Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6
[pandora-kernel.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         if (avail > runtime->buffer_size)
71                                 avail = runtime->buffer_size;
72                         runtime->silence_filled = avail > 0 ? avail : 0;
73                         runtime->silence_start = (runtime->status->hw_ptr +
74                                                   runtime->silence_filled) %
75                                                  runtime->boundary;
76                 } else {
77                         ofs = runtime->status->hw_ptr;
78                         frames = new_hw_ptr - ofs;
79                         if ((snd_pcm_sframes_t)frames < 0)
80                                 frames += runtime->boundary;
81                         runtime->silence_filled -= frames;
82                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
83                                 runtime->silence_filled = 0;
84                                 runtime->silence_start = new_hw_ptr;
85                         } else {
86                                 runtime->silence_start = ofs;
87                         }
88                 }
89                 frames = runtime->buffer_size - runtime->silence_filled;
90         }
91         if (snd_BUG_ON(frames > runtime->buffer_size))
92                 return;
93         if (frames == 0)
94                 return;
95         ofs = runtime->silence_start % runtime->buffer_size;
96         while (frames > 0) {
97                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100                         if (substream->ops->silence) {
101                                 int err;
102                                 err = substream->ops->silence(substream, -1, ofs, transfer);
103                                 snd_BUG_ON(err < 0);
104                         } else {
105                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107                         }
108                 } else {
109                         unsigned int c;
110                         unsigned int channels = runtime->channels;
111                         if (substream->ops->silence) {
112                                 for (c = 0; c < channels; ++c) {
113                                         int err;
114                                         err = substream->ops->silence(substream, c, ofs, transfer);
115                                         snd_BUG_ON(err < 0);
116                                 }
117                         } else {
118                                 size_t dma_csize = runtime->dma_bytes / channels;
119                                 for (c = 0; c < channels; ++c) {
120                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122                                 }
123                         }
124                 }
125                 runtime->silence_filled += transfer;
126                 frames -= transfer;
127                 ofs = 0;
128         }
129 }
130
131 static void pcm_debug_name(struct snd_pcm_substream *substream,
132                            char *name, size_t len)
133 {
134         snprintf(name, len, "pcmC%dD%d%c:%d",
135                  substream->pcm->card->number,
136                  substream->pcm->device,
137                  substream->stream ? 'c' : 'p',
138                  substream->number);
139 }
140
141 #define XRUN_DEBUG_BASIC        (1<<0)
142 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
143 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
144 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
145 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
146 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
147 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
148
149 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
150
151 #define xrun_debug(substream, mask) \
152                         ((substream)->pstr->xrun_debug & (mask))
153 #else
154 #define xrun_debug(substream, mask)     0
155 #endif
156
157 #define dump_stack_on_xrun(substream) do {                      \
158                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
159                         dump_stack();                           \
160         } while (0)
161
162 static void xrun(struct snd_pcm_substream *substream)
163 {
164         struct snd_pcm_runtime *runtime = substream->runtime;
165
166         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
167                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
168         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
169         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
170                 char name[16];
171                 pcm_debug_name(substream, name, sizeof(name));
172                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
173                 dump_stack_on_xrun(substream);
174         }
175 }
176
177 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
178 #define hw_ptr_error(substream, fmt, args...)                           \
179         do {                                                            \
180                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
181                         xrun_log_show(substream);                       \
182                         if (printk_ratelimit()) {                       \
183                                 snd_printd("PCM: " fmt, ##args);        \
184                         }                                               \
185                         dump_stack_on_xrun(substream);                  \
186                 }                                                       \
187         } while (0)
188
189 #define XRUN_LOG_CNT    10
190
191 struct hwptr_log_entry {
192         unsigned long jiffies;
193         snd_pcm_uframes_t pos;
194         snd_pcm_uframes_t period_size;
195         snd_pcm_uframes_t buffer_size;
196         snd_pcm_uframes_t old_hw_ptr;
197         snd_pcm_uframes_t hw_ptr_base;
198 };
199
200 struct snd_pcm_hwptr_log {
201         unsigned int idx;
202         unsigned int hit: 1;
203         struct hwptr_log_entry entries[XRUN_LOG_CNT];
204 };
205
206 static void xrun_log(struct snd_pcm_substream *substream,
207                      snd_pcm_uframes_t pos)
208 {
209         struct snd_pcm_runtime *runtime = substream->runtime;
210         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
211         struct hwptr_log_entry *entry;
212
213         if (log == NULL) {
214                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
215                 if (log == NULL)
216                         return;
217                 runtime->hwptr_log = log;
218         } else {
219                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
220                         return;
221         }
222         entry = &log->entries[log->idx];
223         entry->jiffies = jiffies;
224         entry->pos = pos;
225         entry->period_size = runtime->period_size;
226         entry->buffer_size = runtime->buffer_size;
227         entry->old_hw_ptr = runtime->status->hw_ptr;
228         entry->hw_ptr_base = runtime->hw_ptr_base;
229         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
230 }
231
232 static void xrun_log_show(struct snd_pcm_substream *substream)
233 {
234         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
235         struct hwptr_log_entry *entry;
236         char name[16];
237         unsigned int idx;
238         int cnt;
239
240         if (log == NULL)
241                 return;
242         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
243                 return;
244         pcm_debug_name(substream, name, sizeof(name));
245         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
246                 entry = &log->entries[idx];
247                 if (entry->period_size == 0)
248                         break;
249                 snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, "
250                            "hwptr=%ld/%ld\n",
251                            name, entry->jiffies, (unsigned long)entry->pos,
252                            (unsigned long)entry->period_size,
253                            (unsigned long)entry->buffer_size,
254                            (unsigned long)entry->old_hw_ptr,
255                            (unsigned long)entry->hw_ptr_base);
256                 idx++;
257                 idx %= XRUN_LOG_CNT;
258         }
259         log->hit = 1;
260 }
261
262 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
263
264 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
265 #define xrun_log(substream, pos)        do { } while (0)
266 #define xrun_log_show(substream)        do { } while (0)
267
268 #endif
269
270 int snd_pcm_update_state(struct snd_pcm_substream *substream,
271                          struct snd_pcm_runtime *runtime)
272 {
273         snd_pcm_uframes_t avail;
274
275         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
276                 avail = snd_pcm_playback_avail(runtime);
277         else
278                 avail = snd_pcm_capture_avail(runtime);
279         if (avail > runtime->avail_max)
280                 runtime->avail_max = avail;
281         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
282                 if (avail >= runtime->buffer_size) {
283                         snd_pcm_drain_done(substream);
284                         return -EPIPE;
285                 }
286         } else {
287                 if (avail >= runtime->stop_threshold) {
288                         xrun(substream);
289                         return -EPIPE;
290                 }
291         }
292         if (runtime->twake) {
293                 if (avail >= runtime->twake)
294                         wake_up(&runtime->tsleep);
295         } else if (avail >= runtime->control->avail_min)
296                 wake_up(&runtime->sleep);
297         return 0;
298 }
299
300 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
301                                   unsigned int in_interrupt)
302 {
303         struct snd_pcm_runtime *runtime = substream->runtime;
304         snd_pcm_uframes_t pos;
305         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
306         snd_pcm_sframes_t hdelta, delta;
307         unsigned long jdelta;
308
309         old_hw_ptr = runtime->status->hw_ptr;
310         pos = substream->ops->pointer(substream);
311         if (pos == SNDRV_PCM_POS_XRUN) {
312                 xrun(substream);
313                 return -EPIPE;
314         }
315         if (pos >= runtime->buffer_size) {
316                 if (printk_ratelimit()) {
317                         char name[16];
318                         pcm_debug_name(substream, name, sizeof(name));
319                         xrun_log_show(substream);
320                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
321                                    "buffer size = %ld, period size = %ld\n",
322                                    name, pos, runtime->buffer_size,
323                                    runtime->period_size);
324                 }
325                 pos = 0;
326         }
327         pos -= pos % runtime->min_align;
328         if (xrun_debug(substream, XRUN_DEBUG_LOG))
329                 xrun_log(substream, pos);
330         hw_base = runtime->hw_ptr_base;
331         new_hw_ptr = hw_base + pos;
332         if (in_interrupt) {
333                 /* we know that one period was processed */
334                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
335                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
336                 if (delta > new_hw_ptr) {
337                         /* check for double acknowledged interrupts */
338                         hdelta = jiffies - runtime->hw_ptr_jiffies;
339                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
340                                 hw_base += runtime->buffer_size;
341                                 if (hw_base >= runtime->boundary)
342                                         hw_base = 0;
343                                 new_hw_ptr = hw_base + pos;
344                                 goto __delta;
345                         }
346                 }
347         }
348         /* new_hw_ptr might be lower than old_hw_ptr in case when */
349         /* pointer crosses the end of the ring buffer */
350         if (new_hw_ptr < old_hw_ptr) {
351                 hw_base += runtime->buffer_size;
352                 if (hw_base >= runtime->boundary)
353                         hw_base = 0;
354                 new_hw_ptr = hw_base + pos;
355         }
356       __delta:
357         delta = new_hw_ptr - old_hw_ptr;
358         if (delta < 0)
359                 delta += runtime->boundary;
360         if (xrun_debug(substream, in_interrupt ?
361                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
362                 char name[16];
363                 pcm_debug_name(substream, name, sizeof(name));
364                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
365                            "hwptr=%ld/%ld/%ld/%ld\n",
366                            in_interrupt ? "period" : "hwptr",
367                            name,
368                            (unsigned int)pos,
369                            (unsigned int)runtime->period_size,
370                            (unsigned int)runtime->buffer_size,
371                            (unsigned long)delta,
372                            (unsigned long)old_hw_ptr,
373                            (unsigned long)new_hw_ptr,
374                            (unsigned long)runtime->hw_ptr_base);
375         }
376         /* something must be really wrong */
377         if (delta >= runtime->buffer_size + runtime->period_size) {
378                 hw_ptr_error(substream,
379                                "Unexpected hw_pointer value %s"
380                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
381                                "old_hw_ptr=%ld)\n",
382                                      in_interrupt ? "[Q] " : "[P]",
383                                      substream->stream, (long)pos,
384                                      (long)new_hw_ptr, (long)old_hw_ptr);
385                 return 0;
386         }
387
388         /* Do jiffies check only in xrun_debug mode */
389         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
390                 goto no_jiffies_check;
391
392         /* Skip the jiffies check for hardwares with BATCH flag.
393          * Such hardware usually just increases the position at each IRQ,
394          * thus it can't give any strange position.
395          */
396         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
397                 goto no_jiffies_check;
398         hdelta = delta;
399         if (hdelta < runtime->delay)
400                 goto no_jiffies_check;
401         hdelta -= runtime->delay;
402         jdelta = jiffies - runtime->hw_ptr_jiffies;
403         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
404                 delta = jdelta /
405                         (((runtime->period_size * HZ) / runtime->rate)
406                                                                 + HZ/100);
407                 /* move new_hw_ptr according jiffies not pos variable */
408                 new_hw_ptr = old_hw_ptr;
409                 hw_base = delta;
410                 /* use loop to avoid checks for delta overflows */
411                 /* the delta value is small or zero in most cases */
412                 while (delta > 0) {
413                         new_hw_ptr += runtime->period_size;
414                         if (new_hw_ptr >= runtime->boundary)
415                                 new_hw_ptr -= runtime->boundary;
416                         delta--;
417                 }
418                 /* align hw_base to buffer_size */
419                 hw_ptr_error(substream,
420                              "hw_ptr skipping! %s"
421                              "(pos=%ld, delta=%ld, period=%ld, "
422                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
423                              in_interrupt ? "[Q] " : "",
424                              (long)pos, (long)hdelta,
425                              (long)runtime->period_size, jdelta,
426                              ((hdelta * HZ) / runtime->rate), hw_base,
427                              (unsigned long)old_hw_ptr,
428                              (unsigned long)new_hw_ptr);
429                 /* reset values to proper state */
430                 delta = 0;
431                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
432         }
433  no_jiffies_check:
434         if (delta > runtime->period_size + runtime->period_size / 2) {
435                 hw_ptr_error(substream,
436                              "Lost interrupts? %s"
437                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
438                              "old_hw_ptr=%ld)\n",
439                              in_interrupt ? "[Q] " : "",
440                              substream->stream, (long)delta,
441                              (long)new_hw_ptr,
442                              (long)old_hw_ptr);
443         }
444
445         if (runtime->status->hw_ptr == new_hw_ptr)
446                 return 0;
447
448         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
449             runtime->silence_size > 0)
450                 snd_pcm_playback_silence(substream, new_hw_ptr);
451
452         if (in_interrupt) {
453                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
454                 if (delta < 0)
455                         delta += runtime->boundary;
456                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
457                 runtime->hw_ptr_interrupt += delta;
458                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
459                         runtime->hw_ptr_interrupt -= runtime->boundary;
460         }
461         runtime->hw_ptr_base = hw_base;
462         runtime->status->hw_ptr = new_hw_ptr;
463         runtime->hw_ptr_jiffies = jiffies;
464         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
465                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
466
467         return snd_pcm_update_state(substream, runtime);
468 }
469
470 /* CAUTION: call it with irq disabled */
471 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
472 {
473         return snd_pcm_update_hw_ptr0(substream, 0);
474 }
475
476 /**
477  * snd_pcm_set_ops - set the PCM operators
478  * @pcm: the pcm instance
479  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
480  * @ops: the operator table
481  *
482  * Sets the given PCM operators to the pcm instance.
483  */
484 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
485 {
486         struct snd_pcm_str *stream = &pcm->streams[direction];
487         struct snd_pcm_substream *substream;
488         
489         for (substream = stream->substream; substream != NULL; substream = substream->next)
490                 substream->ops = ops;
491 }
492
493 EXPORT_SYMBOL(snd_pcm_set_ops);
494
495 /**
496  * snd_pcm_sync - set the PCM sync id
497  * @substream: the pcm substream
498  *
499  * Sets the PCM sync identifier for the card.
500  */
501 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
502 {
503         struct snd_pcm_runtime *runtime = substream->runtime;
504         
505         runtime->sync.id32[0] = substream->pcm->card->number;
506         runtime->sync.id32[1] = -1;
507         runtime->sync.id32[2] = -1;
508         runtime->sync.id32[3] = -1;
509 }
510
511 EXPORT_SYMBOL(snd_pcm_set_sync);
512
513 /*
514  *  Standard ioctl routine
515  */
516
517 static inline unsigned int div32(unsigned int a, unsigned int b, 
518                                  unsigned int *r)
519 {
520         if (b == 0) {
521                 *r = 0;
522                 return UINT_MAX;
523         }
524         *r = a % b;
525         return a / b;
526 }
527
528 static inline unsigned int div_down(unsigned int a, unsigned int b)
529 {
530         if (b == 0)
531                 return UINT_MAX;
532         return a / b;
533 }
534
535 static inline unsigned int div_up(unsigned int a, unsigned int b)
536 {
537         unsigned int r;
538         unsigned int q;
539         if (b == 0)
540                 return UINT_MAX;
541         q = div32(a, b, &r);
542         if (r)
543                 ++q;
544         return q;
545 }
546
547 static inline unsigned int mul(unsigned int a, unsigned int b)
548 {
549         if (a == 0)
550                 return 0;
551         if (div_down(UINT_MAX, a) < b)
552                 return UINT_MAX;
553         return a * b;
554 }
555
556 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
557                                     unsigned int c, unsigned int *r)
558 {
559         u_int64_t n = (u_int64_t) a * b;
560         if (c == 0) {
561                 snd_BUG_ON(!n);
562                 *r = 0;
563                 return UINT_MAX;
564         }
565         n = div_u64_rem(n, c, r);
566         if (n >= UINT_MAX) {
567                 *r = 0;
568                 return UINT_MAX;
569         }
570         return n;
571 }
572
573 /**
574  * snd_interval_refine - refine the interval value of configurator
575  * @i: the interval value to refine
576  * @v: the interval value to refer to
577  *
578  * Refines the interval value with the reference value.
579  * The interval is changed to the range satisfying both intervals.
580  * The interval status (min, max, integer, etc.) are evaluated.
581  *
582  * Returns non-zero if the value is changed, zero if not changed.
583  */
584 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
585 {
586         int changed = 0;
587         if (snd_BUG_ON(snd_interval_empty(i)))
588                 return -EINVAL;
589         if (i->min < v->min) {
590                 i->min = v->min;
591                 i->openmin = v->openmin;
592                 changed = 1;
593         } else if (i->min == v->min && !i->openmin && v->openmin) {
594                 i->openmin = 1;
595                 changed = 1;
596         }
597         if (i->max > v->max) {
598                 i->max = v->max;
599                 i->openmax = v->openmax;
600                 changed = 1;
601         } else if (i->max == v->max && !i->openmax && v->openmax) {
602                 i->openmax = 1;
603                 changed = 1;
604         }
605         if (!i->integer && v->integer) {
606                 i->integer = 1;
607                 changed = 1;
608         }
609         if (i->integer) {
610                 if (i->openmin) {
611                         i->min++;
612                         i->openmin = 0;
613                 }
614                 if (i->openmax) {
615                         i->max--;
616                         i->openmax = 0;
617                 }
618         } else if (!i->openmin && !i->openmax && i->min == i->max)
619                 i->integer = 1;
620         if (snd_interval_checkempty(i)) {
621                 snd_interval_none(i);
622                 return -EINVAL;
623         }
624         return changed;
625 }
626
627 EXPORT_SYMBOL(snd_interval_refine);
628
629 static int snd_interval_refine_first(struct snd_interval *i)
630 {
631         if (snd_BUG_ON(snd_interval_empty(i)))
632                 return -EINVAL;
633         if (snd_interval_single(i))
634                 return 0;
635         i->max = i->min;
636         i->openmax = i->openmin;
637         if (i->openmax)
638                 i->max++;
639         return 1;
640 }
641
642 static int snd_interval_refine_last(struct snd_interval *i)
643 {
644         if (snd_BUG_ON(snd_interval_empty(i)))
645                 return -EINVAL;
646         if (snd_interval_single(i))
647                 return 0;
648         i->min = i->max;
649         i->openmin = i->openmax;
650         if (i->openmin)
651                 i->min--;
652         return 1;
653 }
654
655 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
656 {
657         if (a->empty || b->empty) {
658                 snd_interval_none(c);
659                 return;
660         }
661         c->empty = 0;
662         c->min = mul(a->min, b->min);
663         c->openmin = (a->openmin || b->openmin);
664         c->max = mul(a->max,  b->max);
665         c->openmax = (a->openmax || b->openmax);
666         c->integer = (a->integer && b->integer);
667 }
668
669 /**
670  * snd_interval_div - refine the interval value with division
671  * @a: dividend
672  * @b: divisor
673  * @c: quotient
674  *
675  * c = a / b
676  *
677  * Returns non-zero if the value is changed, zero if not changed.
678  */
679 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
680 {
681         unsigned int r;
682         if (a->empty || b->empty) {
683                 snd_interval_none(c);
684                 return;
685         }
686         c->empty = 0;
687         c->min = div32(a->min, b->max, &r);
688         c->openmin = (r || a->openmin || b->openmax);
689         if (b->min > 0) {
690                 c->max = div32(a->max, b->min, &r);
691                 if (r) {
692                         c->max++;
693                         c->openmax = 1;
694                 } else
695                         c->openmax = (a->openmax || b->openmin);
696         } else {
697                 c->max = UINT_MAX;
698                 c->openmax = 0;
699         }
700         c->integer = 0;
701 }
702
703 /**
704  * snd_interval_muldivk - refine the interval value
705  * @a: dividend 1
706  * @b: dividend 2
707  * @k: divisor (as integer)
708  * @c: result
709   *
710  * c = a * b / k
711  *
712  * Returns non-zero if the value is changed, zero if not changed.
713  */
714 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
715                       unsigned int k, struct snd_interval *c)
716 {
717         unsigned int r;
718         if (a->empty || b->empty) {
719                 snd_interval_none(c);
720                 return;
721         }
722         c->empty = 0;
723         c->min = muldiv32(a->min, b->min, k, &r);
724         c->openmin = (r || a->openmin || b->openmin);
725         c->max = muldiv32(a->max, b->max, k, &r);
726         if (r) {
727                 c->max++;
728                 c->openmax = 1;
729         } else
730                 c->openmax = (a->openmax || b->openmax);
731         c->integer = 0;
732 }
733
734 /**
735  * snd_interval_mulkdiv - refine the interval value
736  * @a: dividend 1
737  * @k: dividend 2 (as integer)
738  * @b: divisor
739  * @c: result
740  *
741  * c = a * k / b
742  *
743  * Returns non-zero if the value is changed, zero if not changed.
744  */
745 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
746                       const struct snd_interval *b, struct snd_interval *c)
747 {
748         unsigned int r;
749         if (a->empty || b->empty) {
750                 snd_interval_none(c);
751                 return;
752         }
753         c->empty = 0;
754         c->min = muldiv32(a->min, k, b->max, &r);
755         c->openmin = (r || a->openmin || b->openmax);
756         if (b->min > 0) {
757                 c->max = muldiv32(a->max, k, b->min, &r);
758                 if (r) {
759                         c->max++;
760                         c->openmax = 1;
761                 } else
762                         c->openmax = (a->openmax || b->openmin);
763         } else {
764                 c->max = UINT_MAX;
765                 c->openmax = 0;
766         }
767         c->integer = 0;
768 }
769
770 /* ---- */
771
772
773 /**
774  * snd_interval_ratnum - refine the interval value
775  * @i: interval to refine
776  * @rats_count: number of ratnum_t 
777  * @rats: ratnum_t array
778  * @nump: pointer to store the resultant numerator
779  * @denp: pointer to store the resultant denominator
780  *
781  * Returns non-zero if the value is changed, zero if not changed.
782  */
783 int snd_interval_ratnum(struct snd_interval *i,
784                         unsigned int rats_count, struct snd_ratnum *rats,
785                         unsigned int *nump, unsigned int *denp)
786 {
787         unsigned int best_num, best_den;
788         int best_diff;
789         unsigned int k;
790         struct snd_interval t;
791         int err;
792         unsigned int result_num, result_den;
793         int result_diff;
794
795         best_num = best_den = best_diff = 0;
796         for (k = 0; k < rats_count; ++k) {
797                 unsigned int num = rats[k].num;
798                 unsigned int den;
799                 unsigned int q = i->min;
800                 int diff;
801                 if (q == 0)
802                         q = 1;
803                 den = div_up(num, q);
804                 if (den < rats[k].den_min)
805                         continue;
806                 if (den > rats[k].den_max)
807                         den = rats[k].den_max;
808                 else {
809                         unsigned int r;
810                         r = (den - rats[k].den_min) % rats[k].den_step;
811                         if (r != 0)
812                                 den -= r;
813                 }
814                 diff = num - q * den;
815                 if (diff < 0)
816                         diff = -diff;
817                 if (best_num == 0 ||
818                     diff * best_den < best_diff * den) {
819                         best_diff = diff;
820                         best_den = den;
821                         best_num = num;
822                 }
823         }
824         if (best_den == 0) {
825                 i->empty = 1;
826                 return -EINVAL;
827         }
828         t.min = div_down(best_num, best_den);
829         t.openmin = !!(best_num % best_den);
830         
831         result_num = best_num;
832         result_diff = best_diff;
833         result_den = best_den;
834         best_num = best_den = best_diff = 0;
835         for (k = 0; k < rats_count; ++k) {
836                 unsigned int num = rats[k].num;
837                 unsigned int den;
838                 unsigned int q = i->max;
839                 int diff;
840                 if (q == 0) {
841                         i->empty = 1;
842                         return -EINVAL;
843                 }
844                 den = div_down(num, q);
845                 if (den > rats[k].den_max)
846                         continue;
847                 if (den < rats[k].den_min)
848                         den = rats[k].den_min;
849                 else {
850                         unsigned int r;
851                         r = (den - rats[k].den_min) % rats[k].den_step;
852                         if (r != 0)
853                                 den += rats[k].den_step - r;
854                 }
855                 diff = q * den - num;
856                 if (diff < 0)
857                         diff = -diff;
858                 if (best_num == 0 ||
859                     diff * best_den < best_diff * den) {
860                         best_diff = diff;
861                         best_den = den;
862                         best_num = num;
863                 }
864         }
865         if (best_den == 0) {
866                 i->empty = 1;
867                 return -EINVAL;
868         }
869         t.max = div_up(best_num, best_den);
870         t.openmax = !!(best_num % best_den);
871         t.integer = 0;
872         err = snd_interval_refine(i, &t);
873         if (err < 0)
874                 return err;
875
876         if (snd_interval_single(i)) {
877                 if (best_diff * result_den < result_diff * best_den) {
878                         result_num = best_num;
879                         result_den = best_den;
880                 }
881                 if (nump)
882                         *nump = result_num;
883                 if (denp)
884                         *denp = result_den;
885         }
886         return err;
887 }
888
889 EXPORT_SYMBOL(snd_interval_ratnum);
890
891 /**
892  * snd_interval_ratden - refine the interval value
893  * @i: interval to refine
894  * @rats_count: number of struct ratden
895  * @rats: struct ratden array
896  * @nump: pointer to store the resultant numerator
897  * @denp: pointer to store the resultant denominator
898  *
899  * Returns non-zero if the value is changed, zero if not changed.
900  */
901 static int snd_interval_ratden(struct snd_interval *i,
902                                unsigned int rats_count, struct snd_ratden *rats,
903                                unsigned int *nump, unsigned int *denp)
904 {
905         unsigned int best_num, best_diff, best_den;
906         unsigned int k;
907         struct snd_interval t;
908         int err;
909
910         best_num = best_den = best_diff = 0;
911         for (k = 0; k < rats_count; ++k) {
912                 unsigned int num;
913                 unsigned int den = rats[k].den;
914                 unsigned int q = i->min;
915                 int diff;
916                 num = mul(q, den);
917                 if (num > rats[k].num_max)
918                         continue;
919                 if (num < rats[k].num_min)
920                         num = rats[k].num_max;
921                 else {
922                         unsigned int r;
923                         r = (num - rats[k].num_min) % rats[k].num_step;
924                         if (r != 0)
925                                 num += rats[k].num_step - r;
926                 }
927                 diff = num - q * den;
928                 if (best_num == 0 ||
929                     diff * best_den < best_diff * den) {
930                         best_diff = diff;
931                         best_den = den;
932                         best_num = num;
933                 }
934         }
935         if (best_den == 0) {
936                 i->empty = 1;
937                 return -EINVAL;
938         }
939         t.min = div_down(best_num, best_den);
940         t.openmin = !!(best_num % best_den);
941         
942         best_num = best_den = best_diff = 0;
943         for (k = 0; k < rats_count; ++k) {
944                 unsigned int num;
945                 unsigned int den = rats[k].den;
946                 unsigned int q = i->max;
947                 int diff;
948                 num = mul(q, den);
949                 if (num < rats[k].num_min)
950                         continue;
951                 if (num > rats[k].num_max)
952                         num = rats[k].num_max;
953                 else {
954                         unsigned int r;
955                         r = (num - rats[k].num_min) % rats[k].num_step;
956                         if (r != 0)
957                                 num -= r;
958                 }
959                 diff = q * den - num;
960                 if (best_num == 0 ||
961                     diff * best_den < best_diff * den) {
962                         best_diff = diff;
963                         best_den = den;
964                         best_num = num;
965                 }
966         }
967         if (best_den == 0) {
968                 i->empty = 1;
969                 return -EINVAL;
970         }
971         t.max = div_up(best_num, best_den);
972         t.openmax = !!(best_num % best_den);
973         t.integer = 0;
974         err = snd_interval_refine(i, &t);
975         if (err < 0)
976                 return err;
977
978         if (snd_interval_single(i)) {
979                 if (nump)
980                         *nump = best_num;
981                 if (denp)
982                         *denp = best_den;
983         }
984         return err;
985 }
986
987 /**
988  * snd_interval_list - refine the interval value from the list
989  * @i: the interval value to refine
990  * @count: the number of elements in the list
991  * @list: the value list
992  * @mask: the bit-mask to evaluate
993  *
994  * Refines the interval value from the list.
995  * When mask is non-zero, only the elements corresponding to bit 1 are
996  * evaluated.
997  *
998  * Returns non-zero if the value is changed, zero if not changed.
999  */
1000 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1001 {
1002         unsigned int k;
1003         struct snd_interval list_range;
1004
1005         if (!count) {
1006                 i->empty = 1;
1007                 return -EINVAL;
1008         }
1009         snd_interval_any(&list_range);
1010         list_range.min = UINT_MAX;
1011         list_range.max = 0;
1012         for (k = 0; k < count; k++) {
1013                 if (mask && !(mask & (1 << k)))
1014                         continue;
1015                 if (!snd_interval_test(i, list[k]))
1016                         continue;
1017                 list_range.min = min(list_range.min, list[k]);
1018                 list_range.max = max(list_range.max, list[k]);
1019         }
1020         return snd_interval_refine(i, &list_range);
1021 }
1022
1023 EXPORT_SYMBOL(snd_interval_list);
1024
1025 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1026 {
1027         unsigned int n;
1028         int changed = 0;
1029         n = (i->min - min) % step;
1030         if (n != 0 || i->openmin) {
1031                 i->min += step - n;
1032                 changed = 1;
1033         }
1034         n = (i->max - min) % step;
1035         if (n != 0 || i->openmax) {
1036                 i->max -= n;
1037                 changed = 1;
1038         }
1039         if (snd_interval_checkempty(i)) {
1040                 i->empty = 1;
1041                 return -EINVAL;
1042         }
1043         return changed;
1044 }
1045
1046 /* Info constraints helpers */
1047
1048 /**
1049  * snd_pcm_hw_rule_add - add the hw-constraint rule
1050  * @runtime: the pcm runtime instance
1051  * @cond: condition bits
1052  * @var: the variable to evaluate
1053  * @func: the evaluation function
1054  * @private: the private data pointer passed to function
1055  * @dep: the dependent variables
1056  *
1057  * Returns zero if successful, or a negative error code on failure.
1058  */
1059 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1060                         int var,
1061                         snd_pcm_hw_rule_func_t func, void *private,
1062                         int dep, ...)
1063 {
1064         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1065         struct snd_pcm_hw_rule *c;
1066         unsigned int k;
1067         va_list args;
1068         va_start(args, dep);
1069         if (constrs->rules_num >= constrs->rules_all) {
1070                 struct snd_pcm_hw_rule *new;
1071                 unsigned int new_rules = constrs->rules_all + 16;
1072                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1073                 if (!new) {
1074                         va_end(args);
1075                         return -ENOMEM;
1076                 }
1077                 if (constrs->rules) {
1078                         memcpy(new, constrs->rules,
1079                                constrs->rules_num * sizeof(*c));
1080                         kfree(constrs->rules);
1081                 }
1082                 constrs->rules = new;
1083                 constrs->rules_all = new_rules;
1084         }
1085         c = &constrs->rules[constrs->rules_num];
1086         c->cond = cond;
1087         c->func = func;
1088         c->var = var;
1089         c->private = private;
1090         k = 0;
1091         while (1) {
1092                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1093                         va_end(args);
1094                         return -EINVAL;
1095                 }
1096                 c->deps[k++] = dep;
1097                 if (dep < 0)
1098                         break;
1099                 dep = va_arg(args, int);
1100         }
1101         constrs->rules_num++;
1102         va_end(args);
1103         return 0;
1104 }
1105
1106 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1107
1108 /**
1109  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1110  * @runtime: PCM runtime instance
1111  * @var: hw_params variable to apply the mask
1112  * @mask: the bitmap mask
1113  *
1114  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1115  */
1116 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1117                                u_int32_t mask)
1118 {
1119         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1120         struct snd_mask *maskp = constrs_mask(constrs, var);
1121         *maskp->bits &= mask;
1122         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1123         if (*maskp->bits == 0)
1124                 return -EINVAL;
1125         return 0;
1126 }
1127
1128 /**
1129  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1130  * @runtime: PCM runtime instance
1131  * @var: hw_params variable to apply the mask
1132  * @mask: the 64bit bitmap mask
1133  *
1134  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1135  */
1136 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1137                                  u_int64_t mask)
1138 {
1139         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1140         struct snd_mask *maskp = constrs_mask(constrs, var);
1141         maskp->bits[0] &= (u_int32_t)mask;
1142         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1143         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1144         if (! maskp->bits[0] && ! maskp->bits[1])
1145                 return -EINVAL;
1146         return 0;
1147 }
1148
1149 /**
1150  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1151  * @runtime: PCM runtime instance
1152  * @var: hw_params variable to apply the integer constraint
1153  *
1154  * Apply the constraint of integer to an interval parameter.
1155  */
1156 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1157 {
1158         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1159         return snd_interval_setinteger(constrs_interval(constrs, var));
1160 }
1161
1162 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1163
1164 /**
1165  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1166  * @runtime: PCM runtime instance
1167  * @var: hw_params variable to apply the range
1168  * @min: the minimal value
1169  * @max: the maximal value
1170  * 
1171  * Apply the min/max range constraint to an interval parameter.
1172  */
1173 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1174                                  unsigned int min, unsigned int max)
1175 {
1176         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1177         struct snd_interval t;
1178         t.min = min;
1179         t.max = max;
1180         t.openmin = t.openmax = 0;
1181         t.integer = 0;
1182         return snd_interval_refine(constrs_interval(constrs, var), &t);
1183 }
1184
1185 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1186
1187 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1188                                 struct snd_pcm_hw_rule *rule)
1189 {
1190         struct snd_pcm_hw_constraint_list *list = rule->private;
1191         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1192 }               
1193
1194
1195 /**
1196  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1197  * @runtime: PCM runtime instance
1198  * @cond: condition bits
1199  * @var: hw_params variable to apply the list constraint
1200  * @l: list
1201  * 
1202  * Apply the list of constraints to an interval parameter.
1203  */
1204 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1205                                unsigned int cond,
1206                                snd_pcm_hw_param_t var,
1207                                struct snd_pcm_hw_constraint_list *l)
1208 {
1209         return snd_pcm_hw_rule_add(runtime, cond, var,
1210                                    snd_pcm_hw_rule_list, l,
1211                                    var, -1);
1212 }
1213
1214 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1215
1216 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1217                                    struct snd_pcm_hw_rule *rule)
1218 {
1219         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1220         unsigned int num = 0, den = 0;
1221         int err;
1222         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1223                                   r->nrats, r->rats, &num, &den);
1224         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1225                 params->rate_num = num;
1226                 params->rate_den = den;
1227         }
1228         return err;
1229 }
1230
1231 /**
1232  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1233  * @runtime: PCM runtime instance
1234  * @cond: condition bits
1235  * @var: hw_params variable to apply the ratnums constraint
1236  * @r: struct snd_ratnums constriants
1237  */
1238 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1239                                   unsigned int cond,
1240                                   snd_pcm_hw_param_t var,
1241                                   struct snd_pcm_hw_constraint_ratnums *r)
1242 {
1243         return snd_pcm_hw_rule_add(runtime, cond, var,
1244                                    snd_pcm_hw_rule_ratnums, r,
1245                                    var, -1);
1246 }
1247
1248 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1249
1250 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1251                                    struct snd_pcm_hw_rule *rule)
1252 {
1253         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1254         unsigned int num = 0, den = 0;
1255         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1256                                   r->nrats, r->rats, &num, &den);
1257         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1258                 params->rate_num = num;
1259                 params->rate_den = den;
1260         }
1261         return err;
1262 }
1263
1264 /**
1265  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1266  * @runtime: PCM runtime instance
1267  * @cond: condition bits
1268  * @var: hw_params variable to apply the ratdens constraint
1269  * @r: struct snd_ratdens constriants
1270  */
1271 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1272                                   unsigned int cond,
1273                                   snd_pcm_hw_param_t var,
1274                                   struct snd_pcm_hw_constraint_ratdens *r)
1275 {
1276         return snd_pcm_hw_rule_add(runtime, cond, var,
1277                                    snd_pcm_hw_rule_ratdens, r,
1278                                    var, -1);
1279 }
1280
1281 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1282
1283 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1284                                   struct snd_pcm_hw_rule *rule)
1285 {
1286         unsigned int l = (unsigned long) rule->private;
1287         int width = l & 0xffff;
1288         unsigned int msbits = l >> 16;
1289         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1290         if (snd_interval_single(i) && snd_interval_value(i) == width)
1291                 params->msbits = msbits;
1292         return 0;
1293 }
1294
1295 /**
1296  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1297  * @runtime: PCM runtime instance
1298  * @cond: condition bits
1299  * @width: sample bits width
1300  * @msbits: msbits width
1301  */
1302 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1303                                  unsigned int cond,
1304                                  unsigned int width,
1305                                  unsigned int msbits)
1306 {
1307         unsigned long l = (msbits << 16) | width;
1308         return snd_pcm_hw_rule_add(runtime, cond, -1,
1309                                     snd_pcm_hw_rule_msbits,
1310                                     (void*) l,
1311                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1312 }
1313
1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1315
1316 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1317                                 struct snd_pcm_hw_rule *rule)
1318 {
1319         unsigned long step = (unsigned long) rule->private;
1320         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1321 }
1322
1323 /**
1324  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1325  * @runtime: PCM runtime instance
1326  * @cond: condition bits
1327  * @var: hw_params variable to apply the step constraint
1328  * @step: step size
1329  */
1330 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1331                                unsigned int cond,
1332                                snd_pcm_hw_param_t var,
1333                                unsigned long step)
1334 {
1335         return snd_pcm_hw_rule_add(runtime, cond, var, 
1336                                    snd_pcm_hw_rule_step, (void *) step,
1337                                    var, -1);
1338 }
1339
1340 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1341
1342 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1343 {
1344         static unsigned int pow2_sizes[] = {
1345                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1346                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1347                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1348                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1349         };
1350         return snd_interval_list(hw_param_interval(params, rule->var),
1351                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1352 }               
1353
1354 /**
1355  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1356  * @runtime: PCM runtime instance
1357  * @cond: condition bits
1358  * @var: hw_params variable to apply the power-of-2 constraint
1359  */
1360 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1361                                unsigned int cond,
1362                                snd_pcm_hw_param_t var)
1363 {
1364         return snd_pcm_hw_rule_add(runtime, cond, var, 
1365                                    snd_pcm_hw_rule_pow2, NULL,
1366                                    var, -1);
1367 }
1368
1369 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1370
1371 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1372                                   snd_pcm_hw_param_t var)
1373 {
1374         if (hw_is_mask(var)) {
1375                 snd_mask_any(hw_param_mask(params, var));
1376                 params->cmask |= 1 << var;
1377                 params->rmask |= 1 << var;
1378                 return;
1379         }
1380         if (hw_is_interval(var)) {
1381                 snd_interval_any(hw_param_interval(params, var));
1382                 params->cmask |= 1 << var;
1383                 params->rmask |= 1 << var;
1384                 return;
1385         }
1386         snd_BUG();
1387 }
1388
1389 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1390 {
1391         unsigned int k;
1392         memset(params, 0, sizeof(*params));
1393         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1394                 _snd_pcm_hw_param_any(params, k);
1395         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1396                 _snd_pcm_hw_param_any(params, k);
1397         params->info = ~0U;
1398 }
1399
1400 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1401
1402 /**
1403  * snd_pcm_hw_param_value - return @params field @var value
1404  * @params: the hw_params instance
1405  * @var: parameter to retrieve
1406  * @dir: pointer to the direction (-1,0,1) or %NULL
1407  *
1408  * Return the value for field @var if it's fixed in configuration space
1409  * defined by @params. Return -%EINVAL otherwise.
1410  */
1411 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1412                            snd_pcm_hw_param_t var, int *dir)
1413 {
1414         if (hw_is_mask(var)) {
1415                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1416                 if (!snd_mask_single(mask))
1417                         return -EINVAL;
1418                 if (dir)
1419                         *dir = 0;
1420                 return snd_mask_value(mask);
1421         }
1422         if (hw_is_interval(var)) {
1423                 const struct snd_interval *i = hw_param_interval_c(params, var);
1424                 if (!snd_interval_single(i))
1425                         return -EINVAL;
1426                 if (dir)
1427                         *dir = i->openmin;
1428                 return snd_interval_value(i);
1429         }
1430         return -EINVAL;
1431 }
1432
1433 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1434
1435 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1436                                 snd_pcm_hw_param_t var)
1437 {
1438         if (hw_is_mask(var)) {
1439                 snd_mask_none(hw_param_mask(params, var));
1440                 params->cmask |= 1 << var;
1441                 params->rmask |= 1 << var;
1442         } else if (hw_is_interval(var)) {
1443                 snd_interval_none(hw_param_interval(params, var));
1444                 params->cmask |= 1 << var;
1445                 params->rmask |= 1 << var;
1446         } else {
1447                 snd_BUG();
1448         }
1449 }
1450
1451 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1452
1453 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1454                                    snd_pcm_hw_param_t var)
1455 {
1456         int changed;
1457         if (hw_is_mask(var))
1458                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1459         else if (hw_is_interval(var))
1460                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1461         else
1462                 return -EINVAL;
1463         if (changed) {
1464                 params->cmask |= 1 << var;
1465                 params->rmask |= 1 << var;
1466         }
1467         return changed;
1468 }
1469
1470
1471 /**
1472  * snd_pcm_hw_param_first - refine config space and return minimum value
1473  * @pcm: PCM instance
1474  * @params: the hw_params instance
1475  * @var: parameter to retrieve
1476  * @dir: pointer to the direction (-1,0,1) or %NULL
1477  *
1478  * Inside configuration space defined by @params remove from @var all
1479  * values > minimum. Reduce configuration space accordingly.
1480  * Return the minimum.
1481  */
1482 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1483                            struct snd_pcm_hw_params *params, 
1484                            snd_pcm_hw_param_t var, int *dir)
1485 {
1486         int changed = _snd_pcm_hw_param_first(params, var);
1487         if (changed < 0)
1488                 return changed;
1489         if (params->rmask) {
1490                 int err = snd_pcm_hw_refine(pcm, params);
1491                 if (snd_BUG_ON(err < 0))
1492                         return err;
1493         }
1494         return snd_pcm_hw_param_value(params, var, dir);
1495 }
1496
1497 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1498
1499 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1500                                   snd_pcm_hw_param_t var)
1501 {
1502         int changed;
1503         if (hw_is_mask(var))
1504                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1505         else if (hw_is_interval(var))
1506                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1507         else
1508                 return -EINVAL;
1509         if (changed) {
1510                 params->cmask |= 1 << var;
1511                 params->rmask |= 1 << var;
1512         }
1513         return changed;
1514 }
1515
1516
1517 /**
1518  * snd_pcm_hw_param_last - refine config space and return maximum value
1519  * @pcm: PCM instance
1520  * @params: the hw_params instance
1521  * @var: parameter to retrieve
1522  * @dir: pointer to the direction (-1,0,1) or %NULL
1523  *
1524  * Inside configuration space defined by @params remove from @var all
1525  * values < maximum. Reduce configuration space accordingly.
1526  * Return the maximum.
1527  */
1528 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1529                           struct snd_pcm_hw_params *params,
1530                           snd_pcm_hw_param_t var, int *dir)
1531 {
1532         int changed = _snd_pcm_hw_param_last(params, var);
1533         if (changed < 0)
1534                 return changed;
1535         if (params->rmask) {
1536                 int err = snd_pcm_hw_refine(pcm, params);
1537                 if (snd_BUG_ON(err < 0))
1538                         return err;
1539         }
1540         return snd_pcm_hw_param_value(params, var, dir);
1541 }
1542
1543 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1544
1545 /**
1546  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1547  * @pcm: PCM instance
1548  * @params: the hw_params instance
1549  *
1550  * Choose one configuration from configuration space defined by @params.
1551  * The configuration chosen is that obtained fixing in this order:
1552  * first access, first format, first subformat, min channels,
1553  * min rate, min period time, max buffer size, min tick time
1554  */
1555 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1556                              struct snd_pcm_hw_params *params)
1557 {
1558         static int vars[] = {
1559                 SNDRV_PCM_HW_PARAM_ACCESS,
1560                 SNDRV_PCM_HW_PARAM_FORMAT,
1561                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1562                 SNDRV_PCM_HW_PARAM_CHANNELS,
1563                 SNDRV_PCM_HW_PARAM_RATE,
1564                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1565                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1566                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1567                 -1
1568         };
1569         int err, *v;
1570
1571         for (v = vars; *v != -1; v++) {
1572                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1573                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1574                 else
1575                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1576                 if (snd_BUG_ON(err < 0))
1577                         return err;
1578         }
1579         return 0;
1580 }
1581
1582 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1583                                    void *arg)
1584 {
1585         struct snd_pcm_runtime *runtime = substream->runtime;
1586         unsigned long flags;
1587         snd_pcm_stream_lock_irqsave(substream, flags);
1588         if (snd_pcm_running(substream) &&
1589             snd_pcm_update_hw_ptr(substream) >= 0)
1590                 runtime->status->hw_ptr %= runtime->buffer_size;
1591         else
1592                 runtime->status->hw_ptr = 0;
1593         snd_pcm_stream_unlock_irqrestore(substream, flags);
1594         return 0;
1595 }
1596
1597 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1598                                           void *arg)
1599 {
1600         struct snd_pcm_channel_info *info = arg;
1601         struct snd_pcm_runtime *runtime = substream->runtime;
1602         int width;
1603         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1604                 info->offset = -1;
1605                 return 0;
1606         }
1607         width = snd_pcm_format_physical_width(runtime->format);
1608         if (width < 0)
1609                 return width;
1610         info->offset = 0;
1611         switch (runtime->access) {
1612         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1613         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1614                 info->first = info->channel * width;
1615                 info->step = runtime->channels * width;
1616                 break;
1617         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1618         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1619         {
1620                 size_t size = runtime->dma_bytes / runtime->channels;
1621                 info->first = info->channel * size * 8;
1622                 info->step = width;
1623                 break;
1624         }
1625         default:
1626                 snd_BUG();
1627                 break;
1628         }
1629         return 0;
1630 }
1631
1632 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1633                                        void *arg)
1634 {
1635         struct snd_pcm_hw_params *params = arg;
1636         snd_pcm_format_t format;
1637         int channels, width;
1638
1639         params->fifo_size = substream->runtime->hw.fifo_size;
1640         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1641                 format = params_format(params);
1642                 channels = params_channels(params);
1643                 width = snd_pcm_format_physical_width(format);
1644                 params->fifo_size /= width * channels;
1645         }
1646         return 0;
1647 }
1648
1649 /**
1650  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1651  * @substream: the pcm substream instance
1652  * @cmd: ioctl command
1653  * @arg: ioctl argument
1654  *
1655  * Processes the generic ioctl commands for PCM.
1656  * Can be passed as the ioctl callback for PCM ops.
1657  *
1658  * Returns zero if successful, or a negative error code on failure.
1659  */
1660 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1661                       unsigned int cmd, void *arg)
1662 {
1663         switch (cmd) {
1664         case SNDRV_PCM_IOCTL1_INFO:
1665                 return 0;
1666         case SNDRV_PCM_IOCTL1_RESET:
1667                 return snd_pcm_lib_ioctl_reset(substream, arg);
1668         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1669                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1670         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1671                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1672         }
1673         return -ENXIO;
1674 }
1675
1676 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1677
1678 /**
1679  * snd_pcm_period_elapsed - update the pcm status for the next period
1680  * @substream: the pcm substream instance
1681  *
1682  * This function is called from the interrupt handler when the
1683  * PCM has processed the period size.  It will update the current
1684  * pointer, wake up sleepers, etc.
1685  *
1686  * Even if more than one periods have elapsed since the last call, you
1687  * have to call this only once.
1688  */
1689 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1690 {
1691         struct snd_pcm_runtime *runtime;
1692         unsigned long flags;
1693
1694         if (PCM_RUNTIME_CHECK(substream))
1695                 return;
1696         runtime = substream->runtime;
1697
1698         if (runtime->transfer_ack_begin)
1699                 runtime->transfer_ack_begin(substream);
1700
1701         snd_pcm_stream_lock_irqsave(substream, flags);
1702         if (!snd_pcm_running(substream) ||
1703             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1704                 goto _end;
1705
1706         if (substream->timer_running)
1707                 snd_timer_interrupt(substream->timer, 1);
1708  _end:
1709         snd_pcm_stream_unlock_irqrestore(substream, flags);
1710         if (runtime->transfer_ack_end)
1711                 runtime->transfer_ack_end(substream);
1712         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1713 }
1714
1715 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1716
1717 /*
1718  * Wait until avail_min data becomes available
1719  * Returns a negative error code if any error occurs during operation.
1720  * The available space is stored on availp.  When err = 0 and avail = 0
1721  * on the capture stream, it indicates the stream is in DRAINING state.
1722  */
1723 static int wait_for_avail(struct snd_pcm_substream *substream,
1724                               snd_pcm_uframes_t *availp)
1725 {
1726         struct snd_pcm_runtime *runtime = substream->runtime;
1727         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1728         wait_queue_t wait;
1729         int err = 0;
1730         snd_pcm_uframes_t avail = 0;
1731         long tout;
1732
1733         init_waitqueue_entry(&wait, current);
1734         add_wait_queue(&runtime->tsleep, &wait);
1735         for (;;) {
1736                 if (signal_pending(current)) {
1737                         err = -ERESTARTSYS;
1738                         break;
1739                 }
1740                 set_current_state(TASK_INTERRUPTIBLE);
1741                 snd_pcm_stream_unlock_irq(substream);
1742                 tout = schedule_timeout(msecs_to_jiffies(10000));
1743                 snd_pcm_stream_lock_irq(substream);
1744                 switch (runtime->status->state) {
1745                 case SNDRV_PCM_STATE_SUSPENDED:
1746                         err = -ESTRPIPE;
1747                         goto _endloop;
1748                 case SNDRV_PCM_STATE_XRUN:
1749                         err = -EPIPE;
1750                         goto _endloop;
1751                 case SNDRV_PCM_STATE_DRAINING:
1752                         if (is_playback)
1753                                 err = -EPIPE;
1754                         else 
1755                                 avail = 0; /* indicate draining */
1756                         goto _endloop;
1757                 case SNDRV_PCM_STATE_OPEN:
1758                 case SNDRV_PCM_STATE_SETUP:
1759                 case SNDRV_PCM_STATE_DISCONNECTED:
1760                         err = -EBADFD;
1761                         goto _endloop;
1762                 }
1763                 if (!tout) {
1764                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1765                                    is_playback ? "playback" : "capture");
1766                         err = -EIO;
1767                         break;
1768                 }
1769                 if (is_playback)
1770                         avail = snd_pcm_playback_avail(runtime);
1771                 else
1772                         avail = snd_pcm_capture_avail(runtime);
1773                 if (avail >= runtime->twake)
1774                         break;
1775         }
1776  _endloop:
1777         remove_wait_queue(&runtime->tsleep, &wait);
1778         *availp = avail;
1779         return err;
1780 }
1781         
1782 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1783                                       unsigned int hwoff,
1784                                       unsigned long data, unsigned int off,
1785                                       snd_pcm_uframes_t frames)
1786 {
1787         struct snd_pcm_runtime *runtime = substream->runtime;
1788         int err;
1789         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1790         if (substream->ops->copy) {
1791                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1792                         return err;
1793         } else {
1794                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1795                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1796                         return -EFAULT;
1797         }
1798         return 0;
1799 }
1800  
1801 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1802                           unsigned long data, unsigned int off,
1803                           snd_pcm_uframes_t size);
1804
1805 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1806                                             unsigned long data,
1807                                             snd_pcm_uframes_t size,
1808                                             int nonblock,
1809                                             transfer_f transfer)
1810 {
1811         struct snd_pcm_runtime *runtime = substream->runtime;
1812         snd_pcm_uframes_t xfer = 0;
1813         snd_pcm_uframes_t offset = 0;
1814         int err = 0;
1815
1816         if (size == 0)
1817                 return 0;
1818
1819         snd_pcm_stream_lock_irq(substream);
1820         switch (runtime->status->state) {
1821         case SNDRV_PCM_STATE_PREPARED:
1822         case SNDRV_PCM_STATE_RUNNING:
1823         case SNDRV_PCM_STATE_PAUSED:
1824                 break;
1825         case SNDRV_PCM_STATE_XRUN:
1826                 err = -EPIPE;
1827                 goto _end_unlock;
1828         case SNDRV_PCM_STATE_SUSPENDED:
1829                 err = -ESTRPIPE;
1830                 goto _end_unlock;
1831         default:
1832                 err = -EBADFD;
1833                 goto _end_unlock;
1834         }
1835
1836         runtime->twake = runtime->control->avail_min ? : 1;
1837         while (size > 0) {
1838                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1839                 snd_pcm_uframes_t avail;
1840                 snd_pcm_uframes_t cont;
1841                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1842                         snd_pcm_update_hw_ptr(substream);
1843                 avail = snd_pcm_playback_avail(runtime);
1844                 if (!avail) {
1845                         if (nonblock) {
1846                                 err = -EAGAIN;
1847                                 goto _end_unlock;
1848                         }
1849                         runtime->twake = min_t(snd_pcm_uframes_t, size,
1850                                         runtime->control->avail_min ? : 1);
1851                         err = wait_for_avail(substream, &avail);
1852                         if (err < 0)
1853                                 goto _end_unlock;
1854                 }
1855                 frames = size > avail ? avail : size;
1856                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1857                 if (frames > cont)
1858                         frames = cont;
1859                 if (snd_BUG_ON(!frames)) {
1860                         runtime->twake = 0;
1861                         snd_pcm_stream_unlock_irq(substream);
1862                         return -EINVAL;
1863                 }
1864                 appl_ptr = runtime->control->appl_ptr;
1865                 appl_ofs = appl_ptr % runtime->buffer_size;
1866                 snd_pcm_stream_unlock_irq(substream);
1867                 err = transfer(substream, appl_ofs, data, offset, frames);
1868                 snd_pcm_stream_lock_irq(substream);
1869                 if (err < 0)
1870                         goto _end_unlock;
1871                 switch (runtime->status->state) {
1872                 case SNDRV_PCM_STATE_XRUN:
1873                         err = -EPIPE;
1874                         goto _end_unlock;
1875                 case SNDRV_PCM_STATE_SUSPENDED:
1876                         err = -ESTRPIPE;
1877                         goto _end_unlock;
1878                 default:
1879                         break;
1880                 }
1881                 appl_ptr += frames;
1882                 if (appl_ptr >= runtime->boundary)
1883                         appl_ptr -= runtime->boundary;
1884                 runtime->control->appl_ptr = appl_ptr;
1885                 if (substream->ops->ack)
1886                         substream->ops->ack(substream);
1887
1888                 offset += frames;
1889                 size -= frames;
1890                 xfer += frames;
1891                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1892                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1893                         err = snd_pcm_start(substream);
1894                         if (err < 0)
1895                                 goto _end_unlock;
1896                 }
1897         }
1898  _end_unlock:
1899         runtime->twake = 0;
1900         if (xfer > 0 && err >= 0)
1901                 snd_pcm_update_state(substream, runtime);
1902         snd_pcm_stream_unlock_irq(substream);
1903         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1904 }
1905
1906 /* sanity-check for read/write methods */
1907 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1908 {
1909         struct snd_pcm_runtime *runtime;
1910         if (PCM_RUNTIME_CHECK(substream))
1911                 return -ENXIO;
1912         runtime = substream->runtime;
1913         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1914                 return -EINVAL;
1915         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1916                 return -EBADFD;
1917         return 0;
1918 }
1919
1920 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1921 {
1922         struct snd_pcm_runtime *runtime;
1923         int nonblock;
1924         int err;
1925
1926         err = pcm_sanity_check(substream);
1927         if (err < 0)
1928                 return err;
1929         runtime = substream->runtime;
1930         nonblock = !!(substream->f_flags & O_NONBLOCK);
1931
1932         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1933             runtime->channels > 1)
1934                 return -EINVAL;
1935         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1936                                   snd_pcm_lib_write_transfer);
1937 }
1938
1939 EXPORT_SYMBOL(snd_pcm_lib_write);
1940
1941 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1942                                        unsigned int hwoff,
1943                                        unsigned long data, unsigned int off,
1944                                        snd_pcm_uframes_t frames)
1945 {
1946         struct snd_pcm_runtime *runtime = substream->runtime;
1947         int err;
1948         void __user **bufs = (void __user **)data;
1949         int channels = runtime->channels;
1950         int c;
1951         if (substream->ops->copy) {
1952                 if (snd_BUG_ON(!substream->ops->silence))
1953                         return -EINVAL;
1954                 for (c = 0; c < channels; ++c, ++bufs) {
1955                         if (*bufs == NULL) {
1956                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1957                                         return err;
1958                         } else {
1959                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1960                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1961                                         return err;
1962                         }
1963                 }
1964         } else {
1965                 /* default transfer behaviour */
1966                 size_t dma_csize = runtime->dma_bytes / channels;
1967                 for (c = 0; c < channels; ++c, ++bufs) {
1968                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1969                         if (*bufs == NULL) {
1970                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1971                         } else {
1972                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1973                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1974                                         return -EFAULT;
1975                         }
1976                 }
1977         }
1978         return 0;
1979 }
1980  
1981 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1982                                      void __user **bufs,
1983                                      snd_pcm_uframes_t frames)
1984 {
1985         struct snd_pcm_runtime *runtime;
1986         int nonblock;
1987         int err;
1988
1989         err = pcm_sanity_check(substream);
1990         if (err < 0)
1991                 return err;
1992         runtime = substream->runtime;
1993         nonblock = !!(substream->f_flags & O_NONBLOCK);
1994
1995         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1996                 return -EINVAL;
1997         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1998                                   nonblock, snd_pcm_lib_writev_transfer);
1999 }
2000
2001 EXPORT_SYMBOL(snd_pcm_lib_writev);
2002
2003 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2004                                      unsigned int hwoff,
2005                                      unsigned long data, unsigned int off,
2006                                      snd_pcm_uframes_t frames)
2007 {
2008         struct snd_pcm_runtime *runtime = substream->runtime;
2009         int err;
2010         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2011         if (substream->ops->copy) {
2012                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2013                         return err;
2014         } else {
2015                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2016                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2017                         return -EFAULT;
2018         }
2019         return 0;
2020 }
2021
2022 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2023                                            unsigned long data,
2024                                            snd_pcm_uframes_t size,
2025                                            int nonblock,
2026                                            transfer_f transfer)
2027 {
2028         struct snd_pcm_runtime *runtime = substream->runtime;
2029         snd_pcm_uframes_t xfer = 0;
2030         snd_pcm_uframes_t offset = 0;
2031         int err = 0;
2032
2033         if (size == 0)
2034                 return 0;
2035
2036         snd_pcm_stream_lock_irq(substream);
2037         switch (runtime->status->state) {
2038         case SNDRV_PCM_STATE_PREPARED:
2039                 if (size >= runtime->start_threshold) {
2040                         err = snd_pcm_start(substream);
2041                         if (err < 0)
2042                                 goto _end_unlock;
2043                 }
2044                 break;
2045         case SNDRV_PCM_STATE_DRAINING:
2046         case SNDRV_PCM_STATE_RUNNING:
2047         case SNDRV_PCM_STATE_PAUSED:
2048                 break;
2049         case SNDRV_PCM_STATE_XRUN:
2050                 err = -EPIPE;
2051                 goto _end_unlock;
2052         case SNDRV_PCM_STATE_SUSPENDED:
2053                 err = -ESTRPIPE;
2054                 goto _end_unlock;
2055         default:
2056                 err = -EBADFD;
2057                 goto _end_unlock;
2058         }
2059
2060         runtime->twake = runtime->control->avail_min ? : 1;
2061         while (size > 0) {
2062                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2063                 snd_pcm_uframes_t avail;
2064                 snd_pcm_uframes_t cont;
2065                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2066                         snd_pcm_update_hw_ptr(substream);
2067                 avail = snd_pcm_capture_avail(runtime);
2068                 if (!avail) {
2069                         if (runtime->status->state ==
2070                             SNDRV_PCM_STATE_DRAINING) {
2071                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2072                                 goto _end_unlock;
2073                         }
2074                         if (nonblock) {
2075                                 err = -EAGAIN;
2076                                 goto _end_unlock;
2077                         }
2078                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2079                                         runtime->control->avail_min ? : 1);
2080                         err = wait_for_avail(substream, &avail);
2081                         if (err < 0)
2082                                 goto _end_unlock;
2083                         if (!avail)
2084                                 continue; /* draining */
2085                 }
2086                 frames = size > avail ? avail : size;
2087                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2088                 if (frames > cont)
2089                         frames = cont;
2090                 if (snd_BUG_ON(!frames)) {
2091                         runtime->twake = 0;
2092                         snd_pcm_stream_unlock_irq(substream);
2093                         return -EINVAL;
2094                 }
2095                 appl_ptr = runtime->control->appl_ptr;
2096                 appl_ofs = appl_ptr % runtime->buffer_size;
2097                 snd_pcm_stream_unlock_irq(substream);
2098                 err = transfer(substream, appl_ofs, data, offset, frames);
2099                 snd_pcm_stream_lock_irq(substream);
2100                 if (err < 0)
2101                         goto _end_unlock;
2102                 switch (runtime->status->state) {
2103                 case SNDRV_PCM_STATE_XRUN:
2104                         err = -EPIPE;
2105                         goto _end_unlock;
2106                 case SNDRV_PCM_STATE_SUSPENDED:
2107                         err = -ESTRPIPE;
2108                         goto _end_unlock;
2109                 default:
2110                         break;
2111                 }
2112                 appl_ptr += frames;
2113                 if (appl_ptr >= runtime->boundary)
2114                         appl_ptr -= runtime->boundary;
2115                 runtime->control->appl_ptr = appl_ptr;
2116                 if (substream->ops->ack)
2117                         substream->ops->ack(substream);
2118
2119                 offset += frames;
2120                 size -= frames;
2121                 xfer += frames;
2122         }
2123  _end_unlock:
2124         runtime->twake = 0;
2125         if (xfer > 0 && err >= 0)
2126                 snd_pcm_update_state(substream, runtime);
2127         snd_pcm_stream_unlock_irq(substream);
2128         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2129 }
2130
2131 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2132 {
2133         struct snd_pcm_runtime *runtime;
2134         int nonblock;
2135         int err;
2136         
2137         err = pcm_sanity_check(substream);
2138         if (err < 0)
2139                 return err;
2140         runtime = substream->runtime;
2141         nonblock = !!(substream->f_flags & O_NONBLOCK);
2142         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2143                 return -EINVAL;
2144         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2145 }
2146
2147 EXPORT_SYMBOL(snd_pcm_lib_read);
2148
2149 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2150                                       unsigned int hwoff,
2151                                       unsigned long data, unsigned int off,
2152                                       snd_pcm_uframes_t frames)
2153 {
2154         struct snd_pcm_runtime *runtime = substream->runtime;
2155         int err;
2156         void __user **bufs = (void __user **)data;
2157         int channels = runtime->channels;
2158         int c;
2159         if (substream->ops->copy) {
2160                 for (c = 0; c < channels; ++c, ++bufs) {
2161                         char __user *buf;
2162                         if (*bufs == NULL)
2163                                 continue;
2164                         buf = *bufs + samples_to_bytes(runtime, off);
2165                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2166                                 return err;
2167                 }
2168         } else {
2169                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2170                 for (c = 0; c < channels; ++c, ++bufs) {
2171                         char *hwbuf;
2172                         char __user *buf;
2173                         if (*bufs == NULL)
2174                                 continue;
2175
2176                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2177                         buf = *bufs + samples_to_bytes(runtime, off);
2178                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2179                                 return -EFAULT;
2180                 }
2181         }
2182         return 0;
2183 }
2184  
2185 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2186                                     void __user **bufs,
2187                                     snd_pcm_uframes_t frames)
2188 {
2189         struct snd_pcm_runtime *runtime;
2190         int nonblock;
2191         int err;
2192
2193         err = pcm_sanity_check(substream);
2194         if (err < 0)
2195                 return err;
2196         runtime = substream->runtime;
2197         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2198                 return -EBADFD;
2199
2200         nonblock = !!(substream->f_flags & O_NONBLOCK);
2201         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2202                 return -EINVAL;
2203         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2204 }
2205
2206 EXPORT_SYMBOL(snd_pcm_lib_readv);