; i++) {
461                 this_task->curr_event = i;
462                 process_sched_event(this_task, this_task->atoms[i]);
463         }
464
465         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
466         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
467         ret = sem_post(&this_task->work_done_sem);
468         BUG_ON(ret);
469
470         ret = pthread_mutex_lock(&work_done_wait_mutex);
471         BUG_ON(ret);
472         ret = pthread_mutex_unlock(&work_done_wait_mutex);
473         BUG_ON(ret);
474
475         goto again;
476 }
477
478 static void create_tasks(void)
479 {
480         struct task_desc *task;
481         pthread_attr_t attr;
482         unsigned long i;
483         int err;
484
485         err = pthread_attr_init(&attr);
486         BUG_ON(err);
487         err = pthread_attr_setstacksize(&attr,
488                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
489         BUG_ON(err);
490         err = pthread_mutex_lock(&start_work_mutex);
491         BUG_ON(err);
492         err = pthread_mutex_lock(&work_done_wait_mutex);
493         BUG_ON(err);
494         for (i = 0; i < nr_tasks; i++) {
495                 task = tasks[i];
496                 sem_init(&task->sleep_sem, 0, 0);
497                 sem_init(&task->ready_for_work, 0, 0);
498                 sem_init(&task->work_done_sem, 0, 0);
499                 task->curr_event = 0;
500                 err = pthread_create(&task->thread, &attr, thread_func, task);
501                 BUG_ON(err);
502         }
503 }
504
505 static void wait_for_tasks(void)
506 {
507         u64 cpu_usage_0, cpu_usage_1;
508         struct task_desc *task;
509         unsigned long i, ret;
510
511         start_time = get_nsecs();
512         cpu_usage = 0;
513         pthread_mutex_unlock(&work_done_wait_mutex);
514
515         for (i = 0; i < nr_tasks; i++) {
516                 task = tasks[i];
517                 ret = sem_wait(&task->ready_for_work);
518                 BUG_ON(ret);
519                 sem_init(&task->ready_for_work, 0, 0);
520         }
521         ret = pthread_mutex_lock(&work_done_wait_mutex);
522         BUG_ON(ret);
523
524         cpu_usage_0 = get_cpu_usage_nsec_parent();
525
526         pthread_mutex_unlock(&start_work_mutex);
527
528         for (i = 0; i < nr_tasks; i++) {
529                 task = tasks[i];
530                 ret = sem_wait(&task->work_done_sem);
531                 BUG_ON(ret);
532                 sem_init(&task->work_done_sem, 0, 0);
533                 cpu_usage += task->cpu_usage;
534                 task->cpu_usage = 0;
535         }
536
537         cpu_usage_1 = get_cpu_usage_nsec_parent();
538         if (!runavg_cpu_usage)
539                 runavg_cpu_usage = cpu_usage;
540         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
541
542         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
543         if (!runavg_parent_cpu_usage)
544                 runavg_parent_cpu_usage = parent_cpu_usage;
545         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
546                                    parent_cpu_usage)/10;
547
548         ret = pthread_mutex_lock(&start_work_mutex);
549         BUG_ON(ret);
550
551         for (i = 0; i < nr_tasks; i++) {
552                 task = tasks[i];
553                 sem_init(&task->sleep_sem, 0, 0);
554                 task->curr_event = 0;
555         }
556 }
557
558 static void run_one_test(void)
559 {
560         u64 T0, T1, delta, avg_delta, fluct;
561
562         T0 = get_nsecs();
563         wait_for_tasks();
564         T1 = get_nsecs();
565
566         delta = T1 - T0;
567         sum_runtime += delta;
568         nr_runs++;
569
570         avg_delta = sum_runtime / nr_runs;
571         if (delta < avg_delta)
572                 fluct = avg_delta - delta;
573         else
574                 fluct = delta - avg_delta;
575         sum_fluct += fluct;
576         if (!run_avg)
577                 run_avg = delta;
578         run_avg = (run_avg*9 + delta)/10;
579
580         printf("#%-3ld: %0.3f, ",
581                 nr_runs, (double)delta/1000000.0);
582
583         printf("ravg: %0.2f, ",
584                 (double)run_avg/1e6);
585
586         printf("cpu: %0.2f / %0.2f",
587                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
588
589 #if 0
590         /*
591          * rusage statistics done by the parent, these are less
592          * accurate than the sum_exec_runtime based statistics:
593          */
594         printf(" [%0.2f / %0.2f]",
595                 (double)parent_cpu_usage/1e6,
596                 (double)runavg_parent_cpu_usage/1e6);
597 #endif
598
599         printf("\n");
600
601         if (nr_sleep_corrections)
602                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
603         nr_sleep_corrections = 0;
604 }
605
606 static void test_calibrations(void)
607 {
608         u64 T0, T1;
609
610         T0 = get_nsecs();
611         burn_nsecs(1e6);
612         T1 = get_nsecs();
613
614         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
615
616         T0 = get_nsecs();
617         sleep_nsecs(1e6);
618         T1 = get_nsecs();
619
620         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
621 }
622
623 #define FILL_FIELD(ptr, field, event, data)     \
624         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
625
626 #define FILL_ARRAY(ptr, array, event, data)                     \
627 do {                                                            \
628         void *__array = raw_field_ptr(event, #array, data);     \
629         memcpy(ptr.array, __array, sizeof(ptr.array));  \
630 } while(0)
631
632 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
633 do {                                                            \
634         FILL_FIELD(ptr, common_type, event, data);              \
635         FILL_FIELD(ptr, common_flags, event, data);             \
636         FILL_FIELD(ptr, common_preempt_count, event, data);     \
637         FILL_FIELD(ptr, common_pid, event, data);               \
638         FILL_FIELD(ptr, common_tgid, event, data);              \
639 } while (0)
640
641
642
643 struct trace_switch_event {
644         u32 size;
645
646         u16 common_type;
647         u8 common_flags;
648         u8 common_preempt_count;
649         u32 common_pid;
650         u32 common_tgid;
651
652         char prev_comm[16];
653         u32 prev_pid;
654         u32 prev_prio;
655         u64 prev_state;
656         char next_comm[16];
657         u32 next_pid;
658         u32 next_prio;
659 };
660
661 struct trace_runtime_event {
662         u32 size;
663
664         u16 common_type;
665         u8 common_flags;
666         u8 common_preempt_count;
667         u32 common_pid;
668         u32 common_tgid;
669
670         char comm[16];
671         u32 pid;
672         u64 runtime;
673         u64 vruntime;
674 };
675
676 struct trace_wakeup_event {
677         u32 size;
678
679         u16 common_type;
680         u8 common_flags;
681         u8 common_preempt_count;
682         u32 common_pid;
683         u32 common_tgid;
684
685         char comm[16];
686         u32 pid;
687
688         u32 prio;
689         u32 success;
690         u32 cpu;
691 };
692
693 struct trace_fork_event {
694         u32 size;
695
696         u16 common_type;
697         u8 common_flags;
698         u8 common_preempt_count;
699         u32 common_pid;
700         u32 common_tgid;
701
702         char parent_comm[16];
703         u32 parent_pid;
704         char child_comm[16];
705         u32 child_pid;
706 };
707
708 struct trace_migrate_task_event {
709         u32 size;
710
711         u16 common_type;
712         u8 common_flags;
713         u8 common_preempt_count;
714         u32 common_pid;
715         u32 common_tgid;
716
717         char comm[16];
718         u32 pid;
719
720         u32 prio;
721         u32 cpu;
722 };
723
724 struct trace_sched_handler {
725         void (*switch_event)(struct trace_switch_event *,
726                              struct perf_session *,
727                              struct event *,
728                              int cpu,
729                              u64 timestamp,
730                              struct thread *thread);
731
732         void (*runtime_event)(struct trace_runtime_event *,
733                               struct perf_session *,
734                               struct event *,
735                               int cpu,
736                               u64 timestamp,
737                               struct thread *thread);
738
739         void (*wakeup_event)(struct trace_wakeup_event *,
740                              struct perf_session *,
741                              struct event *,
742                              int cpu,
743                              u64 timestamp,
744                              struct thread *thread);
745
746         void (*fork_event)(struct trace_fork_event *,
747                            struct event *,
748                            int cpu,
749                            u64 timestamp,
750                            struct thread *thread);
751
752         void (*migrate_task_event)(struct trace_migrate_task_event *,
753                            struct perf_session *session,
754                            struct event *,
755                            int cpu,
756                            u64 timestamp,
757                            struct thread *thread);
758 };
759
760
761 static void
762 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
763                     struct perf_session *session __used,
764                     struct event *event,
765                     int cpu __used,
766                     u64 timestamp __used,
767                     struct thread *thread __used)
768 {
769         struct task_desc *waker, *wakee;
770
771         if (verbose) {
772                 printf("sched_wakeup event %p\n", event);
773
774                 printf(" ... pid %d woke up %s/%d\n",
775                         wakeup_event->common_pid,
776                         wakeup_event->comm,
777                         wakeup_event->pid);
778         }
779
780         waker = register_pid(wakeup_event->common_pid, "<unknown>");
781         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
782
783         add_sched_event_wakeup(waker, timestamp, wakee);
784 }
785
786 static u64 cpu_last_switched[MAX_CPUS];
787
788 static void
789 replay_switch_event(struct trace_switch_event *switch_event,
790                     struct perf_session *session __used,
791                     struct event *event,
792                     int cpu,
793                     u64 timestamp,
794                     struct thread *thread __used)
795 {
796         struct task_desc *prev, __used *next;
797         u64 timestamp0;
798         s64 delta;
799
800         if (verbose)
801                 printf("sched_switch event %p\n", event);
802
803         if (cpu >= MAX_CPUS || cpu < 0)
804                 return;
805
806         timestamp0 = cpu_last_switched[cpu];
807         if (timestamp0)
808                 delta = timestamp - timestamp0;
809         else
810                 delta = 0;
811
812         if (delta < 0)
813                 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
814
815         if (verbose) {
816                 printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
817                         switch_event->prev_comm, switch_event->prev_pid,
818                         switch_event->next_comm, switch_event->next_pid,
819                         delta);
820         }
821
822         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
823         next = register_pid(switch_event->next_pid, switch_event->next_comm);
824
825         cpu_last_switched[cpu] = timestamp;
826
827         add_sched_event_run(prev, timestamp, delta);
828         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
829 }
830
831
832 static void
833 replay_fork_event(struct trace_fork_event *fork_event,
834                   struct event *event,
835                   int cpu __used,
836                   u64 timestamp __used,
837                   struct thread *thread __used)
838 {
839         if (verbose) {
840                 printf("sched_fork event %p\n", event);
841                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
842                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
843         }
844         register_pid(fork_event->parent_pid, fork_event->parent_comm);
845         register_pid(fork_event->child_pid, fork_event->child_comm);
846 }
847
848 static struct trace_sched_handler replay_ops  = {
849         .wakeup_event           = replay_wakeup_event,
850         .switch_event           = replay_switch_event,
851         .fork_event             = replay_fork_event,
852 };
853
854 struct sort_dimension {
855         const char              *name;
856         sort_fn_t               cmp;
857         struct list_head        list;
858 };
859
860 static LIST_HEAD(cmp_pid);
861
862 static int
863 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
864 {
865         struct sort_dimension *sort;
866         int ret = 0;
867
868         BUG_ON(list_empty(list));
869
870         list_for_each_entry(sort, list, list) {
871                 ret = sort->cmp(l, r);
872                 if (ret)
873                         return ret;
874         }
875
876         return ret;
877 }
878
879 static struct work_atoms *
880 thread_atoms_search(struct rb_root *root, struct thread *thread,
881                          struct list_head *sort_list)
882 {
883         struct rb_node *node = root->rb_node;
884         struct work_atoms key = { .thread = thread };
885
886         while (node) {
887                 struct work_atoms *atoms;
888                 int cmp;
889
890                 atoms = container_of(node, struct work_atoms, node);
891
892                 cmp = thread_lat_cmp(sort_list, &key, atoms);
893                 if (cmp > 0)
894                         node = node->rb_left;
895                 else if (cmp < 0)
896                         node = node->rb_right;
897                 else {
898                         BUG_ON(thread != atoms->thread);
899                         return atoms;
900                 }
901         }
902         return NULL;
903 }
904
905 static void
906 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
907                          struct list_head *sort_list)
908 {
909         struct rb_node **new = &(root->rb_node), *parent = NULL;
910
911         while (*new) {
912                 struct work_atoms *this;
913                 int cmp;
914
915                 this = container_of(*new, struct work_atoms, node);
916                 parent = *new;
917
918                 cmp = thread_lat_cmp(sort_list, data, this);
919
920                 if (cmp > 0)
921                         new = &((*new)->rb_left);
922                 else
923                         new = &((*new)->rb_right);
924         }
925
926         rb_link_node(&data->node, parent, new);
927         rb_insert_color(&data->node, root);
928 }
929
930 static void thread_atoms_insert(struct thread *thread)
931 {
932         struct work_atoms *atoms = zalloc(sizeof(*atoms));
933         if (!atoms)
934                 die("No memory");
935
936         atoms->thread = thread;
937         INIT_LIST_HEAD(&atoms->work_list);
938         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
939 }
940
941 static void
942 latency_fork_event(struct trace_fork_event *fork_event __used,
943                    struct event *event __used,
944                    int cpu __used,
945                    u64 timestamp __used,
946                    struct thread *thread __used)
947 {
948         /* should insert the newcomer */
949 }
950
951 __used
952 static char sched_out_state(struct trace_switch_event *switch_event)
953 {
954         const char *str = TASK_STATE_TO_CHAR_STR;
955
956         return str[switch_event->prev_state];
957 }
958
959 static void
960 add_sched_out_event(struct work_atoms *atoms,
961                     char run_state,
962                     u64 timestamp)
963 {
964         struct work_atom *atom = zalloc(sizeof(*atom));
965         if (!atom)
966                 die("Non memory");
967
968         atom->sched_out_time = timestamp;
969
970         if (run_state == 'R') {
971                 atom->state = THREAD_WAIT_CPU;
972                 atom->wake_up_time = atom->sched_out_time;
973         }
974
975         list_add_tail(&atom->list, &atoms->work_list);
976 }
977
978 static void
979 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
980 {
981         struct work_atom *atom;
982
983         BUG_ON(list_empty(&atoms->work_list));
984
985         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
986
987         atom->runtime += delta;
988         atoms->total_runtime += delta;
989 }
990
991 static void
992 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
993 {
994         struct work_atom *atom;
995         u64 delta;
996
997         if (list_empty(&atoms->work_list))
998                 return;
999
1000         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1001
1002         if (atom->state != THREAD_WAIT_CPU)
1003                 return;
1004
1005         if (timestamp < atom->wake_up_time) {
1006                 atom->state = THREAD_IGNORE;
1007                 return;
1008         }
1009
1010         atom->state = THREAD_SCHED_IN;
1011         atom->sched_in_time = timestamp;
1012
1013         delta = atom->sched_in_time - atom->wake_up_time;
1014         atoms->total_lat += delta;
1015         if (delta > atoms->max_lat) {
1016                 atoms->max_lat = delta;
1017                 atoms->max_lat_at = timestamp;
1018         }
1019         atoms->nb_atoms++;
1020 }
1021
1022 static void
1023 latency_switch_event(struct trace_switch_event *switch_event,
1024                      struct perf_session *session,
1025                      struct event *event __used,
1026                      int cpu,
1027                      u64 timestamp,
1028                      struct thread *thread __used)
1029 {
1030         struct work_atoms *out_events, *in_events;
1031         struct thread *sched_out, *sched_in;
1032         u64 timestamp0;
1033         s64 delta;
1034
1035         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1036
1037         timestamp0 = cpu_last_switched[cpu];
1038         cpu_last_switched[cpu] = timestamp;
1039         if (timestamp0)
1040                 delta = timestamp - timestamp0;
1041         else
1042                 delta = 0;
1043
1044         if (delta < 0)
1045                 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1046
1047
1048         sched_out = perf_session__findnew(session, switch_event->prev_pid);
1049         sched_in = perf_session__findnew(session, switch_event->next_pid);
1050
1051         out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1052         if (!out_events) {
1053                 thread_atoms_insert(sched_out);
1054                 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1055                 if (!out_events)
1056                         die("out-event: Internal tree error");
1057         }
1058         add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1059
1060         in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1061         if (!in_events) {
1062                 thread_atoms_insert(sched_in);
1063                 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1064                 if (!in_events)
1065                         die("in-event: Internal tree error");
1066                 /*
1067                  * Take came in we have not heard about yet,
1068                  * add in an initial atom in runnable state:
1069                  */
1070                 add_sched_out_event(in_events, 'R', timestamp);
1071         }
1072         add_sched_in_event(in_events, timestamp);
1073 }
1074
1075 static void
1076 latency_runtime_event(struct trace_runtime_event *runtime_event,
1077                      struct perf_session *session,
1078                      struct event *event __used,
1079                      int cpu,
1080                      u64 timestamp,
1081                      struct thread *this_thread __used)
1082 {
1083         struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1084         struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1085
1086         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1087         if (!atoms) {
1088                 thread_atoms_insert(thread);
1089                 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1090                 if (!atoms)
1091                         die("in-event: Internal tree error");
1092                 add_sched_out_event(atoms, 'R', timestamp);
1093         }
1094
1095         add_runtime_event(atoms, runtime_event->runtime, timestamp);
1096 }
1097
1098 static void
1099 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1100                      struct perf_session *session,
1101                      struct event *__event __used,
1102                      int cpu __used,
1103                      u64 timestamp,
1104                      struct thread *thread __used)
1105 {
1106         struct work_atoms *atoms;
1107         struct work_atom *atom;
1108         struct thread *wakee;
1109
1110         /* Note for later, it may be interesting to observe the failing cases */
1111         if (!wakeup_event->success)
1112                 return;
1113
1114         wakee = perf_session__findnew(session, wakeup_event->pid);
1115         atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1116         if (!atoms) {
1117                 thread_atoms_insert(wakee);
1118                 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1119                 if (!atoms)
1120                         die("wakeup-event: Internal tree error");
1121                 add_sched_out_event(atoms, 'S', timestamp);
1122         }
1123
1124         BUG_ON(list_empty(&atoms->work_list));
1125
1126         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1127
1128         /*
1129          * You WILL be missing events if you've recorded only
1130          * one CPU, or are only looking at only one, so don't
1131          * make useless noise.
1132          */
1133         if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1134                 nr_state_machine_bugs++;
1135
1136         nr_timestamps++;
1137         if (atom->sched_out_time > timestamp) {
1138                 nr_unordered_timestamps++;
1139                 return;
1140         }
1141
1142         atom->state = THREAD_WAIT_CPU;
1143         atom->wake_up_time = timestamp;
1144 }
1145
1146 static void
1147 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1148                      struct perf_session *session,
1149                      struct event *__event __used,
1150                      int cpu __used,
1151                      u64 timestamp,
1152                      struct thread *thread __used)
1153 {
1154         struct work_atoms *atoms;
1155         struct work_atom *atom;
1156         struct thread *migrant;
1157
1158         /*
1159          * Only need to worry about migration when profiling one CPU.
1160          */
1161         if (profile_cpu == -1)
1162                 return;
1163
1164         migrant = perf_session__findnew(session, migrate_task_event->pid);
1165         atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1166         if (!atoms) {
1167                 thread_atoms_insert(migrant);
1168                 register_pid(migrant->pid, migrant->comm);
1169                 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1170                 if (!atoms)
1171                         die("migration-event: Internal tree error");
1172                 add_sched_out_event(atoms, 'R', timestamp);
1173         }
1174
1175         BUG_ON(list_empty(&atoms->work_list));
1176
1177         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1178         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1179
1180         nr_timestamps++;
1181
1182         if (atom->sched_out_time > timestamp)
1183                 nr_unordered_timestamps++;
1184 }
1185
1186 static struct trace_sched_handler lat_ops  = {
1187         .wakeup_event           = latency_wakeup_event,
1188         .switch_event           = latency_switch_event,
1189         .runtime_event          = latency_runtime_event,
1190         .fork_event             = latency_fork_event,
1191         .migrate_task_event     = latency_migrate_task_event,
1192 };
1193
1194 static void output_lat_thread(struct work_atoms *work_list)
1195 {
1196         int i;
1197         int ret;
1198         u64 avg;
1199
1200         if (!work_list->nb_atoms)
1201                 return;
1202         /*
1203          * Ignore idle threads:
1204          */
1205         if (!strcmp(work_list->thread->comm, "swapper"))
1206                 return;
1207
1208         all_runtime += work_list->total_runtime;
1209         all_count += work_list->nb_atoms;
1210
1211         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1212
1213         for (i = 0; i < 24 - ret; i++)
1214                 printf(" ");
1215
1216         avg = work_list->total_lat / work_list->nb_atoms;
1217
1218         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1219               (double)work_list->total_runtime / 1e6,
1220                  work_list->nb_atoms, (double)avg / 1e6,
1221                  (double)work_list->max_lat / 1e6,
1222                  (double)work_list->max_lat_at / 1e9);
1223 }
1224
1225 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1226 {
1227         if (l->thread->pid < r->thread->pid)
1228                 return -1;
1229         if (l->thread->pid > r->thread->pid)
1230                 return 1;
1231
1232         return 0;
1233 }
1234
1235 static struct sort_dimension pid_sort_dimension = {
1236         .name                   = "pid",
1237         .cmp                    = pid_cmp,
1238 };
1239
1240 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1241 {
1242         u64 avgl, avgr;
1243
1244         if (!l->nb_atoms)
1245                 return -1;
1246
1247         if (!r->nb_atoms)
1248                 return 1;
1249
1250         avgl = l->total_lat / l->nb_atoms;
1251         avgr = r->total_lat / r->nb_atoms;
1252
1253         if (avgl < avgr)
1254                 return -1;
1255         if (avgl > avgr)
1256                 return 1;
1257
1258         return 0;
1259 }
1260
1261 static struct sort_dimension avg_sort_dimension = {
1262         .name                   = "avg",
1263         .cmp                    = avg_cmp,
1264 };
1265
1266 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1267 {
1268         if (l->max_lat < r->max_lat)
1269                 return -1;
1270         if (l->max_lat > r->max_lat)
1271                 return 1;
1272
1273         return 0;
1274 }
1275
1276 static struct sort_dimension max_sort_dimension = {
1277         .name                   = "max",
1278         .cmp                    = max_cmp,
1279 };
1280
1281 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1282 {
1283         if (l->nb_atoms < r->nb_atoms)
1284                 return -1;
1285         if (l->nb_atoms > r->nb_atoms)
1286                 return 1;
1287
1288         return 0;
1289 }
1290
1291 static struct sort_dimension switch_sort_dimension = {
1292         .name                   = "switch",
1293         .cmp                    = switch_cmp,
1294 };
1295
1296 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1297 {
1298         if (l->total_runtime < r->total_runtime)
1299                 return -1;
1300         if (l->total_runtime > r->total_runtime)
1301                 return 1;
1302
1303         return 0;
1304 }
1305
1306 static struct sort_dimension runtime_sort_dimension = {
1307         .name                   = "runtime",
1308         .cmp                    = runtime_cmp,
1309 };
1310
1311 static struct sort_dimension *available_sorts[] = {
1312         &pid_sort_dimension,
1313         &avg_sort_dimension,
1314         &max_sort_dimension,
1315         &switch_sort_dimension,
1316         &runtime_sort_dimension,
1317 };
1318
1319 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1320
1321 static LIST_HEAD(sort_list);
1322
1323 static int sort_dimension__add(const char *tok, struct list_head *list)
1324 {
1325         int i;
1326
1327         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1328                 if (!strcmp(available_sorts[i]->name, tok)) {
1329                         list_add_tail(&available_sorts[i]->list, list);
1330
1331                         return 0;
1332                 }
1333         }
1334
1335         return -1;
1336 }
1337
1338 static void setup_sorting(void);
1339
1340 static void sort_lat(void)
1341 {
1342         struct rb_node *node;
1343
1344         for (;;) {
1345                 struct work_atoms *data;
1346                 node = rb_first(&atom_root);
1347                 if (!node)
1348                         break;
1349
1350                 rb_erase(node, &atom_root);
1351                 data = rb_entry(node, struct work_atoms, node);
1352                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1353         }
1354 }
1355
1356 static struct trace_sched_handler *trace_handler;
1357
1358 static void
1359 process_sched_wakeup_event(void *data, struct perf_session *session,
1360                            struct event *event,
1361                            int cpu __used,
1362                            u64 timestamp __used,
1363                            struct thread *thread __used)
1364 {
1365         struct trace_wakeup_event wakeup_event;
1366
1367         FILL_COMMON_FIELDS(wakeup_event, event, data);
1368
1369         FILL_ARRAY(wakeup_event, comm, event, data);
1370         FILL_FIELD(wakeup_event, pid, event, data);
1371         FILL_FIELD(wakeup_event, prio, event, data);
1372         FILL_FIELD(wakeup_event, success, event, data);
1373         FILL_FIELD(wakeup_event, cpu, event, data);
1374
1375         if (trace_handler->wakeup_event)
1376                 trace_handler->wakeup_event(&wakeup_event, session, event,
1377                                             cpu, timestamp, thread);
1378 }
1379
1380 /*
1381  * Track the current task - that way we can know whether there's any
1382  * weird events, such as a task being switched away that is not current.
1383  */
1384 static int max_cpu;
1385
1386 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1387
1388 static struct thread *curr_thread[MAX_CPUS];
1389
1390 static char next_shortname1 = 'A';
1391 static char next_shortname2 = '0';
1392
1393 static void
1394 map_switch_event(struct trace_switch_event *switch_event,
1395                  struct perf_session *session,
1396                  struct event *event __used,
1397                  int this_cpu,
1398                  u64 timestamp,
1399                  struct thread *thread __used)
1400 {
1401         struct thread *sched_out __used, *sched_in;
1402         int new_shortname;
1403         u64 timestamp0;
1404         s64 delta;
1405         int cpu;
1406
1407         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1408
1409         if (this_cpu > max_cpu)
1410                 max_cpu = this_cpu;
1411
1412         timestamp0 = cpu_last_switched[this_cpu];
1413         cpu_last_switched[this_cpu] = timestamp;
1414         if (timestamp0)
1415                 delta = timestamp - timestamp0;
1416         else
1417                 delta = 0;
1418
1419         if (delta < 0)
1420                 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1421
1422
1423         sched_out = perf_session__findnew(session, switch_event->prev_pid);
1424         sched_in = perf_session__findnew(session, switch_event->next_pid);
1425
1426         curr_thread[this_cpu] = sched_in;
1427
1428         printf("  ");
1429
1430         new_shortname = 0;
1431         if (!sched_in->shortname[0]) {
1432                 sched_in->shortname[0] = next_shortname1;
1433                 sched_in->shortname[1] = next_shortname2;
1434
1435                 if (next_shortname1 < 'Z') {
1436                         next_shortname1++;
1437                 } else {
1438                         next_shortname1='A';
1439                         if (next_shortname2 < '9') {
1440                                 next_shortname2++;
1441                         } else {
1442                                 next_shortname2='0';
1443                         }
1444                 }
1445                 new_shortname = 1;
1446         }
1447
1448         for (cpu = 0; cpu <= max_cpu; cpu++) {
1449                 if (cpu != this_cpu)
1450                         printf(" ");
1451                 else
1452                         printf("*");
1453
1454                 if (curr_thread[cpu]) {
1455                         if (curr_thread[cpu]->pid)
1456                                 printf("%2s ", curr_thread[cpu]->shortname);
1457                         else
1458                                 printf(".  ");
1459                 } else
1460                         printf("   ");
1461         }
1462
1463         printf("  %12.6f secs ", (double)timestamp/1e9);
1464         if (new_shortname) {
1465                 printf("%s => %s:%d\n",
1466                         sched_in->shortname, sched_in->comm, sched_in->pid);
1467         } else {
1468                 printf("\n");
1469         }
1470 }
1471
1472
1473 static void
1474 process_sched_switch_event(void *data, struct perf_session *session,
1475                            struct event *event,
1476                            int this_cpu,
1477                            u64 timestamp __used,
1478                            struct thread *thread __used)
1479 {
1480         struct trace_switch_event switch_event;
1481
1482         FILL_COMMON_FIELDS(switch_event, event, data);
1483
1484         FILL_ARRAY(switch_event, prev_comm, event, data);
1485         FILL_FIELD(switch_event, prev_pid, event, data);
1486         FILL_FIELD(switch_event, prev_prio, event, data);
1487         FILL_FIELD(switch_event, prev_state, event, data);
1488         FILL_ARRAY(switch_event, next_comm, event, data);
1489         FILL_FIELD(switch_event, next_pid, event, data);
1490         FILL_FIELD(switch_event, next_prio, event, data);
1491
1492         if (curr_pid[this_cpu] != (u32)-1) {
1493                 /*
1494                  * Are we trying to switch away a PID that is
1495                  * not current?
1496                  */
1497                 if (curr_pid[this_cpu] != switch_event.prev_pid)
1498                         nr_context_switch_bugs++;
1499         }
1500         if (trace_handler->switch_event)
1501                 trace_handler->switch_event(&switch_event, session, event,
1502                                             this_cpu, timestamp, thread);
1503
1504         curr_pid[this_cpu] = switch_event.next_pid;
1505 }
1506
1507 static void
1508 process_sched_runtime_event(void *data, struct perf_session *session,
1509                            struct event *event,
1510                            int cpu __used,
1511                            u64 timestamp __used,
1512                            struct thread *thread __used)
1513 {
1514         struct trace_runtime_event runtime_event;
1515
1516         FILL_ARRAY(runtime_event, comm, event, data);
1517         FILL_FIELD(runtime_event, pid, event, data);
1518         FILL_FIELD(runtime_event, runtime, event, data);
1519         FILL_FIELD(runtime_event, vruntime, event, data);
1520
1521         if (trace_handler->runtime_event)
1522                 trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1523 }
1524
1525 static void
1526 process_sched_fork_event(void *data,
1527                          struct event *event,
1528                          int cpu __used,
1529                          u64 timestamp __used,
1530                          struct thread *thread __used)
1531 {
1532         struct trace_fork_event fork_event;
1533
1534         FILL_COMMON_FIELDS(fork_event, event, data);
1535
1536         FILL_ARRAY(fork_event, parent_comm, event, data);
1537         FILL_FIELD(fork_event, parent_pid, event, data);
1538         FILL_ARRAY(fork_event, child_comm, event, data);
1539         FILL_FIELD(fork_event, child_pid, event, data);
1540
1541         if (trace_handler->fork_event)
1542                 trace_handler->fork_event(&fork_event, event,
1543                                           cpu, timestamp, thread);
1544 }
1545
1546 static void
1547 process_sched_exit_event(struct event *event,
1548                          int cpu __used,
1549                          u64 timestamp __used,
1550                          struct thread *thread __used)
1551 {
1552         if (verbose)
1553                 printf("sched_exit event %p\n", event);
1554 }
1555
1556 static void
1557 process_sched_migrate_task_event(void *data, struct perf_session *session,
1558                            struct event *event,
1559                            int cpu __used,
1560                            u64 timestamp __used,
1561                            struct thread *thread __used)
1562 {
1563         struct trace_migrate_task_event migrate_task_event;
1564
1565         FILL_COMMON_FIELDS(migrate_task_event, event, data);
1566
1567         FILL_ARRAY(migrate_task_event, comm, event, data);
1568         FILL_FIELD(migrate_task_event, pid, event, data);
1569         FILL_FIELD(migrate_task_event, prio, event, data);
1570         FILL_FIELD(migrate_task_event, cpu, event, data);
1571
1572         if (trace_handler->migrate_task_event)
1573                 trace_handler->migrate_task_event(&migrate_task_event, session,
1574                                                  event, cpu, timestamp, thread);
1575 }
1576
1577 static void process_raw_event(union perf_event *raw_event __used,
1578                               struct perf_session *session, void *data, int cpu,
1579                               u64 timestamp, struct thread *thread)
1580 {
1581         struct event *event;
1582         int type;
1583
1584
1585         type = trace_parse_common_type(data);
1586         event = trace_find_event(type);
1587
1588         if (!strcmp(event->name, "sched_switch"))
1589                 process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1590         if (!strcmp(event->name, "sched_stat_runtime"))
1591                 process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1592         if (!strcmp(event->name, "sched_wakeup"))
1593                 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1594         if (!strcmp(event->name, "sched_wakeup_new"))
1595                 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1596         if (!strcmp(event->name, "sched_process_fork"))
1597                 process_sched_fork_event(data, event, cpu, timestamp, thread);
1598         if (!strcmp(event->name, "sched_process_exit"))
1599                 process_sched_exit_event(event, cpu, timestamp, thread);
1600         if (!strcmp(event->name, "sched_migrate_task"))
1601                 process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1602 }
1603
1604 static int process_sample_event(union perf_event *event,
1605                                 struct perf_sample *sample,
1606                                 struct perf_evsel *evsel __used,
1607                                 struct perf_session *session)
1608 {
1609         struct thread *thread;
1610
1611         if (!(session->sample_type & PERF_SAMPLE_RAW))
1612                 return 0;
1613
1614         thread = perf_session__findnew(session, sample->pid);
1615         if (thread == NULL) {
1616                 pr_debug("problem processing %d event, skipping it.\n",
1617                          event->header.type);
1618                 return -1;
1619         }
1620
1621         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1622
1623         if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
1624                 return 0;
1625
1626         process_raw_event(event, session, sample->raw_data, sample->cpu,
1627                           sample->time, thread);
1628
1629         return 0;
1630 }
1631
1632 static struct perf_event_ops event_ops = {
1633         .sample                 = process_sample_event,
1634         .comm                   = perf_event__process_comm,
1635         .lost                   = perf_event__process_lost,
1636         .fork                   = perf_event__process_task,
1637         .ordered_samples        = true,
1638 };
1639
1640 static void read_events(bool destroy, struct perf_session **psession)
1641 {
1642         int err = -EINVAL;
1643         struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644                                                          0, false, &event_ops);
1645         if (session == NULL)
1646                 die("No Memory");
1647
1648         if (perf_session__has_traces(session, "record -R")) {
1649                 err = perf_session__process_events(session, &event_ops);
1650                 if (err)
1651                         die("Failed to process events, error %d", err);
1652
1653                 nr_events      = session->hists.stats.nr_events[0];
1654                 nr_lost_events = session->hists.stats.total_lost;
1655                 nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1656         }
1657
1658         if (destroy)
1659                 perf_session__delete(session);
1660
1661         if (psession)
1662                 *psession = session;
1663 }
1664
1665 static void print_bad_events(void)
1666 {
1667         if (nr_unordered_timestamps && nr_timestamps) {
1668                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1669                         (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1670                         nr_unordered_timestamps, nr_timestamps);
1671         }
1672         if (nr_lost_events && nr_events) {
1673                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1674                         (double)nr_lost_events/(double)nr_events*100.0,
1675                         nr_lost_events, nr_events, nr_lost_chunks);
1676         }
1677         if (nr_state_machine_bugs && nr_timestamps) {
1678                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1679                         (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1680                         nr_state_machine_bugs, nr_timestamps);
1681                 if (nr_lost_events)
1682                         printf(" (due to lost events?)");
1683                 printf("\n");
1684         }
1685         if (nr_context_switch_bugs && nr_timestamps) {
1686                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1687                         (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1688                         nr_context_switch_bugs, nr_timestamps);
1689                 if (nr_lost_events)
1690                         printf(" (due to lost events?)");
1691                 printf("\n");
1692         }
1693 }
1694
1695 static void __cmd_lat(void)
1696 {
1697         struct rb_node *next;
1698         struct perf_session *session;
1699
1700         setup_pager();
1701         read_events(false, &session);
1702         sort_lat();
1703
1704         printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1705         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1706         printf(" ---------------------------------------------------------------------------------------------------------------\n");
1707
1708         next = rb_first(&sorted_atom_root);
1709
1710         while (next) {
1711                 struct work_atoms *work_list;
1712
1713                 work_list = rb_entry(next, struct work_atoms, node);
1714                 output_lat_thread(work_list);
1715                 next = rb_next(next);
1716         }
1717
1718         printf(" -----------------------------------------------------------------------------------------\n");
1719         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1720                 (double)all_runtime/1e6, all_count);
1721
1722         printf(" ---------------------------------------------------\n");
1723
1724         print_bad_events();
1725         printf("\n");
1726
1727         perf_session__delete(session);
1728 }
1729
1730 static struct trace_sched_handler map_ops  = {
1731         .wakeup_event           = NULL,
1732         .switch_event           = map_switch_event,
1733         .runtime_event          = NULL,
1734         .fork_event             = NULL,
1735 };
1736
1737 static void __cmd_map(void)
1738 {
1739         max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1740
1741         setup_pager();
1742         read_events(true, NULL);
1743         print_bad_events();
1744 }
1745
1746 static void __cmd_replay(void)
1747 {
1748         unsigned long i;
1749
1750         calibrate_run_measurement_overhead();
1751         calibrate_sleep_measurement_overhead();
1752
1753         test_calibrations();
1754
1755         read_events(true, NULL);
1756
1757         printf("nr_run_events:        %ld\n", nr_run_events);
1758         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1759         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1760
1761         if (targetless_wakeups)
1762                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
1763         if (multitarget_wakeups)
1764                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1765         if (nr_run_events_optimized)
1766                 printf("run atoms optimized: %ld\n",
1767                         nr_run_events_optimized);
1768
1769         print_task_traces();
1770         add_cross_task_wakeups();
1771
1772         create_tasks();
1773         printf("------------------------------------------------------------\n");
1774         for (i = 0; i < replay_repeat; i++)
1775                 run_one_test();
1776 }
1777
1778
1779 static const char * const sched_usage[] = {
1780         "perf sched [<options>] {record|latency|map|replay|script}",
1781         NULL
1782 };
1783
1784 static const struct option sched_options[] = {
1785         OPT_STRING('i', "input", &input_name, "file",
1786                     "input file name"),
1787         OPT_INCR('v', "verbose", &verbose,
1788                     "be more verbose (show symbol address, etc)"),
1789         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1790                     "dump raw trace in ASCII"),
1791         OPT_END()
1792 };
1793
1794 static const char * const latency_usage[] = {
1795         "perf sched latency [<options>]",
1796         NULL
1797 };
1798
1799 static const struct option latency_options[] = {
1800         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1801                    "sort by key(s): runtime, switch, avg, max"),
1802         OPT_INCR('v', "verbose", &verbose,
1803                     "be more verbose (show symbol address, etc)"),
1804         OPT_INTEGER('C', "CPU", &profile_cpu,
1805                     "CPU to profile on"),
1806         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1807                     "dump raw trace in ASCII"),
1808         OPT_END()
1809 };
1810
1811 static const char * const replay_usage[] = {
1812         "perf sched replay [<options>]",
1813         NULL
1814 };
1815
1816 static const struct option replay_options[] = {
1817         OPT_UINTEGER('r', "repeat", &replay_repeat,
1818                      "repeat the workload replay N times (-1: infinite)"),
1819         OPT_INCR('v', "verbose", &verbose,
1820                     "be more verbose (show symbol address, etc)"),
1821         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1822                     "dump raw trace in ASCII"),
1823         OPT_END()
1824 };
1825
1826 static void setup_sorting(void)
1827 {
1828         char *tmp, *tok, *str = strdup(sort_order);
1829
1830         for (tok = strtok_r(str, ", ", &tmp);
1831                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1832                 if (sort_dimension__add(tok, &sort_list) < 0) {
1833                         error("Unknown --sort key: `%s'", tok);
1834                         usage_with_options(latency_usage, latency_options);
1835                 }
1836         }
1837
1838         free(str);
1839
1840         sort_dimension__add("pid", &cmp_pid);
1841 }
1842
1843 static const char *record_args[] = {
1844         "record",
1845         "-a",
1846         "-R",
1847         "-f",
1848         "-m", "1024",
1849         "-c", "1",
1850         "-e", "sched:sched_switch",
1851         "-e", "sched:sched_stat_wait",
1852         "-e", "sched:sched_stat_sleep",
1853         "-e", "sched:sched_stat_iowait",
1854         "-e", "sched:sched_stat_runtime",
1855         "-e", "sched:sched_process_exit",
1856         "-e", "sched:sched_process_fork",
1857         "-e", "sched:sched_wakeup",
1858         "-e", "sched:sched_migrate_task",
1859 };
1860
1861 static int __cmd_record(int argc, const char **argv)
1862 {
1863         unsigned int rec_argc, i, j;
1864         const char **rec_argv;
1865
1866         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1867         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1868
1869         if (rec_argv == NULL)
1870                 return -ENOMEM;
1871
1872         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1873                 rec_argv[i] = strdup(record_args[i]);
1874
1875         for (j = 1; j < (unsigned int)argc; j++, i++)
1876                 rec_argv[i] = argv[j];
1877
1878         BUG_ON(i != rec_argc);
1879
1880         return cmd_record(i, rec_argv, NULL);
1881 }
1882
1883 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1884 {
1885         argc = parse_options(argc, argv, sched_options, sched_usage,
1886                              PARSE_OPT_STOP_AT_NON_OPTION);
1887         if (!argc)
1888                 usage_with_options(sched_usage, sched_options);
1889
1890         /*
1891          * Aliased to 'perf script' for now:
1892          */
1893         if (!strcmp(argv[0], "script"))
1894                 return cmd_script(argc, argv, prefix);
1895
1896         symbol__init();
1897         if (!strncmp(argv[0], "rec", 3)) {
1898                 return __cmd_record(argc, argv);
1899         } else if (!strncmp(argv[0], "lat", 3)) {
1900                 trace_handler = &lat_ops;
1901                 if (argc > 1) {
1902                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1903                         if (argc)
1904                                 usage_with_options(latency_usage, latency_options);
1905                 }
1906                 setup_sorting();
1907                 __cmd_lat();
1908         } else if (!strcmp(argv[0], "map")) {
1909                 trace_handler = &map_ops;
1910                 setup_sorting();
1911                 __cmd_map();
1912         } else if (!strncmp(argv[0], "rep", 3)) {
1913                 trace_handler = &replay_ops;
1914                 if (argc) {
1915                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1916                         if (argc)
1917                                 usage_with_options(replay_usage, replay_options);
1918                 }
1919                 __cmd_replay();
1920         } else {
1921                 usage_with_options(sched_usage, sched_options);
1922         }
1923
1924         return 0;
1925 }