Merge branch 'ec-cleanup' into release
[pandora-kernel.git] / security / selinux / ss / policydb.c
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *      Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *      This program is free software; you can redistribute it and/or modify
24  *      it under the terms of the GNU General Public License as published by
25  *      the Free Software Foundation, version 2.
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include <linux/audit.h>
34 #include <linux/flex_array.h>
35 #include "security.h"
36
37 #include "policydb.h"
38 #include "conditional.h"
39 #include "mls.h"
40 #include "services.h"
41
42 #define _DEBUG_HASHES
43
44 #ifdef DEBUG_HASHES
45 static const char *symtab_name[SYM_NUM] = {
46         "common prefixes",
47         "classes",
48         "roles",
49         "types",
50         "users",
51         "bools",
52         "levels",
53         "categories",
54 };
55 #endif
56
57 static unsigned int symtab_sizes[SYM_NUM] = {
58         2,
59         32,
60         16,
61         512,
62         128,
63         16,
64         16,
65         16,
66 };
67
68 struct policydb_compat_info {
69         int version;
70         int sym_num;
71         int ocon_num;
72 };
73
74 /* These need to be updated if SYM_NUM or OCON_NUM changes */
75 static struct policydb_compat_info policydb_compat[] = {
76         {
77                 .version        = POLICYDB_VERSION_BASE,
78                 .sym_num        = SYM_NUM - 3,
79                 .ocon_num       = OCON_NUM - 1,
80         },
81         {
82                 .version        = POLICYDB_VERSION_BOOL,
83                 .sym_num        = SYM_NUM - 2,
84                 .ocon_num       = OCON_NUM - 1,
85         },
86         {
87                 .version        = POLICYDB_VERSION_IPV6,
88                 .sym_num        = SYM_NUM - 2,
89                 .ocon_num       = OCON_NUM,
90         },
91         {
92                 .version        = POLICYDB_VERSION_NLCLASS,
93                 .sym_num        = SYM_NUM - 2,
94                 .ocon_num       = OCON_NUM,
95         },
96         {
97                 .version        = POLICYDB_VERSION_MLS,
98                 .sym_num        = SYM_NUM,
99                 .ocon_num       = OCON_NUM,
100         },
101         {
102                 .version        = POLICYDB_VERSION_AVTAB,
103                 .sym_num        = SYM_NUM,
104                 .ocon_num       = OCON_NUM,
105         },
106         {
107                 .version        = POLICYDB_VERSION_RANGETRANS,
108                 .sym_num        = SYM_NUM,
109                 .ocon_num       = OCON_NUM,
110         },
111         {
112                 .version        = POLICYDB_VERSION_POLCAP,
113                 .sym_num        = SYM_NUM,
114                 .ocon_num       = OCON_NUM,
115         },
116         {
117                 .version        = POLICYDB_VERSION_PERMISSIVE,
118                 .sym_num        = SYM_NUM,
119                 .ocon_num       = OCON_NUM,
120         },
121         {
122                 .version        = POLICYDB_VERSION_BOUNDARY,
123                 .sym_num        = SYM_NUM,
124                 .ocon_num       = OCON_NUM,
125         },
126         {
127                 .version        = POLICYDB_VERSION_FILENAME_TRANS,
128                 .sym_num        = SYM_NUM,
129                 .ocon_num       = OCON_NUM,
130         },
131 };
132
133 static struct policydb_compat_info *policydb_lookup_compat(int version)
134 {
135         int i;
136         struct policydb_compat_info *info = NULL;
137
138         for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
139                 if (policydb_compat[i].version == version) {
140                         info = &policydb_compat[i];
141                         break;
142                 }
143         }
144         return info;
145 }
146
147 /*
148  * Initialize the role table.
149  */
150 static int roles_init(struct policydb *p)
151 {
152         char *key = NULL;
153         int rc;
154         struct role_datum *role;
155
156         rc = -ENOMEM;
157         role = kzalloc(sizeof(*role), GFP_KERNEL);
158         if (!role)
159                 goto out;
160
161         rc = -EINVAL;
162         role->value = ++p->p_roles.nprim;
163         if (role->value != OBJECT_R_VAL)
164                 goto out;
165
166         rc = -ENOMEM;
167         key = kstrdup(OBJECT_R, GFP_KERNEL);
168         if (!key)
169                 goto out;
170
171         rc = hashtab_insert(p->p_roles.table, key, role);
172         if (rc)
173                 goto out;
174
175         return 0;
176 out:
177         kfree(key);
178         kfree(role);
179         return rc;
180 }
181
182 static u32 rangetr_hash(struct hashtab *h, const void *k)
183 {
184         const struct range_trans *key = k;
185         return (key->source_type + (key->target_type << 3) +
186                 (key->target_class << 5)) & (h->size - 1);
187 }
188
189 static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
190 {
191         const struct range_trans *key1 = k1, *key2 = k2;
192         int v;
193
194         v = key1->source_type - key2->source_type;
195         if (v)
196                 return v;
197
198         v = key1->target_type - key2->target_type;
199         if (v)
200                 return v;
201
202         v = key1->target_class - key2->target_class;
203
204         return v;
205 }
206
207 /*
208  * Initialize a policy database structure.
209  */
210 static int policydb_init(struct policydb *p)
211 {
212         int i, rc;
213
214         memset(p, 0, sizeof(*p));
215
216         for (i = 0; i < SYM_NUM; i++) {
217                 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
218                 if (rc)
219                         goto out;
220         }
221
222         rc = avtab_init(&p->te_avtab);
223         if (rc)
224                 goto out;
225
226         rc = roles_init(p);
227         if (rc)
228                 goto out;
229
230         rc = cond_policydb_init(p);
231         if (rc)
232                 goto out;
233
234         p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
235         if (!p->range_tr)
236                 goto out;
237
238         ebitmap_init(&p->policycaps);
239         ebitmap_init(&p->permissive_map);
240
241         return 0;
242 out:
243         for (i = 0; i < SYM_NUM; i++)
244                 hashtab_destroy(p->symtab[i].table);
245         return rc;
246 }
247
248 /*
249  * The following *_index functions are used to
250  * define the val_to_name and val_to_struct arrays
251  * in a policy database structure.  The val_to_name
252  * arrays are used when converting security context
253  * structures into string representations.  The
254  * val_to_struct arrays are used when the attributes
255  * of a class, role, or user are needed.
256  */
257
258 static int common_index(void *key, void *datum, void *datap)
259 {
260         struct policydb *p;
261         struct common_datum *comdatum;
262         struct flex_array *fa;
263
264         comdatum = datum;
265         p = datap;
266         if (!comdatum->value || comdatum->value > p->p_commons.nprim)
267                 return -EINVAL;
268
269         fa = p->sym_val_to_name[SYM_COMMONS];
270         if (flex_array_put_ptr(fa, comdatum->value - 1, key,
271                                GFP_KERNEL | __GFP_ZERO))
272                 BUG();
273         return 0;
274 }
275
276 static int class_index(void *key, void *datum, void *datap)
277 {
278         struct policydb *p;
279         struct class_datum *cladatum;
280         struct flex_array *fa;
281
282         cladatum = datum;
283         p = datap;
284         if (!cladatum->value || cladatum->value > p->p_classes.nprim)
285                 return -EINVAL;
286         fa = p->sym_val_to_name[SYM_CLASSES];
287         if (flex_array_put_ptr(fa, cladatum->value - 1, key,
288                                GFP_KERNEL | __GFP_ZERO))
289                 BUG();
290         p->class_val_to_struct[cladatum->value - 1] = cladatum;
291         return 0;
292 }
293
294 static int role_index(void *key, void *datum, void *datap)
295 {
296         struct policydb *p;
297         struct role_datum *role;
298         struct flex_array *fa;
299
300         role = datum;
301         p = datap;
302         if (!role->value
303             || role->value > p->p_roles.nprim
304             || role->bounds > p->p_roles.nprim)
305                 return -EINVAL;
306
307         fa = p->sym_val_to_name[SYM_ROLES];
308         if (flex_array_put_ptr(fa, role->value - 1, key,
309                                GFP_KERNEL | __GFP_ZERO))
310                 BUG();
311         p->role_val_to_struct[role->value - 1] = role;
312         return 0;
313 }
314
315 static int type_index(void *key, void *datum, void *datap)
316 {
317         struct policydb *p;
318         struct type_datum *typdatum;
319         struct flex_array *fa;
320
321         typdatum = datum;
322         p = datap;
323
324         if (typdatum->primary) {
325                 if (!typdatum->value
326                     || typdatum->value > p->p_types.nprim
327                     || typdatum->bounds > p->p_types.nprim)
328                         return -EINVAL;
329                 fa = p->sym_val_to_name[SYM_TYPES];
330                 if (flex_array_put_ptr(fa, typdatum->value - 1, key,
331                                        GFP_KERNEL | __GFP_ZERO))
332                         BUG();
333
334                 fa = p->type_val_to_struct_array;
335                 if (flex_array_put_ptr(fa, typdatum->value - 1, typdatum,
336                                        GFP_KERNEL | __GFP_ZERO))
337                         BUG();
338         }
339
340         return 0;
341 }
342
343 static int user_index(void *key, void *datum, void *datap)
344 {
345         struct policydb *p;
346         struct user_datum *usrdatum;
347         struct flex_array *fa;
348
349         usrdatum = datum;
350         p = datap;
351         if (!usrdatum->value
352             || usrdatum->value > p->p_users.nprim
353             || usrdatum->bounds > p->p_users.nprim)
354                 return -EINVAL;
355
356         fa = p->sym_val_to_name[SYM_USERS];
357         if (flex_array_put_ptr(fa, usrdatum->value - 1, key,
358                                GFP_KERNEL | __GFP_ZERO))
359                 BUG();
360         p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
361         return 0;
362 }
363
364 static int sens_index(void *key, void *datum, void *datap)
365 {
366         struct policydb *p;
367         struct level_datum *levdatum;
368         struct flex_array *fa;
369
370         levdatum = datum;
371         p = datap;
372
373         if (!levdatum->isalias) {
374                 if (!levdatum->level->sens ||
375                     levdatum->level->sens > p->p_levels.nprim)
376                         return -EINVAL;
377                 fa = p->sym_val_to_name[SYM_LEVELS];
378                 if (flex_array_put_ptr(fa, levdatum->level->sens - 1, key,
379                                        GFP_KERNEL | __GFP_ZERO))
380                         BUG();
381         }
382
383         return 0;
384 }
385
386 static int cat_index(void *key, void *datum, void *datap)
387 {
388         struct policydb *p;
389         struct cat_datum *catdatum;
390         struct flex_array *fa;
391
392         catdatum = datum;
393         p = datap;
394
395         if (!catdatum->isalias) {
396                 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
397                         return -EINVAL;
398                 fa = p->sym_val_to_name[SYM_CATS];
399                 if (flex_array_put_ptr(fa, catdatum->value - 1, key,
400                                        GFP_KERNEL | __GFP_ZERO))
401                         BUG();
402         }
403
404         return 0;
405 }
406
407 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
408 {
409         common_index,
410         class_index,
411         role_index,
412         type_index,
413         user_index,
414         cond_index_bool,
415         sens_index,
416         cat_index,
417 };
418
419 #ifdef DEBUG_HASHES
420 static void symtab_hash_eval(struct symtab *s)
421 {
422         int i;
423
424         for (i = 0; i < SYM_NUM; i++) {
425                 struct hashtab *h = s[i].table;
426                 struct hashtab_info info;
427
428                 hashtab_stat(h, &info);
429                 printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
430                        "longest chain length %d\n", symtab_name[i], h->nel,
431                        info.slots_used, h->size, info.max_chain_len);
432         }
433 }
434
435 static void rangetr_hash_eval(struct hashtab *h)
436 {
437         struct hashtab_info info;
438
439         hashtab_stat(h, &info);
440         printk(KERN_DEBUG "SELinux: rangetr:  %d entries and %d/%d buckets used, "
441                "longest chain length %d\n", h->nel,
442                info.slots_used, h->size, info.max_chain_len);
443 }
444 #else
445 static inline void rangetr_hash_eval(struct hashtab *h)
446 {
447 }
448 #endif
449
450 /*
451  * Define the other val_to_name and val_to_struct arrays
452  * in a policy database structure.
453  *
454  * Caller must clean up on failure.
455  */
456 static int policydb_index(struct policydb *p)
457 {
458         int i, rc;
459
460         printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
461                p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
462         if (p->mls_enabled)
463                 printk(", %d sens, %d cats", p->p_levels.nprim,
464                        p->p_cats.nprim);
465         printk("\n");
466
467         printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
468                p->p_classes.nprim, p->te_avtab.nel);
469
470 #ifdef DEBUG_HASHES
471         avtab_hash_eval(&p->te_avtab, "rules");
472         symtab_hash_eval(p->symtab);
473 #endif
474
475         rc = -ENOMEM;
476         p->class_val_to_struct =
477                 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)),
478                         GFP_KERNEL);
479         if (!p->class_val_to_struct)
480                 goto out;
481
482         rc = -ENOMEM;
483         p->role_val_to_struct =
484                 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
485                         GFP_KERNEL);
486         if (!p->role_val_to_struct)
487                 goto out;
488
489         rc = -ENOMEM;
490         p->user_val_to_struct =
491                 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
492                         GFP_KERNEL);
493         if (!p->user_val_to_struct)
494                 goto out;
495
496         /* Yes, I want the sizeof the pointer, not the structure */
497         rc = -ENOMEM;
498         p->type_val_to_struct_array = flex_array_alloc(sizeof(struct type_datum *),
499                                                        p->p_types.nprim,
500                                                        GFP_KERNEL | __GFP_ZERO);
501         if (!p->type_val_to_struct_array)
502                 goto out;
503
504         rc = flex_array_prealloc(p->type_val_to_struct_array, 0,
505                                  p->p_types.nprim, GFP_KERNEL | __GFP_ZERO);
506         if (rc)
507                 goto out;
508
509         rc = cond_init_bool_indexes(p);
510         if (rc)
511                 goto out;
512
513         for (i = 0; i < SYM_NUM; i++) {
514                 rc = -ENOMEM;
515                 p->sym_val_to_name[i] = flex_array_alloc(sizeof(char *),
516                                                          p->symtab[i].nprim,
517                                                          GFP_KERNEL | __GFP_ZERO);
518                 if (!p->sym_val_to_name[i])
519                         goto out;
520
521                 rc = flex_array_prealloc(p->sym_val_to_name[i],
522                                          0, p->symtab[i].nprim,
523                                          GFP_KERNEL | __GFP_ZERO);
524                 if (rc)
525                         goto out;
526
527                 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
528                 if (rc)
529                         goto out;
530         }
531         rc = 0;
532 out:
533         return rc;
534 }
535
536 /*
537  * The following *_destroy functions are used to
538  * free any memory allocated for each kind of
539  * symbol data in the policy database.
540  */
541
542 static int perm_destroy(void *key, void *datum, void *p)
543 {
544         kfree(key);
545         kfree(datum);
546         return 0;
547 }
548
549 static int common_destroy(void *key, void *datum, void *p)
550 {
551         struct common_datum *comdatum;
552
553         kfree(key);
554         if (datum) {
555                 comdatum = datum;
556                 hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
557                 hashtab_destroy(comdatum->permissions.table);
558         }
559         kfree(datum);
560         return 0;
561 }
562
563 static int cls_destroy(void *key, void *datum, void *p)
564 {
565         struct class_datum *cladatum;
566         struct constraint_node *constraint, *ctemp;
567         struct constraint_expr *e, *etmp;
568
569         kfree(key);
570         if (datum) {
571                 cladatum = datum;
572                 hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
573                 hashtab_destroy(cladatum->permissions.table);
574                 constraint = cladatum->constraints;
575                 while (constraint) {
576                         e = constraint->expr;
577                         while (e) {
578                                 ebitmap_destroy(&e->names);
579                                 etmp = e;
580                                 e = e->next;
581                                 kfree(etmp);
582                         }
583                         ctemp = constraint;
584                         constraint = constraint->next;
585                         kfree(ctemp);
586                 }
587
588                 constraint = cladatum->validatetrans;
589                 while (constraint) {
590                         e = constraint->expr;
591                         while (e) {
592                                 ebitmap_destroy(&e->names);
593                                 etmp = e;
594                                 e = e->next;
595                                 kfree(etmp);
596                         }
597                         ctemp = constraint;
598                         constraint = constraint->next;
599                         kfree(ctemp);
600                 }
601
602                 kfree(cladatum->comkey);
603         }
604         kfree(datum);
605         return 0;
606 }
607
608 static int role_destroy(void *key, void *datum, void *p)
609 {
610         struct role_datum *role;
611
612         kfree(key);
613         if (datum) {
614                 role = datum;
615                 ebitmap_destroy(&role->dominates);
616                 ebitmap_destroy(&role->types);
617         }
618         kfree(datum);
619         return 0;
620 }
621
622 static int type_destroy(void *key, void *datum, void *p)
623 {
624         kfree(key);
625         kfree(datum);
626         return 0;
627 }
628
629 static int user_destroy(void *key, void *datum, void *p)
630 {
631         struct user_datum *usrdatum;
632
633         kfree(key);
634         if (datum) {
635                 usrdatum = datum;
636                 ebitmap_destroy(&usrdatum->roles);
637                 ebitmap_destroy(&usrdatum->range.level[0].cat);
638                 ebitmap_destroy(&usrdatum->range.level[1].cat);
639                 ebitmap_destroy(&usrdatum->dfltlevel.cat);
640         }
641         kfree(datum);
642         return 0;
643 }
644
645 static int sens_destroy(void *key, void *datum, void *p)
646 {
647         struct level_datum *levdatum;
648
649         kfree(key);
650         if (datum) {
651                 levdatum = datum;
652                 ebitmap_destroy(&levdatum->level->cat);
653                 kfree(levdatum->level);
654         }
655         kfree(datum);
656         return 0;
657 }
658
659 static int cat_destroy(void *key, void *datum, void *p)
660 {
661         kfree(key);
662         kfree(datum);
663         return 0;
664 }
665
666 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
667 {
668         common_destroy,
669         cls_destroy,
670         role_destroy,
671         type_destroy,
672         user_destroy,
673         cond_destroy_bool,
674         sens_destroy,
675         cat_destroy,
676 };
677
678 static int range_tr_destroy(void *key, void *datum, void *p)
679 {
680         struct mls_range *rt = datum;
681         kfree(key);
682         ebitmap_destroy(&rt->level[0].cat);
683         ebitmap_destroy(&rt->level[1].cat);
684         kfree(datum);
685         cond_resched();
686         return 0;
687 }
688
689 static void ocontext_destroy(struct ocontext *c, int i)
690 {
691         if (!c)
692                 return;
693
694         context_destroy(&c->context[0]);
695         context_destroy(&c->context[1]);
696         if (i == OCON_ISID || i == OCON_FS ||
697             i == OCON_NETIF || i == OCON_FSUSE)
698                 kfree(c->u.name);
699         kfree(c);
700 }
701
702 /*
703  * Free any memory allocated by a policy database structure.
704  */
705 void policydb_destroy(struct policydb *p)
706 {
707         struct ocontext *c, *ctmp;
708         struct genfs *g, *gtmp;
709         int i;
710         struct role_allow *ra, *lra = NULL;
711         struct role_trans *tr, *ltr = NULL;
712         struct filename_trans *ft, *nft;
713
714         for (i = 0; i < SYM_NUM; i++) {
715                 cond_resched();
716                 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
717                 hashtab_destroy(p->symtab[i].table);
718         }
719
720         for (i = 0; i < SYM_NUM; i++) {
721                 if (p->sym_val_to_name[i])
722                         flex_array_free(p->sym_val_to_name[i]);
723         }
724
725         kfree(p->class_val_to_struct);
726         kfree(p->role_val_to_struct);
727         kfree(p->user_val_to_struct);
728         if (p->type_val_to_struct_array)
729                 flex_array_free(p->type_val_to_struct_array);
730
731         avtab_destroy(&p->te_avtab);
732
733         for (i = 0; i < OCON_NUM; i++) {
734                 cond_resched();
735                 c = p->ocontexts[i];
736                 while (c) {
737                         ctmp = c;
738                         c = c->next;
739                         ocontext_destroy(ctmp, i);
740                 }
741                 p->ocontexts[i] = NULL;
742         }
743
744         g = p->genfs;
745         while (g) {
746                 cond_resched();
747                 kfree(g->fstype);
748                 c = g->head;
749                 while (c) {
750                         ctmp = c;
751                         c = c->next;
752                         ocontext_destroy(ctmp, OCON_FSUSE);
753                 }
754                 gtmp = g;
755                 g = g->next;
756                 kfree(gtmp);
757         }
758         p->genfs = NULL;
759
760         cond_policydb_destroy(p);
761
762         for (tr = p->role_tr; tr; tr = tr->next) {
763                 cond_resched();
764                 kfree(ltr);
765                 ltr = tr;
766         }
767         kfree(ltr);
768
769         for (ra = p->role_allow; ra; ra = ra->next) {
770                 cond_resched();
771                 kfree(lra);
772                 lra = ra;
773         }
774         kfree(lra);
775
776         hashtab_map(p->range_tr, range_tr_destroy, NULL);
777         hashtab_destroy(p->range_tr);
778
779         if (p->type_attr_map_array) {
780                 for (i = 0; i < p->p_types.nprim; i++) {
781                         struct ebitmap *e;
782
783                         e = flex_array_get(p->type_attr_map_array, i);
784                         if (!e)
785                                 continue;
786                         ebitmap_destroy(e);
787                 }
788                 flex_array_free(p->type_attr_map_array);
789         }
790
791         ft = p->filename_trans;
792         while (ft) {
793                 nft = ft->next;
794                 kfree(ft->name);
795                 kfree(ft);
796                 ft = nft;
797         }
798
799         ebitmap_destroy(&p->policycaps);
800         ebitmap_destroy(&p->permissive_map);
801
802         return;
803 }
804
805 /*
806  * Load the initial SIDs specified in a policy database
807  * structure into a SID table.
808  */
809 int policydb_load_isids(struct policydb *p, struct sidtab *s)
810 {
811         struct ocontext *head, *c;
812         int rc;
813
814         rc = sidtab_init(s);
815         if (rc) {
816                 printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
817                 goto out;
818         }
819
820         head = p->ocontexts[OCON_ISID];
821         for (c = head; c; c = c->next) {
822                 rc = -EINVAL;
823                 if (!c->context[0].user) {
824                         printk(KERN_ERR "SELinux:  SID %s was never defined.\n",
825                                 c->u.name);
826                         goto out;
827                 }
828
829                 rc = sidtab_insert(s, c->sid[0], &c->context[0]);
830                 if (rc) {
831                         printk(KERN_ERR "SELinux:  unable to load initial SID %s.\n",
832                                 c->u.name);
833                         goto out;
834                 }
835         }
836         rc = 0;
837 out:
838         return rc;
839 }
840
841 int policydb_class_isvalid(struct policydb *p, unsigned int class)
842 {
843         if (!class || class > p->p_classes.nprim)
844                 return 0;
845         return 1;
846 }
847
848 int policydb_role_isvalid(struct policydb *p, unsigned int role)
849 {
850         if (!role || role > p->p_roles.nprim)
851                 return 0;
852         return 1;
853 }
854
855 int policydb_type_isvalid(struct policydb *p, unsigned int type)
856 {
857         if (!type || type > p->p_types.nprim)
858                 return 0;
859         return 1;
860 }
861
862 /*
863  * Return 1 if the fields in the security context
864  * structure `c' are valid.  Return 0 otherwise.
865  */
866 int policydb_context_isvalid(struct policydb *p, struct context *c)
867 {
868         struct role_datum *role;
869         struct user_datum *usrdatum;
870
871         if (!c->role || c->role > p->p_roles.nprim)
872                 return 0;
873
874         if (!c->user || c->user > p->p_users.nprim)
875                 return 0;
876
877         if (!c->type || c->type > p->p_types.nprim)
878                 return 0;
879
880         if (c->role != OBJECT_R_VAL) {
881                 /*
882                  * Role must be authorized for the type.
883                  */
884                 role = p->role_val_to_struct[c->role - 1];
885                 if (!ebitmap_get_bit(&role->types, c->type - 1))
886                         /* role may not be associated with type */
887                         return 0;
888
889                 /*
890                  * User must be authorized for the role.
891                  */
892                 usrdatum = p->user_val_to_struct[c->user - 1];
893                 if (!usrdatum)
894                         return 0;
895
896                 if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1))
897                         /* user may not be associated with role */
898                         return 0;
899         }
900
901         if (!mls_context_isvalid(p, c))
902                 return 0;
903
904         return 1;
905 }
906
907 /*
908  * Read a MLS range structure from a policydb binary
909  * representation file.
910  */
911 static int mls_read_range_helper(struct mls_range *r, void *fp)
912 {
913         __le32 buf[2];
914         u32 items;
915         int rc;
916
917         rc = next_entry(buf, fp, sizeof(u32));
918         if (rc)
919                 goto out;
920
921         rc = -EINVAL;
922         items = le32_to_cpu(buf[0]);
923         if (items > ARRAY_SIZE(buf)) {
924                 printk(KERN_ERR "SELinux: mls:  range overflow\n");
925                 goto out;
926         }
927
928         rc = next_entry(buf, fp, sizeof(u32) * items);
929         if (rc) {
930                 printk(KERN_ERR "SELinux: mls:  truncated range\n");
931                 goto out;
932         }
933
934         r->level[0].sens = le32_to_cpu(buf[0]);
935         if (items > 1)
936                 r->level[1].sens = le32_to_cpu(buf[1]);
937         else
938                 r->level[1].sens = r->level[0].sens;
939
940         rc = ebitmap_read(&r->level[0].cat, fp);
941         if (rc) {
942                 printk(KERN_ERR "SELinux: mls:  error reading low categories\n");
943                 goto out;
944         }
945         if (items > 1) {
946                 rc = ebitmap_read(&r->level[1].cat, fp);
947                 if (rc) {
948                         printk(KERN_ERR "SELinux: mls:  error reading high categories\n");
949                         goto bad_high;
950                 }
951         } else {
952                 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
953                 if (rc) {
954                         printk(KERN_ERR "SELinux: mls:  out of memory\n");
955                         goto bad_high;
956                 }
957         }
958
959         return 0;
960 bad_high:
961         ebitmap_destroy(&r->level[0].cat);
962 out:
963         return rc;
964 }
965
966 /*
967  * Read and validate a security context structure
968  * from a policydb binary representation file.
969  */
970 static int context_read_and_validate(struct context *c,
971                                      struct policydb *p,
972                                      void *fp)
973 {
974         __le32 buf[3];
975         int rc;
976
977         rc = next_entry(buf, fp, sizeof buf);
978         if (rc) {
979                 printk(KERN_ERR "SELinux: context truncated\n");
980                 goto out;
981         }
982         c->user = le32_to_cpu(buf[0]);
983         c->role = le32_to_cpu(buf[1]);
984         c->type = le32_to_cpu(buf[2]);
985         if (p->policyvers >= POLICYDB_VERSION_MLS) {
986                 rc = mls_read_range_helper(&c->range, fp);
987                 if (rc) {
988                         printk(KERN_ERR "SELinux: error reading MLS range of context\n");
989                         goto out;
990                 }
991         }
992
993         rc = -EINVAL;
994         if (!policydb_context_isvalid(p, c)) {
995                 printk(KERN_ERR "SELinux:  invalid security context\n");
996                 context_destroy(c);
997                 goto out;
998         }
999         rc = 0;
1000 out:
1001         return rc;
1002 }
1003
1004 /*
1005  * The following *_read functions are used to
1006  * read the symbol data from a policy database
1007  * binary representation file.
1008  */
1009
1010 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
1011 {
1012         char *key = NULL;
1013         struct perm_datum *perdatum;
1014         int rc;
1015         __le32 buf[2];
1016         u32 len;
1017
1018         rc = -ENOMEM;
1019         perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
1020         if (!perdatum)
1021                 goto bad;
1022
1023         rc = next_entry(buf, fp, sizeof buf);
1024         if (rc)
1025                 goto bad;
1026
1027         len = le32_to_cpu(buf[0]);
1028         perdatum->value = le32_to_cpu(buf[1]);
1029
1030         rc = -ENOMEM;
1031         key = kmalloc(len + 1, GFP_KERNEL);
1032         if (!key)
1033                 goto bad;
1034
1035         rc = next_entry(key, fp, len);
1036         if (rc)
1037                 goto bad;
1038         key[len] = '\0';
1039
1040         rc = hashtab_insert(h, key, perdatum);
1041         if (rc)
1042                 goto bad;
1043
1044         return 0;
1045 bad:
1046         perm_destroy(key, perdatum, NULL);
1047         return rc;
1048 }
1049
1050 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
1051 {
1052         char *key = NULL;
1053         struct common_datum *comdatum;
1054         __le32 buf[4];
1055         u32 len, nel;
1056         int i, rc;
1057
1058         rc = -ENOMEM;
1059         comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
1060         if (!comdatum)
1061                 goto bad;
1062
1063         rc = next_entry(buf, fp, sizeof buf);
1064         if (rc)
1065                 goto bad;
1066
1067         len = le32_to_cpu(buf[0]);
1068         comdatum->value = le32_to_cpu(buf[1]);
1069
1070         rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
1071         if (rc)
1072                 goto bad;
1073         comdatum->permissions.nprim = le32_to_cpu(buf[2]);
1074         nel = le32_to_cpu(buf[3]);
1075
1076         rc = -ENOMEM;
1077         key = kmalloc(len + 1, GFP_KERNEL);
1078         if (!key)
1079                 goto bad;
1080
1081         rc = next_entry(key, fp, len);
1082         if (rc)
1083                 goto bad;
1084         key[len] = '\0';
1085
1086         for (i = 0; i < nel; i++) {
1087                 rc = perm_read(p, comdatum->permissions.table, fp);
1088                 if (rc)
1089                         goto bad;
1090         }
1091
1092         rc = hashtab_insert(h, key, comdatum);
1093         if (rc)
1094                 goto bad;
1095         return 0;
1096 bad:
1097         common_destroy(key, comdatum, NULL);
1098         return rc;
1099 }
1100
1101 static int read_cons_helper(struct constraint_node **nodep, int ncons,
1102                             int allowxtarget, void *fp)
1103 {
1104         struct constraint_node *c, *lc;
1105         struct constraint_expr *e, *le;
1106         __le32 buf[3];
1107         u32 nexpr;
1108         int rc, i, j, depth;
1109
1110         lc = NULL;
1111         for (i = 0; i < ncons; i++) {
1112                 c = kzalloc(sizeof(*c), GFP_KERNEL);
1113                 if (!c)
1114                         return -ENOMEM;
1115
1116                 if (lc)
1117                         lc->next = c;
1118                 else
1119                         *nodep = c;
1120
1121                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1122                 if (rc)
1123                         return rc;
1124                 c->permissions = le32_to_cpu(buf[0]);
1125                 nexpr = le32_to_cpu(buf[1]);
1126                 le = NULL;
1127                 depth = -1;
1128                 for (j = 0; j < nexpr; j++) {
1129                         e = kzalloc(sizeof(*e), GFP_KERNEL);
1130                         if (!e)
1131                                 return -ENOMEM;
1132
1133                         if (le)
1134                                 le->next = e;
1135                         else
1136                                 c->expr = e;
1137
1138                         rc = next_entry(buf, fp, (sizeof(u32) * 3));
1139                         if (rc)
1140                                 return rc;
1141                         e->expr_type = le32_to_cpu(buf[0]);
1142                         e->attr = le32_to_cpu(buf[1]);
1143                         e->op = le32_to_cpu(buf[2]);
1144
1145                         switch (e->expr_type) {
1146                         case CEXPR_NOT:
1147                                 if (depth < 0)
1148                                         return -EINVAL;
1149                                 break;
1150                         case CEXPR_AND:
1151                         case CEXPR_OR:
1152                                 if (depth < 1)
1153                                         return -EINVAL;
1154                                 depth--;
1155                                 break;
1156                         case CEXPR_ATTR:
1157                                 if (depth == (CEXPR_MAXDEPTH - 1))
1158                                         return -EINVAL;
1159                                 depth++;
1160                                 break;
1161                         case CEXPR_NAMES:
1162                                 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1163                                         return -EINVAL;
1164                                 if (depth == (CEXPR_MAXDEPTH - 1))
1165                                         return -EINVAL;
1166                                 depth++;
1167                                 rc = ebitmap_read(&e->names, fp);
1168                                 if (rc)
1169                                         return rc;
1170                                 break;
1171                         default:
1172                                 return -EINVAL;
1173                         }
1174                         le = e;
1175                 }
1176                 if (depth != 0)
1177                         return -EINVAL;
1178                 lc = c;
1179         }
1180
1181         return 0;
1182 }
1183
1184 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1185 {
1186         char *key = NULL;
1187         struct class_datum *cladatum;
1188         __le32 buf[6];
1189         u32 len, len2, ncons, nel;
1190         int i, rc;
1191
1192         rc = -ENOMEM;
1193         cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1194         if (!cladatum)
1195                 goto bad;
1196
1197         rc = next_entry(buf, fp, sizeof(u32)*6);
1198         if (rc)
1199                 goto bad;
1200
1201         len = le32_to_cpu(buf[0]);
1202         len2 = le32_to_cpu(buf[1]);
1203         cladatum->value = le32_to_cpu(buf[2]);
1204
1205         rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1206         if (rc)
1207                 goto bad;
1208         cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1209         nel = le32_to_cpu(buf[4]);
1210
1211         ncons = le32_to_cpu(buf[5]);
1212
1213         rc = -ENOMEM;
1214         key = kmalloc(len + 1, GFP_KERNEL);
1215         if (!key)
1216                 goto bad;
1217
1218         rc = next_entry(key, fp, len);
1219         if (rc)
1220                 goto bad;
1221         key[len] = '\0';
1222
1223         if (len2) {
1224                 rc = -ENOMEM;
1225                 cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
1226                 if (!cladatum->comkey)
1227                         goto bad;
1228                 rc = next_entry(cladatum->comkey, fp, len2);
1229                 if (rc)
1230                         goto bad;
1231                 cladatum->comkey[len2] = '\0';
1232
1233                 rc = -EINVAL;
1234                 cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey);
1235                 if (!cladatum->comdatum) {
1236                         printk(KERN_ERR "SELinux:  unknown common %s\n", cladatum->comkey);
1237                         goto bad;
1238                 }
1239         }
1240         for (i = 0; i < nel; i++) {
1241                 rc = perm_read(p, cladatum->permissions.table, fp);
1242                 if (rc)
1243                         goto bad;
1244         }
1245
1246         rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1247         if (rc)
1248                 goto bad;
1249
1250         if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1251                 /* grab the validatetrans rules */
1252                 rc = next_entry(buf, fp, sizeof(u32));
1253                 if (rc)
1254                         goto bad;
1255                 ncons = le32_to_cpu(buf[0]);
1256                 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1257                 if (rc)
1258                         goto bad;
1259         }
1260
1261         rc = hashtab_insert(h, key, cladatum);
1262         if (rc)
1263                 goto bad;
1264
1265         return 0;
1266 bad:
1267         cls_destroy(key, cladatum, NULL);
1268         return rc;
1269 }
1270
1271 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1272 {
1273         char *key = NULL;
1274         struct role_datum *role;
1275         int rc, to_read = 2;
1276         __le32 buf[3];
1277         u32 len;
1278
1279         rc = -ENOMEM;
1280         role = kzalloc(sizeof(*role), GFP_KERNEL);
1281         if (!role)
1282                 goto bad;
1283
1284         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1285                 to_read = 3;
1286
1287         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1288         if (rc)
1289                 goto bad;
1290
1291         len = le32_to_cpu(buf[0]);
1292         role->value = le32_to_cpu(buf[1]);
1293         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1294                 role->bounds = le32_to_cpu(buf[2]);
1295
1296         rc = -ENOMEM;
1297         key = kmalloc(len + 1, GFP_KERNEL);
1298         if (!key)
1299                 goto bad;
1300
1301         rc = next_entry(key, fp, len);
1302         if (rc)
1303                 goto bad;
1304         key[len] = '\0';
1305
1306         rc = ebitmap_read(&role->dominates, fp);
1307         if (rc)
1308                 goto bad;
1309
1310         rc = ebitmap_read(&role->types, fp);
1311         if (rc)
1312                 goto bad;
1313
1314         if (strcmp(key, OBJECT_R) == 0) {
1315                 rc = -EINVAL;
1316                 if (role->value != OBJECT_R_VAL) {
1317                         printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
1318                                OBJECT_R, role->value);
1319                         goto bad;
1320                 }
1321                 rc = 0;
1322                 goto bad;
1323         }
1324
1325         rc = hashtab_insert(h, key, role);
1326         if (rc)
1327                 goto bad;
1328         return 0;
1329 bad:
1330         role_destroy(key, role, NULL);
1331         return rc;
1332 }
1333
1334 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1335 {
1336         char *key = NULL;
1337         struct type_datum *typdatum;
1338         int rc, to_read = 3;
1339         __le32 buf[4];
1340         u32 len;
1341
1342         rc = -ENOMEM;
1343         typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
1344         if (!typdatum)
1345                 goto bad;
1346
1347         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1348                 to_read = 4;
1349
1350         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1351         if (rc)
1352                 goto bad;
1353
1354         len = le32_to_cpu(buf[0]);
1355         typdatum->value = le32_to_cpu(buf[1]);
1356         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
1357                 u32 prop = le32_to_cpu(buf[2]);
1358
1359                 if (prop & TYPEDATUM_PROPERTY_PRIMARY)
1360                         typdatum->primary = 1;
1361                 if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
1362                         typdatum->attribute = 1;
1363
1364                 typdatum->bounds = le32_to_cpu(buf[3]);
1365         } else {
1366                 typdatum->primary = le32_to_cpu(buf[2]);
1367         }
1368
1369         rc = -ENOMEM;
1370         key = kmalloc(len + 1, GFP_KERNEL);
1371         if (!key)
1372                 goto bad;
1373         rc = next_entry(key, fp, len);
1374         if (rc)
1375                 goto bad;
1376         key[len] = '\0';
1377
1378         rc = hashtab_insert(h, key, typdatum);
1379         if (rc)
1380                 goto bad;
1381         return 0;
1382 bad:
1383         type_destroy(key, typdatum, NULL);
1384         return rc;
1385 }
1386
1387
1388 /*
1389  * Read a MLS level structure from a policydb binary
1390  * representation file.
1391  */
1392 static int mls_read_level(struct mls_level *lp, void *fp)
1393 {
1394         __le32 buf[1];
1395         int rc;
1396
1397         memset(lp, 0, sizeof(*lp));
1398
1399         rc = next_entry(buf, fp, sizeof buf);
1400         if (rc) {
1401                 printk(KERN_ERR "SELinux: mls: truncated level\n");
1402                 return rc;
1403         }
1404         lp->sens = le32_to_cpu(buf[0]);
1405
1406         rc = ebitmap_read(&lp->cat, fp);
1407         if (rc) {
1408                 printk(KERN_ERR "SELinux: mls:  error reading level categories\n");
1409                 return rc;
1410         }
1411         return 0;
1412 }
1413
1414 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1415 {
1416         char *key = NULL;
1417         struct user_datum *usrdatum;
1418         int rc, to_read = 2;
1419         __le32 buf[3];
1420         u32 len;
1421
1422         rc = -ENOMEM;
1423         usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1424         if (!usrdatum)
1425                 goto bad;
1426
1427         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1428                 to_read = 3;
1429
1430         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1431         if (rc)
1432                 goto bad;
1433
1434         len = le32_to_cpu(buf[0]);
1435         usrdatum->value = le32_to_cpu(buf[1]);
1436         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1437                 usrdatum->bounds = le32_to_cpu(buf[2]);
1438
1439         rc = -ENOMEM;
1440         key = kmalloc(len + 1, GFP_KERNEL);
1441         if (!key)
1442                 goto bad;
1443         rc = next_entry(key, fp, len);
1444         if (rc)
1445                 goto bad;
1446         key[len] = '\0';
1447
1448         rc = ebitmap_read(&usrdatum->roles, fp);
1449         if (rc)
1450                 goto bad;
1451
1452         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1453                 rc = mls_read_range_helper(&usrdatum->range, fp);
1454                 if (rc)
1455                         goto bad;
1456                 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1457                 if (rc)
1458                         goto bad;
1459         }
1460
1461         rc = hashtab_insert(h, key, usrdatum);
1462         if (rc)
1463                 goto bad;
1464         return 0;
1465 bad:
1466         user_destroy(key, usrdatum, NULL);
1467         return rc;
1468 }
1469
1470 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1471 {
1472         char *key = NULL;
1473         struct level_datum *levdatum;
1474         int rc;
1475         __le32 buf[2];
1476         u32 len;
1477
1478         rc = -ENOMEM;
1479         levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1480         if (!levdatum)
1481                 goto bad;
1482
1483         rc = next_entry(buf, fp, sizeof buf);
1484         if (rc)
1485                 goto bad;
1486
1487         len = le32_to_cpu(buf[0]);
1488         levdatum->isalias = le32_to_cpu(buf[1]);
1489
1490         rc = -ENOMEM;
1491         key = kmalloc(len + 1, GFP_ATOMIC);
1492         if (!key)
1493                 goto bad;
1494         rc = next_entry(key, fp, len);
1495         if (rc)
1496                 goto bad;
1497         key[len] = '\0';
1498
1499         rc = -ENOMEM;
1500         levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1501         if (!levdatum->level)
1502                 goto bad;
1503
1504         rc = mls_read_level(levdatum->level, fp);
1505         if (rc)
1506                 goto bad;
1507
1508         rc = hashtab_insert(h, key, levdatum);
1509         if (rc)
1510                 goto bad;
1511         return 0;
1512 bad:
1513         sens_destroy(key, levdatum, NULL);
1514         return rc;
1515 }
1516
1517 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1518 {
1519         char *key = NULL;
1520         struct cat_datum *catdatum;
1521         int rc;
1522         __le32 buf[3];
1523         u32 len;
1524
1525         rc = -ENOMEM;
1526         catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1527         if (!catdatum)
1528                 goto bad;
1529
1530         rc = next_entry(buf, fp, sizeof buf);
1531         if (rc)
1532                 goto bad;
1533
1534         len = le32_to_cpu(buf[0]);
1535         catdatum->value = le32_to_cpu(buf[1]);
1536         catdatum->isalias = le32_to_cpu(buf[2]);
1537
1538         rc = -ENOMEM;
1539         key = kmalloc(len + 1, GFP_ATOMIC);
1540         if (!key)
1541                 goto bad;
1542         rc = next_entry(key, fp, len);
1543         if (rc)
1544                 goto bad;
1545         key[len] = '\0';
1546
1547         rc = hashtab_insert(h, key, catdatum);
1548         if (rc)
1549                 goto bad;
1550         return 0;
1551 bad:
1552         cat_destroy(key, catdatum, NULL);
1553         return rc;
1554 }
1555
1556 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1557 {
1558         common_read,
1559         class_read,
1560         role_read,
1561         type_read,
1562         user_read,
1563         cond_read_bool,
1564         sens_read,
1565         cat_read,
1566 };
1567
1568 static int user_bounds_sanity_check(void *key, void *datum, void *datap)
1569 {
1570         struct user_datum *upper, *user;
1571         struct policydb *p = datap;
1572         int depth = 0;
1573
1574         upper = user = datum;
1575         while (upper->bounds) {
1576                 struct ebitmap_node *node;
1577                 unsigned long bit;
1578
1579                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1580                         printk(KERN_ERR "SELinux: user %s: "
1581                                "too deep or looped boundary",
1582                                (char *) key);
1583                         return -EINVAL;
1584                 }
1585
1586                 upper = p->user_val_to_struct[upper->bounds - 1];
1587                 ebitmap_for_each_positive_bit(&user->roles, node, bit) {
1588                         if (ebitmap_get_bit(&upper->roles, bit))
1589                                 continue;
1590
1591                         printk(KERN_ERR
1592                                "SELinux: boundary violated policy: "
1593                                "user=%s role=%s bounds=%s\n",
1594                                sym_name(p, SYM_USERS, user->value - 1),
1595                                sym_name(p, SYM_ROLES, bit),
1596                                sym_name(p, SYM_USERS, upper->value - 1));
1597
1598                         return -EINVAL;
1599                 }
1600         }
1601
1602         return 0;
1603 }
1604
1605 static int role_bounds_sanity_check(void *key, void *datum, void *datap)
1606 {
1607         struct role_datum *upper, *role;
1608         struct policydb *p = datap;
1609         int depth = 0;
1610
1611         upper = role = datum;
1612         while (upper->bounds) {
1613                 struct ebitmap_node *node;
1614                 unsigned long bit;
1615
1616                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1617                         printk(KERN_ERR "SELinux: role %s: "
1618                                "too deep or looped bounds\n",
1619                                (char *) key);
1620                         return -EINVAL;
1621                 }
1622
1623                 upper = p->role_val_to_struct[upper->bounds - 1];
1624                 ebitmap_for_each_positive_bit(&role->types, node, bit) {
1625                         if (ebitmap_get_bit(&upper->types, bit))
1626                                 continue;
1627
1628                         printk(KERN_ERR
1629                                "SELinux: boundary violated policy: "
1630                                "role=%s type=%s bounds=%s\n",
1631                                sym_name(p, SYM_ROLES, role->value - 1),
1632                                sym_name(p, SYM_TYPES, bit),
1633                                sym_name(p, SYM_ROLES, upper->value - 1));
1634
1635                         return -EINVAL;
1636                 }
1637         }
1638
1639         return 0;
1640 }
1641
1642 static int type_bounds_sanity_check(void *key, void *datum, void *datap)
1643 {
1644         struct type_datum *upper;
1645         struct policydb *p = datap;
1646         int depth = 0;
1647
1648         upper = datum;
1649         while (upper->bounds) {
1650                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1651                         printk(KERN_ERR "SELinux: type %s: "
1652                                "too deep or looped boundary\n",
1653                                (char *) key);
1654                         return -EINVAL;
1655                 }
1656
1657                 upper = flex_array_get_ptr(p->type_val_to_struct_array,
1658                                            upper->bounds - 1);
1659                 BUG_ON(!upper);
1660
1661                 if (upper->attribute) {
1662                         printk(KERN_ERR "SELinux: type %s: "
1663                                "bounded by attribute %s",
1664                                (char *) key,
1665                                sym_name(p, SYM_TYPES, upper->value - 1));
1666                         return -EINVAL;
1667                 }
1668         }
1669
1670         return 0;
1671 }
1672
1673 static int policydb_bounds_sanity_check(struct policydb *p)
1674 {
1675         int rc;
1676
1677         if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
1678                 return 0;
1679
1680         rc = hashtab_map(p->p_users.table,
1681                          user_bounds_sanity_check, p);
1682         if (rc)
1683                 return rc;
1684
1685         rc = hashtab_map(p->p_roles.table,
1686                          role_bounds_sanity_check, p);
1687         if (rc)
1688                 return rc;
1689
1690         rc = hashtab_map(p->p_types.table,
1691                          type_bounds_sanity_check, p);
1692         if (rc)
1693                 return rc;
1694
1695         return 0;
1696 }
1697
1698 extern int ss_initialized;
1699
1700 u16 string_to_security_class(struct policydb *p, const char *name)
1701 {
1702         struct class_datum *cladatum;
1703
1704         cladatum = hashtab_search(p->p_classes.table, name);
1705         if (!cladatum)
1706                 return 0;
1707
1708         return cladatum->value;
1709 }
1710
1711 u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
1712 {
1713         struct class_datum *cladatum;
1714         struct perm_datum *perdatum = NULL;
1715         struct common_datum *comdatum;
1716
1717         if (!tclass || tclass > p->p_classes.nprim)
1718                 return 0;
1719
1720         cladatum = p->class_val_to_struct[tclass-1];
1721         comdatum = cladatum->comdatum;
1722         if (comdatum)
1723                 perdatum = hashtab_search(comdatum->permissions.table,
1724                                           name);
1725         if (!perdatum)
1726                 perdatum = hashtab_search(cladatum->permissions.table,
1727                                           name);
1728         if (!perdatum)
1729                 return 0;
1730
1731         return 1U << (perdatum->value-1);
1732 }
1733
1734 static int range_read(struct policydb *p, void *fp)
1735 {
1736         struct range_trans *rt = NULL;
1737         struct mls_range *r = NULL;
1738         int i, rc;
1739         __le32 buf[2];
1740         u32 nel;
1741
1742         if (p->policyvers < POLICYDB_VERSION_MLS)
1743                 return 0;
1744
1745         rc = next_entry(buf, fp, sizeof(u32));
1746         if (rc)
1747                 goto out;
1748
1749         nel = le32_to_cpu(buf[0]);
1750         for (i = 0; i < nel; i++) {
1751                 rc = -ENOMEM;
1752                 rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1753                 if (!rt)
1754                         goto out;
1755
1756                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1757                 if (rc)
1758                         goto out;
1759
1760                 rt->source_type = le32_to_cpu(buf[0]);
1761                 rt->target_type = le32_to_cpu(buf[1]);
1762                 if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
1763                         rc = next_entry(buf, fp, sizeof(u32));
1764                         if (rc)
1765                                 goto out;
1766                         rt->target_class = le32_to_cpu(buf[0]);
1767                 } else
1768                         rt->target_class = p->process_class;
1769
1770                 rc = -EINVAL;
1771                 if (!policydb_type_isvalid(p, rt->source_type) ||
1772                     !policydb_type_isvalid(p, rt->target_type) ||
1773                     !policydb_class_isvalid(p, rt->target_class))
1774                         goto out;
1775
1776                 rc = -ENOMEM;
1777                 r = kzalloc(sizeof(*r), GFP_KERNEL);
1778                 if (!r)
1779                         goto out;
1780
1781                 rc = mls_read_range_helper(r, fp);
1782                 if (rc)
1783                         goto out;
1784
1785                 rc = -EINVAL;
1786                 if (!mls_range_isvalid(p, r)) {
1787                         printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1788                         goto out;
1789                 }
1790
1791                 rc = hashtab_insert(p->range_tr, rt, r);
1792                 if (rc)
1793                         goto out;
1794
1795                 rt = NULL;
1796                 r = NULL;
1797         }
1798         rangetr_hash_eval(p->range_tr);
1799         rc = 0;
1800 out:
1801         kfree(rt);
1802         kfree(r);
1803         return rc;
1804 }
1805
1806 static int filename_trans_read(struct policydb *p, void *fp)
1807 {
1808         struct filename_trans *ft, *last;
1809         u32 nel, len;
1810         char *name;
1811         __le32 buf[4];
1812         int rc, i;
1813
1814         if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
1815                 return 0;
1816
1817         rc = next_entry(buf, fp, sizeof(u32));
1818         if (rc)
1819                 goto out;
1820         nel = le32_to_cpu(buf[0]);
1821
1822         last = p->filename_trans;
1823         while (last && last->next)
1824                 last = last->next;
1825
1826         for (i = 0; i < nel; i++) {
1827                 rc = -ENOMEM;
1828                 ft = kzalloc(sizeof(*ft), GFP_KERNEL);
1829                 if (!ft)
1830                         goto out;
1831
1832                 /* add it to the tail of the list */
1833                 if (!last)
1834                         p->filename_trans = ft;
1835                 else
1836                         last->next = ft;
1837                 last = ft;
1838
1839                 /* length of the path component string */
1840                 rc = next_entry(buf, fp, sizeof(u32));
1841                 if (rc)
1842                         goto out;
1843                 len = le32_to_cpu(buf[0]);
1844
1845                 rc = -ENOMEM;
1846                 name = kmalloc(len + 1, GFP_KERNEL);
1847                 if (!name)
1848                         goto out;
1849
1850                 ft->name = name;
1851
1852                 /* path component string */
1853                 rc = next_entry(name, fp, len);
1854                 if (rc)
1855                         goto out;
1856                 name[len] = 0;
1857
1858                 rc = next_entry(buf, fp, sizeof(u32) * 4);
1859                 if (rc)
1860                         goto out;
1861
1862                 ft->stype = le32_to_cpu(buf[0]);
1863                 ft->ttype = le32_to_cpu(buf[1]);
1864                 ft->tclass = le32_to_cpu(buf[2]);
1865                 ft->otype = le32_to_cpu(buf[3]);
1866         }
1867         rc = 0;
1868 out:
1869         return rc;
1870 }
1871
1872 static int genfs_read(struct policydb *p, void *fp)
1873 {
1874         int i, j, rc;
1875         u32 nel, nel2, len, len2;
1876         __le32 buf[1];
1877         struct ocontext *l, *c;
1878         struct ocontext *newc = NULL;
1879         struct genfs *genfs_p, *genfs;
1880         struct genfs *newgenfs = NULL;
1881
1882         rc = next_entry(buf, fp, sizeof(u32));
1883         if (rc)
1884                 goto out;
1885         nel = le32_to_cpu(buf[0]);
1886
1887         for (i = 0; i < nel; i++) {
1888                 rc = next_entry(buf, fp, sizeof(u32));
1889                 if (rc)
1890                         goto out;
1891                 len = le32_to_cpu(buf[0]);
1892
1893                 rc = -ENOMEM;
1894                 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1895                 if (!newgenfs)
1896                         goto out;
1897
1898                 rc = -ENOMEM;
1899                 newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
1900                 if (!newgenfs->fstype)
1901                         goto out;
1902
1903                 rc = next_entry(newgenfs->fstype, fp, len);
1904                 if (rc)
1905                         goto out;
1906
1907                 newgenfs->fstype[len] = 0;
1908
1909                 for (genfs_p = NULL, genfs = p->genfs; genfs;
1910                      genfs_p = genfs, genfs = genfs->next) {
1911                         rc = -EINVAL;
1912                         if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1913                                 printk(KERN_ERR "SELinux:  dup genfs fstype %s\n",
1914                                        newgenfs->fstype);
1915                                 goto out;
1916                         }
1917                         if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1918                                 break;
1919                 }
1920                 newgenfs->next = genfs;
1921                 if (genfs_p)
1922                         genfs_p->next = newgenfs;
1923                 else
1924                         p->genfs = newgenfs;
1925                 genfs = newgenfs;
1926                 newgenfs = NULL;
1927
1928                 rc = next_entry(buf, fp, sizeof(u32));
1929                 if (rc)
1930                         goto out;
1931
1932                 nel2 = le32_to_cpu(buf[0]);
1933                 for (j = 0; j < nel2; j++) {
1934                         rc = next_entry(buf, fp, sizeof(u32));
1935                         if (rc)
1936                                 goto out;
1937                         len = le32_to_cpu(buf[0]);
1938
1939                         rc = -ENOMEM;
1940                         newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1941                         if (!newc)
1942                                 goto out;
1943
1944                         rc = -ENOMEM;
1945                         newc->u.name = kmalloc(len + 1, GFP_KERNEL);
1946                         if (!newc->u.name)
1947                                 goto out;
1948
1949                         rc = next_entry(newc->u.name, fp, len);
1950                         if (rc)
1951                                 goto out;
1952                         newc->u.name[len] = 0;
1953
1954                         rc = next_entry(buf, fp, sizeof(u32));
1955                         if (rc)
1956                                 goto out;
1957
1958                         newc->v.sclass = le32_to_cpu(buf[0]);
1959                         rc = context_read_and_validate(&newc->context[0], p, fp);
1960                         if (rc)
1961                                 goto out;
1962
1963                         for (l = NULL, c = genfs->head; c;
1964                              l = c, c = c->next) {
1965                                 rc = -EINVAL;
1966                                 if (!strcmp(newc->u.name, c->u.name) &&
1967                                     (!c->v.sclass || !newc->v.sclass ||
1968                                      newc->v.sclass == c->v.sclass)) {
1969                                         printk(KERN_ERR "SELinux:  dup genfs entry (%s,%s)\n",
1970                                                genfs->fstype, c->u.name);
1971                                         goto out;
1972                                 }
1973                                 len = strlen(newc->u.name);
1974                                 len2 = strlen(c->u.name);
1975                                 if (len > len2)
1976                                         break;
1977                         }
1978
1979                         newc->next = c;
1980                         if (l)
1981                                 l->next = newc;
1982                         else
1983                                 genfs->head = newc;
1984                         newc = NULL;
1985                 }
1986         }
1987         rc = 0;
1988 out:
1989         if (newgenfs)
1990                 kfree(newgenfs->fstype);
1991         kfree(newgenfs);
1992         ocontext_destroy(newc, OCON_FSUSE);
1993
1994         return rc;
1995 }
1996
1997 static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
1998                          void *fp)
1999 {
2000         int i, j, rc;
2001         u32 nel, len;
2002         __le32 buf[3];
2003         struct ocontext *l, *c;
2004         u32 nodebuf[8];
2005
2006         for (i = 0; i < info->ocon_num; i++) {
2007                 rc = next_entry(buf, fp, sizeof(u32));
2008                 if (rc)
2009                         goto out;
2010                 nel = le32_to_cpu(buf[0]);
2011
2012                 l = NULL;
2013                 for (j = 0; j < nel; j++) {
2014                         rc = -ENOMEM;
2015                         c = kzalloc(sizeof(*c), GFP_KERNEL);
2016                         if (!c)
2017                                 goto out;
2018                         if (l)
2019                                 l->next = c;
2020                         else
2021                                 p->ocontexts[i] = c;
2022                         l = c;
2023
2024                         switch (i) {
2025                         case OCON_ISID:
2026                                 rc = next_entry(buf, fp, sizeof(u32));
2027                                 if (rc)
2028                                         goto out;
2029
2030                                 c->sid[0] = le32_to_cpu(buf[0]);
2031                                 rc = context_read_and_validate(&c->context[0], p, fp);
2032                                 if (rc)
2033                                         goto out;
2034                                 break;
2035                         case OCON_FS:
2036                         case OCON_NETIF:
2037                                 rc = next_entry(buf, fp, sizeof(u32));
2038                                 if (rc)
2039                                         goto out;
2040                                 len = le32_to_cpu(buf[0]);
2041
2042                                 rc = -ENOMEM;
2043                                 c->u.name = kmalloc(len + 1, GFP_KERNEL);
2044                                 if (!c->u.name)
2045                                         goto out;
2046
2047                                 rc = next_entry(c->u.name, fp, len);
2048                                 if (rc)
2049                                         goto out;
2050
2051                                 c->u.name[len] = 0;
2052                                 rc = context_read_and_validate(&c->context[0], p, fp);
2053                                 if (rc)
2054                                         goto out;
2055                                 rc = context_read_and_validate(&c->context[1], p, fp);
2056                                 if (rc)
2057                                         goto out;
2058                                 break;
2059                         case OCON_PORT:
2060                                 rc = next_entry(buf, fp, sizeof(u32)*3);
2061                                 if (rc)
2062                                         goto out;
2063                                 c->u.port.protocol = le32_to_cpu(buf[0]);
2064                                 c->u.port.low_port = le32_to_cpu(buf[1]);
2065                                 c->u.port.high_port = le32_to_cpu(buf[2]);
2066                                 rc = context_read_and_validate(&c->context[0], p, fp);
2067                                 if (rc)
2068                                         goto out;
2069                                 break;
2070                         case OCON_NODE:
2071                                 rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
2072                                 if (rc)
2073                                         goto out;
2074                                 c->u.node.addr = nodebuf[0]; /* network order */
2075                                 c->u.node.mask = nodebuf[1]; /* network order */
2076                                 rc = context_read_and_validate(&c->context[0], p, fp);
2077                                 if (rc)
2078                                         goto out;
2079                                 break;
2080                         case OCON_FSUSE:
2081                                 rc = next_entry(buf, fp, sizeof(u32)*2);
2082                                 if (rc)
2083                                         goto out;
2084
2085                                 rc = -EINVAL;
2086                                 c->v.behavior = le32_to_cpu(buf[0]);
2087                                 if (c->v.behavior > SECURITY_FS_USE_NONE)
2088                                         goto out;
2089
2090                                 rc = -ENOMEM;
2091                                 len = le32_to_cpu(buf[1]);
2092                                 c->u.name = kmalloc(len + 1, GFP_KERNEL);
2093                                 if (!c->u.name)
2094                                         goto out;
2095
2096                                 rc = next_entry(c->u.name, fp, len);
2097                                 if (rc)
2098                                         goto out;
2099                                 c->u.name[len] = 0;
2100                                 rc = context_read_and_validate(&c->context[0], p, fp);
2101                                 if (rc)
2102                                         goto out;
2103                                 break;
2104                         case OCON_NODE6: {
2105                                 int k;
2106
2107                                 rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
2108                                 if (rc)
2109                                         goto out;
2110                                 for (k = 0; k < 4; k++)
2111                                         c->u.node6.addr[k] = nodebuf[k];
2112                                 for (k = 0; k < 4; k++)
2113                                         c->u.node6.mask[k] = nodebuf[k+4];
2114                                 rc = context_read_and_validate(&c->context[0], p, fp);
2115                                 if (rc)
2116                                         goto out;
2117                                 break;
2118                         }
2119                         }
2120                 }
2121         }
2122         rc = 0;
2123 out:
2124         return rc;
2125 }
2126
2127 /*
2128  * Read the configuration data from a policy database binary
2129  * representation file into a policy database structure.
2130  */
2131 int policydb_read(struct policydb *p, void *fp)
2132 {
2133         struct role_allow *ra, *lra;
2134         struct role_trans *tr, *ltr;
2135         int i, j, rc;
2136         __le32 buf[4];
2137         u32 len, nprim, nel;
2138
2139         char *policydb_str;
2140         struct policydb_compat_info *info;
2141
2142         rc = policydb_init(p);
2143         if (rc)
2144                 return rc;
2145
2146         /* Read the magic number and string length. */
2147         rc = next_entry(buf, fp, sizeof(u32) * 2);
2148         if (rc)
2149                 goto bad;
2150
2151         rc = -EINVAL;
2152         if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
2153                 printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
2154                        "not match expected magic number 0x%x\n",
2155                        le32_to_cpu(buf[0]), POLICYDB_MAGIC);
2156                 goto bad;
2157         }
2158
2159         rc = -EINVAL;
2160         len = le32_to_cpu(buf[1]);
2161         if (len != strlen(POLICYDB_STRING)) {
2162                 printk(KERN_ERR "SELinux:  policydb string length %d does not "
2163                        "match expected length %Zu\n",
2164                        len, strlen(POLICYDB_STRING));
2165                 goto bad;
2166         }
2167
2168         rc = -ENOMEM;
2169         policydb_str = kmalloc(len + 1, GFP_KERNEL);
2170         if (!policydb_str) {
2171                 printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
2172                        "string of length %d\n", len);
2173                 goto bad;
2174         }
2175
2176         rc = next_entry(policydb_str, fp, len);
2177         if (rc) {
2178                 printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
2179                 kfree(policydb_str);
2180                 goto bad;
2181         }
2182
2183         rc = -EINVAL;
2184         policydb_str[len] = '\0';
2185         if (strcmp(policydb_str, POLICYDB_STRING)) {
2186                 printk(KERN_ERR "SELinux:  policydb string %s does not match "
2187                        "my string %s\n", policydb_str, POLICYDB_STRING);
2188                 kfree(policydb_str);
2189                 goto bad;
2190         }
2191         /* Done with policydb_str. */
2192         kfree(policydb_str);
2193         policydb_str = NULL;
2194
2195         /* Read the version and table sizes. */
2196         rc = next_entry(buf, fp, sizeof(u32)*4);
2197         if (rc)
2198                 goto bad;
2199
2200         rc = -EINVAL;
2201         p->policyvers = le32_to_cpu(buf[0]);
2202         if (p->policyvers < POLICYDB_VERSION_MIN ||
2203             p->policyvers > POLICYDB_VERSION_MAX) {
2204                 printk(KERN_ERR "SELinux:  policydb version %d does not match "
2205                        "my version range %d-%d\n",
2206                        le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
2207                 goto bad;
2208         }
2209
2210         if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
2211                 p->mls_enabled = 1;
2212
2213                 rc = -EINVAL;
2214                 if (p->policyvers < POLICYDB_VERSION_MLS) {
2215                         printk(KERN_ERR "SELinux: security policydb version %d "
2216                                 "(MLS) not backwards compatible\n",
2217                                 p->policyvers);
2218                         goto bad;
2219                 }
2220         }
2221         p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
2222         p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
2223
2224         if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
2225                 rc = ebitmap_read(&p->policycaps, fp);
2226                 if (rc)
2227                         goto bad;
2228         }
2229
2230         if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
2231                 rc = ebitmap_read(&p->permissive_map, fp);
2232                 if (rc)
2233                         goto bad;
2234         }
2235
2236         rc = -EINVAL;
2237         info = policydb_lookup_compat(p->policyvers);
2238         if (!info) {
2239                 printk(KERN_ERR "SELinux:  unable to find policy compat info "
2240                        "for version %d\n", p->policyvers);
2241                 goto bad;
2242         }
2243
2244         rc = -EINVAL;
2245         if (le32_to_cpu(buf[2]) != info->sym_num ||
2246                 le32_to_cpu(buf[3]) != info->ocon_num) {
2247                 printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
2248                        "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
2249                         le32_to_cpu(buf[3]),
2250                        info->sym_num, info->ocon_num);
2251                 goto bad;
2252         }
2253
2254         for (i = 0; i < info->sym_num; i++) {
2255                 rc = next_entry(buf, fp, sizeof(u32)*2);
2256                 if (rc)
2257                         goto bad;
2258                 nprim = le32_to_cpu(buf[0]);
2259                 nel = le32_to_cpu(buf[1]);
2260                 for (j = 0; j < nel; j++) {
2261                         rc = read_f[i](p, p->symtab[i].table, fp);
2262                         if (rc)
2263                                 goto bad;
2264                 }
2265
2266                 p->symtab[i].nprim = nprim;
2267         }
2268
2269         rc = avtab_read(&p->te_avtab, fp, p);
2270         if (rc)
2271                 goto bad;
2272
2273         if (p->policyvers >= POLICYDB_VERSION_BOOL) {
2274                 rc = cond_read_list(p, fp);
2275                 if (rc)
2276                         goto bad;
2277         }
2278
2279         rc = next_entry(buf, fp, sizeof(u32));
2280         if (rc)
2281                 goto bad;
2282         nel = le32_to_cpu(buf[0]);
2283         ltr = NULL;
2284         for (i = 0; i < nel; i++) {
2285                 rc = -ENOMEM;
2286                 tr = kzalloc(sizeof(*tr), GFP_KERNEL);
2287                 if (!tr)
2288                         goto bad;
2289                 if (ltr)
2290                         ltr->next = tr;
2291                 else
2292                         p->role_tr = tr;
2293                 rc = next_entry(buf, fp, sizeof(u32)*3);
2294                 if (rc)
2295                         goto bad;
2296
2297                 rc = -EINVAL;
2298                 tr->role = le32_to_cpu(buf[0]);
2299                 tr->type = le32_to_cpu(buf[1]);
2300                 tr->new_role = le32_to_cpu(buf[2]);
2301                 if (!policydb_role_isvalid(p, tr->role) ||
2302                     !policydb_type_isvalid(p, tr->type) ||
2303                     !policydb_role_isvalid(p, tr->new_role))
2304                         goto bad;
2305                 ltr = tr;
2306         }
2307
2308         rc = next_entry(buf, fp, sizeof(u32));
2309         if (rc)
2310                 goto bad;
2311         nel = le32_to_cpu(buf[0]);
2312         lra = NULL;
2313         for (i = 0; i < nel; i++) {
2314                 rc = -ENOMEM;
2315                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
2316                 if (!ra)
2317                         goto bad;
2318                 if (lra)
2319                         lra->next = ra;
2320                 else
2321                         p->role_allow = ra;
2322                 rc = next_entry(buf, fp, sizeof(u32)*2);
2323                 if (rc)
2324                         goto bad;
2325
2326                 rc = -EINVAL;
2327                 ra->role = le32_to_cpu(buf[0]);
2328                 ra->new_role = le32_to_cpu(buf[1]);
2329                 if (!policydb_role_isvalid(p, ra->role) ||
2330                     !policydb_role_isvalid(p, ra->new_role))
2331                         goto bad;
2332                 lra = ra;
2333         }
2334
2335         rc = filename_trans_read(p, fp);
2336         if (rc)
2337                 goto bad;
2338
2339         rc = policydb_index(p);
2340         if (rc)
2341                 goto bad;
2342
2343         rc = -EINVAL;
2344         p->process_class = string_to_security_class(p, "process");
2345         if (!p->process_class)
2346                 goto bad;
2347
2348         rc = -EINVAL;
2349         p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition");
2350         p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition");
2351         if (!p->process_trans_perms)
2352                 goto bad;
2353
2354         rc = ocontext_read(p, info, fp);
2355         if (rc)
2356                 goto bad;
2357
2358         rc = genfs_read(p, fp);
2359         if (rc)
2360                 goto bad;
2361
2362         rc = range_read(p, fp);
2363         if (rc)
2364                 goto bad;
2365
2366         rc = -ENOMEM;
2367         p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
2368                                                   p->p_types.nprim,
2369                                                   GFP_KERNEL | __GFP_ZERO);
2370         if (!p->type_attr_map_array)
2371                 goto bad;
2372
2373         /* preallocate so we don't have to worry about the put ever failing */
2374         rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim,
2375                                  GFP_KERNEL | __GFP_ZERO);
2376         if (rc)
2377                 goto bad;
2378
2379         for (i = 0; i < p->p_types.nprim; i++) {
2380                 struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
2381
2382                 BUG_ON(!e);
2383                 ebitmap_init(e);
2384                 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
2385                         rc = ebitmap_read(e, fp);
2386                         if (rc)
2387                                 goto bad;
2388                 }
2389                 /* add the type itself as the degenerate case */
2390                 rc = ebitmap_set_bit(e, i, 1);
2391                 if (rc)
2392                         goto bad;
2393         }
2394
2395         rc = policydb_bounds_sanity_check(p);
2396         if (rc)
2397                 goto bad;
2398
2399         rc = 0;
2400 out:
2401         return rc;
2402 bad:
2403         policydb_destroy(p);
2404         goto out;
2405 }
2406
2407 /*
2408  * Write a MLS level structure to a policydb binary
2409  * representation file.
2410  */
2411 static int mls_write_level(struct mls_level *l, void *fp)
2412 {
2413         __le32 buf[1];
2414         int rc;
2415
2416         buf[0] = cpu_to_le32(l->sens);
2417         rc = put_entry(buf, sizeof(u32), 1, fp);
2418         if (rc)
2419                 return rc;
2420
2421         rc = ebitmap_write(&l->cat, fp);
2422         if (rc)
2423                 return rc;
2424
2425         return 0;
2426 }
2427
2428 /*
2429  * Write a MLS range structure to a policydb binary
2430  * representation file.
2431  */
2432 static int mls_write_range_helper(struct mls_range *r, void *fp)
2433 {
2434         __le32 buf[3];
2435         size_t items;
2436         int rc, eq;
2437
2438         eq = mls_level_eq(&r->level[1], &r->level[0]);
2439
2440         if (eq)
2441                 items = 2;
2442         else
2443                 items = 3;
2444         buf[0] = cpu_to_le32(items-1);
2445         buf[1] = cpu_to_le32(r->level[0].sens);
2446         if (!eq)
2447                 buf[2] = cpu_to_le32(r->level[1].sens);
2448
2449         BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2450
2451         rc = put_entry(buf, sizeof(u32), items, fp);
2452         if (rc)
2453                 return rc;
2454
2455         rc = ebitmap_write(&r->level[0].cat, fp);
2456         if (rc)
2457                 return rc;
2458         if (!eq) {
2459                 rc = ebitmap_write(&r->level[1].cat, fp);
2460                 if (rc)
2461                         return rc;
2462         }
2463
2464         return 0;
2465 }
2466
2467 static int sens_write(void *vkey, void *datum, void *ptr)
2468 {
2469         char *key = vkey;
2470         struct level_datum *levdatum = datum;
2471         struct policy_data *pd = ptr;
2472         void *fp = pd->fp;
2473         __le32 buf[2];
2474         size_t len;
2475         int rc;
2476
2477         len = strlen(key);
2478         buf[0] = cpu_to_le32(len);
2479         buf[1] = cpu_to_le32(levdatum->isalias);
2480         rc = put_entry(buf, sizeof(u32), 2, fp);
2481         if (rc)
2482                 return rc;
2483
2484         rc = put_entry(key, 1, len, fp);
2485         if (rc)
2486                 return rc;
2487
2488         rc = mls_write_level(levdatum->level, fp);
2489         if (rc)
2490                 return rc;
2491
2492         return 0;
2493 }
2494
2495 static int cat_write(void *vkey, void *datum, void *ptr)
2496 {
2497         char *key = vkey;
2498         struct cat_datum *catdatum = datum;
2499         struct policy_data *pd = ptr;
2500         void *fp = pd->fp;
2501         __le32 buf[3];
2502         size_t len;
2503         int rc;
2504
2505         len = strlen(key);
2506         buf[0] = cpu_to_le32(len);
2507         buf[1] = cpu_to_le32(catdatum->value);
2508         buf[2] = cpu_to_le32(catdatum->isalias);
2509         rc = put_entry(buf, sizeof(u32), 3, fp);
2510         if (rc)
2511                 return rc;
2512
2513         rc = put_entry(key, 1, len, fp);
2514         if (rc)
2515                 return rc;
2516
2517         return 0;
2518 }
2519
2520 static int role_trans_write(struct role_trans *r, void *fp)
2521 {
2522         struct role_trans *tr;
2523         u32 buf[3];
2524         size_t nel;
2525         int rc;
2526
2527         nel = 0;
2528         for (tr = r; tr; tr = tr->next)
2529                 nel++;
2530         buf[0] = cpu_to_le32(nel);
2531         rc = put_entry(buf, sizeof(u32), 1, fp);
2532         if (rc)
2533                 return rc;
2534         for (tr = r; tr; tr = tr->next) {
2535                 buf[0] = cpu_to_le32(tr->role);
2536                 buf[1] = cpu_to_le32(tr->type);
2537                 buf[2] = cpu_to_le32(tr->new_role);
2538                 rc = put_entry(buf, sizeof(u32), 3, fp);
2539                 if (rc)
2540                         return rc;
2541         }
2542
2543         return 0;
2544 }
2545
2546 static int role_allow_write(struct role_allow *r, void *fp)
2547 {
2548         struct role_allow *ra;
2549         u32 buf[2];
2550         size_t nel;
2551         int rc;
2552
2553         nel = 0;
2554         for (ra = r; ra; ra = ra->next)
2555                 nel++;
2556         buf[0] = cpu_to_le32(nel);
2557         rc = put_entry(buf, sizeof(u32), 1, fp);
2558         if (rc)
2559                 return rc;
2560         for (ra = r; ra; ra = ra->next) {
2561                 buf[0] = cpu_to_le32(ra->role);
2562                 buf[1] = cpu_to_le32(ra->new_role);
2563                 rc = put_entry(buf, sizeof(u32), 2, fp);
2564                 if (rc)
2565                         return rc;
2566         }
2567         return 0;
2568 }
2569
2570 /*
2571  * Write a security context structure
2572  * to a policydb binary representation file.
2573  */
2574 static int context_write(struct policydb *p, struct context *c,
2575                          void *fp)
2576 {
2577         int rc;
2578         __le32 buf[3];
2579
2580         buf[0] = cpu_to_le32(c->user);
2581         buf[1] = cpu_to_le32(c->role);
2582         buf[2] = cpu_to_le32(c->type);
2583
2584         rc = put_entry(buf, sizeof(u32), 3, fp);
2585         if (rc)
2586                 return rc;
2587
2588         rc = mls_write_range_helper(&c->range, fp);
2589         if (rc)
2590                 return rc;
2591
2592         return 0;
2593 }
2594
2595 /*
2596  * The following *_write functions are used to
2597  * write the symbol data to a policy database
2598  * binary representation file.
2599  */
2600
2601 static int perm_write(void *vkey, void *datum, void *fp)
2602 {
2603         char *key = vkey;
2604         struct perm_datum *perdatum = datum;
2605         __le32 buf[2];
2606         size_t len;
2607         int rc;
2608
2609         len = strlen(key);
2610         buf[0] = cpu_to_le32(len);
2611         buf[1] = cpu_to_le32(perdatum->value);
2612         rc = put_entry(buf, sizeof(u32), 2, fp);
2613         if (rc)
2614                 return rc;
2615
2616         rc = put_entry(key, 1, len, fp);
2617         if (rc)
2618                 return rc;
2619
2620         return 0;
2621 }
2622
2623 static int common_write(void *vkey, void *datum, void *ptr)
2624 {
2625         char *key = vkey;
2626         struct common_datum *comdatum = datum;
2627         struct policy_data *pd = ptr;
2628         void *fp = pd->fp;
2629         __le32 buf[4];
2630         size_t len;
2631         int rc;
2632
2633         len = strlen(key);
2634         buf[0] = cpu_to_le32(len);
2635         buf[1] = cpu_to_le32(comdatum->value);
2636         buf[2] = cpu_to_le32(comdatum->permissions.nprim);
2637         buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
2638         rc = put_entry(buf, sizeof(u32), 4, fp);
2639         if (rc)
2640                 return rc;
2641
2642         rc = put_entry(key, 1, len, fp);
2643         if (rc)
2644                 return rc;
2645
2646         rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
2647         if (rc)
2648                 return rc;
2649
2650         return 0;
2651 }
2652
2653 static int write_cons_helper(struct policydb *p, struct constraint_node *node,
2654                              void *fp)
2655 {
2656         struct constraint_node *c;
2657         struct constraint_expr *e;
2658         __le32 buf[3];
2659         u32 nel;
2660         int rc;
2661
2662         for (c = node; c; c = c->next) {
2663                 nel = 0;
2664                 for (e = c->expr; e; e = e->next)
2665                         nel++;
2666                 buf[0] = cpu_to_le32(c->permissions);
2667                 buf[1] = cpu_to_le32(nel);
2668                 rc = put_entry(buf, sizeof(u32), 2, fp);
2669                 if (rc)
2670                         return rc;
2671                 for (e = c->expr; e; e = e->next) {
2672                         buf[0] = cpu_to_le32(e->expr_type);
2673                         buf[1] = cpu_to_le32(e->attr);
2674                         buf[2] = cpu_to_le32(e->op);
2675                         rc = put_entry(buf, sizeof(u32), 3, fp);
2676                         if (rc)
2677                                 return rc;
2678
2679                         switch (e->expr_type) {
2680                         case CEXPR_NAMES:
2681                                 rc = ebitmap_write(&e->names, fp);
2682                                 if (rc)
2683                                         return rc;
2684                                 break;
2685                         default:
2686                                 break;
2687                         }
2688                 }
2689         }
2690
2691         return 0;
2692 }
2693
2694 static int class_write(void *vkey, void *datum, void *ptr)
2695 {
2696         char *key = vkey;
2697         struct class_datum *cladatum = datum;
2698         struct policy_data *pd = ptr;
2699         void *fp = pd->fp;
2700         struct policydb *p = pd->p;
2701         struct constraint_node *c;
2702         __le32 buf[6];
2703         u32 ncons;
2704         size_t len, len2;
2705         int rc;
2706
2707         len = strlen(key);
2708         if (cladatum->comkey)
2709                 len2 = strlen(cladatum->comkey);
2710         else
2711                 len2 = 0;
2712
2713         ncons = 0;
2714         for (c = cladatum->constraints; c; c = c->next)
2715                 ncons++;
2716
2717         buf[0] = cpu_to_le32(len);
2718         buf[1] = cpu_to_le32(len2);
2719         buf[2] = cpu_to_le32(cladatum->value);
2720         buf[3] = cpu_to_le32(cladatum->permissions.nprim);
2721         if (cladatum->permissions.table)
2722                 buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
2723         else
2724                 buf[4] = 0;
2725         buf[5] = cpu_to_le32(ncons);
2726         rc = put_entry(buf, sizeof(u32), 6, fp);
2727         if (rc)
2728                 return rc;
2729
2730         rc = put_entry(key, 1, len, fp);
2731         if (rc)
2732                 return rc;
2733
2734         if (cladatum->comkey) {
2735                 rc = put_entry(cladatum->comkey, 1, len2, fp);
2736                 if (rc)
2737                         return rc;
2738         }
2739
2740         rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
2741         if (rc)
2742                 return rc;
2743
2744         rc = write_cons_helper(p, cladatum->constraints, fp);
2745         if (rc)
2746                 return rc;
2747
2748         /* write out the validatetrans rule */
2749         ncons = 0;
2750         for (c = cladatum->validatetrans; c; c = c->next)
2751                 ncons++;
2752
2753         buf[0] = cpu_to_le32(ncons);
2754         rc = put_entry(buf, sizeof(u32), 1, fp);
2755         if (rc)
2756                 return rc;
2757
2758         rc = write_cons_helper(p, cladatum->validatetrans, fp);
2759         if (rc)
2760                 return rc;
2761
2762         return 0;
2763 }
2764
2765 static int role_write(void *vkey, void *datum, void *ptr)
2766 {
2767         char *key = vkey;
2768         struct role_datum *role = datum;
2769         struct policy_data *pd = ptr;
2770         void *fp = pd->fp;
2771         struct policydb *p = pd->p;
2772         __le32 buf[3];
2773         size_t items, len;
2774         int rc;
2775
2776         len = strlen(key);
2777         items = 0;
2778         buf[items++] = cpu_to_le32(len);
2779         buf[items++] = cpu_to_le32(role->value);
2780         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2781                 buf[items++] = cpu_to_le32(role->bounds);
2782
2783         BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2784
2785         rc = put_entry(buf, sizeof(u32), items, fp);
2786         if (rc)
2787                 return rc;
2788
2789         rc = put_entry(key, 1, len, fp);
2790         if (rc)
2791                 return rc;
2792
2793         rc = ebitmap_write(&role->dominates, fp);
2794         if (rc)
2795                 return rc;
2796
2797         rc = ebitmap_write(&role->types, fp);
2798         if (rc)
2799                 return rc;
2800
2801         return 0;
2802 }
2803
2804 static int type_write(void *vkey, void *datum, void *ptr)
2805 {
2806         char *key = vkey;
2807         struct type_datum *typdatum = datum;
2808         struct policy_data *pd = ptr;
2809         struct policydb *p = pd->p;
2810         void *fp = pd->fp;
2811         __le32 buf[4];
2812         int rc;
2813         size_t items, len;
2814
2815         len = strlen(key);
2816         items = 0;
2817         buf[items++] = cpu_to_le32(len);
2818         buf[items++] = cpu_to_le32(typdatum->value);
2819         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
2820                 u32 properties = 0;
2821
2822                 if (typdatum->primary)
2823                         properties |= TYPEDATUM_PROPERTY_PRIMARY;
2824
2825                 if (typdatum->attribute)
2826                         properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
2827
2828                 buf[items++] = cpu_to_le32(properties);
2829                 buf[items++] = cpu_to_le32(typdatum->bounds);
2830         } else {
2831                 buf[items++] = cpu_to_le32(typdatum->primary);
2832         }
2833         BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2834         rc = put_entry(buf, sizeof(u32), items, fp);
2835         if (rc)
2836                 return rc;
2837
2838         rc = put_entry(key, 1, len, fp);
2839         if (rc)
2840                 return rc;
2841
2842         return 0;
2843 }
2844
2845 static int user_write(void *vkey, void *datum, void *ptr)
2846 {
2847         char *key = vkey;
2848         struct user_datum *usrdatum = datum;
2849         struct policy_data *pd = ptr;
2850         struct policydb *p = pd->p;
2851         void *fp = pd->fp;
2852         __le32 buf[3];
2853         size_t items, len;
2854         int rc;
2855
2856         len = strlen(key);
2857         items = 0;
2858         buf[items++] = cpu_to_le32(len);
2859         buf[items++] = cpu_to_le32(usrdatum->value);
2860         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2861                 buf[items++] = cpu_to_le32(usrdatum->bounds);
2862         BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2863         rc = put_entry(buf, sizeof(u32), items, fp);
2864         if (rc)
2865                 return rc;
2866
2867         rc = put_entry(key, 1, len, fp);
2868         if (rc)
2869                 return rc;
2870
2871         rc = ebitmap_write(&usrdatum->roles, fp);
2872         if (rc)
2873                 return rc;
2874
2875         rc = mls_write_range_helper(&usrdatum->range, fp);
2876         if (rc)
2877                 return rc;
2878
2879         rc = mls_write_level(&usrdatum->dfltlevel, fp);
2880         if (rc)
2881                 return rc;
2882
2883         return 0;
2884 }
2885
2886 static int (*write_f[SYM_NUM]) (void *key, void *datum,
2887                                 void *datap) =
2888 {
2889         common_write,
2890         class_write,
2891         role_write,
2892         type_write,
2893         user_write,
2894         cond_write_bool,
2895         sens_write,
2896         cat_write,
2897 };
2898
2899 static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
2900                           void *fp)
2901 {
2902         unsigned int i, j, rc;
2903         size_t nel, len;
2904         __le32 buf[3];
2905         u32 nodebuf[8];
2906         struct ocontext *c;
2907         for (i = 0; i < info->ocon_num; i++) {
2908                 nel = 0;
2909                 for (c = p->ocontexts[i]; c; c = c->next)
2910                         nel++;
2911                 buf[0] = cpu_to_le32(nel);
2912                 rc = put_entry(buf, sizeof(u32), 1, fp);
2913                 if (rc)
2914                         return rc;
2915                 for (c = p->ocontexts[i]; c; c = c->next) {
2916                         switch (i) {
2917                         case OCON_ISID:
2918                                 buf[0] = cpu_to_le32(c->sid[0]);
2919                                 rc = put_entry(buf, sizeof(u32), 1, fp);
2920                                 if (rc)
2921                                         return rc;
2922                                 rc = context_write(p, &c->context[0], fp);
2923                                 if (rc)
2924                                         return rc;
2925                                 break;
2926                         case OCON_FS:
2927                         case OCON_NETIF:
2928                                 len = strlen(c->u.name);
2929                                 buf[0] = cpu_to_le32(len);
2930                                 rc = put_entry(buf, sizeof(u32), 1, fp);
2931                                 if (rc)
2932                                         return rc;
2933                                 rc = put_entry(c->u.name, 1, len, fp);
2934                                 if (rc)
2935                                         return rc;
2936                                 rc = context_write(p, &c->context[0], fp);
2937                                 if (rc)
2938                                         return rc;
2939                                 rc = context_write(p, &c->context[1], fp);
2940                                 if (rc)
2941                                         return rc;
2942                                 break;
2943                         case OCON_PORT:
2944                                 buf[0] = cpu_to_le32(c->u.port.protocol);
2945                                 buf[1] = cpu_to_le32(c->u.port.low_port);
2946                                 buf[2] = cpu_to_le32(c->u.port.high_port);
2947                                 rc = put_entry(buf, sizeof(u32), 3, fp);
2948                                 if (rc)
2949                                         return rc;
2950                                 rc = context_write(p, &c->context[0], fp);
2951                                 if (rc)
2952                                         return rc;
2953                                 break;
2954                         case OCON_NODE:
2955                                 nodebuf[0] = c->u.node.addr; /* network order */
2956                                 nodebuf[1] = c->u.node.mask; /* network order */
2957                                 rc = put_entry(nodebuf, sizeof(u32), 2, fp);
2958                                 if (rc)
2959                                         return rc;
2960                                 rc = context_write(p, &c->context[0], fp);
2961                                 if (rc)
2962                                         return rc;
2963                                 break;
2964                         case OCON_FSUSE:
2965                                 buf[0] = cpu_to_le32(c->v.behavior);
2966                                 len = strlen(c->u.name);
2967                                 buf[1] = cpu_to_le32(len);
2968                                 rc = put_entry(buf, sizeof(u32), 2, fp);
2969                                 if (rc)
2970                                         return rc;
2971                                 rc = put_entry(c->u.name, 1, len, fp);
2972                                 if (rc)
2973                                         return rc;
2974                                 rc = context_write(p, &c->context[0], fp);
2975                                 if (rc)
2976                                         return rc;
2977                                 break;
2978                         case OCON_NODE6:
2979                                 for (j = 0; j < 4; j++)
2980                                         nodebuf[j] = c->u.node6.addr[j]; /* network order */
2981                                 for (j = 0; j < 4; j++)
2982                                         nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
2983                                 rc = put_entry(nodebuf, sizeof(u32), 8, fp);
2984                                 if (rc)
2985                                         return rc;
2986                                 rc = context_write(p, &c->context[0], fp);
2987                                 if (rc)
2988                                         return rc;
2989                                 break;
2990                         }
2991                 }
2992         }
2993         return 0;
2994 }
2995
2996 static int genfs_write(struct policydb *p, void *fp)
2997 {
2998         struct genfs *genfs;
2999         struct ocontext *c;
3000         size_t len;
3001         __le32 buf[1];
3002         int rc;
3003
3004         len = 0;
3005         for (genfs = p->genfs; genfs; genfs = genfs->next)
3006                 len++;
3007         buf[0] = cpu_to_le32(len);
3008         rc = put_entry(buf, sizeof(u32), 1, fp);
3009         if (rc)
3010                 return rc;
3011         for (genfs = p->genfs; genfs; genfs = genfs->next) {
3012                 len = strlen(genfs->fstype);
3013                 buf[0] = cpu_to_le32(len);
3014                 rc = put_entry(buf, sizeof(u32), 1, fp);
3015                 if (rc)
3016                         return rc;
3017                 rc = put_entry(genfs->fstype, 1, len, fp);
3018                 if (rc)
3019                         return rc;
3020                 len = 0;
3021                 for (c = genfs->head; c; c = c->next)
3022                         len++;
3023                 buf[0] = cpu_to_le32(len);
3024                 rc = put_entry(buf, sizeof(u32), 1, fp);
3025                 if (rc)
3026                         return rc;
3027                 for (c = genfs->head; c; c = c->next) {
3028                         len = strlen(c->u.name);
3029                         buf[0] = cpu_to_le32(len);
3030                         rc = put_entry(buf, sizeof(u32), 1, fp);
3031                         if (rc)
3032                                 return rc;
3033                         rc = put_entry(c->u.name, 1, len, fp);
3034                         if (rc)
3035                                 return rc;
3036                         buf[0] = cpu_to_le32(c->v.sclass);
3037                         rc = put_entry(buf, sizeof(u32), 1, fp);
3038                         if (rc)
3039                                 return rc;
3040                         rc = context_write(p, &c->context[0], fp);
3041                         if (rc)
3042                                 return rc;
3043                 }
3044         }
3045         return 0;
3046 }
3047
3048 static int range_count(void *key, void *data, void *ptr)
3049 {
3050         int *cnt = ptr;
3051         *cnt = *cnt + 1;
3052
3053         return 0;
3054 }
3055
3056 static int range_write_helper(void *key, void *data, void *ptr)
3057 {
3058         __le32 buf[2];
3059         struct range_trans *rt = key;
3060         struct mls_range *r = data;
3061         struct policy_data *pd = ptr;
3062         void *fp = pd->fp;
3063         struct policydb *p = pd->p;
3064         int rc;
3065
3066         buf[0] = cpu_to_le32(rt->source_type);
3067         buf[1] = cpu_to_le32(rt->target_type);
3068         rc = put_entry(buf, sizeof(u32), 2, fp);
3069         if (rc)
3070                 return rc;
3071         if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
3072                 buf[0] = cpu_to_le32(rt->target_class);
3073                 rc = put_entry(buf, sizeof(u32), 1, fp);
3074                 if (rc)
3075                         return rc;
3076         }
3077         rc = mls_write_range_helper(r, fp);
3078         if (rc)
3079                 return rc;
3080
3081         return 0;
3082 }
3083
3084 static int range_write(struct policydb *p, void *fp)
3085 {
3086         size_t nel;
3087         __le32 buf[1];
3088         int rc;
3089         struct policy_data pd;
3090
3091         pd.p = p;
3092         pd.fp = fp;
3093
3094         /* count the number of entries in the hashtab */
3095         nel = 0;
3096         rc = hashtab_map(p->range_tr, range_count, &nel);
3097         if (rc)
3098                 return rc;
3099
3100         buf[0] = cpu_to_le32(nel);
3101         rc = put_entry(buf, sizeof(u32), 1, fp);
3102         if (rc)
3103                 return rc;
3104
3105         /* actually write all of the entries */
3106         rc = hashtab_map(p->range_tr, range_write_helper, &pd);
3107         if (rc)
3108                 return rc;
3109
3110         return 0;
3111 }
3112
3113 static int filename_trans_write(struct policydb *p, void *fp)
3114 {
3115         struct filename_trans *ft;
3116         u32 len, nel = 0;
3117         __le32 buf[4];
3118         int rc;
3119
3120         for (ft = p->filename_trans; ft; ft = ft->next)
3121                 nel++;
3122
3123         buf[0] = cpu_to_le32(nel);
3124         rc = put_entry(buf, sizeof(u32), 1, fp);
3125         if (rc)
3126                 return rc;
3127
3128         for (ft = p->filename_trans; ft; ft = ft->next) {
3129                 len = strlen(ft->name);
3130                 buf[0] = cpu_to_le32(len);
3131                 rc = put_entry(buf, sizeof(u32), 1, fp);
3132                 if (rc)
3133                         return rc;
3134
3135                 rc = put_entry(ft->name, sizeof(char), len, fp);
3136                 if (rc)
3137                         return rc;
3138
3139                 buf[0] = ft->stype;
3140                 buf[1] = ft->ttype;
3141                 buf[2] = ft->tclass;
3142                 buf[3] = ft->otype;
3143
3144                 rc = put_entry(buf, sizeof(u32), 4, fp);
3145                 if (rc)
3146                         return rc;
3147         }
3148         return 0;
3149 }
3150 /*
3151  * Write the configuration data in a policy database
3152  * structure to a policy database binary representation
3153  * file.
3154  */
3155 int policydb_write(struct policydb *p, void *fp)
3156 {
3157         unsigned int i, num_syms;
3158         int rc;
3159         __le32 buf[4];
3160         u32 config;
3161         size_t len;
3162         struct policydb_compat_info *info;
3163
3164         /*
3165          * refuse to write policy older than compressed avtab
3166          * to simplify the writer.  There are other tests dropped
3167          * since we assume this throughout the writer code.  Be
3168          * careful if you ever try to remove this restriction
3169          */
3170         if (p->policyvers < POLICYDB_VERSION_AVTAB) {
3171                 printk(KERN_ERR "SELinux: refusing to write policy version %d."
3172                        "  Because it is less than version %d\n", p->policyvers,
3173                        POLICYDB_VERSION_AVTAB);
3174                 return -EINVAL;
3175         }
3176
3177         config = 0;
3178         if (p->mls_enabled)
3179                 config |= POLICYDB_CONFIG_MLS;
3180
3181         if (p->reject_unknown)
3182                 config |= REJECT_UNKNOWN;
3183         if (p->allow_unknown)
3184                 config |= ALLOW_UNKNOWN;
3185
3186         /* Write the magic number and string identifiers. */
3187         buf[0] = cpu_to_le32(POLICYDB_MAGIC);
3188         len = strlen(POLICYDB_STRING);
3189         buf[1] = cpu_to_le32(len);
3190         rc = put_entry(buf, sizeof(u32), 2, fp);
3191         if (rc)
3192                 return rc;
3193         rc = put_entry(POLICYDB_STRING, 1, len, fp);
3194         if (rc)
3195                 return rc;
3196
3197         /* Write the version, config, and table sizes. */
3198         info = policydb_lookup_compat(p->policyvers);
3199         if (!info) {
3200                 printk(KERN_ERR "SELinux: compatibility lookup failed for policy "
3201                     "version %d", p->policyvers);
3202                 return -EINVAL;
3203         }
3204
3205         buf[0] = cpu_to_le32(p->policyvers);
3206         buf[1] = cpu_to_le32(config);
3207         buf[2] = cpu_to_le32(info->sym_num);
3208         buf[3] = cpu_to_le32(info->ocon_num);
3209
3210         rc = put_entry(buf, sizeof(u32), 4, fp);
3211         if (rc)
3212                 return rc;
3213
3214         if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
3215                 rc = ebitmap_write(&p->policycaps, fp);
3216                 if (rc)
3217                         return rc;
3218         }
3219
3220         if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
3221                 rc = ebitmap_write(&p->permissive_map, fp);
3222                 if (rc)
3223                         return rc;
3224         }
3225
3226         num_syms = info->sym_num;
3227         for (i = 0; i < num_syms; i++) {
3228                 struct policy_data pd;
3229
3230                 pd.fp = fp;
3231                 pd.p = p;
3232
3233                 buf[0] = cpu_to_le32(p->symtab[i].nprim);
3234                 buf[1] = cpu_to_le32(p->symtab[i].table->nel);
3235
3236                 rc = put_entry(buf, sizeof(u32), 2, fp);
3237                 if (rc)
3238                         return rc;
3239                 rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
3240                 if (rc)
3241                         return rc;
3242         }
3243
3244         rc = avtab_write(p, &p->te_avtab, fp);
3245         if (rc)
3246                 return rc;
3247
3248         rc = cond_write_list(p, p->cond_list, fp);
3249         if (rc)
3250                 return rc;
3251
3252         rc = role_trans_write(p->role_tr, fp);
3253         if (rc)
3254                 return rc;
3255
3256         rc = role_allow_write(p->role_allow, fp);
3257         if (rc)
3258                 return rc;
3259
3260         rc = filename_trans_write(p, fp);
3261         if (rc)
3262                 return rc;
3263
3264         rc = ocontext_write(p, info, fp);
3265         if (rc)
3266                 return rc;
3267
3268         rc = genfs_write(p, fp);
3269         if (rc)
3270                 return rc;
3271
3272         rc = range_write(p, fp);
3273         if (rc)
3274                 return rc;
3275
3276         for (i = 0; i < p->p_types.nprim; i++) {
3277                 struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
3278
3279                 BUG_ON(!e);
3280                 rc = ebitmap_write(e, fp);
3281                 if (rc)
3282                         return rc;
3283         }
3284
3285         return 0;
3286 }