Merge tag 'clk-for-linus' of git://git.linaro.org/people/mturquette/linux
[pandora-kernel.git] / sound / pci / ymfpci / ymfpci_main.c
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20
21 #include <linux/delay.h>
22 #include <linux/firmware.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mutex.h>
30 #include <linux/module.h>
31
32 #include <sound/core.h>
33 #include <sound/control.h>
34 #include <sound/info.h>
35 #include <sound/tlv.h>
36 #include "ymfpci.h"
37 #include <sound/asoundef.h>
38 #include <sound/mpu401.h>
39
40 #include <asm/io.h>
41 #include <asm/byteorder.h>
42
43 /*
44  *  common I/O routines
45  */
46
47 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
48
49 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
50 {
51         return readb(chip->reg_area_virt + offset);
52 }
53
54 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
55 {
56         writeb(val, chip->reg_area_virt + offset);
57 }
58
59 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
60 {
61         return readw(chip->reg_area_virt + offset);
62 }
63
64 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
65 {
66         writew(val, chip->reg_area_virt + offset);
67 }
68
69 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
70 {
71         return readl(chip->reg_area_virt + offset);
72 }
73
74 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
75 {
76         writel(val, chip->reg_area_virt + offset);
77 }
78
79 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
80 {
81         unsigned long end_time;
82         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
83         
84         end_time = jiffies + msecs_to_jiffies(750);
85         do {
86                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
87                         return 0;
88                 schedule_timeout_uninterruptible(1);
89         } while (time_before(jiffies, end_time));
90         snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
91         return -EBUSY;
92 }
93
94 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
95 {
96         struct snd_ymfpci *chip = ac97->private_data;
97         u32 cmd;
98         
99         snd_ymfpci_codec_ready(chip, 0);
100         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
101         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
102 }
103
104 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
105 {
106         struct snd_ymfpci *chip = ac97->private_data;
107
108         if (snd_ymfpci_codec_ready(chip, 0))
109                 return ~0;
110         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
111         if (snd_ymfpci_codec_ready(chip, 0))
112                 return ~0;
113         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
114                 int i;
115                 for (i = 0; i < 600; i++)
116                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
117         }
118         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
119 }
120
121 /*
122  *  Misc routines
123  */
124
125 static u32 snd_ymfpci_calc_delta(u32 rate)
126 {
127         switch (rate) {
128         case 8000:      return 0x02aaab00;
129         case 11025:     return 0x03accd00;
130         case 16000:     return 0x05555500;
131         case 22050:     return 0x07599a00;
132         case 32000:     return 0x0aaaab00;
133         case 44100:     return 0x0eb33300;
134         default:        return ((rate << 16) / 375) << 5;
135         }
136 }
137
138 static u32 def_rate[8] = {
139         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
140 };
141
142 static u32 snd_ymfpci_calc_lpfK(u32 rate)
143 {
144         u32 i;
145         static u32 val[8] = {
146                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
147                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
148         };
149         
150         if (rate == 44100)
151                 return 0x40000000;      /* FIXME: What's the right value? */
152         for (i = 0; i < 8; i++)
153                 if (rate <= def_rate[i])
154                         return val[i];
155         return val[0];
156 }
157
158 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
159 {
160         u32 i;
161         static u32 val[8] = {
162                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
163                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
164         };
165         
166         if (rate == 44100)
167                 return 0x370A0000;
168         for (i = 0; i < 8; i++)
169                 if (rate <= def_rate[i])
170                         return val[i];
171         return val[0];
172 }
173
174 /*
175  *  Hardware start management
176  */
177
178 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
179 {
180         unsigned long flags;
181
182         spin_lock_irqsave(&chip->reg_lock, flags);
183         if (chip->start_count++ > 0)
184                 goto __end;
185         snd_ymfpci_writel(chip, YDSXGR_MODE,
186                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
187         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
188       __end:
189         spin_unlock_irqrestore(&chip->reg_lock, flags);
190 }
191
192 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
193 {
194         unsigned long flags;
195         long timeout = 1000;
196
197         spin_lock_irqsave(&chip->reg_lock, flags);
198         if (--chip->start_count > 0)
199                 goto __end;
200         snd_ymfpci_writel(chip, YDSXGR_MODE,
201                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
202         while (timeout-- > 0) {
203                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
204                         break;
205         }
206         if (atomic_read(&chip->interrupt_sleep_count)) {
207                 atomic_set(&chip->interrupt_sleep_count, 0);
208                 wake_up(&chip->interrupt_sleep);
209         }
210       __end:
211         spin_unlock_irqrestore(&chip->reg_lock, flags);
212 }
213
214 /*
215  *  Playback voice management
216  */
217
218 static int voice_alloc(struct snd_ymfpci *chip,
219                        enum snd_ymfpci_voice_type type, int pair,
220                        struct snd_ymfpci_voice **rvoice)
221 {
222         struct snd_ymfpci_voice *voice, *voice2;
223         int idx;
224         
225         *rvoice = NULL;
226         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
227                 voice = &chip->voices[idx];
228                 voice2 = pair ? &chip->voices[idx+1] : NULL;
229                 if (voice->use || (voice2 && voice2->use))
230                         continue;
231                 voice->use = 1;
232                 if (voice2)
233                         voice2->use = 1;
234                 switch (type) {
235                 case YMFPCI_PCM:
236                         voice->pcm = 1;
237                         if (voice2)
238                                 voice2->pcm = 1;
239                         break;
240                 case YMFPCI_SYNTH:
241                         voice->synth = 1;
242                         break;
243                 case YMFPCI_MIDI:
244                         voice->midi = 1;
245                         break;
246                 }
247                 snd_ymfpci_hw_start(chip);
248                 if (voice2)
249                         snd_ymfpci_hw_start(chip);
250                 *rvoice = voice;
251                 return 0;
252         }
253         return -ENOMEM;
254 }
255
256 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
257                                   enum snd_ymfpci_voice_type type, int pair,
258                                   struct snd_ymfpci_voice **rvoice)
259 {
260         unsigned long flags;
261         int result;
262         
263         if (snd_BUG_ON(!rvoice))
264                 return -EINVAL;
265         if (snd_BUG_ON(pair && type != YMFPCI_PCM))
266                 return -EINVAL;
267         
268         spin_lock_irqsave(&chip->voice_lock, flags);
269         for (;;) {
270                 result = voice_alloc(chip, type, pair, rvoice);
271                 if (result == 0 || type != YMFPCI_PCM)
272                         break;
273                 /* TODO: synth/midi voice deallocation */
274                 break;
275         }
276         spin_unlock_irqrestore(&chip->voice_lock, flags);       
277         return result;          
278 }
279
280 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
281 {
282         unsigned long flags;
283         
284         if (snd_BUG_ON(!pvoice))
285                 return -EINVAL;
286         snd_ymfpci_hw_stop(chip);
287         spin_lock_irqsave(&chip->voice_lock, flags);
288         if (pvoice->number == chip->src441_used) {
289                 chip->src441_used = -1;
290                 pvoice->ypcm->use_441_slot = 0;
291         }
292         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
293         pvoice->ypcm = NULL;
294         pvoice->interrupt = NULL;
295         spin_unlock_irqrestore(&chip->voice_lock, flags);
296         return 0;
297 }
298
299 /*
300  *  PCM part
301  */
302
303 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
304 {
305         struct snd_ymfpci_pcm *ypcm;
306         u32 pos, delta;
307         
308         if ((ypcm = voice->ypcm) == NULL)
309                 return;
310         if (ypcm->substream == NULL)
311                 return;
312         spin_lock(&chip->reg_lock);
313         if (ypcm->running) {
314                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
315                 if (pos < ypcm->last_pos)
316                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
317                 else
318                         delta = pos - ypcm->last_pos;
319                 ypcm->period_pos += delta;
320                 ypcm->last_pos = pos;
321                 if (ypcm->period_pos >= ypcm->period_size) {
322                         /*
323                         printk(KERN_DEBUG
324                                "done - active_bank = 0x%x, start = 0x%x\n",
325                                chip->active_bank,
326                                voice->bank[chip->active_bank].start);
327                         */
328                         ypcm->period_pos %= ypcm->period_size;
329                         spin_unlock(&chip->reg_lock);
330                         snd_pcm_period_elapsed(ypcm->substream);
331                         spin_lock(&chip->reg_lock);
332                 }
333
334                 if (unlikely(ypcm->update_pcm_vol)) {
335                         unsigned int subs = ypcm->substream->number;
336                         unsigned int next_bank = 1 - chip->active_bank;
337                         struct snd_ymfpci_playback_bank *bank;
338                         u32 volume;
339                         
340                         bank = &voice->bank[next_bank];
341                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
342                         bank->left_gain_end = volume;
343                         if (ypcm->output_rear)
344                                 bank->eff2_gain_end = volume;
345                         if (ypcm->voices[1])
346                                 bank = &ypcm->voices[1]->bank[next_bank];
347                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
348                         bank->right_gain_end = volume;
349                         if (ypcm->output_rear)
350                                 bank->eff3_gain_end = volume;
351                         ypcm->update_pcm_vol--;
352                 }
353         }
354         spin_unlock(&chip->reg_lock);
355 }
356
357 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
358 {
359         struct snd_pcm_runtime *runtime = substream->runtime;
360         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
361         struct snd_ymfpci *chip = ypcm->chip;
362         u32 pos, delta;
363         
364         spin_lock(&chip->reg_lock);
365         if (ypcm->running) {
366                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
367                 if (pos < ypcm->last_pos)
368                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
369                 else
370                         delta = pos - ypcm->last_pos;
371                 ypcm->period_pos += delta;
372                 ypcm->last_pos = pos;
373                 if (ypcm->period_pos >= ypcm->period_size) {
374                         ypcm->period_pos %= ypcm->period_size;
375                         /*
376                         printk(KERN_DEBUG
377                                "done - active_bank = 0x%x, start = 0x%x\n",
378                                chip->active_bank,
379                                voice->bank[chip->active_bank].start);
380                         */
381                         spin_unlock(&chip->reg_lock);
382                         snd_pcm_period_elapsed(substream);
383                         spin_lock(&chip->reg_lock);
384                 }
385         }
386         spin_unlock(&chip->reg_lock);
387 }
388
389 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
390                                        int cmd)
391 {
392         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
393         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
394         struct snd_kcontrol *kctl = NULL;
395         int result = 0;
396
397         spin_lock(&chip->reg_lock);
398         if (ypcm->voices[0] == NULL) {
399                 result = -EINVAL;
400                 goto __unlock;
401         }
402         switch (cmd) {
403         case SNDRV_PCM_TRIGGER_START:
404         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
405         case SNDRV_PCM_TRIGGER_RESUME:
406                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
407                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
408                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
409                 ypcm->running = 1;
410                 break;
411         case SNDRV_PCM_TRIGGER_STOP:
412                 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
413                         kctl = chip->pcm_mixer[substream->number].ctl;
414                         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
415                 }
416                 /* fall through */
417         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
418         case SNDRV_PCM_TRIGGER_SUSPEND:
419                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
420                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
421                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
422                 ypcm->running = 0;
423                 break;
424         default:
425                 result = -EINVAL;
426                 break;
427         }
428       __unlock:
429         spin_unlock(&chip->reg_lock);
430         if (kctl)
431                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
432         return result;
433 }
434 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
435                                       int cmd)
436 {
437         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
438         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
439         int result = 0;
440         u32 tmp;
441
442         spin_lock(&chip->reg_lock);
443         switch (cmd) {
444         case SNDRV_PCM_TRIGGER_START:
445         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
446         case SNDRV_PCM_TRIGGER_RESUME:
447                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
448                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
449                 ypcm->running = 1;
450                 break;
451         case SNDRV_PCM_TRIGGER_STOP:
452         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
453         case SNDRV_PCM_TRIGGER_SUSPEND:
454                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
455                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
456                 ypcm->running = 0;
457                 break;
458         default:
459                 result = -EINVAL;
460                 break;
461         }
462         spin_unlock(&chip->reg_lock);
463         return result;
464 }
465
466 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
467 {
468         int err;
469
470         if (ypcm->voices[1] != NULL && voices < 2) {
471                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
472                 ypcm->voices[1] = NULL;
473         }
474         if (voices == 1 && ypcm->voices[0] != NULL)
475                 return 0;               /* already allocated */
476         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
477                 return 0;               /* already allocated */
478         if (voices > 1) {
479                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
480                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
481                         ypcm->voices[0] = NULL;
482                 }               
483         }
484         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
485         if (err < 0)
486                 return err;
487         ypcm->voices[0]->ypcm = ypcm;
488         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
489         if (voices > 1) {
490                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
491                 ypcm->voices[1]->ypcm = ypcm;
492         }
493         return 0;
494 }
495
496 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
497                                       struct snd_pcm_runtime *runtime,
498                                       int has_pcm_volume)
499 {
500         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
501         u32 format;
502         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
503         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
504         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
505         struct snd_ymfpci_playback_bank *bank;
506         unsigned int nbank;
507         u32 vol_left, vol_right;
508         u8 use_left, use_right;
509         unsigned long flags;
510
511         if (snd_BUG_ON(!voice))
512                 return;
513         if (runtime->channels == 1) {
514                 use_left = 1;
515                 use_right = 1;
516         } else {
517                 use_left = (voiceidx & 1) == 0;
518                 use_right = !use_left;
519         }
520         if (has_pcm_volume) {
521                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
522                                        [ypcm->substream->number].left << 15);
523                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
524                                         [ypcm->substream->number].right << 15);
525         } else {
526                 vol_left = cpu_to_le32(0x40000000);
527                 vol_right = cpu_to_le32(0x40000000);
528         }
529         spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
530         format = runtime->channels == 2 ? 0x00010000 : 0;
531         if (snd_pcm_format_width(runtime->format) == 8)
532                 format |= 0x80000000;
533         else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
534                  runtime->rate == 44100 && runtime->channels == 2 &&
535                  voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
536                                    ypcm->chip->src441_used == voice->number)) {
537                 ypcm->chip->src441_used = voice->number;
538                 ypcm->use_441_slot = 1;
539                 format |= 0x10000000;
540         }
541         if (ypcm->chip->src441_used == voice->number &&
542             (format & 0x10000000) == 0) {
543                 ypcm->chip->src441_used = -1;
544                 ypcm->use_441_slot = 0;
545         }
546         if (runtime->channels == 2 && (voiceidx & 1) != 0)
547                 format |= 1;
548         spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
549         for (nbank = 0; nbank < 2; nbank++) {
550                 bank = &voice->bank[nbank];
551                 memset(bank, 0, sizeof(*bank));
552                 bank->format = cpu_to_le32(format);
553                 bank->base = cpu_to_le32(runtime->dma_addr);
554                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
555                 bank->lpfQ = cpu_to_le32(lpfQ);
556                 bank->delta =
557                 bank->delta_end = cpu_to_le32(delta);
558                 bank->lpfK =
559                 bank->lpfK_end = cpu_to_le32(lpfK);
560                 bank->eg_gain =
561                 bank->eg_gain_end = cpu_to_le32(0x40000000);
562
563                 if (ypcm->output_front) {
564                         if (use_left) {
565                                 bank->left_gain =
566                                 bank->left_gain_end = vol_left;
567                         }
568                         if (use_right) {
569                                 bank->right_gain =
570                                 bank->right_gain_end = vol_right;
571                         }
572                 }
573                 if (ypcm->output_rear) {
574                         if (!ypcm->swap_rear) {
575                                 if (use_left) {
576                                         bank->eff2_gain =
577                                         bank->eff2_gain_end = vol_left;
578                                 }
579                                 if (use_right) {
580                                         bank->eff3_gain =
581                                         bank->eff3_gain_end = vol_right;
582                                 }
583                         } else {
584                                 /* The SPDIF out channels seem to be swapped, so we have
585                                  * to swap them here, too.  The rear analog out channels
586                                  * will be wrong, but otherwise AC3 would not work.
587                                  */
588                                 if (use_left) {
589                                         bank->eff3_gain =
590                                         bank->eff3_gain_end = vol_left;
591                                 }
592                                 if (use_right) {
593                                         bank->eff2_gain =
594                                         bank->eff2_gain_end = vol_right;
595                                 }
596                         }
597                 }
598         }
599 }
600
601 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
602 {
603         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
604                                 4096, &chip->ac3_tmp_base) < 0)
605                 return -ENOMEM;
606
607         chip->bank_effect[3][0]->base =
608         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
609         chip->bank_effect[3][0]->loop_end =
610         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
611         chip->bank_effect[4][0]->base =
612         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
613         chip->bank_effect[4][0]->loop_end =
614         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
615
616         spin_lock_irq(&chip->reg_lock);
617         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
618                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
619         spin_unlock_irq(&chip->reg_lock);
620         return 0;
621 }
622
623 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
624 {
625         spin_lock_irq(&chip->reg_lock);
626         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
627                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
628         spin_unlock_irq(&chip->reg_lock);
629         // snd_ymfpci_irq_wait(chip);
630         if (chip->ac3_tmp_base.area) {
631                 snd_dma_free_pages(&chip->ac3_tmp_base);
632                 chip->ac3_tmp_base.area = NULL;
633         }
634         return 0;
635 }
636
637 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
638                                          struct snd_pcm_hw_params *hw_params)
639 {
640         struct snd_pcm_runtime *runtime = substream->runtime;
641         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
642         int err;
643
644         if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
645                 return err;
646         if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
647                 return err;
648         return 0;
649 }
650
651 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
652 {
653         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
654         struct snd_pcm_runtime *runtime = substream->runtime;
655         struct snd_ymfpci_pcm *ypcm;
656         
657         if (runtime->private_data == NULL)
658                 return 0;
659         ypcm = runtime->private_data;
660
661         /* wait, until the PCI operations are not finished */
662         snd_ymfpci_irq_wait(chip);
663         snd_pcm_lib_free_pages(substream);
664         if (ypcm->voices[1]) {
665                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
666                 ypcm->voices[1] = NULL;
667         }
668         if (ypcm->voices[0]) {
669                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
670                 ypcm->voices[0] = NULL;
671         }
672         return 0;
673 }
674
675 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
676 {
677         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
678         struct snd_pcm_runtime *runtime = substream->runtime;
679         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
680         struct snd_kcontrol *kctl;
681         unsigned int nvoice;
682
683         ypcm->period_size = runtime->period_size;
684         ypcm->buffer_size = runtime->buffer_size;
685         ypcm->period_pos = 0;
686         ypcm->last_pos = 0;
687         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
688                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
689                                           substream->pcm == chip->pcm);
690
691         if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
692                 kctl = chip->pcm_mixer[substream->number].ctl;
693                 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
694                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
695         }
696         return 0;
697 }
698
699 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
700                                         struct snd_pcm_hw_params *hw_params)
701 {
702         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
703 }
704
705 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
706 {
707         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
708
709         /* wait, until the PCI operations are not finished */
710         snd_ymfpci_irq_wait(chip);
711         return snd_pcm_lib_free_pages(substream);
712 }
713
714 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
715 {
716         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
717         struct snd_pcm_runtime *runtime = substream->runtime;
718         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
719         struct snd_ymfpci_capture_bank * bank;
720         int nbank;
721         u32 rate, format;
722
723         ypcm->period_size = runtime->period_size;
724         ypcm->buffer_size = runtime->buffer_size;
725         ypcm->period_pos = 0;
726         ypcm->last_pos = 0;
727         ypcm->shift = 0;
728         rate = ((48000 * 4096) / runtime->rate) - 1;
729         format = 0;
730         if (runtime->channels == 2) {
731                 format |= 2;
732                 ypcm->shift++;
733         }
734         if (snd_pcm_format_width(runtime->format) == 8)
735                 format |= 1;
736         else
737                 ypcm->shift++;
738         switch (ypcm->capture_bank_number) {
739         case 0:
740                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
741                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
742                 break;
743         case 1:
744                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
745                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
746                 break;
747         }
748         for (nbank = 0; nbank < 2; nbank++) {
749                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
750                 bank->base = cpu_to_le32(runtime->dma_addr);
751                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
752                 bank->start = 0;
753                 bank->num_of_loops = 0;
754         }
755         return 0;
756 }
757
758 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
759 {
760         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
761         struct snd_pcm_runtime *runtime = substream->runtime;
762         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
763         struct snd_ymfpci_voice *voice = ypcm->voices[0];
764
765         if (!(ypcm->running && voice))
766                 return 0;
767         return le32_to_cpu(voice->bank[chip->active_bank].start);
768 }
769
770 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
771 {
772         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
773         struct snd_pcm_runtime *runtime = substream->runtime;
774         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
775
776         if (!ypcm->running)
777                 return 0;
778         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
779 }
780
781 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
782 {
783         wait_queue_t wait;
784         int loops = 4;
785
786         while (loops-- > 0) {
787                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
788                         continue;
789                 init_waitqueue_entry(&wait, current);
790                 add_wait_queue(&chip->interrupt_sleep, &wait);
791                 atomic_inc(&chip->interrupt_sleep_count);
792                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
793                 remove_wait_queue(&chip->interrupt_sleep, &wait);
794         }
795 }
796
797 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
798 {
799         struct snd_ymfpci *chip = dev_id;
800         u32 status, nvoice, mode;
801         struct snd_ymfpci_voice *voice;
802
803         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
804         if (status & 0x80000000) {
805                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
806                 spin_lock(&chip->voice_lock);
807                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
808                         voice = &chip->voices[nvoice];
809                         if (voice->interrupt)
810                                 voice->interrupt(chip, voice);
811                 }
812                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
813                         if (chip->capture_substream[nvoice])
814                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
815                 }
816 #if 0
817                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
818                         if (chip->effect_substream[nvoice])
819                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
820                 }
821 #endif
822                 spin_unlock(&chip->voice_lock);
823                 spin_lock(&chip->reg_lock);
824                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
825                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
826                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
827                 spin_unlock(&chip->reg_lock);
828
829                 if (atomic_read(&chip->interrupt_sleep_count)) {
830                         atomic_set(&chip->interrupt_sleep_count, 0);
831                         wake_up(&chip->interrupt_sleep);
832                 }
833         }
834
835         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
836         if (status & 1) {
837                 if (chip->timer)
838                         snd_timer_interrupt(chip->timer, chip->timer_ticks);
839         }
840         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
841
842         if (chip->rawmidi)
843                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
844         return IRQ_HANDLED;
845 }
846
847 static struct snd_pcm_hardware snd_ymfpci_playback =
848 {
849         .info =                 (SNDRV_PCM_INFO_MMAP |
850                                  SNDRV_PCM_INFO_MMAP_VALID | 
851                                  SNDRV_PCM_INFO_INTERLEAVED |
852                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
853                                  SNDRV_PCM_INFO_PAUSE |
854                                  SNDRV_PCM_INFO_RESUME),
855         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
856         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
857         .rate_min =             8000,
858         .rate_max =             48000,
859         .channels_min =         1,
860         .channels_max =         2,
861         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
862         .period_bytes_min =     64,
863         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
864         .periods_min =          3,
865         .periods_max =          1024,
866         .fifo_size =            0,
867 };
868
869 static struct snd_pcm_hardware snd_ymfpci_capture =
870 {
871         .info =                 (SNDRV_PCM_INFO_MMAP |
872                                  SNDRV_PCM_INFO_MMAP_VALID |
873                                  SNDRV_PCM_INFO_INTERLEAVED |
874                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
875                                  SNDRV_PCM_INFO_PAUSE |
876                                  SNDRV_PCM_INFO_RESUME),
877         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
878         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
879         .rate_min =             8000,
880         .rate_max =             48000,
881         .channels_min =         1,
882         .channels_max =         2,
883         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
884         .period_bytes_min =     64,
885         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
886         .periods_min =          3,
887         .periods_max =          1024,
888         .fifo_size =            0,
889 };
890
891 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
892 {
893         kfree(runtime->private_data);
894 }
895
896 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
897 {
898         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
899         struct snd_pcm_runtime *runtime = substream->runtime;
900         struct snd_ymfpci_pcm *ypcm;
901         int err;
902
903         runtime->hw = snd_ymfpci_playback;
904         /* FIXME? True value is 256/48 = 5.33333 ms */
905         err = snd_pcm_hw_constraint_minmax(runtime,
906                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
907                                            5334, UINT_MAX);
908         if (err < 0)
909                 return err;
910         err = snd_pcm_hw_rule_noresample(runtime, 48000);
911         if (err < 0)
912                 return err;
913
914         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
915         if (ypcm == NULL)
916                 return -ENOMEM;
917         ypcm->chip = chip;
918         ypcm->type = PLAYBACK_VOICE;
919         ypcm->substream = substream;
920         runtime->private_data = ypcm;
921         runtime->private_free = snd_ymfpci_pcm_free_substream;
922         return 0;
923 }
924
925 /* call with spinlock held */
926 static void ymfpci_open_extension(struct snd_ymfpci *chip)
927 {
928         if (! chip->rear_opened) {
929                 if (! chip->spdif_opened) /* set AC3 */
930                         snd_ymfpci_writel(chip, YDSXGR_MODE,
931                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
932                 /* enable second codec (4CHEN) */
933                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
934                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
935         }
936 }
937
938 /* call with spinlock held */
939 static void ymfpci_close_extension(struct snd_ymfpci *chip)
940 {
941         if (! chip->rear_opened) {
942                 if (! chip->spdif_opened)
943                         snd_ymfpci_writel(chip, YDSXGR_MODE,
944                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
945                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
946                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
947         }
948 }
949
950 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
951 {
952         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
953         struct snd_pcm_runtime *runtime = substream->runtime;
954         struct snd_ymfpci_pcm *ypcm;
955         int err;
956         
957         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
958                 return err;
959         ypcm = runtime->private_data;
960         ypcm->output_front = 1;
961         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
962         ypcm->swap_rear = 0;
963         spin_lock_irq(&chip->reg_lock);
964         if (ypcm->output_rear) {
965                 ymfpci_open_extension(chip);
966                 chip->rear_opened++;
967         }
968         spin_unlock_irq(&chip->reg_lock);
969         return 0;
970 }
971
972 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
973 {
974         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
975         struct snd_pcm_runtime *runtime = substream->runtime;
976         struct snd_ymfpci_pcm *ypcm;
977         int err;
978         
979         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
980                 return err;
981         ypcm = runtime->private_data;
982         ypcm->output_front = 0;
983         ypcm->output_rear = 1;
984         ypcm->swap_rear = 1;
985         spin_lock_irq(&chip->reg_lock);
986         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
987                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
988         ymfpci_open_extension(chip);
989         chip->spdif_pcm_bits = chip->spdif_bits;
990         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
991         chip->spdif_opened++;
992         spin_unlock_irq(&chip->reg_lock);
993
994         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
995         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
996                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
997         return 0;
998 }
999
1000 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
1001 {
1002         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1003         struct snd_pcm_runtime *runtime = substream->runtime;
1004         struct snd_ymfpci_pcm *ypcm;
1005         int err;
1006         
1007         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
1008                 return err;
1009         ypcm = runtime->private_data;
1010         ypcm->output_front = 0;
1011         ypcm->output_rear = 1;
1012         ypcm->swap_rear = 0;
1013         spin_lock_irq(&chip->reg_lock);
1014         ymfpci_open_extension(chip);
1015         chip->rear_opened++;
1016         spin_unlock_irq(&chip->reg_lock);
1017         return 0;
1018 }
1019
1020 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1021                                    u32 capture_bank_number)
1022 {
1023         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1024         struct snd_pcm_runtime *runtime = substream->runtime;
1025         struct snd_ymfpci_pcm *ypcm;
1026         int err;
1027
1028         runtime->hw = snd_ymfpci_capture;
1029         /* FIXME? True value is 256/48 = 5.33333 ms */
1030         err = snd_pcm_hw_constraint_minmax(runtime,
1031                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1032                                            5334, UINT_MAX);
1033         if (err < 0)
1034                 return err;
1035         err = snd_pcm_hw_rule_noresample(runtime, 48000);
1036         if (err < 0)
1037                 return err;
1038
1039         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1040         if (ypcm == NULL)
1041                 return -ENOMEM;
1042         ypcm->chip = chip;
1043         ypcm->type = capture_bank_number + CAPTURE_REC;
1044         ypcm->substream = substream;    
1045         ypcm->capture_bank_number = capture_bank_number;
1046         chip->capture_substream[capture_bank_number] = substream;
1047         runtime->private_data = ypcm;
1048         runtime->private_free = snd_ymfpci_pcm_free_substream;
1049         snd_ymfpci_hw_start(chip);
1050         return 0;
1051 }
1052
1053 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1054 {
1055         return snd_ymfpci_capture_open(substream, 0);
1056 }
1057
1058 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1059 {
1060         return snd_ymfpci_capture_open(substream, 1);
1061 }
1062
1063 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1064 {
1065         return 0;
1066 }
1067
1068 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1069 {
1070         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1071         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1072
1073         spin_lock_irq(&chip->reg_lock);
1074         if (ypcm->output_rear && chip->rear_opened > 0) {
1075                 chip->rear_opened--;
1076                 ymfpci_close_extension(chip);
1077         }
1078         spin_unlock_irq(&chip->reg_lock);
1079         return snd_ymfpci_playback_close_1(substream);
1080 }
1081
1082 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1083 {
1084         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1085
1086         spin_lock_irq(&chip->reg_lock);
1087         chip->spdif_opened = 0;
1088         ymfpci_close_extension(chip);
1089         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1090                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1091         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1092         spin_unlock_irq(&chip->reg_lock);
1093         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1094         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1095                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1096         return snd_ymfpci_playback_close_1(substream);
1097 }
1098
1099 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1100 {
1101         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1102
1103         spin_lock_irq(&chip->reg_lock);
1104         if (chip->rear_opened > 0) {
1105                 chip->rear_opened--;
1106                 ymfpci_close_extension(chip);
1107         }
1108         spin_unlock_irq(&chip->reg_lock);
1109         return snd_ymfpci_playback_close_1(substream);
1110 }
1111
1112 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1113 {
1114         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1115         struct snd_pcm_runtime *runtime = substream->runtime;
1116         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1117
1118         if (ypcm != NULL) {
1119                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1120                 snd_ymfpci_hw_stop(chip);
1121         }
1122         return 0;
1123 }
1124
1125 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1126         .open =                 snd_ymfpci_playback_open,
1127         .close =                snd_ymfpci_playback_close,
1128         .ioctl =                snd_pcm_lib_ioctl,
1129         .hw_params =            snd_ymfpci_playback_hw_params,
1130         .hw_free =              snd_ymfpci_playback_hw_free,
1131         .prepare =              snd_ymfpci_playback_prepare,
1132         .trigger =              snd_ymfpci_playback_trigger,
1133         .pointer =              snd_ymfpci_playback_pointer,
1134 };
1135
1136 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1137         .open =                 snd_ymfpci_capture_rec_open,
1138         .close =                snd_ymfpci_capture_close,
1139         .ioctl =                snd_pcm_lib_ioctl,
1140         .hw_params =            snd_ymfpci_capture_hw_params,
1141         .hw_free =              snd_ymfpci_capture_hw_free,
1142         .prepare =              snd_ymfpci_capture_prepare,
1143         .trigger =              snd_ymfpci_capture_trigger,
1144         .pointer =              snd_ymfpci_capture_pointer,
1145 };
1146
1147 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1148 {
1149         struct snd_pcm *pcm;
1150         int err;
1151
1152         if (rpcm)
1153                 *rpcm = NULL;
1154         if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1155                 return err;
1156         pcm->private_data = chip;
1157
1158         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1159         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1160
1161         /* global setup */
1162         pcm->info_flags = 0;
1163         strcpy(pcm->name, "YMFPCI");
1164         chip->pcm = pcm;
1165
1166         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1167                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1168
1169         if (rpcm)
1170                 *rpcm = pcm;
1171         return 0;
1172 }
1173
1174 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1175         .open =                 snd_ymfpci_capture_ac97_open,
1176         .close =                snd_ymfpci_capture_close,
1177         .ioctl =                snd_pcm_lib_ioctl,
1178         .hw_params =            snd_ymfpci_capture_hw_params,
1179         .hw_free =              snd_ymfpci_capture_hw_free,
1180         .prepare =              snd_ymfpci_capture_prepare,
1181         .trigger =              snd_ymfpci_capture_trigger,
1182         .pointer =              snd_ymfpci_capture_pointer,
1183 };
1184
1185 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1186 {
1187         struct snd_pcm *pcm;
1188         int err;
1189
1190         if (rpcm)
1191                 *rpcm = NULL;
1192         if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1193                 return err;
1194         pcm->private_data = chip;
1195
1196         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1197
1198         /* global setup */
1199         pcm->info_flags = 0;
1200         sprintf(pcm->name, "YMFPCI - %s",
1201                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1202         chip->pcm2 = pcm;
1203
1204         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1205                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1206
1207         if (rpcm)
1208                 *rpcm = pcm;
1209         return 0;
1210 }
1211
1212 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1213         .open =                 snd_ymfpci_playback_spdif_open,
1214         .close =                snd_ymfpci_playback_spdif_close,
1215         .ioctl =                snd_pcm_lib_ioctl,
1216         .hw_params =            snd_ymfpci_playback_hw_params,
1217         .hw_free =              snd_ymfpci_playback_hw_free,
1218         .prepare =              snd_ymfpci_playback_prepare,
1219         .trigger =              snd_ymfpci_playback_trigger,
1220         .pointer =              snd_ymfpci_playback_pointer,
1221 };
1222
1223 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1224 {
1225         struct snd_pcm *pcm;
1226         int err;
1227
1228         if (rpcm)
1229                 *rpcm = NULL;
1230         if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1231                 return err;
1232         pcm->private_data = chip;
1233
1234         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1235
1236         /* global setup */
1237         pcm->info_flags = 0;
1238         strcpy(pcm->name, "YMFPCI - IEC958");
1239         chip->pcm_spdif = pcm;
1240
1241         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1242                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1243
1244         if (rpcm)
1245                 *rpcm = pcm;
1246         return 0;
1247 }
1248
1249 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1250         .open =                 snd_ymfpci_playback_4ch_open,
1251         .close =                snd_ymfpci_playback_4ch_close,
1252         .ioctl =                snd_pcm_lib_ioctl,
1253         .hw_params =            snd_ymfpci_playback_hw_params,
1254         .hw_free =              snd_ymfpci_playback_hw_free,
1255         .prepare =              snd_ymfpci_playback_prepare,
1256         .trigger =              snd_ymfpci_playback_trigger,
1257         .pointer =              snd_ymfpci_playback_pointer,
1258 };
1259
1260 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1261 {
1262         struct snd_pcm *pcm;
1263         int err;
1264
1265         if (rpcm)
1266                 *rpcm = NULL;
1267         if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1268                 return err;
1269         pcm->private_data = chip;
1270
1271         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1272
1273         /* global setup */
1274         pcm->info_flags = 0;
1275         strcpy(pcm->name, "YMFPCI - Rear PCM");
1276         chip->pcm_4ch = pcm;
1277
1278         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1279                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1280
1281         if (rpcm)
1282                 *rpcm = pcm;
1283         return 0;
1284 }
1285
1286 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1287 {
1288         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1289         uinfo->count = 1;
1290         return 0;
1291 }
1292
1293 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1294                                         struct snd_ctl_elem_value *ucontrol)
1295 {
1296         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1297
1298         spin_lock_irq(&chip->reg_lock);
1299         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1300         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1301         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1302         spin_unlock_irq(&chip->reg_lock);
1303         return 0;
1304 }
1305
1306 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1307                                          struct snd_ctl_elem_value *ucontrol)
1308 {
1309         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1310         unsigned int val;
1311         int change;
1312
1313         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1314               (ucontrol->value.iec958.status[1] << 8);
1315         spin_lock_irq(&chip->reg_lock);
1316         change = chip->spdif_bits != val;
1317         chip->spdif_bits = val;
1318         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1319                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1320         spin_unlock_irq(&chip->reg_lock);
1321         return change;
1322 }
1323
1324 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1325 {
1326         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1327         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1328         .info =         snd_ymfpci_spdif_default_info,
1329         .get =          snd_ymfpci_spdif_default_get,
1330         .put =          snd_ymfpci_spdif_default_put
1331 };
1332
1333 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1334 {
1335         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1336         uinfo->count = 1;
1337         return 0;
1338 }
1339
1340 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1341                                       struct snd_ctl_elem_value *ucontrol)
1342 {
1343         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1344
1345         spin_lock_irq(&chip->reg_lock);
1346         ucontrol->value.iec958.status[0] = 0x3e;
1347         ucontrol->value.iec958.status[1] = 0xff;
1348         spin_unlock_irq(&chip->reg_lock);
1349         return 0;
1350 }
1351
1352 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1353 {
1354         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1355         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1356         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1357         .info =         snd_ymfpci_spdif_mask_info,
1358         .get =          snd_ymfpci_spdif_mask_get,
1359 };
1360
1361 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1362 {
1363         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1364         uinfo->count = 1;
1365         return 0;
1366 }
1367
1368 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1369                                         struct snd_ctl_elem_value *ucontrol)
1370 {
1371         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1372
1373         spin_lock_irq(&chip->reg_lock);
1374         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1375         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1376         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1377         spin_unlock_irq(&chip->reg_lock);
1378         return 0;
1379 }
1380
1381 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1382                                         struct snd_ctl_elem_value *ucontrol)
1383 {
1384         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1385         unsigned int val;
1386         int change;
1387
1388         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1389               (ucontrol->value.iec958.status[1] << 8);
1390         spin_lock_irq(&chip->reg_lock);
1391         change = chip->spdif_pcm_bits != val;
1392         chip->spdif_pcm_bits = val;
1393         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1394                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1395         spin_unlock_irq(&chip->reg_lock);
1396         return change;
1397 }
1398
1399 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1400 {
1401         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1402         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1403         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1404         .info =         snd_ymfpci_spdif_stream_info,
1405         .get =          snd_ymfpci_spdif_stream_get,
1406         .put =          snd_ymfpci_spdif_stream_put
1407 };
1408
1409 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1410 {
1411         static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1412
1413         return snd_ctl_enum_info(info, 1, 3, texts);
1414 }
1415
1416 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1417 {
1418         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1419         u16 reg;
1420
1421         spin_lock_irq(&chip->reg_lock);
1422         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1423         spin_unlock_irq(&chip->reg_lock);
1424         if (!(reg & 0x100))
1425                 value->value.enumerated.item[0] = 0;
1426         else
1427                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1428         return 0;
1429 }
1430
1431 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1432 {
1433         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1434         u16 reg, old_reg;
1435
1436         spin_lock_irq(&chip->reg_lock);
1437         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1438         if (value->value.enumerated.item[0] == 0)
1439                 reg = old_reg & ~0x100;
1440         else
1441                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1442         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1443         spin_unlock_irq(&chip->reg_lock);
1444         return reg != old_reg;
1445 }
1446
1447 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1448         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1449         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1450         .name =         "Direct Recording Source",
1451         .info =         snd_ymfpci_drec_source_info,
1452         .get =          snd_ymfpci_drec_source_get,
1453         .put =          snd_ymfpci_drec_source_put
1454 };
1455
1456 /*
1457  *  Mixer controls
1458  */
1459
1460 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1461 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1462   .info = snd_ymfpci_info_single, \
1463   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1464   .private_value = ((reg) | ((shift) << 16)) }
1465
1466 #define snd_ymfpci_info_single          snd_ctl_boolean_mono_info
1467
1468 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1469                                  struct snd_ctl_elem_value *ucontrol)
1470 {
1471         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1472         int reg = kcontrol->private_value & 0xffff;
1473         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1474         unsigned int mask = 1;
1475         
1476         switch (reg) {
1477         case YDSXGR_SPDIFOUTCTRL: break;
1478         case YDSXGR_SPDIFINCTRL: break;
1479         default: return -EINVAL;
1480         }
1481         ucontrol->value.integer.value[0] =
1482                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1483         return 0;
1484 }
1485
1486 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1487                                  struct snd_ctl_elem_value *ucontrol)
1488 {
1489         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1490         int reg = kcontrol->private_value & 0xffff;
1491         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1492         unsigned int mask = 1;
1493         int change;
1494         unsigned int val, oval;
1495         
1496         switch (reg) {
1497         case YDSXGR_SPDIFOUTCTRL: break;
1498         case YDSXGR_SPDIFINCTRL: break;
1499         default: return -EINVAL;
1500         }
1501         val = (ucontrol->value.integer.value[0] & mask);
1502         val <<= shift;
1503         spin_lock_irq(&chip->reg_lock);
1504         oval = snd_ymfpci_readl(chip, reg);
1505         val = (oval & ~(mask << shift)) | val;
1506         change = val != oval;
1507         snd_ymfpci_writel(chip, reg, val);
1508         spin_unlock_irq(&chip->reg_lock);
1509         return change;
1510 }
1511
1512 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1513
1514 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1515 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1516   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1517   .info = snd_ymfpci_info_double, \
1518   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1519   .private_value = reg, \
1520   .tlv = { .p = db_scale_native } }
1521
1522 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1523 {
1524         unsigned int reg = kcontrol->private_value;
1525
1526         if (reg < 0x80 || reg >= 0xc0)
1527                 return -EINVAL;
1528         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1529         uinfo->count = 2;
1530         uinfo->value.integer.min = 0;
1531         uinfo->value.integer.max = 16383;
1532         return 0;
1533 }
1534
1535 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1536 {
1537         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1538         unsigned int reg = kcontrol->private_value;
1539         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1540         unsigned int val;
1541         
1542         if (reg < 0x80 || reg >= 0xc0)
1543                 return -EINVAL;
1544         spin_lock_irq(&chip->reg_lock);
1545         val = snd_ymfpci_readl(chip, reg);
1546         spin_unlock_irq(&chip->reg_lock);
1547         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1548         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1549         return 0;
1550 }
1551
1552 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1553 {
1554         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1555         unsigned int reg = kcontrol->private_value;
1556         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1557         int change;
1558         unsigned int val1, val2, oval;
1559         
1560         if (reg < 0x80 || reg >= 0xc0)
1561                 return -EINVAL;
1562         val1 = ucontrol->value.integer.value[0] & mask;
1563         val2 = ucontrol->value.integer.value[1] & mask;
1564         val1 <<= shift_left;
1565         val2 <<= shift_right;
1566         spin_lock_irq(&chip->reg_lock);
1567         oval = snd_ymfpci_readl(chip, reg);
1568         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1569         change = val1 != oval;
1570         snd_ymfpci_writel(chip, reg, val1);
1571         spin_unlock_irq(&chip->reg_lock);
1572         return change;
1573 }
1574
1575 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1576                                        struct snd_ctl_elem_value *ucontrol)
1577 {
1578         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1579         unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1580         unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1581         int change;
1582         unsigned int value, oval;
1583         
1584         value = ucontrol->value.integer.value[0] & 0x3fff;
1585         value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1586         spin_lock_irq(&chip->reg_lock);
1587         oval = snd_ymfpci_readl(chip, reg);
1588         change = value != oval;
1589         snd_ymfpci_writel(chip, reg, value);
1590         snd_ymfpci_writel(chip, reg2, value);
1591         spin_unlock_irq(&chip->reg_lock);
1592         return change;
1593 }
1594
1595 /*
1596  * 4ch duplication
1597  */
1598 #define snd_ymfpci_info_dup4ch          snd_ctl_boolean_mono_info
1599
1600 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1601 {
1602         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1603         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1604         return 0;
1605 }
1606
1607 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1608 {
1609         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1610         int change;
1611         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1612         if (change)
1613                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1614         return change;
1615 }
1616
1617 static struct snd_kcontrol_new snd_ymfpci_dup4ch __devinitdata = {
1618         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1619         .name = "4ch Duplication",
1620         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1621         .info = snd_ymfpci_info_dup4ch,
1622         .get = snd_ymfpci_get_dup4ch,
1623         .put = snd_ymfpci_put_dup4ch,
1624 };
1625
1626 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1627 {
1628         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1629         .name = "Wave Playback Volume",
1630         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1631                   SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1632         .info = snd_ymfpci_info_double,
1633         .get = snd_ymfpci_get_double,
1634         .put = snd_ymfpci_put_nativedacvol,
1635         .private_value = YDSXGR_NATIVEDACOUTVOL,
1636         .tlv = { .p = db_scale_native },
1637 },
1638 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1639 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1640 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1641 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1642 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1643 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1644 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1645 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1646 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1647 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1648 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1649 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1650 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1651 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1652 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1653 };
1654
1655
1656 /*
1657  * GPIO
1658  */
1659
1660 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1661 {
1662         u16 reg, mode;
1663         unsigned long flags;
1664
1665         spin_lock_irqsave(&chip->reg_lock, flags);
1666         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1667         reg &= ~(1 << (pin + 8));
1668         reg |= (1 << pin);
1669         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1670         /* set the level mode for input line */
1671         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1672         mode &= ~(3 << (pin * 2));
1673         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1674         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1675         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1676         spin_unlock_irqrestore(&chip->reg_lock, flags);
1677         return (mode >> pin) & 1;
1678 }
1679
1680 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1681 {
1682         u16 reg;
1683         unsigned long flags;
1684
1685         spin_lock_irqsave(&chip->reg_lock, flags);
1686         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1687         reg &= ~(1 << pin);
1688         reg &= ~(1 << (pin + 8));
1689         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1690         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1691         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1692         spin_unlock_irqrestore(&chip->reg_lock, flags);
1693
1694         return 0;
1695 }
1696
1697 #define snd_ymfpci_gpio_sw_info         snd_ctl_boolean_mono_info
1698
1699 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1700 {
1701         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1702         int pin = (int)kcontrol->private_value;
1703         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1704         return 0;
1705 }
1706
1707 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1708 {
1709         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1710         int pin = (int)kcontrol->private_value;
1711
1712         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1713                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1714                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1715                 return 1;
1716         }
1717         return 0;
1718 }
1719
1720 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1721         .name = "Shared Rear/Line-In Switch",
1722         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1723         .info = snd_ymfpci_gpio_sw_info,
1724         .get = snd_ymfpci_gpio_sw_get,
1725         .put = snd_ymfpci_gpio_sw_put,
1726         .private_value = 2,
1727 };
1728
1729 /*
1730  * PCM voice volume
1731  */
1732
1733 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1734                                    struct snd_ctl_elem_info *uinfo)
1735 {
1736         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1737         uinfo->count = 2;
1738         uinfo->value.integer.min = 0;
1739         uinfo->value.integer.max = 0x8000;
1740         return 0;
1741 }
1742
1743 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1744                                   struct snd_ctl_elem_value *ucontrol)
1745 {
1746         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1747         unsigned int subs = kcontrol->id.subdevice;
1748
1749         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1750         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1751         return 0;
1752 }
1753
1754 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1755                                   struct snd_ctl_elem_value *ucontrol)
1756 {
1757         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1758         unsigned int subs = kcontrol->id.subdevice;
1759         struct snd_pcm_substream *substream;
1760         unsigned long flags;
1761
1762         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1763             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1764                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1765                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1766                 if (chip->pcm_mixer[subs].left > 0x8000)
1767                         chip->pcm_mixer[subs].left = 0x8000;
1768                 if (chip->pcm_mixer[subs].right > 0x8000)
1769                         chip->pcm_mixer[subs].right = 0x8000;
1770
1771                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1772                 spin_lock_irqsave(&chip->voice_lock, flags);
1773                 if (substream->runtime && substream->runtime->private_data) {
1774                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1775                         if (!ypcm->use_441_slot)
1776                                 ypcm->update_pcm_vol = 2;
1777                 }
1778                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1779                 return 1;
1780         }
1781         return 0;
1782 }
1783
1784 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1785         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1786         .name = "PCM Playback Volume",
1787         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1788                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1789         .info = snd_ymfpci_pcm_vol_info,
1790         .get = snd_ymfpci_pcm_vol_get,
1791         .put = snd_ymfpci_pcm_vol_put,
1792 };
1793
1794
1795 /*
1796  *  Mixer routines
1797  */
1798
1799 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1800 {
1801         struct snd_ymfpci *chip = bus->private_data;
1802         chip->ac97_bus = NULL;
1803 }
1804
1805 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1806 {
1807         struct snd_ymfpci *chip = ac97->private_data;
1808         chip->ac97 = NULL;
1809 }
1810
1811 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1812 {
1813         struct snd_ac97_template ac97;
1814         struct snd_kcontrol *kctl;
1815         struct snd_pcm_substream *substream;
1816         unsigned int idx;
1817         int err;
1818         static struct snd_ac97_bus_ops ops = {
1819                 .write = snd_ymfpci_codec_write,
1820                 .read = snd_ymfpci_codec_read,
1821         };
1822
1823         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1824                 return err;
1825         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1826         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1827
1828         memset(&ac97, 0, sizeof(ac97));
1829         ac97.private_data = chip;
1830         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1831         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1832                 return err;
1833
1834         /* to be sure */
1835         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1836                              AC97_EA_VRA|AC97_EA_VRM, 0);
1837
1838         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1839                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1840                         return err;
1841         }
1842         if (chip->ac97->ext_id & AC97_EI_SDAC) {
1843                 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1844                 err = snd_ctl_add(chip->card, kctl);
1845                 if (err < 0)
1846                         return err;
1847         }
1848
1849         /* add S/PDIF control */
1850         if (snd_BUG_ON(!chip->pcm_spdif))
1851                 return -ENXIO;
1852         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1853                 return err;
1854         kctl->id.device = chip->pcm_spdif->device;
1855         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1856                 return err;
1857         kctl->id.device = chip->pcm_spdif->device;
1858         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1859                 return err;
1860         kctl->id.device = chip->pcm_spdif->device;
1861         chip->spdif_pcm_ctl = kctl;
1862
1863         /* direct recording source */
1864         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1865             (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1866                 return err;
1867
1868         /*
1869          * shared rear/line-in
1870          */
1871         if (rear_switch) {
1872                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1873                         return err;
1874         }
1875
1876         /* per-voice volume */
1877         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1878         for (idx = 0; idx < 32; ++idx) {
1879                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1880                 if (!kctl)
1881                         return -ENOMEM;
1882                 kctl->id.device = chip->pcm->device;
1883                 kctl->id.subdevice = idx;
1884                 kctl->private_value = (unsigned long)substream;
1885                 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1886                         return err;
1887                 chip->pcm_mixer[idx].left = 0x8000;
1888                 chip->pcm_mixer[idx].right = 0x8000;
1889                 chip->pcm_mixer[idx].ctl = kctl;
1890                 substream = substream->next;
1891         }
1892
1893         return 0;
1894 }
1895
1896
1897 /*
1898  * timer
1899  */
1900
1901 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1902 {
1903         struct snd_ymfpci *chip;
1904         unsigned long flags;
1905         unsigned int count;
1906
1907         chip = snd_timer_chip(timer);
1908         spin_lock_irqsave(&chip->reg_lock, flags);
1909         if (timer->sticks > 1) {
1910                 chip->timer_ticks = timer->sticks;
1911                 count = timer->sticks - 1;
1912         } else {
1913                 /*
1914                  * Divisor 1 is not allowed; fake it by using divisor 2 and
1915                  * counting two ticks for each interrupt.
1916                  */
1917                 chip->timer_ticks = 2;
1918                 count = 2 - 1;
1919         }
1920         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1921         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1922         spin_unlock_irqrestore(&chip->reg_lock, flags);
1923         return 0;
1924 }
1925
1926 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1927 {
1928         struct snd_ymfpci *chip;
1929         unsigned long flags;
1930
1931         chip = snd_timer_chip(timer);
1932         spin_lock_irqsave(&chip->reg_lock, flags);
1933         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1934         spin_unlock_irqrestore(&chip->reg_lock, flags);
1935         return 0;
1936 }
1937
1938 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1939                                                unsigned long *num, unsigned long *den)
1940 {
1941         *num = 1;
1942         *den = 96000;
1943         return 0;
1944 }
1945
1946 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1947         .flags = SNDRV_TIMER_HW_AUTO,
1948         .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1949         .ticks = 0x10000,
1950         .start = snd_ymfpci_timer_start,
1951         .stop = snd_ymfpci_timer_stop,
1952         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1953 };
1954
1955 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1956 {
1957         struct snd_timer *timer = NULL;
1958         struct snd_timer_id tid;
1959         int err;
1960
1961         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1962         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1963         tid.card = chip->card->number;
1964         tid.device = device;
1965         tid.subdevice = 0;
1966         if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1967                 strcpy(timer->name, "YMFPCI timer");
1968                 timer->private_data = chip;
1969                 timer->hw = snd_ymfpci_timer_hw;
1970         }
1971         chip->timer = timer;
1972         return err;
1973 }
1974
1975
1976 /*
1977  *  proc interface
1978  */
1979
1980 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1981                                  struct snd_info_buffer *buffer)
1982 {
1983         struct snd_ymfpci *chip = entry->private_data;
1984         int i;
1985         
1986         snd_iprintf(buffer, "YMFPCI\n\n");
1987         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1988                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1989 }
1990
1991 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1992 {
1993         struct snd_info_entry *entry;
1994         
1995         if (! snd_card_proc_new(card, "ymfpci", &entry))
1996                 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
1997         return 0;
1998 }
1999
2000 /*
2001  *  initialization routines
2002  */
2003
2004 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
2005 {
2006         u8 cmd;
2007
2008         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
2009 #if 0 // force to reset
2010         if (cmd & 0x03) {
2011 #endif
2012                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2013                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
2014                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2015                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
2016                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
2017 #if 0
2018         }
2019 #endif
2020 }
2021
2022 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
2023 {
2024         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
2025 }
2026
2027 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
2028 {
2029         u32 val;
2030         int timeout = 1000;
2031
2032         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
2033         if (val)
2034                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
2035         while (timeout-- > 0) {
2036                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
2037                 if ((val & 0x00000002) == 0)
2038                         break;
2039         }
2040 }
2041
2042 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2043 {
2044         int err, is_1e;
2045         const char *name;
2046
2047         err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2048                                &chip->pci->dev);
2049         if (err >= 0) {
2050                 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2051                         snd_printk(KERN_ERR "DSP microcode has wrong size\n");
2052                         err = -EINVAL;
2053                 }
2054         }
2055         if (err < 0)
2056                 return err;
2057         is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2058                 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2059                 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2060                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2061         name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2062         err = request_firmware(&chip->controller_microcode, name,
2063                                &chip->pci->dev);
2064         if (err >= 0) {
2065                 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2066                         snd_printk(KERN_ERR "controller microcode"
2067                                    " has wrong size\n");
2068                         err = -EINVAL;
2069                 }
2070         }
2071         if (err < 0)
2072                 return err;
2073         return 0;
2074 }
2075
2076 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2077 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2078 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2079
2080 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2081 {
2082         int i;
2083         u16 ctrl;
2084         const __le32 *inst;
2085
2086         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2087         snd_ymfpci_disable_dsp(chip);
2088         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2089         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2090         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2091         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2092         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2093         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2094         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2095         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2096         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2097
2098         /* setup DSP instruction code */
2099         inst = (const __le32 *)chip->dsp_microcode->data;
2100         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2101                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2102                                   le32_to_cpu(inst[i]));
2103
2104         /* setup control instruction code */
2105         inst = (const __le32 *)chip->controller_microcode->data;
2106         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2107                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2108                                   le32_to_cpu(inst[i]));
2109
2110         snd_ymfpci_enable_dsp(chip);
2111 }
2112
2113 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2114 {
2115         long size, playback_ctrl_size;
2116         int voice, bank, reg;
2117         u8 *ptr;
2118         dma_addr_t ptr_addr;
2119
2120         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2121         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2122         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2123         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2124         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2125         
2126         size = ALIGN(playback_ctrl_size, 0x100) +
2127                ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2128                ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2129                ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2130                chip->work_size;
2131         /* work_ptr must be aligned to 256 bytes, but it's already
2132            covered with the kernel page allocation mechanism */
2133         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2134                                 size, &chip->work_ptr) < 0) 
2135                 return -ENOMEM;
2136         ptr = chip->work_ptr.area;
2137         ptr_addr = chip->work_ptr.addr;
2138         memset(ptr, 0, size);   /* for sure */
2139
2140         chip->bank_base_playback = ptr;
2141         chip->bank_base_playback_addr = ptr_addr;
2142         chip->ctrl_playback = (u32 *)ptr;
2143         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2144         ptr += ALIGN(playback_ctrl_size, 0x100);
2145         ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2146         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2147                 chip->voices[voice].number = voice;
2148                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2149                 chip->voices[voice].bank_addr = ptr_addr;
2150                 for (bank = 0; bank < 2; bank++) {
2151                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2152                         ptr += chip->bank_size_playback;
2153                         ptr_addr += chip->bank_size_playback;
2154                 }
2155         }
2156         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2157         ptr_addr = ALIGN(ptr_addr, 0x100);
2158         chip->bank_base_capture = ptr;
2159         chip->bank_base_capture_addr = ptr_addr;
2160         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2161                 for (bank = 0; bank < 2; bank++) {
2162                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2163                         ptr += chip->bank_size_capture;
2164                         ptr_addr += chip->bank_size_capture;
2165                 }
2166         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2167         ptr_addr = ALIGN(ptr_addr, 0x100);
2168         chip->bank_base_effect = ptr;
2169         chip->bank_base_effect_addr = ptr_addr;
2170         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2171                 for (bank = 0; bank < 2; bank++) {
2172                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2173                         ptr += chip->bank_size_effect;
2174                         ptr_addr += chip->bank_size_effect;
2175                 }
2176         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2177         ptr_addr = ALIGN(ptr_addr, 0x100);
2178         chip->work_base = ptr;
2179         chip->work_base_addr = ptr_addr;
2180         
2181         snd_BUG_ON(ptr + chip->work_size !=
2182                    chip->work_ptr.area + chip->work_ptr.bytes);
2183
2184         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2185         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2186         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2187         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2188         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2189
2190         /* S/PDIF output initialization */
2191         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2192         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2193         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2194
2195         /* S/PDIF input initialization */
2196         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2197
2198         /* digital mixer setup */
2199         for (reg = 0x80; reg < 0xc0; reg += 4)
2200                 snd_ymfpci_writel(chip, reg, 0);
2201         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2202         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2203         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2204         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2205         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2206         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2207         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2208         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2209         
2210         return 0;
2211 }
2212
2213 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2214 {
2215         u16 ctrl;
2216
2217         if (snd_BUG_ON(!chip))
2218                 return -EINVAL;
2219
2220         if (chip->res_reg_area) {       /* don't touch busy hardware */
2221                 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2222                 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2223                 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2224                 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2225                 snd_ymfpci_disable_dsp(chip);
2226                 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2227                 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2228                 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2229                 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2230                 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2231                 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2232                 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2233         }
2234
2235         snd_ymfpci_ac3_done(chip);
2236
2237         /* Set PCI device to D3 state */
2238 #if 0
2239         /* FIXME: temporarily disabled, otherwise we cannot fire up
2240          * the chip again unless reboot.  ACPI bug?
2241          */
2242         pci_set_power_state(chip->pci, 3);
2243 #endif
2244
2245 #ifdef CONFIG_PM
2246         vfree(chip->saved_regs);
2247 #endif
2248         if (chip->irq >= 0)
2249                 free_irq(chip->irq, chip);
2250         release_and_free_resource(chip->mpu_res);
2251         release_and_free_resource(chip->fm_res);
2252         snd_ymfpci_free_gameport(chip);
2253         if (chip->reg_area_virt)
2254                 iounmap(chip->reg_area_virt);
2255         if (chip->work_ptr.area)
2256                 snd_dma_free_pages(&chip->work_ptr);
2257         
2258         release_and_free_resource(chip->res_reg_area);
2259
2260         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2261         
2262         pci_disable_device(chip->pci);
2263         release_firmware(chip->dsp_microcode);
2264         release_firmware(chip->controller_microcode);
2265         kfree(chip);
2266         return 0;
2267 }
2268
2269 static int snd_ymfpci_dev_free(struct snd_device *device)
2270 {
2271         struct snd_ymfpci *chip = device->device_data;
2272         return snd_ymfpci_free(chip);
2273 }
2274
2275 #ifdef CONFIG_PM
2276 static int saved_regs_index[] = {
2277         /* spdif */
2278         YDSXGR_SPDIFOUTCTRL,
2279         YDSXGR_SPDIFOUTSTATUS,
2280         YDSXGR_SPDIFINCTRL,
2281         /* volumes */
2282         YDSXGR_PRIADCLOOPVOL,
2283         YDSXGR_NATIVEDACINVOL,
2284         YDSXGR_NATIVEDACOUTVOL,
2285         YDSXGR_BUF441OUTVOL,
2286         YDSXGR_NATIVEADCINVOL,
2287         YDSXGR_SPDIFLOOPVOL,
2288         YDSXGR_SPDIFOUTVOL,
2289         YDSXGR_ZVOUTVOL,
2290         YDSXGR_LEGACYOUTVOL,
2291         /* address bases */
2292         YDSXGR_PLAYCTRLBASE,
2293         YDSXGR_RECCTRLBASE,
2294         YDSXGR_EFFCTRLBASE,
2295         YDSXGR_WORKBASE,
2296         /* capture set up */
2297         YDSXGR_MAPOFREC,
2298         YDSXGR_RECFORMAT,
2299         YDSXGR_RECSLOTSR,
2300         YDSXGR_ADCFORMAT,
2301         YDSXGR_ADCSLOTSR,
2302 };
2303 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2304
2305 static int snd_ymfpci_suspend(struct device *dev)
2306 {
2307         struct pci_dev *pci = to_pci_dev(dev);
2308         struct snd_card *card = dev_get_drvdata(dev);
2309         struct snd_ymfpci *chip = card->private_data;
2310         unsigned int i;
2311         
2312         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2313         snd_pcm_suspend_all(chip->pcm);
2314         snd_pcm_suspend_all(chip->pcm2);
2315         snd_pcm_suspend_all(chip->pcm_spdif);
2316         snd_pcm_suspend_all(chip->pcm_4ch);
2317         snd_ac97_suspend(chip->ac97);
2318         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2319                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2320         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2321         pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
2322                              &chip->saved_dsxg_legacy);
2323         pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2324                              &chip->saved_dsxg_elegacy);
2325         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2326         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2327         snd_ymfpci_disable_dsp(chip);
2328         pci_disable_device(pci);
2329         pci_save_state(pci);
2330         pci_set_power_state(pci, PCI_D3hot);
2331         return 0;
2332 }
2333
2334 static int snd_ymfpci_resume(struct device *dev)
2335 {
2336         struct pci_dev *pci = to_pci_dev(dev);
2337         struct snd_card *card = dev_get_drvdata(dev);
2338         struct snd_ymfpci *chip = card->private_data;
2339         unsigned int i;
2340
2341         pci_set_power_state(pci, PCI_D0);
2342         pci_restore_state(pci);
2343         if (pci_enable_device(pci) < 0) {
2344                 printk(KERN_ERR "ymfpci: pci_enable_device failed, "
2345                        "disabling device\n");
2346                 snd_card_disconnect(card);
2347                 return -EIO;
2348         }
2349         pci_set_master(pci);
2350         snd_ymfpci_aclink_reset(pci);
2351         snd_ymfpci_codec_ready(chip, 0);
2352         snd_ymfpci_download_image(chip);
2353         udelay(100);
2354
2355         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2356                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2357
2358         snd_ac97_resume(chip->ac97);
2359
2360         pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
2361                               chip->saved_dsxg_legacy);
2362         pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2363                               chip->saved_dsxg_elegacy);
2364
2365         /* start hw again */
2366         if (chip->start_count > 0) {
2367                 spin_lock_irq(&chip->reg_lock);
2368                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2369                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2370                 spin_unlock_irq(&chip->reg_lock);
2371         }
2372         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2373         return 0;
2374 }
2375
2376 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2377 #endif /* CONFIG_PM */
2378
2379 int __devinit snd_ymfpci_create(struct snd_card *card,
2380                                 struct pci_dev * pci,
2381                                 unsigned short old_legacy_ctrl,
2382                                 struct snd_ymfpci ** rchip)
2383 {
2384         struct snd_ymfpci *chip;
2385         int err;
2386         static struct snd_device_ops ops = {
2387                 .dev_free =     snd_ymfpci_dev_free,
2388         };
2389         
2390         *rchip = NULL;
2391
2392         /* enable PCI device */
2393         if ((err = pci_enable_device(pci)) < 0)
2394                 return err;
2395
2396         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2397         if (chip == NULL) {
2398                 pci_disable_device(pci);
2399                 return -ENOMEM;
2400         }
2401         chip->old_legacy_ctrl = old_legacy_ctrl;
2402         spin_lock_init(&chip->reg_lock);
2403         spin_lock_init(&chip->voice_lock);
2404         init_waitqueue_head(&chip->interrupt_sleep);
2405         atomic_set(&chip->interrupt_sleep_count, 0);
2406         chip->card = card;
2407         chip->pci = pci;
2408         chip->irq = -1;
2409         chip->device_id = pci->device;
2410         chip->rev = pci->revision;
2411         chip->reg_area_phys = pci_resource_start(pci, 0);
2412         chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2413         pci_set_master(pci);
2414         chip->src441_used = -1;
2415
2416         if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2417                 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2418                 snd_ymfpci_free(chip);
2419                 return -EBUSY;
2420         }
2421         if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2422                         KBUILD_MODNAME, chip)) {
2423                 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2424                 snd_ymfpci_free(chip);
2425                 return -EBUSY;
2426         }
2427         chip->irq = pci->irq;
2428
2429         snd_ymfpci_aclink_reset(pci);
2430         if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2431                 snd_ymfpci_free(chip);
2432                 return -EIO;
2433         }
2434
2435         err = snd_ymfpci_request_firmware(chip);
2436         if (err < 0) {
2437                 snd_printk(KERN_ERR "firmware request failed: %d\n", err);
2438                 snd_ymfpci_free(chip);
2439                 return err;
2440         }
2441         snd_ymfpci_download_image(chip);
2442
2443         udelay(100); /* seems we need a delay after downloading image.. */
2444
2445         if (snd_ymfpci_memalloc(chip) < 0) {
2446                 snd_ymfpci_free(chip);
2447                 return -EIO;
2448         }
2449
2450         if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2451                 snd_ymfpci_free(chip);
2452                 return err;
2453         }
2454
2455 #ifdef CONFIG_PM
2456         chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2457         if (chip->saved_regs == NULL) {
2458                 snd_ymfpci_free(chip);
2459                 return -ENOMEM;
2460         }
2461 #endif
2462
2463         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2464                 snd_ymfpci_free(chip);
2465                 return err;
2466         }
2467
2468         snd_ymfpci_proc_init(card, chip);
2469
2470         snd_card_set_dev(card, &pci->dev);
2471
2472         *rchip = chip;
2473         return 0;
2474 }