Add a new capable interface that will be used by systems that use audit to
[pandora-kernel.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 4
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /* Allocate and free functions for each kind of security blob. */
160
161 static int task_alloc_security(struct task_struct *task)
162 {
163         struct task_security_struct *tsec;
164
165         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
166         if (!tsec)
167                 return -ENOMEM;
168
169         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
170         task->security = tsec;
171
172         return 0;
173 }
174
175 static void task_free_security(struct task_struct *task)
176 {
177         struct task_security_struct *tsec = task->security;
178         task->security = NULL;
179         kfree(tsec);
180 }
181
182 static int inode_alloc_security(struct inode *inode)
183 {
184         struct task_security_struct *tsec = current->security;
185         struct inode_security_struct *isec;
186
187         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
188         if (!isec)
189                 return -ENOMEM;
190
191         mutex_init(&isec->lock);
192         INIT_LIST_HEAD(&isec->list);
193         isec->inode = inode;
194         isec->sid = SECINITSID_UNLABELED;
195         isec->sclass = SECCLASS_FILE;
196         isec->task_sid = tsec->sid;
197         inode->i_security = isec;
198
199         return 0;
200 }
201
202 static void inode_free_security(struct inode *inode)
203 {
204         struct inode_security_struct *isec = inode->i_security;
205         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
206
207         spin_lock(&sbsec->isec_lock);
208         if (!list_empty(&isec->list))
209                 list_del_init(&isec->list);
210         spin_unlock(&sbsec->isec_lock);
211
212         inode->i_security = NULL;
213         kmem_cache_free(sel_inode_cache, isec);
214 }
215
216 static int file_alloc_security(struct file *file)
217 {
218         struct task_security_struct *tsec = current->security;
219         struct file_security_struct *fsec;
220
221         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
222         if (!fsec)
223                 return -ENOMEM;
224
225         fsec->sid = tsec->sid;
226         fsec->fown_sid = tsec->sid;
227         file->f_security = fsec;
228
229         return 0;
230 }
231
232 static void file_free_security(struct file *file)
233 {
234         struct file_security_struct *fsec = file->f_security;
235         file->f_security = NULL;
236         kfree(fsec);
237 }
238
239 static int superblock_alloc_security(struct super_block *sb)
240 {
241         struct superblock_security_struct *sbsec;
242
243         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
244         if (!sbsec)
245                 return -ENOMEM;
246
247         mutex_init(&sbsec->lock);
248         INIT_LIST_HEAD(&sbsec->list);
249         INIT_LIST_HEAD(&sbsec->isec_head);
250         spin_lock_init(&sbsec->isec_lock);
251         sbsec->sb = sb;
252         sbsec->sid = SECINITSID_UNLABELED;
253         sbsec->def_sid = SECINITSID_FILE;
254         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
255         sb->s_security = sbsec;
256
257         return 0;
258 }
259
260 static void superblock_free_security(struct super_block *sb)
261 {
262         struct superblock_security_struct *sbsec = sb->s_security;
263
264         spin_lock(&sb_security_lock);
265         if (!list_empty(&sbsec->list))
266                 list_del_init(&sbsec->list);
267         spin_unlock(&sb_security_lock);
268
269         sb->s_security = NULL;
270         kfree(sbsec);
271 }
272
273 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
274 {
275         struct sk_security_struct *ssec;
276
277         ssec = kzalloc(sizeof(*ssec), priority);
278         if (!ssec)
279                 return -ENOMEM;
280
281         ssec->peer_sid = SECINITSID_UNLABELED;
282         ssec->sid = SECINITSID_UNLABELED;
283         sk->sk_security = ssec;
284
285         selinux_netlbl_sk_security_reset(ssec, family);
286
287         return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292         struct sk_security_struct *ssec = sk->sk_security;
293
294         sk->sk_security = NULL;
295         selinux_netlbl_sk_security_free(ssec);
296         kfree(ssec);
297 }
298
299 /* The security server must be initialized before
300    any labeling or access decisions can be provided. */
301 extern int ss_initialized;
302
303 /* The file system's label must be initialized prior to use. */
304
305 static char *labeling_behaviors[6] = {
306         "uses xattr",
307         "uses transition SIDs",
308         "uses task SIDs",
309         "uses genfs_contexts",
310         "not configured for labeling",
311         "uses mountpoint labeling",
312 };
313
314 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
315
316 static inline int inode_doinit(struct inode *inode)
317 {
318         return inode_doinit_with_dentry(inode, NULL);
319 }
320
321 enum {
322         Opt_error = -1,
323         Opt_context = 1,
324         Opt_fscontext = 2,
325         Opt_defcontext = 3,
326         Opt_rootcontext = 4,
327 };
328
329 static const match_table_t tokens = {
330         {Opt_context, CONTEXT_STR "%s"},
331         {Opt_fscontext, FSCONTEXT_STR "%s"},
332         {Opt_defcontext, DEFCONTEXT_STR "%s"},
333         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
334         {Opt_error, NULL},
335 };
336
337 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
338
339 static int may_context_mount_sb_relabel(u32 sid,
340                         struct superblock_security_struct *sbsec,
341                         struct task_security_struct *tsec)
342 {
343         int rc;
344
345         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346                           FILESYSTEM__RELABELFROM, NULL);
347         if (rc)
348                 return rc;
349
350         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
351                           FILESYSTEM__RELABELTO, NULL);
352         return rc;
353 }
354
355 static int may_context_mount_inode_relabel(u32 sid,
356                         struct superblock_security_struct *sbsec,
357                         struct task_security_struct *tsec)
358 {
359         int rc;
360         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
361                           FILESYSTEM__RELABELFROM, NULL);
362         if (rc)
363                 return rc;
364
365         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
366                           FILESYSTEM__ASSOCIATE, NULL);
367         return rc;
368 }
369
370 static int sb_finish_set_opts(struct super_block *sb)
371 {
372         struct superblock_security_struct *sbsec = sb->s_security;
373         struct dentry *root = sb->s_root;
374         struct inode *root_inode = root->d_inode;
375         int rc = 0;
376
377         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
378                 /* Make sure that the xattr handler exists and that no
379                    error other than -ENODATA is returned by getxattr on
380                    the root directory.  -ENODATA is ok, as this may be
381                    the first boot of the SELinux kernel before we have
382                    assigned xattr values to the filesystem. */
383                 if (!root_inode->i_op->getxattr) {
384                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
385                                "xattr support\n", sb->s_id, sb->s_type->name);
386                         rc = -EOPNOTSUPP;
387                         goto out;
388                 }
389                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
390                 if (rc < 0 && rc != -ENODATA) {
391                         if (rc == -EOPNOTSUPP)
392                                 printk(KERN_WARNING "SELinux: (dev %s, type "
393                                        "%s) has no security xattr handler\n",
394                                        sb->s_id, sb->s_type->name);
395                         else
396                                 printk(KERN_WARNING "SELinux: (dev %s, type "
397                                        "%s) getxattr errno %d\n", sb->s_id,
398                                        sb->s_type->name, -rc);
399                         goto out;
400                 }
401         }
402
403         sbsec->initialized = 1;
404
405         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
406                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
407                        sb->s_id, sb->s_type->name);
408         else
409                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
410                        sb->s_id, sb->s_type->name,
411                        labeling_behaviors[sbsec->behavior-1]);
412
413         /* Initialize the root inode. */
414         rc = inode_doinit_with_dentry(root_inode, root);
415
416         /* Initialize any other inodes associated with the superblock, e.g.
417            inodes created prior to initial policy load or inodes created
418            during get_sb by a pseudo filesystem that directly
419            populates itself. */
420         spin_lock(&sbsec->isec_lock);
421 next_inode:
422         if (!list_empty(&sbsec->isec_head)) {
423                 struct inode_security_struct *isec =
424                                 list_entry(sbsec->isec_head.next,
425                                            struct inode_security_struct, list);
426                 struct inode *inode = isec->inode;
427                 spin_unlock(&sbsec->isec_lock);
428                 inode = igrab(inode);
429                 if (inode) {
430                         if (!IS_PRIVATE(inode))
431                                 inode_doinit(inode);
432                         iput(inode);
433                 }
434                 spin_lock(&sbsec->isec_lock);
435                 list_del_init(&isec->list);
436                 goto next_inode;
437         }
438         spin_unlock(&sbsec->isec_lock);
439 out:
440         return rc;
441 }
442
443 /*
444  * This function should allow an FS to ask what it's mount security
445  * options were so it can use those later for submounts, displaying
446  * mount options, or whatever.
447  */
448 static int selinux_get_mnt_opts(const struct super_block *sb,
449                                 struct security_mnt_opts *opts)
450 {
451         int rc = 0, i;
452         struct superblock_security_struct *sbsec = sb->s_security;
453         char *context = NULL;
454         u32 len;
455         char tmp;
456
457         security_init_mnt_opts(opts);
458
459         if (!sbsec->initialized)
460                 return -EINVAL;
461
462         if (!ss_initialized)
463                 return -EINVAL;
464
465         /*
466          * if we ever use sbsec flags for anything other than tracking mount
467          * settings this is going to need a mask
468          */
469         tmp = sbsec->flags;
470         /* count the number of mount options for this sb */
471         for (i = 0; i < 8; i++) {
472                 if (tmp & 0x01)
473                         opts->num_mnt_opts++;
474                 tmp >>= 1;
475         }
476
477         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
478         if (!opts->mnt_opts) {
479                 rc = -ENOMEM;
480                 goto out_free;
481         }
482
483         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
484         if (!opts->mnt_opts_flags) {
485                 rc = -ENOMEM;
486                 goto out_free;
487         }
488
489         i = 0;
490         if (sbsec->flags & FSCONTEXT_MNT) {
491                 rc = security_sid_to_context(sbsec->sid, &context, &len);
492                 if (rc)
493                         goto out_free;
494                 opts->mnt_opts[i] = context;
495                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
496         }
497         if (sbsec->flags & CONTEXT_MNT) {
498                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
499                 if (rc)
500                         goto out_free;
501                 opts->mnt_opts[i] = context;
502                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
503         }
504         if (sbsec->flags & DEFCONTEXT_MNT) {
505                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
506                 if (rc)
507                         goto out_free;
508                 opts->mnt_opts[i] = context;
509                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
510         }
511         if (sbsec->flags & ROOTCONTEXT_MNT) {
512                 struct inode *root = sbsec->sb->s_root->d_inode;
513                 struct inode_security_struct *isec = root->i_security;
514
515                 rc = security_sid_to_context(isec->sid, &context, &len);
516                 if (rc)
517                         goto out_free;
518                 opts->mnt_opts[i] = context;
519                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
520         }
521
522         BUG_ON(i != opts->num_mnt_opts);
523
524         return 0;
525
526 out_free:
527         security_free_mnt_opts(opts);
528         return rc;
529 }
530
531 static int bad_option(struct superblock_security_struct *sbsec, char flag,
532                       u32 old_sid, u32 new_sid)
533 {
534         /* check if the old mount command had the same options */
535         if (sbsec->initialized)
536                 if (!(sbsec->flags & flag) ||
537                     (old_sid != new_sid))
538                         return 1;
539
540         /* check if we were passed the same options twice,
541          * aka someone passed context=a,context=b
542          */
543         if (!sbsec->initialized)
544                 if (sbsec->flags & flag)
545                         return 1;
546         return 0;
547 }
548
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554                                 struct security_mnt_opts *opts)
555 {
556         int rc = 0, i;
557         struct task_security_struct *tsec = current->security;
558         struct superblock_security_struct *sbsec = sb->s_security;
559         const char *name = sb->s_type->name;
560         struct inode *inode = sbsec->sb->s_root->d_inode;
561         struct inode_security_struct *root_isec = inode->i_security;
562         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563         u32 defcontext_sid = 0;
564         char **mount_options = opts->mnt_opts;
565         int *flags = opts->mnt_opts_flags;
566         int num_opts = opts->num_mnt_opts;
567
568         mutex_lock(&sbsec->lock);
569
570         if (!ss_initialized) {
571                 if (!num_opts) {
572                         /* Defer initialization until selinux_complete_init,
573                            after the initial policy is loaded and the security
574                            server is ready to handle calls. */
575                         spin_lock(&sb_security_lock);
576                         if (list_empty(&sbsec->list))
577                                 list_add(&sbsec->list, &superblock_security_head);
578                         spin_unlock(&sb_security_lock);
579                         goto out;
580                 }
581                 rc = -EINVAL;
582                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
583                         "before the security server is initialized\n");
584                 goto out;
585         }
586
587         /*
588          * Binary mount data FS will come through this function twice.  Once
589          * from an explicit call and once from the generic calls from the vfs.
590          * Since the generic VFS calls will not contain any security mount data
591          * we need to skip the double mount verification.
592          *
593          * This does open a hole in which we will not notice if the first
594          * mount using this sb set explict options and a second mount using
595          * this sb does not set any security options.  (The first options
596          * will be used for both mounts)
597          */
598         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
599             && (num_opts == 0))
600                 goto out;
601
602         /*
603          * parse the mount options, check if they are valid sids.
604          * also check if someone is trying to mount the same sb more
605          * than once with different security options.
606          */
607         for (i = 0; i < num_opts; i++) {
608                 u32 sid;
609                 rc = security_context_to_sid(mount_options[i],
610                                              strlen(mount_options[i]), &sid);
611                 if (rc) {
612                         printk(KERN_WARNING "SELinux: security_context_to_sid"
613                                "(%s) failed for (dev %s, type %s) errno=%d\n",
614                                mount_options[i], sb->s_id, name, rc);
615                         goto out;
616                 }
617                 switch (flags[i]) {
618                 case FSCONTEXT_MNT:
619                         fscontext_sid = sid;
620
621                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
622                                         fscontext_sid))
623                                 goto out_double_mount;
624
625                         sbsec->flags |= FSCONTEXT_MNT;
626                         break;
627                 case CONTEXT_MNT:
628                         context_sid = sid;
629
630                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
631                                         context_sid))
632                                 goto out_double_mount;
633
634                         sbsec->flags |= CONTEXT_MNT;
635                         break;
636                 case ROOTCONTEXT_MNT:
637                         rootcontext_sid = sid;
638
639                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
640                                         rootcontext_sid))
641                                 goto out_double_mount;
642
643                         sbsec->flags |= ROOTCONTEXT_MNT;
644
645                         break;
646                 case DEFCONTEXT_MNT:
647                         defcontext_sid = sid;
648
649                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
650                                         defcontext_sid))
651                                 goto out_double_mount;
652
653                         sbsec->flags |= DEFCONTEXT_MNT;
654
655                         break;
656                 default:
657                         rc = -EINVAL;
658                         goto out;
659                 }
660         }
661
662         if (sbsec->initialized) {
663                 /* previously mounted with options, but not on this attempt? */
664                 if (sbsec->flags && !num_opts)
665                         goto out_double_mount;
666                 rc = 0;
667                 goto out;
668         }
669
670         if (strcmp(sb->s_type->name, "proc") == 0)
671                 sbsec->proc = 1;
672
673         /* Determine the labeling behavior to use for this filesystem type. */
674         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
675         if (rc) {
676                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
677                        __func__, sb->s_type->name, rc);
678                 goto out;
679         }
680
681         /* sets the context of the superblock for the fs being mounted. */
682         if (fscontext_sid) {
683
684                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
685                 if (rc)
686                         goto out;
687
688                 sbsec->sid = fscontext_sid;
689         }
690
691         /*
692          * Switch to using mount point labeling behavior.
693          * sets the label used on all file below the mountpoint, and will set
694          * the superblock context if not already set.
695          */
696         if (context_sid) {
697                 if (!fscontext_sid) {
698                         rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
699                         if (rc)
700                                 goto out;
701                         sbsec->sid = context_sid;
702                 } else {
703                         rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
704                         if (rc)
705                                 goto out;
706                 }
707                 if (!rootcontext_sid)
708                         rootcontext_sid = context_sid;
709
710                 sbsec->mntpoint_sid = context_sid;
711                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712         }
713
714         if (rootcontext_sid) {
715                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
716                 if (rc)
717                         goto out;
718
719                 root_isec->sid = rootcontext_sid;
720                 root_isec->initialized = 1;
721         }
722
723         if (defcontext_sid) {
724                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
725                         rc = -EINVAL;
726                         printk(KERN_WARNING "SELinux: defcontext option is "
727                                "invalid for this filesystem type\n");
728                         goto out;
729                 }
730
731                 if (defcontext_sid != sbsec->def_sid) {
732                         rc = may_context_mount_inode_relabel(defcontext_sid,
733                                                              sbsec, tsec);
734                         if (rc)
735                                 goto out;
736                 }
737
738                 sbsec->def_sid = defcontext_sid;
739         }
740
741         rc = sb_finish_set_opts(sb);
742 out:
743         mutex_unlock(&sbsec->lock);
744         return rc;
745 out_double_mount:
746         rc = -EINVAL;
747         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
748                "security settings for (dev %s, type %s)\n", sb->s_id, name);
749         goto out;
750 }
751
752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
753                                         struct super_block *newsb)
754 {
755         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
756         struct superblock_security_struct *newsbsec = newsb->s_security;
757
758         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
759         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
760         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
761
762         /*
763          * if the parent was able to be mounted it clearly had no special lsm
764          * mount options.  thus we can safely put this sb on the list and deal
765          * with it later
766          */
767         if (!ss_initialized) {
768                 spin_lock(&sb_security_lock);
769                 if (list_empty(&newsbsec->list))
770                         list_add(&newsbsec->list, &superblock_security_head);
771                 spin_unlock(&sb_security_lock);
772                 return;
773         }
774
775         /* how can we clone if the old one wasn't set up?? */
776         BUG_ON(!oldsbsec->initialized);
777
778         /* if fs is reusing a sb, just let its options stand... */
779         if (newsbsec->initialized)
780                 return;
781
782         mutex_lock(&newsbsec->lock);
783
784         newsbsec->flags = oldsbsec->flags;
785
786         newsbsec->sid = oldsbsec->sid;
787         newsbsec->def_sid = oldsbsec->def_sid;
788         newsbsec->behavior = oldsbsec->behavior;
789
790         if (set_context) {
791                 u32 sid = oldsbsec->mntpoint_sid;
792
793                 if (!set_fscontext)
794                         newsbsec->sid = sid;
795                 if (!set_rootcontext) {
796                         struct inode *newinode = newsb->s_root->d_inode;
797                         struct inode_security_struct *newisec = newinode->i_security;
798                         newisec->sid = sid;
799                 }
800                 newsbsec->mntpoint_sid = sid;
801         }
802         if (set_rootcontext) {
803                 const struct inode *oldinode = oldsb->s_root->d_inode;
804                 const struct inode_security_struct *oldisec = oldinode->i_security;
805                 struct inode *newinode = newsb->s_root->d_inode;
806                 struct inode_security_struct *newisec = newinode->i_security;
807
808                 newisec->sid = oldisec->sid;
809         }
810
811         sb_finish_set_opts(newsb);
812         mutex_unlock(&newsbsec->lock);
813 }
814
815 static int selinux_parse_opts_str(char *options,
816                                   struct security_mnt_opts *opts)
817 {
818         char *p;
819         char *context = NULL, *defcontext = NULL;
820         char *fscontext = NULL, *rootcontext = NULL;
821         int rc, num_mnt_opts = 0;
822
823         opts->num_mnt_opts = 0;
824
825         /* Standard string-based options. */
826         while ((p = strsep(&options, "|")) != NULL) {
827                 int token;
828                 substring_t args[MAX_OPT_ARGS];
829
830                 if (!*p)
831                         continue;
832
833                 token = match_token(p, tokens, args);
834
835                 switch (token) {
836                 case Opt_context:
837                         if (context || defcontext) {
838                                 rc = -EINVAL;
839                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
840                                 goto out_err;
841                         }
842                         context = match_strdup(&args[0]);
843                         if (!context) {
844                                 rc = -ENOMEM;
845                                 goto out_err;
846                         }
847                         break;
848
849                 case Opt_fscontext:
850                         if (fscontext) {
851                                 rc = -EINVAL;
852                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
853                                 goto out_err;
854                         }
855                         fscontext = match_strdup(&args[0]);
856                         if (!fscontext) {
857                                 rc = -ENOMEM;
858                                 goto out_err;
859                         }
860                         break;
861
862                 case Opt_rootcontext:
863                         if (rootcontext) {
864                                 rc = -EINVAL;
865                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
866                                 goto out_err;
867                         }
868                         rootcontext = match_strdup(&args[0]);
869                         if (!rootcontext) {
870                                 rc = -ENOMEM;
871                                 goto out_err;
872                         }
873                         break;
874
875                 case Opt_defcontext:
876                         if (context || defcontext) {
877                                 rc = -EINVAL;
878                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
879                                 goto out_err;
880                         }
881                         defcontext = match_strdup(&args[0]);
882                         if (!defcontext) {
883                                 rc = -ENOMEM;
884                                 goto out_err;
885                         }
886                         break;
887
888                 default:
889                         rc = -EINVAL;
890                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
891                         goto out_err;
892
893                 }
894         }
895
896         rc = -ENOMEM;
897         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
898         if (!opts->mnt_opts)
899                 goto out_err;
900
901         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
902         if (!opts->mnt_opts_flags) {
903                 kfree(opts->mnt_opts);
904                 goto out_err;
905         }
906
907         if (fscontext) {
908                 opts->mnt_opts[num_mnt_opts] = fscontext;
909                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
910         }
911         if (context) {
912                 opts->mnt_opts[num_mnt_opts] = context;
913                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
914         }
915         if (rootcontext) {
916                 opts->mnt_opts[num_mnt_opts] = rootcontext;
917                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
918         }
919         if (defcontext) {
920                 opts->mnt_opts[num_mnt_opts] = defcontext;
921                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
922         }
923
924         opts->num_mnt_opts = num_mnt_opts;
925         return 0;
926
927 out_err:
928         kfree(context);
929         kfree(defcontext);
930         kfree(fscontext);
931         kfree(rootcontext);
932         return rc;
933 }
934 /*
935  * string mount options parsing and call set the sbsec
936  */
937 static int superblock_doinit(struct super_block *sb, void *data)
938 {
939         int rc = 0;
940         char *options = data;
941         struct security_mnt_opts opts;
942
943         security_init_mnt_opts(&opts);
944
945         if (!data)
946                 goto out;
947
948         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
949
950         rc = selinux_parse_opts_str(options, &opts);
951         if (rc)
952                 goto out_err;
953
954 out:
955         rc = selinux_set_mnt_opts(sb, &opts);
956
957 out_err:
958         security_free_mnt_opts(&opts);
959         return rc;
960 }
961
962 static void selinux_write_opts(struct seq_file *m,
963                                struct security_mnt_opts *opts)
964 {
965         int i;
966         char *prefix;
967
968         for (i = 0; i < opts->num_mnt_opts; i++) {
969                 char *has_comma = strchr(opts->mnt_opts[i], ',');
970
971                 switch (opts->mnt_opts_flags[i]) {
972                 case CONTEXT_MNT:
973                         prefix = CONTEXT_STR;
974                         break;
975                 case FSCONTEXT_MNT:
976                         prefix = FSCONTEXT_STR;
977                         break;
978                 case ROOTCONTEXT_MNT:
979                         prefix = ROOTCONTEXT_STR;
980                         break;
981                 case DEFCONTEXT_MNT:
982                         prefix = DEFCONTEXT_STR;
983                         break;
984                 default:
985                         BUG();
986                 };
987                 /* we need a comma before each option */
988                 seq_putc(m, ',');
989                 seq_puts(m, prefix);
990                 if (has_comma)
991                         seq_putc(m, '\"');
992                 seq_puts(m, opts->mnt_opts[i]);
993                 if (has_comma)
994                         seq_putc(m, '\"');
995         }
996 }
997
998 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
999 {
1000         struct security_mnt_opts opts;
1001         int rc;
1002
1003         rc = selinux_get_mnt_opts(sb, &opts);
1004         if (rc) {
1005                 /* before policy load we may get EINVAL, don't show anything */
1006                 if (rc == -EINVAL)
1007                         rc = 0;
1008                 return rc;
1009         }
1010
1011         selinux_write_opts(m, &opts);
1012
1013         security_free_mnt_opts(&opts);
1014
1015         return rc;
1016 }
1017
1018 static inline u16 inode_mode_to_security_class(umode_t mode)
1019 {
1020         switch (mode & S_IFMT) {
1021         case S_IFSOCK:
1022                 return SECCLASS_SOCK_FILE;
1023         case S_IFLNK:
1024                 return SECCLASS_LNK_FILE;
1025         case S_IFREG:
1026                 return SECCLASS_FILE;
1027         case S_IFBLK:
1028                 return SECCLASS_BLK_FILE;
1029         case S_IFDIR:
1030                 return SECCLASS_DIR;
1031         case S_IFCHR:
1032                 return SECCLASS_CHR_FILE;
1033         case S_IFIFO:
1034                 return SECCLASS_FIFO_FILE;
1035
1036         }
1037
1038         return SECCLASS_FILE;
1039 }
1040
1041 static inline int default_protocol_stream(int protocol)
1042 {
1043         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1044 }
1045
1046 static inline int default_protocol_dgram(int protocol)
1047 {
1048         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1049 }
1050
1051 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1052 {
1053         switch (family) {
1054         case PF_UNIX:
1055                 switch (type) {
1056                 case SOCK_STREAM:
1057                 case SOCK_SEQPACKET:
1058                         return SECCLASS_UNIX_STREAM_SOCKET;
1059                 case SOCK_DGRAM:
1060                         return SECCLASS_UNIX_DGRAM_SOCKET;
1061                 }
1062                 break;
1063         case PF_INET:
1064         case PF_INET6:
1065                 switch (type) {
1066                 case SOCK_STREAM:
1067                         if (default_protocol_stream(protocol))
1068                                 return SECCLASS_TCP_SOCKET;
1069                         else
1070                                 return SECCLASS_RAWIP_SOCKET;
1071                 case SOCK_DGRAM:
1072                         if (default_protocol_dgram(protocol))
1073                                 return SECCLASS_UDP_SOCKET;
1074                         else
1075                                 return SECCLASS_RAWIP_SOCKET;
1076                 case SOCK_DCCP:
1077                         return SECCLASS_DCCP_SOCKET;
1078                 default:
1079                         return SECCLASS_RAWIP_SOCKET;
1080                 }
1081                 break;
1082         case PF_NETLINK:
1083                 switch (protocol) {
1084                 case NETLINK_ROUTE:
1085                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1086                 case NETLINK_FIREWALL:
1087                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1088                 case NETLINK_INET_DIAG:
1089                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1090                 case NETLINK_NFLOG:
1091                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1092                 case NETLINK_XFRM:
1093                         return SECCLASS_NETLINK_XFRM_SOCKET;
1094                 case NETLINK_SELINUX:
1095                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1096                 case NETLINK_AUDIT:
1097                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1098                 case NETLINK_IP6_FW:
1099                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1100                 case NETLINK_DNRTMSG:
1101                         return SECCLASS_NETLINK_DNRT_SOCKET;
1102                 case NETLINK_KOBJECT_UEVENT:
1103                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1104                 default:
1105                         return SECCLASS_NETLINK_SOCKET;
1106                 }
1107         case PF_PACKET:
1108                 return SECCLASS_PACKET_SOCKET;
1109         case PF_KEY:
1110                 return SECCLASS_KEY_SOCKET;
1111         case PF_APPLETALK:
1112                 return SECCLASS_APPLETALK_SOCKET;
1113         }
1114
1115         return SECCLASS_SOCKET;
1116 }
1117
1118 #ifdef CONFIG_PROC_FS
1119 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1120                                 u16 tclass,
1121                                 u32 *sid)
1122 {
1123         int buflen, rc;
1124         char *buffer, *path, *end;
1125
1126         buffer = (char *)__get_free_page(GFP_KERNEL);
1127         if (!buffer)
1128                 return -ENOMEM;
1129
1130         buflen = PAGE_SIZE;
1131         end = buffer+buflen;
1132         *--end = '\0';
1133         buflen--;
1134         path = end-1;
1135         *path = '/';
1136         while (de && de != de->parent) {
1137                 buflen -= de->namelen + 1;
1138                 if (buflen < 0)
1139                         break;
1140                 end -= de->namelen;
1141                 memcpy(end, de->name, de->namelen);
1142                 *--end = '/';
1143                 path = end;
1144                 de = de->parent;
1145         }
1146         rc = security_genfs_sid("proc", path, tclass, sid);
1147         free_page((unsigned long)buffer);
1148         return rc;
1149 }
1150 #else
1151 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1152                                 u16 tclass,
1153                                 u32 *sid)
1154 {
1155         return -EINVAL;
1156 }
1157 #endif
1158
1159 /* The inode's security attributes must be initialized before first use. */
1160 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1161 {
1162         struct superblock_security_struct *sbsec = NULL;
1163         struct inode_security_struct *isec = inode->i_security;
1164         u32 sid;
1165         struct dentry *dentry;
1166 #define INITCONTEXTLEN 255
1167         char *context = NULL;
1168         unsigned len = 0;
1169         int rc = 0;
1170
1171         if (isec->initialized)
1172                 goto out;
1173
1174         mutex_lock(&isec->lock);
1175         if (isec->initialized)
1176                 goto out_unlock;
1177
1178         sbsec = inode->i_sb->s_security;
1179         if (!sbsec->initialized) {
1180                 /* Defer initialization until selinux_complete_init,
1181                    after the initial policy is loaded and the security
1182                    server is ready to handle calls. */
1183                 spin_lock(&sbsec->isec_lock);
1184                 if (list_empty(&isec->list))
1185                         list_add(&isec->list, &sbsec->isec_head);
1186                 spin_unlock(&sbsec->isec_lock);
1187                 goto out_unlock;
1188         }
1189
1190         switch (sbsec->behavior) {
1191         case SECURITY_FS_USE_XATTR:
1192                 if (!inode->i_op->getxattr) {
1193                         isec->sid = sbsec->def_sid;
1194                         break;
1195                 }
1196
1197                 /* Need a dentry, since the xattr API requires one.
1198                    Life would be simpler if we could just pass the inode. */
1199                 if (opt_dentry) {
1200                         /* Called from d_instantiate or d_splice_alias. */
1201                         dentry = dget(opt_dentry);
1202                 } else {
1203                         /* Called from selinux_complete_init, try to find a dentry. */
1204                         dentry = d_find_alias(inode);
1205                 }
1206                 if (!dentry) {
1207                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1208                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1209                                inode->i_ino);
1210                         goto out_unlock;
1211                 }
1212
1213                 len = INITCONTEXTLEN;
1214                 context = kmalloc(len, GFP_NOFS);
1215                 if (!context) {
1216                         rc = -ENOMEM;
1217                         dput(dentry);
1218                         goto out_unlock;
1219                 }
1220                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1221                                            context, len);
1222                 if (rc == -ERANGE) {
1223                         /* Need a larger buffer.  Query for the right size. */
1224                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1225                                                    NULL, 0);
1226                         if (rc < 0) {
1227                                 dput(dentry);
1228                                 goto out_unlock;
1229                         }
1230                         kfree(context);
1231                         len = rc;
1232                         context = kmalloc(len, GFP_NOFS);
1233                         if (!context) {
1234                                 rc = -ENOMEM;
1235                                 dput(dentry);
1236                                 goto out_unlock;
1237                         }
1238                         rc = inode->i_op->getxattr(dentry,
1239                                                    XATTR_NAME_SELINUX,
1240                                                    context, len);
1241                 }
1242                 dput(dentry);
1243                 if (rc < 0) {
1244                         if (rc != -ENODATA) {
1245                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1246                                        "%d for dev=%s ino=%ld\n", __func__,
1247                                        -rc, inode->i_sb->s_id, inode->i_ino);
1248                                 kfree(context);
1249                                 goto out_unlock;
1250                         }
1251                         /* Map ENODATA to the default file SID */
1252                         sid = sbsec->def_sid;
1253                         rc = 0;
1254                 } else {
1255                         rc = security_context_to_sid_default(context, rc, &sid,
1256                                                              sbsec->def_sid,
1257                                                              GFP_NOFS);
1258                         if (rc) {
1259                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1260                                        "returned %d for dev=%s ino=%ld\n",
1261                                        __func__, context, -rc,
1262                                        inode->i_sb->s_id, inode->i_ino);
1263                                 kfree(context);
1264                                 /* Leave with the unlabeled SID */
1265                                 rc = 0;
1266                                 break;
1267                         }
1268                 }
1269                 kfree(context);
1270                 isec->sid = sid;
1271                 break;
1272         case SECURITY_FS_USE_TASK:
1273                 isec->sid = isec->task_sid;
1274                 break;
1275         case SECURITY_FS_USE_TRANS:
1276                 /* Default to the fs SID. */
1277                 isec->sid = sbsec->sid;
1278
1279                 /* Try to obtain a transition SID. */
1280                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1281                 rc = security_transition_sid(isec->task_sid,
1282                                              sbsec->sid,
1283                                              isec->sclass,
1284                                              &sid);
1285                 if (rc)
1286                         goto out_unlock;
1287                 isec->sid = sid;
1288                 break;
1289         case SECURITY_FS_USE_MNTPOINT:
1290                 isec->sid = sbsec->mntpoint_sid;
1291                 break;
1292         default:
1293                 /* Default to the fs superblock SID. */
1294                 isec->sid = sbsec->sid;
1295
1296                 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1297                         struct proc_inode *proci = PROC_I(inode);
1298                         if (proci->pde) {
1299                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1300                                 rc = selinux_proc_get_sid(proci->pde,
1301                                                           isec->sclass,
1302                                                           &sid);
1303                                 if (rc)
1304                                         goto out_unlock;
1305                                 isec->sid = sid;
1306                         }
1307                 }
1308                 break;
1309         }
1310
1311         isec->initialized = 1;
1312
1313 out_unlock:
1314         mutex_unlock(&isec->lock);
1315 out:
1316         if (isec->sclass == SECCLASS_FILE)
1317                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1318         return rc;
1319 }
1320
1321 /* Convert a Linux signal to an access vector. */
1322 static inline u32 signal_to_av(int sig)
1323 {
1324         u32 perm = 0;
1325
1326         switch (sig) {
1327         case SIGCHLD:
1328                 /* Commonly granted from child to parent. */
1329                 perm = PROCESS__SIGCHLD;
1330                 break;
1331         case SIGKILL:
1332                 /* Cannot be caught or ignored */
1333                 perm = PROCESS__SIGKILL;
1334                 break;
1335         case SIGSTOP:
1336                 /* Cannot be caught or ignored */
1337                 perm = PROCESS__SIGSTOP;
1338                 break;
1339         default:
1340                 /* All other signals. */
1341                 perm = PROCESS__SIGNAL;
1342                 break;
1343         }
1344
1345         return perm;
1346 }
1347
1348 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1349    fork check, ptrace check, etc. */
1350 static int task_has_perm(struct task_struct *tsk1,
1351                          struct task_struct *tsk2,
1352                          u32 perms)
1353 {
1354         struct task_security_struct *tsec1, *tsec2;
1355
1356         tsec1 = tsk1->security;
1357         tsec2 = tsk2->security;
1358         return avc_has_perm(tsec1->sid, tsec2->sid,
1359                             SECCLASS_PROCESS, perms, NULL);
1360 }
1361
1362 #if CAP_LAST_CAP > 63
1363 #error Fix SELinux to handle capabilities > 63.
1364 #endif
1365
1366 /* Check whether a task is allowed to use a capability. */
1367 static int task_has_capability(struct task_struct *tsk,
1368                                int cap, int audit)
1369 {
1370         struct task_security_struct *tsec;
1371         struct avc_audit_data ad;
1372         struct av_decision avd;
1373         u16 sclass;
1374         u32 av = CAP_TO_MASK(cap);
1375         int rc;
1376
1377         tsec = tsk->security;
1378
1379         AVC_AUDIT_DATA_INIT(&ad, CAP);
1380         ad.tsk = tsk;
1381         ad.u.cap = cap;
1382
1383         switch (CAP_TO_INDEX(cap)) {
1384         case 0:
1385                 sclass = SECCLASS_CAPABILITY;
1386                 break;
1387         case 1:
1388                 sclass = SECCLASS_CAPABILITY2;
1389                 break;
1390         default:
1391                 printk(KERN_ERR
1392                        "SELinux:  out of range capability %d\n", cap);
1393                 BUG();
1394         }
1395
1396         rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, sclass, av, 0, &avd);
1397         if (audit == SECURITY_CAP_AUDIT)
1398                 avc_audit(tsec->sid, tsec->sid, sclass, av, &avd, rc, &ad);
1399         return rc;
1400 }
1401
1402 /* Check whether a task is allowed to use a system operation. */
1403 static int task_has_system(struct task_struct *tsk,
1404                            u32 perms)
1405 {
1406         struct task_security_struct *tsec;
1407
1408         tsec = tsk->security;
1409
1410         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1411                             SECCLASS_SYSTEM, perms, NULL);
1412 }
1413
1414 /* Check whether a task has a particular permission to an inode.
1415    The 'adp' parameter is optional and allows other audit
1416    data to be passed (e.g. the dentry). */
1417 static int inode_has_perm(struct task_struct *tsk,
1418                           struct inode *inode,
1419                           u32 perms,
1420                           struct avc_audit_data *adp)
1421 {
1422         struct task_security_struct *tsec;
1423         struct inode_security_struct *isec;
1424         struct avc_audit_data ad;
1425
1426         if (unlikely(IS_PRIVATE(inode)))
1427                 return 0;
1428
1429         tsec = tsk->security;
1430         isec = inode->i_security;
1431
1432         if (!adp) {
1433                 adp = &ad;
1434                 AVC_AUDIT_DATA_INIT(&ad, FS);
1435                 ad.u.fs.inode = inode;
1436         }
1437
1438         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1439 }
1440
1441 /* Same as inode_has_perm, but pass explicit audit data containing
1442    the dentry to help the auditing code to more easily generate the
1443    pathname if needed. */
1444 static inline int dentry_has_perm(struct task_struct *tsk,
1445                                   struct vfsmount *mnt,
1446                                   struct dentry *dentry,
1447                                   u32 av)
1448 {
1449         struct inode *inode = dentry->d_inode;
1450         struct avc_audit_data ad;
1451         AVC_AUDIT_DATA_INIT(&ad, FS);
1452         ad.u.fs.path.mnt = mnt;
1453         ad.u.fs.path.dentry = dentry;
1454         return inode_has_perm(tsk, inode, av, &ad);
1455 }
1456
1457 /* Check whether a task can use an open file descriptor to
1458    access an inode in a given way.  Check access to the
1459    descriptor itself, and then use dentry_has_perm to
1460    check a particular permission to the file.
1461    Access to the descriptor is implicitly granted if it
1462    has the same SID as the process.  If av is zero, then
1463    access to the file is not checked, e.g. for cases
1464    where only the descriptor is affected like seek. */
1465 static int file_has_perm(struct task_struct *tsk,
1466                                 struct file *file,
1467                                 u32 av)
1468 {
1469         struct task_security_struct *tsec = tsk->security;
1470         struct file_security_struct *fsec = file->f_security;
1471         struct inode *inode = file->f_path.dentry->d_inode;
1472         struct avc_audit_data ad;
1473         int rc;
1474
1475         AVC_AUDIT_DATA_INIT(&ad, FS);
1476         ad.u.fs.path = file->f_path;
1477
1478         if (tsec->sid != fsec->sid) {
1479                 rc = avc_has_perm(tsec->sid, fsec->sid,
1480                                   SECCLASS_FD,
1481                                   FD__USE,
1482                                   &ad);
1483                 if (rc)
1484                         return rc;
1485         }
1486
1487         /* av is zero if only checking access to the descriptor. */
1488         if (av)
1489                 return inode_has_perm(tsk, inode, av, &ad);
1490
1491         return 0;
1492 }
1493
1494 /* Check whether a task can create a file. */
1495 static int may_create(struct inode *dir,
1496                       struct dentry *dentry,
1497                       u16 tclass)
1498 {
1499         struct task_security_struct *tsec;
1500         struct inode_security_struct *dsec;
1501         struct superblock_security_struct *sbsec;
1502         u32 newsid;
1503         struct avc_audit_data ad;
1504         int rc;
1505
1506         tsec = current->security;
1507         dsec = dir->i_security;
1508         sbsec = dir->i_sb->s_security;
1509
1510         AVC_AUDIT_DATA_INIT(&ad, FS);
1511         ad.u.fs.path.dentry = dentry;
1512
1513         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1514                           DIR__ADD_NAME | DIR__SEARCH,
1515                           &ad);
1516         if (rc)
1517                 return rc;
1518
1519         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1520                 newsid = tsec->create_sid;
1521         } else {
1522                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1523                                              &newsid);
1524                 if (rc)
1525                         return rc;
1526         }
1527
1528         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1529         if (rc)
1530                 return rc;
1531
1532         return avc_has_perm(newsid, sbsec->sid,
1533                             SECCLASS_FILESYSTEM,
1534                             FILESYSTEM__ASSOCIATE, &ad);
1535 }
1536
1537 /* Check whether a task can create a key. */
1538 static int may_create_key(u32 ksid,
1539                           struct task_struct *ctx)
1540 {
1541         struct task_security_struct *tsec;
1542
1543         tsec = ctx->security;
1544
1545         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1546 }
1547
1548 #define MAY_LINK        0
1549 #define MAY_UNLINK      1
1550 #define MAY_RMDIR       2
1551
1552 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1553 static int may_link(struct inode *dir,
1554                     struct dentry *dentry,
1555                     int kind)
1556
1557 {
1558         struct task_security_struct *tsec;
1559         struct inode_security_struct *dsec, *isec;
1560         struct avc_audit_data ad;
1561         u32 av;
1562         int rc;
1563
1564         tsec = current->security;
1565         dsec = dir->i_security;
1566         isec = dentry->d_inode->i_security;
1567
1568         AVC_AUDIT_DATA_INIT(&ad, FS);
1569         ad.u.fs.path.dentry = dentry;
1570
1571         av = DIR__SEARCH;
1572         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1573         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1574         if (rc)
1575                 return rc;
1576
1577         switch (kind) {
1578         case MAY_LINK:
1579                 av = FILE__LINK;
1580                 break;
1581         case MAY_UNLINK:
1582                 av = FILE__UNLINK;
1583                 break;
1584         case MAY_RMDIR:
1585                 av = DIR__RMDIR;
1586                 break;
1587         default:
1588                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1589                         __func__, kind);
1590                 return 0;
1591         }
1592
1593         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1594         return rc;
1595 }
1596
1597 static inline int may_rename(struct inode *old_dir,
1598                              struct dentry *old_dentry,
1599                              struct inode *new_dir,
1600                              struct dentry *new_dentry)
1601 {
1602         struct task_security_struct *tsec;
1603         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1604         struct avc_audit_data ad;
1605         u32 av;
1606         int old_is_dir, new_is_dir;
1607         int rc;
1608
1609         tsec = current->security;
1610         old_dsec = old_dir->i_security;
1611         old_isec = old_dentry->d_inode->i_security;
1612         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1613         new_dsec = new_dir->i_security;
1614
1615         AVC_AUDIT_DATA_INIT(&ad, FS);
1616
1617         ad.u.fs.path.dentry = old_dentry;
1618         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1619                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1620         if (rc)
1621                 return rc;
1622         rc = avc_has_perm(tsec->sid, old_isec->sid,
1623                           old_isec->sclass, FILE__RENAME, &ad);
1624         if (rc)
1625                 return rc;
1626         if (old_is_dir && new_dir != old_dir) {
1627                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1628                                   old_isec->sclass, DIR__REPARENT, &ad);
1629                 if (rc)
1630                         return rc;
1631         }
1632
1633         ad.u.fs.path.dentry = new_dentry;
1634         av = DIR__ADD_NAME | DIR__SEARCH;
1635         if (new_dentry->d_inode)
1636                 av |= DIR__REMOVE_NAME;
1637         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1638         if (rc)
1639                 return rc;
1640         if (new_dentry->d_inode) {
1641                 new_isec = new_dentry->d_inode->i_security;
1642                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1643                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1644                                   new_isec->sclass,
1645                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1646                 if (rc)
1647                         return rc;
1648         }
1649
1650         return 0;
1651 }
1652
1653 /* Check whether a task can perform a filesystem operation. */
1654 static int superblock_has_perm(struct task_struct *tsk,
1655                                struct super_block *sb,
1656                                u32 perms,
1657                                struct avc_audit_data *ad)
1658 {
1659         struct task_security_struct *tsec;
1660         struct superblock_security_struct *sbsec;
1661
1662         tsec = tsk->security;
1663         sbsec = sb->s_security;
1664         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1665                             perms, ad);
1666 }
1667
1668 /* Convert a Linux mode and permission mask to an access vector. */
1669 static inline u32 file_mask_to_av(int mode, int mask)
1670 {
1671         u32 av = 0;
1672
1673         if ((mode & S_IFMT) != S_IFDIR) {
1674                 if (mask & MAY_EXEC)
1675                         av |= FILE__EXECUTE;
1676                 if (mask & MAY_READ)
1677                         av |= FILE__READ;
1678
1679                 if (mask & MAY_APPEND)
1680                         av |= FILE__APPEND;
1681                 else if (mask & MAY_WRITE)
1682                         av |= FILE__WRITE;
1683
1684         } else {
1685                 if (mask & MAY_EXEC)
1686                         av |= DIR__SEARCH;
1687                 if (mask & MAY_WRITE)
1688                         av |= DIR__WRITE;
1689                 if (mask & MAY_READ)
1690                         av |= DIR__READ;
1691         }
1692
1693         return av;
1694 }
1695
1696 /* Convert a Linux file to an access vector. */
1697 static inline u32 file_to_av(struct file *file)
1698 {
1699         u32 av = 0;
1700
1701         if (file->f_mode & FMODE_READ)
1702                 av |= FILE__READ;
1703         if (file->f_mode & FMODE_WRITE) {
1704                 if (file->f_flags & O_APPEND)
1705                         av |= FILE__APPEND;
1706                 else
1707                         av |= FILE__WRITE;
1708         }
1709         if (!av) {
1710                 /*
1711                  * Special file opened with flags 3 for ioctl-only use.
1712                  */
1713                 av = FILE__IOCTL;
1714         }
1715
1716         return av;
1717 }
1718
1719 /*
1720  * Convert a file to an access vector and include the correct open
1721  * open permission.
1722  */
1723 static inline u32 open_file_to_av(struct file *file)
1724 {
1725         u32 av = file_to_av(file);
1726
1727         if (selinux_policycap_openperm) {
1728                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1729                 /*
1730                  * lnk files and socks do not really have an 'open'
1731                  */
1732                 if (S_ISREG(mode))
1733                         av |= FILE__OPEN;
1734                 else if (S_ISCHR(mode))
1735                         av |= CHR_FILE__OPEN;
1736                 else if (S_ISBLK(mode))
1737                         av |= BLK_FILE__OPEN;
1738                 else if (S_ISFIFO(mode))
1739                         av |= FIFO_FILE__OPEN;
1740                 else if (S_ISDIR(mode))
1741                         av |= DIR__OPEN;
1742                 else
1743                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1744                                 "unknown mode:%o\n", __func__, mode);
1745         }
1746         return av;
1747 }
1748
1749 /* Hook functions begin here. */
1750
1751 static int selinux_ptrace_may_access(struct task_struct *child,
1752                                      unsigned int mode)
1753 {
1754         int rc;
1755
1756         rc = secondary_ops->ptrace_may_access(child, mode);
1757         if (rc)
1758                 return rc;
1759
1760         if (mode == PTRACE_MODE_READ) {
1761                 struct task_security_struct *tsec = current->security;
1762                 struct task_security_struct *csec = child->security;
1763                 return avc_has_perm(tsec->sid, csec->sid,
1764                                     SECCLASS_FILE, FILE__READ, NULL);
1765         }
1766
1767         return task_has_perm(current, child, PROCESS__PTRACE);
1768 }
1769
1770 static int selinux_ptrace_traceme(struct task_struct *parent)
1771 {
1772         int rc;
1773
1774         rc = secondary_ops->ptrace_traceme(parent);
1775         if (rc)
1776                 return rc;
1777
1778         return task_has_perm(parent, current, PROCESS__PTRACE);
1779 }
1780
1781 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1782                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1783 {
1784         int error;
1785
1786         error = task_has_perm(current, target, PROCESS__GETCAP);
1787         if (error)
1788                 return error;
1789
1790         return secondary_ops->capget(target, effective, inheritable, permitted);
1791 }
1792
1793 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1794                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1795 {
1796         int error;
1797
1798         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1799         if (error)
1800                 return error;
1801
1802         return task_has_perm(current, target, PROCESS__SETCAP);
1803 }
1804
1805 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1806                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1807 {
1808         secondary_ops->capset_set(target, effective, inheritable, permitted);
1809 }
1810
1811 static int selinux_capable(struct task_struct *tsk, int cap, int audit)
1812 {
1813         int rc;
1814
1815         rc = secondary_ops->capable(tsk, cap, audit);
1816         if (rc)
1817                 return rc;
1818
1819         return task_has_capability(tsk, cap, audit);
1820 }
1821
1822 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1823 {
1824         int buflen, rc;
1825         char *buffer, *path, *end;
1826
1827         rc = -ENOMEM;
1828         buffer = (char *)__get_free_page(GFP_KERNEL);
1829         if (!buffer)
1830                 goto out;
1831
1832         buflen = PAGE_SIZE;
1833         end = buffer+buflen;
1834         *--end = '\0';
1835         buflen--;
1836         path = end-1;
1837         *path = '/';
1838         while (table) {
1839                 const char *name = table->procname;
1840                 size_t namelen = strlen(name);
1841                 buflen -= namelen + 1;
1842                 if (buflen < 0)
1843                         goto out_free;
1844                 end -= namelen;
1845                 memcpy(end, name, namelen);
1846                 *--end = '/';
1847                 path = end;
1848                 table = table->parent;
1849         }
1850         buflen -= 4;
1851         if (buflen < 0)
1852                 goto out_free;
1853         end -= 4;
1854         memcpy(end, "/sys", 4);
1855         path = end;
1856         rc = security_genfs_sid("proc", path, tclass, sid);
1857 out_free:
1858         free_page((unsigned long)buffer);
1859 out:
1860         return rc;
1861 }
1862
1863 static int selinux_sysctl(ctl_table *table, int op)
1864 {
1865         int error = 0;
1866         u32 av;
1867         struct task_security_struct *tsec;
1868         u32 tsid;
1869         int rc;
1870
1871         rc = secondary_ops->sysctl(table, op);
1872         if (rc)
1873                 return rc;
1874
1875         tsec = current->security;
1876
1877         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1878                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1879         if (rc) {
1880                 /* Default to the well-defined sysctl SID. */
1881                 tsid = SECINITSID_SYSCTL;
1882         }
1883
1884         /* The op values are "defined" in sysctl.c, thereby creating
1885          * a bad coupling between this module and sysctl.c */
1886         if (op == 001) {
1887                 error = avc_has_perm(tsec->sid, tsid,
1888                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1889         } else {
1890                 av = 0;
1891                 if (op & 004)
1892                         av |= FILE__READ;
1893                 if (op & 002)
1894                         av |= FILE__WRITE;
1895                 if (av)
1896                         error = avc_has_perm(tsec->sid, tsid,
1897                                              SECCLASS_FILE, av, NULL);
1898         }
1899
1900         return error;
1901 }
1902
1903 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1904 {
1905         int rc = 0;
1906
1907         if (!sb)
1908                 return 0;
1909
1910         switch (cmds) {
1911         case Q_SYNC:
1912         case Q_QUOTAON:
1913         case Q_QUOTAOFF:
1914         case Q_SETINFO:
1915         case Q_SETQUOTA:
1916                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1917                                          NULL);
1918                 break;
1919         case Q_GETFMT:
1920         case Q_GETINFO:
1921         case Q_GETQUOTA:
1922                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1923                                          NULL);
1924                 break;
1925         default:
1926                 rc = 0;  /* let the kernel handle invalid cmds */
1927                 break;
1928         }
1929         return rc;
1930 }
1931
1932 static int selinux_quota_on(struct dentry *dentry)
1933 {
1934         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1935 }
1936
1937 static int selinux_syslog(int type)
1938 {
1939         int rc;
1940
1941         rc = secondary_ops->syslog(type);
1942         if (rc)
1943                 return rc;
1944
1945         switch (type) {
1946         case 3:         /* Read last kernel messages */
1947         case 10:        /* Return size of the log buffer */
1948                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1949                 break;
1950         case 6:         /* Disable logging to console */
1951         case 7:         /* Enable logging to console */
1952         case 8:         /* Set level of messages printed to console */
1953                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1954                 break;
1955         case 0:         /* Close log */
1956         case 1:         /* Open log */
1957         case 2:         /* Read from log */
1958         case 4:         /* Read/clear last kernel messages */
1959         case 5:         /* Clear ring buffer */
1960         default:
1961                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1962                 break;
1963         }
1964         return rc;
1965 }
1966
1967 /*
1968  * Check that a process has enough memory to allocate a new virtual
1969  * mapping. 0 means there is enough memory for the allocation to
1970  * succeed and -ENOMEM implies there is not.
1971  *
1972  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1973  * if the capability is granted, but __vm_enough_memory requires 1 if
1974  * the capability is granted.
1975  *
1976  * Do not audit the selinux permission check, as this is applied to all
1977  * processes that allocate mappings.
1978  */
1979 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1980 {
1981         int rc, cap_sys_admin = 0;
1982         struct task_security_struct *tsec = current->security;
1983
1984         rc = secondary_ops->capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT);
1985         if (rc == 0)
1986                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1987                                           SECCLASS_CAPABILITY,
1988                                           CAP_TO_MASK(CAP_SYS_ADMIN),
1989                                           0,
1990                                           NULL);
1991
1992         if (rc == 0)
1993                 cap_sys_admin = 1;
1994
1995         return __vm_enough_memory(mm, pages, cap_sys_admin);
1996 }
1997
1998 /* binprm security operations */
1999
2000 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
2001 {
2002         struct bprm_security_struct *bsec;
2003
2004         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
2005         if (!bsec)
2006                 return -ENOMEM;
2007
2008         bsec->sid = SECINITSID_UNLABELED;
2009         bsec->set = 0;
2010
2011         bprm->security = bsec;
2012         return 0;
2013 }
2014
2015 static int selinux_bprm_set_security(struct linux_binprm *bprm)
2016 {
2017         struct task_security_struct *tsec;
2018         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2019         struct inode_security_struct *isec;
2020         struct bprm_security_struct *bsec;
2021         u32 newsid;
2022         struct avc_audit_data ad;
2023         int rc;
2024
2025         rc = secondary_ops->bprm_set_security(bprm);
2026         if (rc)
2027                 return rc;
2028
2029         bsec = bprm->security;
2030
2031         if (bsec->set)
2032                 return 0;
2033
2034         tsec = current->security;
2035         isec = inode->i_security;
2036
2037         /* Default to the current task SID. */
2038         bsec->sid = tsec->sid;
2039
2040         /* Reset fs, key, and sock SIDs on execve. */
2041         tsec->create_sid = 0;
2042         tsec->keycreate_sid = 0;
2043         tsec->sockcreate_sid = 0;
2044
2045         if (tsec->exec_sid) {
2046                 newsid = tsec->exec_sid;
2047                 /* Reset exec SID on execve. */
2048                 tsec->exec_sid = 0;
2049         } else {
2050                 /* Check for a default transition on this program. */
2051                 rc = security_transition_sid(tsec->sid, isec->sid,
2052                                              SECCLASS_PROCESS, &newsid);
2053                 if (rc)
2054                         return rc;
2055         }
2056
2057         AVC_AUDIT_DATA_INIT(&ad, FS);
2058         ad.u.fs.path = bprm->file->f_path;
2059
2060         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2061                 newsid = tsec->sid;
2062
2063         if (tsec->sid == newsid) {
2064                 rc = avc_has_perm(tsec->sid, isec->sid,
2065                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2066                 if (rc)
2067                         return rc;
2068         } else {
2069                 /* Check permissions for the transition. */
2070                 rc = avc_has_perm(tsec->sid, newsid,
2071                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2072                 if (rc)
2073                         return rc;
2074
2075                 rc = avc_has_perm(newsid, isec->sid,
2076                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2077                 if (rc)
2078                         return rc;
2079
2080                 /* Clear any possibly unsafe personality bits on exec: */
2081                 current->personality &= ~PER_CLEAR_ON_SETID;
2082
2083                 /* Set the security field to the new SID. */
2084                 bsec->sid = newsid;
2085         }
2086
2087         bsec->set = 1;
2088         return 0;
2089 }
2090
2091 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2092 {
2093         return secondary_ops->bprm_check_security(bprm);
2094 }
2095
2096
2097 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2098 {
2099         struct task_security_struct *tsec = current->security;
2100         int atsecure = 0;
2101
2102         if (tsec->osid != tsec->sid) {
2103                 /* Enable secure mode for SIDs transitions unless
2104                    the noatsecure permission is granted between
2105                    the two SIDs, i.e. ahp returns 0. */
2106                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2107                                          SECCLASS_PROCESS,
2108                                          PROCESS__NOATSECURE, NULL);
2109         }
2110
2111         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2112 }
2113
2114 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2115 {
2116         kfree(bprm->security);
2117         bprm->security = NULL;
2118 }
2119
2120 extern struct vfsmount *selinuxfs_mount;
2121 extern struct dentry *selinux_null;
2122
2123 /* Derived from fs/exec.c:flush_old_files. */
2124 static inline void flush_unauthorized_files(struct files_struct *files)
2125 {
2126         struct avc_audit_data ad;
2127         struct file *file, *devnull = NULL;
2128         struct tty_struct *tty;
2129         struct fdtable *fdt;
2130         long j = -1;
2131         int drop_tty = 0;
2132
2133         tty = get_current_tty();
2134         if (tty) {
2135                 file_list_lock();
2136                 if (!list_empty(&tty->tty_files)) {
2137                         struct inode *inode;
2138
2139                         /* Revalidate access to controlling tty.
2140                            Use inode_has_perm on the tty inode directly rather
2141                            than using file_has_perm, as this particular open
2142                            file may belong to another process and we are only
2143                            interested in the inode-based check here. */
2144                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2145                         inode = file->f_path.dentry->d_inode;
2146                         if (inode_has_perm(current, inode,
2147                                            FILE__READ | FILE__WRITE, NULL)) {
2148                                 drop_tty = 1;
2149                         }
2150                 }
2151                 file_list_unlock();
2152                 tty_kref_put(tty);
2153         }
2154         /* Reset controlling tty. */
2155         if (drop_tty)
2156                 no_tty();
2157
2158         /* Revalidate access to inherited open files. */
2159
2160         AVC_AUDIT_DATA_INIT(&ad, FS);
2161
2162         spin_lock(&files->file_lock);
2163         for (;;) {
2164                 unsigned long set, i;
2165                 int fd;
2166
2167                 j++;
2168                 i = j * __NFDBITS;
2169                 fdt = files_fdtable(files);
2170                 if (i >= fdt->max_fds)
2171                         break;
2172                 set = fdt->open_fds->fds_bits[j];
2173                 if (!set)
2174                         continue;
2175                 spin_unlock(&files->file_lock);
2176                 for ( ; set ; i++, set >>= 1) {
2177                         if (set & 1) {
2178                                 file = fget(i);
2179                                 if (!file)
2180                                         continue;
2181                                 if (file_has_perm(current,
2182                                                   file,
2183                                                   file_to_av(file))) {
2184                                         sys_close(i);
2185                                         fd = get_unused_fd();
2186                                         if (fd != i) {
2187                                                 if (fd >= 0)
2188                                                         put_unused_fd(fd);
2189                                                 fput(file);
2190                                                 continue;
2191                                         }
2192                                         if (devnull) {
2193                                                 get_file(devnull);
2194                                         } else {
2195                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2196                                                 if (IS_ERR(devnull)) {
2197                                                         devnull = NULL;
2198                                                         put_unused_fd(fd);
2199                                                         fput(file);
2200                                                         continue;
2201                                                 }
2202                                         }
2203                                         fd_install(fd, devnull);
2204                                 }
2205                                 fput(file);
2206                         }
2207                 }
2208                 spin_lock(&files->file_lock);
2209
2210         }
2211         spin_unlock(&files->file_lock);
2212 }
2213
2214 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2215 {
2216         struct task_security_struct *tsec;
2217         struct bprm_security_struct *bsec;
2218         u32 sid;
2219         int rc;
2220
2221         secondary_ops->bprm_apply_creds(bprm, unsafe);
2222
2223         tsec = current->security;
2224
2225         bsec = bprm->security;
2226         sid = bsec->sid;
2227
2228         tsec->osid = tsec->sid;
2229         bsec->unsafe = 0;
2230         if (tsec->sid != sid) {
2231                 /* Check for shared state.  If not ok, leave SID
2232                    unchanged and kill. */
2233                 if (unsafe & LSM_UNSAFE_SHARE) {
2234                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2235                                         PROCESS__SHARE, NULL);
2236                         if (rc) {
2237                                 bsec->unsafe = 1;
2238                                 return;
2239                         }
2240                 }
2241
2242                 /* Check for ptracing, and update the task SID if ok.
2243                    Otherwise, leave SID unchanged and kill. */
2244                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2245                         struct task_struct *tracer;
2246                         struct task_security_struct *sec;
2247                         u32 ptsid = 0;
2248
2249                         rcu_read_lock();
2250                         tracer = tracehook_tracer_task(current);
2251                         if (likely(tracer != NULL)) {
2252                                 sec = tracer->security;
2253                                 ptsid = sec->sid;
2254                         }
2255                         rcu_read_unlock();
2256
2257                         if (ptsid != 0) {
2258                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2259                                                   PROCESS__PTRACE, NULL);
2260                                 if (rc) {
2261                                         bsec->unsafe = 1;
2262                                         return;
2263                                 }
2264                         }
2265                 }
2266                 tsec->sid = sid;
2267         }
2268 }
2269
2270 /*
2271  * called after apply_creds without the task lock held
2272  */
2273 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2274 {
2275         struct task_security_struct *tsec;
2276         struct rlimit *rlim, *initrlim;
2277         struct itimerval itimer;
2278         struct bprm_security_struct *bsec;
2279         struct sighand_struct *psig;
2280         int rc, i;
2281         unsigned long flags;
2282
2283         tsec = current->security;
2284         bsec = bprm->security;
2285
2286         if (bsec->unsafe) {
2287                 force_sig_specific(SIGKILL, current);
2288                 return;
2289         }
2290         if (tsec->osid == tsec->sid)
2291                 return;
2292
2293         /* Close files for which the new task SID is not authorized. */
2294         flush_unauthorized_files(current->files);
2295
2296         /* Check whether the new SID can inherit signal state
2297            from the old SID.  If not, clear itimers to avoid
2298            subsequent signal generation and flush and unblock
2299            signals. This must occur _after_ the task SID has
2300           been updated so that any kill done after the flush
2301           will be checked against the new SID. */
2302         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2303                           PROCESS__SIGINH, NULL);
2304         if (rc) {
2305                 memset(&itimer, 0, sizeof itimer);
2306                 for (i = 0; i < 3; i++)
2307                         do_setitimer(i, &itimer, NULL);
2308                 flush_signals(current);
2309                 spin_lock_irq(&current->sighand->siglock);
2310                 flush_signal_handlers(current, 1);
2311                 sigemptyset(&current->blocked);
2312                 recalc_sigpending();
2313                 spin_unlock_irq(&current->sighand->siglock);
2314         }
2315
2316         /* Always clear parent death signal on SID transitions. */
2317         current->pdeath_signal = 0;
2318
2319         /* Check whether the new SID can inherit resource limits
2320            from the old SID.  If not, reset all soft limits to
2321            the lower of the current task's hard limit and the init
2322            task's soft limit.  Note that the setting of hard limits
2323            (even to lower them) can be controlled by the setrlimit
2324            check. The inclusion of the init task's soft limit into
2325            the computation is to avoid resetting soft limits higher
2326            than the default soft limit for cases where the default
2327            is lower than the hard limit, e.g. RLIMIT_CORE or
2328            RLIMIT_STACK.*/
2329         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2330                           PROCESS__RLIMITINH, NULL);
2331         if (rc) {
2332                 for (i = 0; i < RLIM_NLIMITS; i++) {
2333                         rlim = current->signal->rlim + i;
2334                         initrlim = init_task.signal->rlim+i;
2335                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2336                 }
2337                 update_rlimit_cpu(rlim->rlim_cur);
2338         }
2339
2340         /* Wake up the parent if it is waiting so that it can
2341            recheck wait permission to the new task SID. */
2342         read_lock_irq(&tasklist_lock);
2343         psig = current->parent->sighand;
2344         spin_lock_irqsave(&psig->siglock, flags);
2345         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2346         spin_unlock_irqrestore(&psig->siglock, flags);
2347         read_unlock_irq(&tasklist_lock);
2348 }
2349
2350 /* superblock security operations */
2351
2352 static int selinux_sb_alloc_security(struct super_block *sb)
2353 {
2354         return superblock_alloc_security(sb);
2355 }
2356
2357 static void selinux_sb_free_security(struct super_block *sb)
2358 {
2359         superblock_free_security(sb);
2360 }
2361
2362 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2363 {
2364         if (plen > olen)
2365                 return 0;
2366
2367         return !memcmp(prefix, option, plen);
2368 }
2369
2370 static inline int selinux_option(char *option, int len)
2371 {
2372         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2373                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2374                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2375                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2376 }
2377
2378 static inline void take_option(char **to, char *from, int *first, int len)
2379 {
2380         if (!*first) {
2381                 **to = ',';
2382                 *to += 1;
2383         } else
2384                 *first = 0;
2385         memcpy(*to, from, len);
2386         *to += len;
2387 }
2388
2389 static inline void take_selinux_option(char **to, char *from, int *first,
2390                                        int len)
2391 {
2392         int current_size = 0;
2393
2394         if (!*first) {
2395                 **to = '|';
2396                 *to += 1;
2397         } else
2398                 *first = 0;
2399
2400         while (current_size < len) {
2401                 if (*from != '"') {
2402                         **to = *from;
2403                         *to += 1;
2404                 }
2405                 from += 1;
2406                 current_size += 1;
2407         }
2408 }
2409
2410 static int selinux_sb_copy_data(char *orig, char *copy)
2411 {
2412         int fnosec, fsec, rc = 0;
2413         char *in_save, *in_curr, *in_end;
2414         char *sec_curr, *nosec_save, *nosec;
2415         int open_quote = 0;
2416
2417         in_curr = orig;
2418         sec_curr = copy;
2419
2420         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2421         if (!nosec) {
2422                 rc = -ENOMEM;
2423                 goto out;
2424         }
2425
2426         nosec_save = nosec;
2427         fnosec = fsec = 1;
2428         in_save = in_end = orig;
2429
2430         do {
2431                 if (*in_end == '"')
2432                         open_quote = !open_quote;
2433                 if ((*in_end == ',' && open_quote == 0) ||
2434                                 *in_end == '\0') {
2435                         int len = in_end - in_curr;
2436
2437                         if (selinux_option(in_curr, len))
2438                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2439                         else
2440                                 take_option(&nosec, in_curr, &fnosec, len);
2441
2442                         in_curr = in_end + 1;
2443                 }
2444         } while (*in_end++);
2445
2446         strcpy(in_save, nosec_save);
2447         free_page((unsigned long)nosec_save);
2448 out:
2449         return rc;
2450 }
2451
2452 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2453 {
2454         struct avc_audit_data ad;
2455         int rc;
2456
2457         rc = superblock_doinit(sb, data);
2458         if (rc)
2459                 return rc;
2460
2461         AVC_AUDIT_DATA_INIT(&ad, FS);
2462         ad.u.fs.path.dentry = sb->s_root;
2463         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2464 }
2465
2466 static int selinux_sb_statfs(struct dentry *dentry)
2467 {
2468         struct avc_audit_data ad;
2469
2470         AVC_AUDIT_DATA_INIT(&ad, FS);
2471         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2472         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2473 }
2474
2475 static int selinux_mount(char *dev_name,
2476                          struct path *path,
2477                          char *type,
2478                          unsigned long flags,
2479                          void *data)
2480 {
2481         int rc;
2482
2483         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2484         if (rc)
2485                 return rc;
2486
2487         if (flags & MS_REMOUNT)
2488                 return superblock_has_perm(current, path->mnt->mnt_sb,
2489                                            FILESYSTEM__REMOUNT, NULL);
2490         else
2491                 return dentry_has_perm(current, path->mnt, path->dentry,
2492                                        FILE__MOUNTON);
2493 }
2494
2495 static int selinux_umount(struct vfsmount *mnt, int flags)
2496 {
2497         int rc;
2498
2499         rc = secondary_ops->sb_umount(mnt, flags);
2500         if (rc)
2501                 return rc;
2502
2503         return superblock_has_perm(current, mnt->mnt_sb,
2504                                    FILESYSTEM__UNMOUNT, NULL);
2505 }
2506
2507 /* inode security operations */
2508
2509 static int selinux_inode_alloc_security(struct inode *inode)
2510 {
2511         return inode_alloc_security(inode);
2512 }
2513
2514 static void selinux_inode_free_security(struct inode *inode)
2515 {
2516         inode_free_security(inode);
2517 }
2518
2519 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2520                                        char **name, void **value,
2521                                        size_t *len)
2522 {
2523         struct task_security_struct *tsec;
2524         struct inode_security_struct *dsec;
2525         struct superblock_security_struct *sbsec;
2526         u32 newsid, clen;
2527         int rc;
2528         char *namep = NULL, *context;
2529
2530         tsec = current->security;
2531         dsec = dir->i_security;
2532         sbsec = dir->i_sb->s_security;
2533
2534         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2535                 newsid = tsec->create_sid;
2536         } else {
2537                 rc = security_transition_sid(tsec->sid, dsec->sid,
2538                                              inode_mode_to_security_class(inode->i_mode),
2539                                              &newsid);
2540                 if (rc) {
2541                         printk(KERN_WARNING "%s:  "
2542                                "security_transition_sid failed, rc=%d (dev=%s "
2543                                "ino=%ld)\n",
2544                                __func__,
2545                                -rc, inode->i_sb->s_id, inode->i_ino);
2546                         return rc;
2547                 }
2548         }
2549
2550         /* Possibly defer initialization to selinux_complete_init. */
2551         if (sbsec->initialized) {
2552                 struct inode_security_struct *isec = inode->i_security;
2553                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2554                 isec->sid = newsid;
2555                 isec->initialized = 1;
2556         }
2557
2558         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2559                 return -EOPNOTSUPP;
2560
2561         if (name) {
2562                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2563                 if (!namep)
2564                         return -ENOMEM;
2565                 *name = namep;
2566         }
2567
2568         if (value && len) {
2569                 rc = security_sid_to_context_force(newsid, &context, &clen);
2570                 if (rc) {
2571                         kfree(namep);
2572                         return rc;
2573                 }
2574                 *value = context;
2575                 *len = clen;
2576         }
2577
2578         return 0;
2579 }
2580
2581 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2582 {
2583         return may_create(dir, dentry, SECCLASS_FILE);
2584 }
2585
2586 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2587 {
2588         int rc;
2589
2590         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2591         if (rc)
2592                 return rc;
2593         return may_link(dir, old_dentry, MAY_LINK);
2594 }
2595
2596 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2597 {
2598         int rc;
2599
2600         rc = secondary_ops->inode_unlink(dir, dentry);
2601         if (rc)
2602                 return rc;
2603         return may_link(dir, dentry, MAY_UNLINK);
2604 }
2605
2606 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2607 {
2608         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2609 }
2610
2611 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2612 {
2613         return may_create(dir, dentry, SECCLASS_DIR);
2614 }
2615
2616 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2617 {
2618         return may_link(dir, dentry, MAY_RMDIR);
2619 }
2620
2621 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2622 {
2623         int rc;
2624
2625         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2626         if (rc)
2627                 return rc;
2628
2629         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2630 }
2631
2632 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2633                                 struct inode *new_inode, struct dentry *new_dentry)
2634 {
2635         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2636 }
2637
2638 static int selinux_inode_readlink(struct dentry *dentry)
2639 {
2640         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2641 }
2642
2643 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2644 {
2645         int rc;
2646
2647         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2648         if (rc)
2649                 return rc;
2650         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2651 }
2652
2653 static int selinux_inode_permission(struct inode *inode, int mask)
2654 {
2655         int rc;
2656
2657         rc = secondary_ops->inode_permission(inode, mask);
2658         if (rc)
2659                 return rc;
2660
2661         if (!mask) {
2662                 /* No permission to check.  Existence test. */
2663                 return 0;
2664         }
2665
2666         return inode_has_perm(current, inode,
2667                               file_mask_to_av(inode->i_mode, mask), NULL);
2668 }
2669
2670 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2671 {
2672         int rc;
2673
2674         rc = secondary_ops->inode_setattr(dentry, iattr);
2675         if (rc)
2676                 return rc;
2677
2678         if (iattr->ia_valid & ATTR_FORCE)
2679                 return 0;
2680
2681         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2682                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2683                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2684
2685         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2686 }
2687
2688 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2689 {
2690         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2691 }
2692
2693 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2694 {
2695         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2696                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2697                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2698                         if (!capable(CAP_SETFCAP))
2699                                 return -EPERM;
2700                 } else if (!capable(CAP_SYS_ADMIN)) {
2701                         /* A different attribute in the security namespace.
2702                            Restrict to administrator. */
2703                         return -EPERM;
2704                 }
2705         }
2706
2707         /* Not an attribute we recognize, so just check the
2708            ordinary setattr permission. */
2709         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2710 }
2711
2712 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2713                                   const void *value, size_t size, int flags)
2714 {
2715         struct task_security_struct *tsec = current->security;
2716         struct inode *inode = dentry->d_inode;
2717         struct inode_security_struct *isec = inode->i_security;
2718         struct superblock_security_struct *sbsec;
2719         struct avc_audit_data ad;
2720         u32 newsid;
2721         int rc = 0;
2722
2723         if (strcmp(name, XATTR_NAME_SELINUX))
2724                 return selinux_inode_setotherxattr(dentry, name);
2725
2726         sbsec = inode->i_sb->s_security;
2727         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2728                 return -EOPNOTSUPP;
2729
2730         if (!is_owner_or_cap(inode))
2731                 return -EPERM;
2732
2733         AVC_AUDIT_DATA_INIT(&ad, FS);
2734         ad.u.fs.path.dentry = dentry;
2735
2736         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2737                           FILE__RELABELFROM, &ad);
2738         if (rc)
2739                 return rc;
2740
2741         rc = security_context_to_sid(value, size, &newsid);
2742         if (rc == -EINVAL) {
2743                 if (!capable(CAP_MAC_ADMIN))
2744                         return rc;
2745                 rc = security_context_to_sid_force(value, size, &newsid);
2746         }
2747         if (rc)
2748                 return rc;
2749
2750         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2751                           FILE__RELABELTO, &ad);
2752         if (rc)
2753                 return rc;
2754
2755         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2756                                           isec->sclass);
2757         if (rc)
2758                 return rc;
2759
2760         return avc_has_perm(newsid,
2761                             sbsec->sid,
2762                             SECCLASS_FILESYSTEM,
2763                             FILESYSTEM__ASSOCIATE,
2764                             &ad);
2765 }
2766
2767 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2768                                         const void *value, size_t size,
2769                                         int flags)
2770 {
2771         struct inode *inode = dentry->d_inode;
2772         struct inode_security_struct *isec = inode->i_security;
2773         u32 newsid;
2774         int rc;
2775
2776         if (strcmp(name, XATTR_NAME_SELINUX)) {
2777                 /* Not an attribute we recognize, so nothing to do. */
2778                 return;
2779         }
2780
2781         rc = security_context_to_sid_force(value, size, &newsid);
2782         if (rc) {
2783                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2784                        "for (%s, %lu), rc=%d\n",
2785                        inode->i_sb->s_id, inode->i_ino, -rc);
2786                 return;
2787         }
2788
2789         isec->sid = newsid;
2790         return;
2791 }
2792
2793 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2794 {
2795         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2796 }
2797
2798 static int selinux_inode_listxattr(struct dentry *dentry)
2799 {
2800         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2801 }
2802
2803 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2804 {
2805         if (strcmp(name, XATTR_NAME_SELINUX))
2806                 return selinux_inode_setotherxattr(dentry, name);
2807
2808         /* No one is allowed to remove a SELinux security label.
2809            You can change the label, but all data must be labeled. */
2810         return -EACCES;
2811 }
2812
2813 /*
2814  * Copy the inode security context value to the user.
2815  *
2816  * Permission check is handled by selinux_inode_getxattr hook.
2817  */
2818 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2819 {
2820         u32 size;
2821         int error;
2822         char *context = NULL;
2823         struct task_security_struct *tsec = current->security;
2824         struct inode_security_struct *isec = inode->i_security;
2825
2826         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2827                 return -EOPNOTSUPP;
2828
2829         /*
2830          * If the caller has CAP_MAC_ADMIN, then get the raw context
2831          * value even if it is not defined by current policy; otherwise,
2832          * use the in-core value under current policy.
2833          * Use the non-auditing forms of the permission checks since
2834          * getxattr may be called by unprivileged processes commonly
2835          * and lack of permission just means that we fall back to the
2836          * in-core context value, not a denial.
2837          */
2838         error = secondary_ops->capable(current, CAP_MAC_ADMIN, SECURITY_CAP_NOAUDIT);
2839         if (!error)
2840                 error = avc_has_perm_noaudit(tsec->sid, tsec->sid,
2841                                              SECCLASS_CAPABILITY2,
2842                                              CAPABILITY2__MAC_ADMIN,
2843                                              0,
2844                                              NULL);
2845         if (!error)
2846                 error = security_sid_to_context_force(isec->sid, &context,
2847                                                       &size);
2848         else
2849                 error = security_sid_to_context(isec->sid, &context, &size);
2850         if (error)
2851                 return error;
2852         error = size;
2853         if (alloc) {
2854                 *buffer = context;
2855                 goto out_nofree;
2856         }
2857         kfree(context);
2858 out_nofree:
2859         return error;
2860 }
2861
2862 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2863                                      const void *value, size_t size, int flags)
2864 {
2865         struct inode_security_struct *isec = inode->i_security;
2866         u32 newsid;
2867         int rc;
2868
2869         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2870                 return -EOPNOTSUPP;
2871
2872         if (!value || !size)
2873                 return -EACCES;
2874
2875         rc = security_context_to_sid((void *)value, size, &newsid);
2876         if (rc)
2877                 return rc;
2878
2879         isec->sid = newsid;
2880         return 0;
2881 }
2882
2883 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2884 {
2885         const int len = sizeof(XATTR_NAME_SELINUX);
2886         if (buffer && len <= buffer_size)
2887                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2888         return len;
2889 }
2890
2891 static int selinux_inode_need_killpriv(struct dentry *dentry)
2892 {
2893         return secondary_ops->inode_need_killpriv(dentry);
2894 }
2895
2896 static int selinux_inode_killpriv(struct dentry *dentry)
2897 {
2898         return secondary_ops->inode_killpriv(dentry);
2899 }
2900
2901 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2902 {
2903         struct inode_security_struct *isec = inode->i_security;
2904         *secid = isec->sid;
2905 }
2906
2907 /* file security operations */
2908
2909 static int selinux_revalidate_file_permission(struct file *file, int mask)
2910 {
2911         int rc;
2912         struct inode *inode = file->f_path.dentry->d_inode;
2913
2914         if (!mask) {
2915                 /* No permission to check.  Existence test. */
2916                 return 0;
2917         }
2918
2919         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2920         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2921                 mask |= MAY_APPEND;
2922
2923         rc = file_has_perm(current, file,
2924                            file_mask_to_av(inode->i_mode, mask));
2925         if (rc)
2926                 return rc;
2927
2928         return selinux_netlbl_inode_permission(inode, mask);
2929 }
2930
2931 static int selinux_file_permission(struct file *file, int mask)
2932 {
2933         struct inode *inode = file->f_path.dentry->d_inode;
2934         struct task_security_struct *tsec = current->security;
2935         struct file_security_struct *fsec = file->f_security;
2936         struct inode_security_struct *isec = inode->i_security;
2937
2938         if (!mask) {
2939                 /* No permission to check.  Existence test. */
2940                 return 0;
2941         }
2942
2943         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2944             && fsec->pseqno == avc_policy_seqno())
2945                 return selinux_netlbl_inode_permission(inode, mask);
2946
2947         return selinux_revalidate_file_permission(file, mask);
2948 }
2949
2950 static int selinux_file_alloc_security(struct file *file)
2951 {
2952         return file_alloc_security(file);
2953 }
2954
2955 static void selinux_file_free_security(struct file *file)
2956 {
2957         file_free_security(file);
2958 }
2959
2960 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2961                               unsigned long arg)
2962 {
2963         u32 av = 0;
2964
2965         if (_IOC_DIR(cmd) & _IOC_WRITE)
2966                 av |= FILE__WRITE;
2967         if (_IOC_DIR(cmd) & _IOC_READ)
2968                 av |= FILE__READ;
2969         if (!av)
2970                 av = FILE__IOCTL;
2971
2972         return file_has_perm(current, file, av);
2973 }
2974
2975 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2976 {
2977 #ifndef CONFIG_PPC32
2978         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2979                 /*
2980                  * We are making executable an anonymous mapping or a
2981                  * private file mapping that will also be writable.
2982                  * This has an additional check.
2983                  */
2984                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2985                 if (rc)
2986                         return rc;
2987         }
2988 #endif
2989
2990         if (file) {
2991                 /* read access is always possible with a mapping */
2992                 u32 av = FILE__READ;
2993
2994                 /* write access only matters if the mapping is shared */
2995                 if (shared && (prot & PROT_WRITE))
2996                         av |= FILE__WRITE;
2997
2998                 if (prot & PROT_EXEC)
2999                         av |= FILE__EXECUTE;
3000
3001                 return file_has_perm(current, file, av);
3002         }
3003         return 0;
3004 }
3005
3006 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3007                              unsigned long prot, unsigned long flags,
3008                              unsigned long addr, unsigned long addr_only)
3009 {
3010         int rc = 0;
3011         u32 sid = ((struct task_security_struct *)(current->security))->sid;
3012
3013         if (addr < mmap_min_addr)
3014                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3015                                   MEMPROTECT__MMAP_ZERO, NULL);
3016         if (rc || addr_only)
3017                 return rc;
3018
3019         if (selinux_checkreqprot)
3020                 prot = reqprot;
3021
3022         return file_map_prot_check(file, prot,
3023                                    (flags & MAP_TYPE) == MAP_SHARED);
3024 }
3025
3026 static int selinux_file_mprotect(struct vm_area_struct *vma,
3027                                  unsigned long reqprot,
3028                                  unsigned long prot)
3029 {
3030         int rc;
3031
3032         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3033         if (rc)
3034                 return rc;
3035
3036         if (selinux_checkreqprot)
3037                 prot = reqprot;
3038
3039 #ifndef CONFIG_PPC32
3040         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3041                 rc = 0;
3042                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3043                     vma->vm_end <= vma->vm_mm->brk) {
3044                         rc = task_has_perm(current, current,
3045                                            PROCESS__EXECHEAP);
3046                 } else if (!vma->vm_file &&
3047                            vma->vm_start <= vma->vm_mm->start_stack &&
3048                            vma->vm_end >= vma->vm_mm->start_stack) {
3049                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3050                 } else if (vma->vm_file && vma->anon_vma) {
3051                         /*
3052                          * We are making executable a file mapping that has
3053                          * had some COW done. Since pages might have been
3054                          * written, check ability to execute the possibly
3055                          * modified content.  This typically should only
3056                          * occur for text relocations.
3057                          */
3058                         rc = file_has_perm(current, vma->vm_file,
3059                                            FILE__EXECMOD);
3060                 }
3061                 if (rc)
3062                         return rc;
3063         }
3064 #endif
3065
3066         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3067 }
3068
3069 static int selinux_file_lock(struct file *file, unsigned int cmd)
3070 {
3071         return file_has_perm(current, file, FILE__LOCK);
3072 }
3073
3074 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3075                               unsigned long arg)
3076 {
3077         int err = 0;
3078
3079         switch (cmd) {
3080         case F_SETFL:
3081                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3082                         err = -EINVAL;
3083                         break;
3084                 }
3085
3086                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3087                         err = file_has_perm(current, file, FILE__WRITE);
3088                         break;
3089                 }
3090                 /* fall through */
3091         case F_SETOWN:
3092         case F_SETSIG:
3093         case F_GETFL:
3094         case F_GETOWN:
3095         case F_GETSIG:
3096                 /* Just check FD__USE permission */
3097                 err = file_has_perm(current, file, 0);
3098                 break;
3099         case F_GETLK:
3100         case F_SETLK:
3101         case F_SETLKW:
3102 #if BITS_PER_LONG == 32
3103         case F_GETLK64:
3104         case F_SETLK64:
3105         case F_SETLKW64:
3106 #endif
3107                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3108                         err = -EINVAL;
3109                         break;
3110                 }
3111                 err = file_has_perm(current, file, FILE__LOCK);
3112                 break;
3113         }
3114
3115         return err;
3116 }
3117
3118 static int selinux_file_set_fowner(struct file *file)
3119 {
3120         struct task_security_struct *tsec;
3121         struct file_security_struct *fsec;
3122
3123         tsec = current->security;
3124         fsec = file->f_security;
3125         fsec->fown_sid = tsec->sid;
3126
3127         return 0;
3128 }
3129
3130 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3131                                        struct fown_struct *fown, int signum)
3132 {
3133         struct file *file;
3134         u32 perm;
3135         struct task_security_struct *tsec;
3136         struct file_security_struct *fsec;
3137
3138         /* struct fown_struct is never outside the context of a struct file */
3139         file = container_of(fown, struct file, f_owner);
3140
3141         tsec = tsk->security;
3142         fsec = file->f_security;
3143
3144         if (!signum)
3145                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3146         else
3147                 perm = signal_to_av(signum);
3148
3149         return avc_has_perm(fsec->fown_sid, tsec->sid,
3150                             SECCLASS_PROCESS, perm, NULL);
3151 }
3152
3153 static int selinux_file_receive(struct file *file)
3154 {
3155         return file_has_perm(current, file, file_to_av(file));
3156 }
3157
3158 static int selinux_dentry_open(struct file *file)
3159 {
3160         struct file_security_struct *fsec;
3161         struct inode *inode;
3162         struct inode_security_struct *isec;
3163         inode = file->f_path.dentry->d_inode;
3164         fsec = file->f_security;
3165         isec = inode->i_security;
3166         /*
3167          * Save inode label and policy sequence number
3168          * at open-time so that selinux_file_permission
3169          * can determine whether revalidation is necessary.
3170          * Task label is already saved in the file security
3171          * struct as its SID.
3172          */
3173         fsec->isid = isec->sid;
3174         fsec->pseqno = avc_policy_seqno();
3175         /*
3176          * Since the inode label or policy seqno may have changed
3177          * between the selinux_inode_permission check and the saving
3178          * of state above, recheck that access is still permitted.
3179          * Otherwise, access might never be revalidated against the
3180          * new inode label or new policy.
3181          * This check is not redundant - do not remove.
3182          */
3183         return inode_has_perm(current, inode, open_file_to_av(file), NULL);
3184 }
3185
3186 /* task security operations */
3187
3188 static int selinux_task_create(unsigned long clone_flags)
3189 {
3190         int rc;
3191
3192         rc = secondary_ops->task_create(clone_flags);
3193         if (rc)
3194                 return rc;
3195
3196         return task_has_perm(current, current, PROCESS__FORK);
3197 }
3198
3199 static int selinux_task_alloc_security(struct task_struct *tsk)
3200 {
3201         struct task_security_struct *tsec1, *tsec2;
3202         int rc;
3203
3204         tsec1 = current->security;
3205
3206         rc = task_alloc_security(tsk);
3207         if (rc)
3208                 return rc;
3209         tsec2 = tsk->security;
3210
3211         tsec2->osid = tsec1->osid;
3212         tsec2->sid = tsec1->sid;
3213
3214         /* Retain the exec, fs, key, and sock SIDs across fork */
3215         tsec2->exec_sid = tsec1->exec_sid;
3216         tsec2->create_sid = tsec1->create_sid;
3217         tsec2->keycreate_sid = tsec1->keycreate_sid;
3218         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3219
3220         return 0;
3221 }
3222
3223 static void selinux_task_free_security(struct task_struct *tsk)
3224 {
3225         task_free_security(tsk);
3226 }
3227
3228 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3229 {
3230         /* Since setuid only affects the current process, and
3231            since the SELinux controls are not based on the Linux
3232            identity attributes, SELinux does not need to control
3233            this operation.  However, SELinux does control the use
3234            of the CAP_SETUID and CAP_SETGID capabilities using the
3235            capable hook. */
3236         return 0;
3237 }
3238
3239 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3240 {
3241         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3242 }
3243
3244 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3245 {
3246         /* See the comment for setuid above. */
3247         return 0;
3248 }
3249
3250 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3251 {
3252         return task_has_perm(current, p, PROCESS__SETPGID);
3253 }
3254
3255 static int selinux_task_getpgid(struct task_struct *p)
3256 {
3257         return task_has_perm(current, p, PROCESS__GETPGID);
3258 }
3259
3260 static int selinux_task_getsid(struct task_struct *p)
3261 {
3262         return task_has_perm(current, p, PROCESS__GETSESSION);
3263 }
3264
3265 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3266 {
3267         struct task_security_struct *tsec = p->security;
3268         *secid = tsec->sid;
3269 }
3270
3271 static int selinux_task_setgroups(struct group_info *group_info)
3272 {
3273         /* See the comment for setuid above. */
3274         return 0;
3275 }
3276
3277 static int selinux_task_setnice(struct task_struct *p, int nice)
3278 {
3279         int rc;
3280
3281         rc = secondary_ops->task_setnice(p, nice);
3282         if (rc)
3283                 return rc;
3284
3285         return task_has_perm(current, p, PROCESS__SETSCHED);
3286 }
3287
3288 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3289 {
3290         int rc;
3291
3292         rc = secondary_ops->task_setioprio(p, ioprio);
3293         if (rc)
3294                 return rc;
3295
3296         return task_has_perm(current, p, PROCESS__SETSCHED);
3297 }
3298
3299 static int selinux_task_getioprio(struct task_struct *p)
3300 {
3301         return task_has_perm(current, p, PROCESS__GETSCHED);
3302 }
3303
3304 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3305 {
3306         struct rlimit *old_rlim = current->signal->rlim + resource;
3307         int rc;
3308
3309         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3310         if (rc)
3311                 return rc;
3312
3313         /* Control the ability to change the hard limit (whether
3314            lowering or raising it), so that the hard limit can
3315            later be used as a safe reset point for the soft limit
3316            upon context transitions. See selinux_bprm_apply_creds. */
3317         if (old_rlim->rlim_max != new_rlim->rlim_max)
3318                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3319
3320         return 0;
3321 }
3322
3323 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3324 {
3325         int rc;
3326
3327         rc = secondary_ops->task_setscheduler(p, policy, lp);
3328         if (rc)
3329                 return rc;
3330
3331         return task_has_perm(current, p, PROCESS__SETSCHED);
3332 }
3333
3334 static int selinux_task_getscheduler(struct task_struct *p)
3335 {
3336         return task_has_perm(current, p, PROCESS__GETSCHED);
3337 }
3338
3339 static int selinux_task_movememory(struct task_struct *p)
3340 {
3341         return task_has_perm(current, p, PROCESS__SETSCHED);
3342 }
3343
3344 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3345                                 int sig, u32 secid)
3346 {
3347         u32 perm;
3348         int rc;
3349         struct task_security_struct *tsec;
3350
3351         rc = secondary_ops->task_kill(p, info, sig, secid);
3352         if (rc)
3353                 return rc;
3354
3355         if (!sig)
3356                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3357         else
3358                 perm = signal_to_av(sig);
3359         tsec = p->security;
3360         if (secid)
3361                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3362         else
3363                 rc = task_has_perm(current, p, perm);
3364         return rc;
3365 }
3366
3367 static int selinux_task_prctl(int option,
3368                               unsigned long arg2,
3369                               unsigned long arg3,
3370                               unsigned long arg4,
3371                               unsigned long arg5,
3372                               long *rc_p)
3373 {
3374         /* The current prctl operations do not appear to require
3375            any SELinux controls since they merely observe or modify
3376            the state of the current process. */
3377         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3378 }
3379
3380 static int selinux_task_wait(struct task_struct *p)
3381 {
3382         return task_has_perm(p, current, PROCESS__SIGCHLD);
3383 }
3384
3385 static void selinux_task_reparent_to_init(struct task_struct *p)
3386 {
3387         struct task_security_struct *tsec;
3388
3389         secondary_ops->task_reparent_to_init(p);
3390
3391         tsec = p->security;
3392         tsec->osid = tsec->sid;
3393         tsec->sid = SECINITSID_KERNEL;
3394         return;
3395 }
3396
3397 static void selinux_task_to_inode(struct task_struct *p,
3398                                   struct inode *inode)
3399 {
3400         struct task_security_struct *tsec = p->security;
3401         struct inode_security_struct *isec = inode->i_security;
3402
3403         isec->sid = tsec->sid;
3404         isec->initialized = 1;
3405         return;
3406 }
3407
3408 /* Returns error only if unable to parse addresses */
3409 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3410                         struct avc_audit_data *ad, u8 *proto)
3411 {
3412         int offset, ihlen, ret = -EINVAL;
3413         struct iphdr _iph, *ih;
3414
3415         offset = skb_network_offset(skb);
3416         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3417         if (ih == NULL)
3418                 goto out;
3419
3420         ihlen = ih->ihl * 4;
3421         if (ihlen < sizeof(_iph))
3422                 goto out;
3423
3424         ad->u.net.v4info.saddr = ih->saddr;
3425         ad->u.net.v4info.daddr = ih->daddr;
3426         ret = 0;
3427
3428         if (proto)
3429                 *proto = ih->protocol;
3430
3431         switch (ih->protocol) {
3432         case IPPROTO_TCP: {
3433                 struct tcphdr _tcph, *th;
3434
3435                 if (ntohs(ih->frag_off) & IP_OFFSET)
3436                         break;
3437
3438                 offset += ihlen;
3439                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3440                 if (th == NULL)
3441                         break;
3442
3443                 ad->u.net.sport = th->source;
3444                 ad->u.net.dport = th->dest;
3445                 break;
3446         }
3447
3448         case IPPROTO_UDP: {
3449                 struct udphdr _udph, *uh;
3450
3451                 if (ntohs(ih->frag_off) & IP_OFFSET)
3452                         break;
3453
3454                 offset += ihlen;
3455                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3456                 if (uh == NULL)
3457                         break;
3458
3459                 ad->u.net.sport = uh->source;
3460                 ad->u.net.dport = uh->dest;
3461                 break;
3462         }
3463
3464         case IPPROTO_DCCP: {
3465                 struct dccp_hdr _dccph, *dh;
3466
3467                 if (ntohs(ih->frag_off) & IP_OFFSET)
3468                         break;
3469
3470                 offset += ihlen;
3471                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3472                 if (dh == NULL)
3473                         break;
3474
3475                 ad->u.net.sport = dh->dccph_sport;
3476                 ad->u.net.dport = dh->dccph_dport;
3477                 break;
3478         }
3479
3480         default:
3481                 break;
3482         }
3483 out:
3484         return ret;
3485 }
3486
3487 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3488
3489 /* Returns error only if unable to parse addresses */
3490 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3491                         struct avc_audit_data *ad, u8 *proto)
3492 {
3493         u8 nexthdr;
3494         int ret = -EINVAL, offset;
3495         struct ipv6hdr _ipv6h, *ip6;
3496
3497         offset = skb_network_offset(skb);
3498         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3499         if (ip6 == NULL)
3500                 goto out;
3501
3502         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3503         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3504         ret = 0;
3505
3506         nexthdr = ip6->nexthdr;
3507         offset += sizeof(_ipv6h);
3508         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3509         if (offset < 0)
3510                 goto out;
3511
3512         if (proto)
3513                 *proto = nexthdr;
3514
3515         switch (nexthdr) {
3516         case IPPROTO_TCP: {
3517                 struct tcphdr _tcph, *th;
3518
3519                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3520                 if (th == NULL)
3521                         break;
3522
3523                 ad->u.net.sport = th->source;
3524                 ad->u.net.dport = th->dest;
3525                 break;
3526         }
3527
3528         case IPPROTO_UDP: {
3529                 struct udphdr _udph, *uh;
3530
3531                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3532                 if (uh == NULL)
3533                         break;
3534
3535                 ad->u.net.sport = uh->source;
3536                 ad->u.net.dport = uh->dest;
3537                 break;
3538         }
3539
3540         case IPPROTO_DCCP: {
3541                 struct dccp_hdr _dccph, *dh;
3542
3543                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3544                 if (dh == NULL)
3545                         break;
3546
3547                 ad->u.net.sport = dh->dccph_sport;
3548                 ad->u.net.dport = dh->dccph_dport;
3549                 break;
3550         }
3551
3552         /* includes fragments */
3553         default:
3554                 break;
3555         }
3556 out:
3557         return ret;
3558 }
3559
3560 #endif /* IPV6 */
3561
3562 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3563                              char **_addrp, int src, u8 *proto)
3564 {
3565         char *addrp;
3566         int ret;
3567
3568         switch (ad->u.net.family) {
3569         case PF_INET:
3570                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3571                 if (ret)
3572                         goto parse_error;
3573                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3574                                        &ad->u.net.v4info.daddr);
3575                 goto okay;
3576
3577 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3578         case PF_INET6:
3579                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3580                 if (ret)
3581                         goto parse_error;
3582                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3583                                        &ad->u.net.v6info.daddr);
3584                 goto okay;
3585 #endif  /* IPV6 */
3586         default:
3587                 addrp = NULL;
3588                 goto okay;
3589         }
3590
3591 parse_error:
3592         printk(KERN_WARNING
3593                "SELinux: failure in selinux_parse_skb(),"
3594                " unable to parse packet\n");
3595         return ret;
3596
3597 okay:
3598         if (_addrp)
3599                 *_addrp = addrp;
3600         return 0;
3601 }
3602
3603 /**
3604  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3605  * @skb: the packet
3606  * @family: protocol family
3607  * @sid: the packet's peer label SID
3608  *
3609  * Description:
3610  * Check the various different forms of network peer labeling and determine
3611  * the peer label/SID for the packet; most of the magic actually occurs in
3612  * the security server function security_net_peersid_cmp().  The function
3613  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3614  * or -EACCES if @sid is invalid due to inconsistencies with the different
3615  * peer labels.
3616  *
3617  */
3618 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3619 {
3620         int err;
3621         u32 xfrm_sid;
3622         u32 nlbl_sid;
3623         u32 nlbl_type;
3624
3625         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3626         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3627
3628         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3629         if (unlikely(err)) {
3630                 printk(KERN_WARNING
3631                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3632                        " unable to determine packet's peer label\n");
3633                 return -EACCES;
3634         }
3635
3636         return 0;
3637 }
3638
3639 /* socket security operations */
3640 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3641                            u32 perms)
3642 {
3643         struct inode_security_struct *isec;
3644         struct task_security_struct *tsec;
3645         struct avc_audit_data ad;
3646         int err = 0;
3647
3648         tsec = task->security;
3649         isec = SOCK_INODE(sock)->i_security;
3650
3651         if (isec->sid == SECINITSID_KERNEL)
3652                 goto out;
3653
3654         AVC_AUDIT_DATA_INIT(&ad, NET);
3655         ad.u.net.sk = sock->sk;
3656         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3657
3658 out:
3659         return err;
3660 }
3661
3662 static int selinux_socket_create(int family, int type,
3663                                  int protocol, int kern)
3664 {
3665         int err = 0;
3666         struct task_security_struct *tsec;
3667         u32 newsid;
3668
3669         if (kern)
3670                 goto out;
3671
3672         tsec = current->security;
3673         newsid = tsec->sockcreate_sid ? : tsec->sid;
3674         err = avc_has_perm(tsec->sid, newsid,
3675                            socket_type_to_security_class(family, type,
3676                            protocol), SOCKET__CREATE, NULL);
3677
3678 out:
3679         return err;
3680 }
3681
3682 static int selinux_socket_post_create(struct socket *sock, int family,
3683                                       int type, int protocol, int kern)
3684 {
3685         int err = 0;
3686         struct inode_security_struct *isec;
3687         struct task_security_struct *tsec;
3688         struct sk_security_struct *sksec;
3689         u32 newsid;
3690
3691         isec = SOCK_INODE(sock)->i_security;
3692
3693         tsec = current->security;
3694         newsid = tsec->sockcreate_sid ? : tsec->sid;
3695         isec->sclass = socket_type_to_security_class(family, type, protocol);
3696         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3697         isec->initialized = 1;
3698
3699         if (sock->sk) {
3700                 sksec = sock->sk->sk_security;
3701                 sksec->sid = isec->sid;
3702                 sksec->sclass = isec->sclass;
3703                 err = selinux_netlbl_socket_post_create(sock);
3704         }
3705
3706         return err;
3707 }
3708
3709 /* Range of port numbers used to automatically bind.
3710    Need to determine whether we should perform a name_bind
3711    permission check between the socket and the port number. */
3712
3713 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3714 {
3715         u16 family;
3716         int err;
3717
3718         err = socket_has_perm(current, sock, SOCKET__BIND);
3719         if (err)
3720                 goto out;
3721
3722         /*
3723          * If PF_INET or PF_INET6, check name_bind permission for the port.
3724          * Multiple address binding for SCTP is not supported yet: we just
3725          * check the first address now.
3726          */
3727         family = sock->sk->sk_family;
3728         if (family == PF_INET || family == PF_INET6) {
3729                 char *addrp;
3730                 struct inode_security_struct *isec;
3731                 struct task_security_struct *tsec;
3732                 struct avc_audit_data ad;
3733                 struct sockaddr_in *addr4 = NULL;
3734                 struct sockaddr_in6 *addr6 = NULL;
3735                 unsigned short snum;
3736                 struct sock *sk = sock->sk;
3737                 u32 sid, node_perm;
3738
3739                 tsec = current->security;
3740                 isec = SOCK_INODE(sock)->i_security;
3741
3742                 if (family == PF_INET) {
3743                         addr4 = (struct sockaddr_in *)address;
3744                         snum = ntohs(addr4->sin_port);
3745                         addrp = (char *)&addr4->sin_addr.s_addr;
3746                 } else {
3747                         addr6 = (struct sockaddr_in6 *)address;
3748                         snum = ntohs(addr6->sin6_port);
3749                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3750                 }
3751
3752                 if (snum) {
3753                         int low, high;
3754
3755                         inet_get_local_port_range(&low, &high);
3756
3757                         if (snum < max(PROT_SOCK, low) || snum > high) {
3758                                 err = sel_netport_sid(sk->sk_protocol,
3759                                                       snum, &sid);
3760                                 if (err)
3761                                         goto out;
3762                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3763                                 ad.u.net.sport = htons(snum);
3764                                 ad.u.net.family = family;
3765                                 err = avc_has_perm(isec->sid, sid,
3766                                                    isec->sclass,
3767                                                    SOCKET__NAME_BIND, &ad);
3768                                 if (err)
3769                                         goto out;
3770                         }
3771                 }
3772
3773                 switch (isec->sclass) {
3774                 case SECCLASS_TCP_SOCKET:
3775                         node_perm = TCP_SOCKET__NODE_BIND;
3776                         break;
3777
3778                 case SECCLASS_UDP_SOCKET:
3779                         node_perm = UDP_SOCKET__NODE_BIND;
3780                         break;
3781
3782                 case SECCLASS_DCCP_SOCKET:
3783                         node_perm = DCCP_SOCKET__NODE_BIND;
3784                         break;
3785
3786                 default:
3787                         node_perm = RAWIP_SOCKET__NODE_BIND;
3788                         break;
3789                 }
3790
3791                 err = sel_netnode_sid(addrp, family, &sid);
3792                 if (err)
3793                         goto out;
3794
3795                 AVC_AUDIT_DATA_INIT(&ad, NET);
3796                 ad.u.net.sport = htons(snum);
3797                 ad.u.net.family = family;
3798
3799                 if (family == PF_INET)
3800                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3801                 else
3802                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3803
3804                 err = avc_has_perm(isec->sid, sid,
3805                                    isec->sclass, node_perm, &ad);
3806                 if (err)
3807                         goto out;
3808         }
3809 out:
3810         return err;
3811 }
3812
3813 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3814 {
3815         struct sock *sk = sock->sk;
3816         struct inode_security_struct *isec;
3817         int err;
3818
3819         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3820         if (err)
3821                 return err;
3822
3823         /*
3824          * If a TCP or DCCP socket, check name_connect permission for the port.
3825          */
3826         isec = SOCK_INODE(sock)->i_security;
3827         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3828             isec->sclass == SECCLASS_DCCP_SOCKET) {
3829                 struct avc_audit_data ad;
3830                 struct sockaddr_in *addr4 = NULL;
3831                 struct sockaddr_in6 *addr6 = NULL;
3832                 unsigned short snum;
3833                 u32 sid, perm;
3834
3835                 if (sk->sk_family == PF_INET) {
3836                         addr4 = (struct sockaddr_in *)address;
3837                         if (addrlen < sizeof(struct sockaddr_in))
3838                                 return -EINVAL;
3839                         snum = ntohs(addr4->sin_port);
3840                 } else {
3841                         addr6 = (struct sockaddr_in6 *)address;
3842                         if (addrlen < SIN6_LEN_RFC2133)
3843                                 return -EINVAL;
3844                         snum = ntohs(addr6->sin6_port);
3845                 }
3846
3847                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3848                 if (err)
3849                         goto out;
3850
3851                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3852                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3853
3854                 AVC_AUDIT_DATA_INIT(&ad, NET);
3855                 ad.u.net.dport = htons(snum);
3856                 ad.u.net.family = sk->sk_family;
3857                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3858                 if (err)
3859                         goto out;
3860         }
3861
3862         err = selinux_netlbl_socket_connect(sk, address);
3863
3864 out:
3865         return err;
3866 }
3867
3868 static int selinux_socket_listen(struct socket *sock, int backlog)
3869 {
3870         return socket_has_perm(current, sock, SOCKET__LISTEN);
3871 }
3872
3873 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3874 {
3875         int err;
3876         struct inode_security_struct *isec;
3877         struct inode_security_struct *newisec;
3878
3879         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3880         if (err)
3881                 return err;
3882
3883         newisec = SOCK_INODE(newsock)->i_security;
3884
3885         isec = SOCK_INODE(sock)->i_security;
3886         newisec->sclass = isec->sclass;
3887         newisec->sid = isec->sid;
3888         newisec->initialized = 1;
3889
3890         return 0;
3891 }
3892
3893 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3894                                   int size)
3895 {
3896         int rc;
3897
3898         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3899         if (rc)
3900                 return rc;
3901
3902         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3903 }
3904
3905 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3906                                   int size, int flags)
3907 {
3908         return socket_has_perm(current, sock, SOCKET__READ);
3909 }
3910
3911 static int selinux_socket_getsockname(struct socket *sock)
3912 {
3913         return socket_has_perm(current, sock, SOCKET__GETATTR);
3914 }
3915
3916 static int selinux_socket_getpeername(struct socket *sock)
3917 {
3918         return socket_has_perm(current, sock, SOCKET__GETATTR);
3919 }
3920
3921 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3922 {
3923         int err;
3924
3925         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3926         if (err)
3927                 return err;
3928
3929         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3930 }
3931
3932 static int selinux_socket_getsockopt(struct socket *sock, int level,
3933                                      int optname)
3934 {
3935         return socket_has_perm(current, sock, SOCKET__GETOPT);
3936 }
3937
3938 static int selinux_socket_shutdown(struct socket *sock, int how)
3939 {
3940         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3941 }
3942
3943 static int selinux_socket_unix_stream_connect(struct socket *sock,
3944                                               struct socket *other,
3945                                               struct sock *newsk)
3946 {
3947         struct sk_security_struct *ssec;
3948         struct inode_security_struct *isec;
3949         struct inode_security_struct *other_isec;
3950         struct avc_audit_data ad;
3951         int err;
3952
3953         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3954         if (err)
3955                 return err;
3956
3957         isec = SOCK_INODE(sock)->i_security;
3958         other_isec = SOCK_INODE(other)->i_security;
3959
3960         AVC_AUDIT_DATA_INIT(&ad, NET);
3961         ad.u.net.sk = other->sk;
3962
3963         err = avc_has_perm(isec->sid, other_isec->sid,
3964                            isec->sclass,
3965                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3966         if (err)
3967                 return err;
3968
3969         /* connecting socket */
3970         ssec = sock->sk->sk_security;
3971         ssec->peer_sid = other_isec->sid;
3972
3973         /* server child socket */
3974         ssec = newsk->sk_security;
3975         ssec->peer_sid = isec->sid;
3976         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3977
3978         return err;
3979 }
3980
3981 static int selinux_socket_unix_may_send(struct socket *sock,
3982                                         struct socket *other)
3983 {
3984         struct inode_security_struct *isec;
3985         struct inode_security_struct *other_isec;
3986         struct avc_audit_data ad;
3987         int err;
3988
3989         isec = SOCK_INODE(sock)->i_security;
3990         other_isec = SOCK_INODE(other)->i_security;
3991
3992         AVC_AUDIT_DATA_INIT(&ad, NET);
3993         ad.u.net.sk = other->sk;
3994
3995         err = avc_has_perm(isec->sid, other_isec->sid,
3996                            isec->sclass, SOCKET__SENDTO, &ad);
3997         if (err)
3998                 return err;
3999
4000         return 0;
4001 }
4002
4003 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4004                                     u32 peer_sid,
4005                                     struct avc_audit_data *ad)
4006 {
4007         int err;
4008         u32 if_sid;
4009         u32 node_sid;
4010
4011         err = sel_netif_sid(ifindex, &if_sid);
4012         if (err)
4013                 return err;
4014         err = avc_has_perm(peer_sid, if_sid,
4015                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4016         if (err)
4017                 return err;
4018
4019         err = sel_netnode_sid(addrp, family, &node_sid);
4020         if (err)
4021                 return err;
4022         return avc_has_perm(peer_sid, node_sid,
4023                             SECCLASS_NODE, NODE__RECVFROM, ad);
4024 }
4025
4026 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4027                                                 struct sk_buff *skb,
4028                                                 struct avc_audit_data *ad,
4029                                                 u16 family,
4030                                                 char *addrp)
4031 {
4032         int err;
4033         struct sk_security_struct *sksec = sk->sk_security;
4034         u16 sk_class;
4035         u32 netif_perm, node_perm, recv_perm;
4036         u32 port_sid, node_sid, if_sid, sk_sid;
4037
4038         sk_sid = sksec->sid;
4039         sk_class = sksec->sclass;
4040
4041         switch (sk_class) {
4042         case SECCLASS_UDP_SOCKET:
4043                 netif_perm = NETIF__UDP_RECV;
4044                 node_perm = NODE__UDP_RECV;
4045                 recv_perm = UDP_SOCKET__RECV_MSG;
4046                 break;
4047         case SECCLASS_TCP_SOCKET:
4048                 netif_perm = NETIF__TCP_RECV;
4049                 node_perm = NODE__TCP_RECV;
4050                 recv_perm = TCP_SOCKET__RECV_MSG;
4051                 break;
4052         case SECCLASS_DCCP_SOCKET:
4053                 netif_perm = NETIF__DCCP_RECV;
4054                 node_perm = NODE__DCCP_RECV;
4055                 recv_perm = DCCP_SOCKET__RECV_MSG;
4056                 break;
4057         default:
4058                 netif_perm = NETIF__RAWIP_RECV;
4059                 node_perm = NODE__RAWIP_RECV;
4060                 recv_perm = 0;
4061                 break;
4062         }
4063
4064         err = sel_netif_sid(skb->iif, &if_sid);
4065         if (err)
4066                 return err;
4067         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4068         if (err)
4069                 return err;
4070
4071         err = sel_netnode_sid(addrp, family, &node_sid);
4072         if (err)
4073                 return err;
4074         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4075         if (err)
4076                 return err;
4077
4078         if (!recv_perm)
4079                 return 0;
4080         err = sel_netport_sid(sk->sk_protocol,
4081                               ntohs(ad->u.net.sport), &port_sid);
4082         if (unlikely(err)) {
4083                 printk(KERN_WARNING
4084                        "SELinux: failure in"
4085                        " selinux_sock_rcv_skb_iptables_compat(),"
4086                        " network port label not found\n");
4087                 return err;
4088         }
4089         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4090 }
4091
4092 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4093                                        u16 family)
4094 {
4095         int err;
4096         struct sk_security_struct *sksec = sk->sk_security;
4097         u32 peer_sid;
4098         u32 sk_sid = sksec->sid;
4099         struct avc_audit_data ad;
4100         char *addrp;
4101
4102         AVC_AUDIT_DATA_INIT(&ad, NET);
4103         ad.u.net.netif = skb->iif;
4104         ad.u.net.family = family;
4105         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4106         if (err)
4107                 return err;
4108
4109         if (selinux_compat_net)
4110                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4111                                                            family, addrp);
4112         else
4113                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4114                                    PACKET__RECV, &ad);
4115         if (err)
4116                 return err;
4117
4118         if (selinux_policycap_netpeer) {
4119                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4120                 if (err)
4121                         return err;
4122                 err = avc_has_perm(sk_sid, peer_sid,
4123                                    SECCLASS_PEER, PEER__RECV, &ad);
4124                 if (err)
4125                         selinux_netlbl_err(skb, err, 0);
4126         } else {
4127                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4128                 if (err)
4129                         return err;
4130                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4131         }
4132
4133         return err;
4134 }
4135
4136 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4137 {
4138         int err;
4139         struct sk_security_struct *sksec = sk->sk_security;
4140         u16 family = sk->sk_family;
4141         u32 sk_sid = sksec->sid;
4142         struct avc_audit_data ad;
4143         char *addrp;
4144         u8 secmark_active;
4145         u8 peerlbl_active;
4146
4147         if (family != PF_INET && family != PF_INET6)
4148                 return 0;
4149
4150         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4151         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4152                 family = PF_INET;
4153
4154         /* If any sort of compatibility mode is enabled then handoff processing
4155          * to the selinux_sock_rcv_skb_compat() function to deal with the
4156          * special handling.  We do this in an attempt to keep this function
4157          * as fast and as clean as possible. */
4158         if (selinux_compat_net || !selinux_policycap_netpeer)
4159                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4160
4161         secmark_active = selinux_secmark_enabled();
4162         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4163         if (!secmark_active && !peerlbl_active)
4164                 return 0;
4165
4166         AVC_AUDIT_DATA_INIT(&ad, NET);
4167         ad.u.net.netif = skb->iif;
4168         ad.u.net.family = family;
4169         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4170         if (err)
4171                 return err;
4172
4173         if (peerlbl_active) {
4174                 u32 peer_sid;
4175
4176                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4177                 if (err)
4178                         return err;
4179                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4180                                                peer_sid, &ad);
4181                 if (err) {
4182                         selinux_netlbl_err(skb, err, 0);
4183                         return err;
4184                 }
4185                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4186                                    PEER__RECV, &ad);
4187                 if (err)
4188                         selinux_netlbl_err(skb, err, 0);
4189         }
4190
4191         if (secmark_active) {
4192                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4193                                    PACKET__RECV, &ad);
4194                 if (err)
4195                         return err;
4196         }
4197
4198         return err;
4199 }
4200
4201 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4202                                             int __user *optlen, unsigned len)
4203 {
4204         int err = 0;
4205         char *scontext;
4206         u32 scontext_len;
4207         struct sk_security_struct *ssec;
4208         struct inode_security_struct *isec;
4209         u32 peer_sid = SECSID_NULL;
4210
4211         isec = SOCK_INODE(sock)->i_security;
4212
4213         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4214             isec->sclass == SECCLASS_TCP_SOCKET) {
4215                 ssec = sock->sk->sk_security;
4216                 peer_sid = ssec->peer_sid;
4217         }
4218         if (peer_sid == SECSID_NULL) {
4219                 err = -ENOPROTOOPT;
4220                 goto out;
4221         }
4222
4223         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4224
4225         if (err)
4226                 goto out;
4227
4228         if (scontext_len > len) {
4229                 err = -ERANGE;
4230                 goto out_len;
4231         }
4232
4233         if (copy_to_user(optval, scontext, scontext_len))
4234                 err = -EFAULT;
4235
4236 out_len:
4237         if (put_user(scontext_len, optlen))
4238                 err = -EFAULT;
4239
4240         kfree(scontext);
4241 out:
4242         return err;
4243 }
4244
4245 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4246 {
4247         u32 peer_secid = SECSID_NULL;
4248         u16 family;
4249
4250         if (skb && skb->protocol == htons(ETH_P_IP))
4251                 family = PF_INET;
4252         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4253                 family = PF_INET6;
4254         else if (sock)
4255                 family = sock->sk->sk_family;
4256         else
4257                 goto out;
4258
4259         if (sock && family == PF_UNIX)
4260                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4261         else if (skb)
4262                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4263
4264 out:
4265         *secid = peer_secid;
4266         if (peer_secid == SECSID_NULL)
4267                 return -EINVAL;
4268         return 0;
4269 }
4270
4271 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4272 {
4273         return sk_alloc_security(sk, family, priority);
4274 }
4275
4276 static void selinux_sk_free_security(struct sock *sk)
4277 {
4278         sk_free_security(sk);
4279 }
4280
4281 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4282 {
4283         struct sk_security_struct *ssec = sk->sk_security;
4284         struct sk_security_struct *newssec = newsk->sk_security;
4285
4286         newssec->sid = ssec->sid;
4287         newssec->peer_sid = ssec->peer_sid;
4288         newssec->sclass = ssec->sclass;
4289
4290         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4291 }
4292
4293 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4294 {
4295         if (!sk)
4296                 *secid = SECINITSID_ANY_SOCKET;
4297         else {
4298                 struct sk_security_struct *sksec = sk->sk_security;
4299
4300                 *secid = sksec->sid;
4301         }
4302 }
4303
4304 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4305 {
4306         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4307         struct sk_security_struct *sksec = sk->sk_security;
4308
4309         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4310             sk->sk_family == PF_UNIX)
4311                 isec->sid = sksec->sid;
4312         sksec->sclass = isec->sclass;
4313 }
4314
4315 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4316                                      struct request_sock *req)
4317 {
4318         struct sk_security_struct *sksec = sk->sk_security;
4319         int err;
4320         u16 family = sk->sk_family;
4321         u32 newsid;
4322         u32 peersid;
4323
4324         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4325         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4326                 family = PF_INET;
4327
4328         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4329         if (err)
4330                 return err;
4331         if (peersid == SECSID_NULL) {
4332                 req->secid = sksec->sid;
4333                 req->peer_secid = SECSID_NULL;
4334                 return 0;
4335         }
4336
4337         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4338         if (err)
4339                 return err;
4340
4341         req->secid = newsid;
4342         req->peer_secid = peersid;
4343         return 0;
4344 }
4345
4346 static void selinux_inet_csk_clone(struct sock *newsk,
4347                                    const struct request_sock *req)
4348 {
4349         struct sk_security_struct *newsksec = newsk->sk_security;
4350
4351         newsksec->sid = req->secid;
4352         newsksec->peer_sid = req->peer_secid;
4353         /* NOTE: Ideally, we should also get the isec->sid for the
4354            new socket in sync, but we don't have the isec available yet.
4355            So we will wait until sock_graft to do it, by which
4356            time it will have been created and available. */
4357
4358         /* We don't need to take any sort of lock here as we are the only
4359          * thread with access to newsksec */
4360         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4361 }
4362
4363 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4364 {
4365         u16 family = sk->sk_family;
4366         struct sk_security_struct *sksec = sk->sk_security;
4367
4368         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4369         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4370                 family = PF_INET;
4371
4372         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4373
4374         selinux_netlbl_inet_conn_established(sk, family);
4375 }
4376
4377 static void selinux_req_classify_flow(const struct request_sock *req,
4378                                       struct flowi *fl)
4379 {
4380         fl->secid = req->secid;
4381 }
4382
4383 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4384 {
4385         int err = 0;
4386         u32 perm;
4387         struct nlmsghdr *nlh;
4388         struct socket *sock = sk->sk_socket;
4389         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4390
4391         if (skb->len < NLMSG_SPACE(0)) {
4392                 err = -EINVAL;
4393                 goto out;
4394         }
4395         nlh = nlmsg_hdr(skb);
4396
4397         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4398         if (err) {
4399                 if (err == -EINVAL) {
4400                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4401                                   "SELinux:  unrecognized netlink message"
4402                                   " type=%hu for sclass=%hu\n",
4403                                   nlh->nlmsg_type, isec->sclass);
4404                         if (!selinux_enforcing || security_get_allow_unknown())
4405                                 err = 0;
4406                 }
4407
4408                 /* Ignore */
4409                 if (err == -ENOENT)
4410                         err = 0;
4411                 goto out;
4412         }
4413
4414         err = socket_has_perm(current, sock, perm);
4415 out:
4416         return err;
4417 }
4418
4419 #ifdef CONFIG_NETFILTER
4420
4421 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4422                                        u16 family)
4423 {
4424         int err;
4425         char *addrp;
4426         u32 peer_sid;
4427         struct avc_audit_data ad;
4428         u8 secmark_active;
4429         u8 netlbl_active;
4430         u8 peerlbl_active;
4431
4432         if (!selinux_policycap_netpeer)
4433                 return NF_ACCEPT;
4434
4435         secmark_active = selinux_secmark_enabled();
4436         netlbl_active = netlbl_enabled();
4437         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4438         if (!secmark_active && !peerlbl_active)
4439                 return NF_ACCEPT;
4440
4441         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4442                 return NF_DROP;
4443
4444         AVC_AUDIT_DATA_INIT(&ad, NET);
4445         ad.u.net.netif = ifindex;
4446         ad.u.net.family = family;
4447         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4448                 return NF_DROP;
4449
4450         if (peerlbl_active) {
4451                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4452                                                peer_sid, &ad);
4453                 if (err) {
4454                         selinux_netlbl_err(skb, err, 1);
4455                         return NF_DROP;
4456                 }
4457         }
4458
4459         if (secmark_active)
4460                 if (avc_has_perm(peer_sid, skb->secmark,
4461                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4462                         return NF_DROP;
4463
4464         if (netlbl_active)
4465                 /* we do this in the FORWARD path and not the POST_ROUTING
4466                  * path because we want to make sure we apply the necessary
4467                  * labeling before IPsec is applied so we can leverage AH
4468                  * protection */
4469                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4470                         return NF_DROP;
4471
4472         return NF_ACCEPT;
4473 }
4474
4475 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4476                                          struct sk_buff *skb,
4477                                          const struct net_device *in,
4478                                          const struct net_device *out,
4479                                          int (*okfn)(struct sk_buff *))
4480 {
4481         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4482 }
4483
4484 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4485 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4486                                          struct sk_buff *skb,
4487                                          const struct net_device *in,
4488                                          const struct net_device *out,
4489                                          int (*okfn)(struct sk_buff *))
4490 {
4491         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4492 }
4493 #endif  /* IPV6 */
4494
4495 static unsigned int selinux_ip_output(struct sk_buff *skb,
4496                                       u16 family)
4497 {
4498         u32 sid;
4499
4500         if (!netlbl_enabled())
4501                 return NF_ACCEPT;
4502
4503         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4504          * because we want to make sure we apply the necessary labeling
4505          * before IPsec is applied so we can leverage AH protection */
4506         if (skb->sk) {
4507                 struct sk_security_struct *sksec = skb->sk->sk_security;
4508                 sid = sksec->sid;
4509         } else
4510                 sid = SECINITSID_KERNEL;
4511         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4512                 return NF_DROP;
4513
4514         return NF_ACCEPT;
4515 }
4516
4517 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4518                                         struct sk_buff *skb,
4519                                         const struct net_device *in,
4520                                         const struct net_device *out,
4521                                         int (*okfn)(struct sk_buff *))
4522 {
4523         return selinux_ip_output(skb, PF_INET);
4524 }
4525
4526 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4527                                                 int ifindex,
4528                                                 struct avc_audit_data *ad,
4529                                                 u16 family, char *addrp)
4530 {
4531         int err;
4532         struct sk_security_struct *sksec = sk->sk_security;
4533         u16 sk_class;
4534         u32 netif_perm, node_perm, send_perm;
4535         u32 port_sid, node_sid, if_sid, sk_sid;
4536
4537         sk_sid = sksec->sid;
4538         sk_class = sksec->sclass;
4539
4540         switch (sk_class) {
4541         case SECCLASS_UDP_SOCKET:
4542                 netif_perm = NETIF__UDP_SEND;
4543                 node_perm = NODE__UDP_SEND;
4544                 send_perm = UDP_SOCKET__SEND_MSG;
4545                 break;
4546         case SECCLASS_TCP_SOCKET:
4547                 netif_perm = NETIF__TCP_SEND;
4548                 node_perm = NODE__TCP_SEND;
4549                 send_perm = TCP_SOCKET__SEND_MSG;
4550                 break;
4551         case SECCLASS_DCCP_SOCKET:
4552                 netif_perm = NETIF__DCCP_SEND;
4553                 node_perm = NODE__DCCP_SEND;
4554                 send_perm = DCCP_SOCKET__SEND_MSG;
4555                 break;
4556         default:
4557                 netif_perm = NETIF__RAWIP_SEND;
4558                 node_perm = NODE__RAWIP_SEND;
4559                 send_perm = 0;
4560                 break;
4561         }
4562
4563         err = sel_netif_sid(ifindex, &if_sid);
4564         if (err)
4565                 return err;
4566         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4567                 return err;
4568
4569         err = sel_netnode_sid(addrp, family, &node_sid);
4570         if (err)
4571                 return err;
4572         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4573         if (err)
4574                 return err;
4575
4576         if (send_perm != 0)
4577                 return 0;
4578
4579         err = sel_netport_sid(sk->sk_protocol,
4580                               ntohs(ad->u.net.dport), &port_sid);
4581         if (unlikely(err)) {
4582                 printk(KERN_WARNING
4583                        "SELinux: failure in"
4584                        " selinux_ip_postroute_iptables_compat(),"
4585                        " network port label not found\n");
4586                 return err;
4587         }
4588         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4589 }
4590
4591 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4592                                                 int ifindex,
4593                                                 u16 family)
4594 {
4595         struct sock *sk = skb->sk;
4596         struct sk_security_struct *sksec;
4597         struct avc_audit_data ad;
4598         char *addrp;
4599         u8 proto;
4600
4601         if (sk == NULL)
4602                 return NF_ACCEPT;
4603         sksec = sk->sk_security;
4604
4605         AVC_AUDIT_DATA_INIT(&ad, NET);
4606         ad.u.net.netif = ifindex;
4607         ad.u.net.family = family;
4608         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4609                 return NF_DROP;
4610
4611         if (selinux_compat_net) {
4612                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4613                                                          &ad, family, addrp))
4614                         return NF_DROP;
4615         } else {
4616                 if (avc_has_perm(sksec->sid, skb->secmark,
4617                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4618                         return NF_DROP;
4619         }
4620
4621         if (selinux_policycap_netpeer)
4622                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4623                         return NF_DROP;
4624
4625         return NF_ACCEPT;
4626 }
4627
4628 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4629                                          u16 family)
4630 {
4631         u32 secmark_perm;
4632         u32 peer_sid;
4633         struct sock *sk;
4634         struct avc_audit_data ad;
4635         char *addrp;
4636         u8 secmark_active;
4637         u8 peerlbl_active;
4638
4639         /* If any sort of compatibility mode is enabled then handoff processing
4640          * to the selinux_ip_postroute_compat() function to deal with the
4641          * special handling.  We do this in an attempt to keep this function
4642          * as fast and as clean as possible. */
4643         if (selinux_compat_net || !selinux_policycap_netpeer)
4644                 return selinux_ip_postroute_compat(skb, ifindex, family);
4645
4646         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4647          * packet transformation so allow the packet to pass without any checks
4648          * since we'll have another chance to perform access control checks
4649          * when the packet is on it's final way out.
4650          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4651          *       is NULL, in this case go ahead and apply access control. */
4652         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4653                 return NF_ACCEPT;
4654
4655         secmark_active = selinux_secmark_enabled();
4656         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4657         if (!secmark_active && !peerlbl_active)
4658                 return NF_ACCEPT;
4659
4660         /* if the packet is being forwarded then get the peer label from the
4661          * packet itself; otherwise check to see if it is from a local
4662          * application or the kernel, if from an application get the peer label
4663          * from the sending socket, otherwise use the kernel's sid */
4664         sk = skb->sk;
4665         if (sk == NULL) {
4666                 switch (family) {
4667                 case PF_INET:
4668                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4669                                 secmark_perm = PACKET__FORWARD_OUT;
4670                         else
4671                                 secmark_perm = PACKET__SEND;
4672                         break;
4673                 case PF_INET6:
4674                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4675                                 secmark_perm = PACKET__FORWARD_OUT;
4676                         else
4677                                 secmark_perm = PACKET__SEND;
4678                         break;
4679                 default:
4680                         return NF_DROP;
4681                 }
4682                 if (secmark_perm == PACKET__FORWARD_OUT) {
4683                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4684                                 return NF_DROP;
4685                 } else
4686                         peer_sid = SECINITSID_KERNEL;
4687         } else {
4688                 struct sk_security_struct *sksec = sk->sk_security;
4689                 peer_sid = sksec->sid;
4690                 secmark_perm = PACKET__SEND;
4691         }
4692
4693         AVC_AUDIT_DATA_INIT(&ad, NET);
4694         ad.u.net.netif = ifindex;
4695         ad.u.net.family = family;
4696         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4697                 return NF_DROP;
4698
4699         if (secmark_active)
4700                 if (avc_has_perm(peer_sid, skb->secmark,
4701                                  SECCLASS_PACKET, secmark_perm, &ad))
4702                         return NF_DROP;
4703
4704         if (peerlbl_active) {
4705                 u32 if_sid;
4706                 u32 node_sid;
4707
4708                 if (sel_netif_sid(ifindex, &if_sid))
4709                         return NF_DROP;
4710                 if (avc_has_perm(peer_sid, if_sid,
4711                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4712                         return NF_DROP;
4713
4714                 if (sel_netnode_sid(addrp, family, &node_sid))
4715                         return NF_DROP;
4716                 if (avc_has_perm(peer_sid, node_sid,
4717                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4718                         return NF_DROP;
4719         }
4720
4721         return NF_ACCEPT;
4722 }
4723
4724 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4725                                            struct sk_buff *skb,
4726                                            const struct net_device *in,
4727                                            const struct net_device *out,
4728                                            int (*okfn)(struct sk_buff *))
4729 {
4730         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4731 }
4732
4733 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4734 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4735                                            struct sk_buff *skb,
4736                                            const struct net_device *in,
4737                                            const struct net_device *out,
4738                                            int (*okfn)(struct sk_buff *))
4739 {
4740         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4741 }
4742 #endif  /* IPV6 */
4743
4744 #endif  /* CONFIG_NETFILTER */
4745
4746 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4747 {
4748         int err;
4749
4750         err = secondary_ops->netlink_send(sk, skb);
4751         if (err)
4752                 return err;
4753
4754         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4755                 err = selinux_nlmsg_perm(sk, skb);
4756
4757         return err;
4758 }
4759
4760 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4761 {
4762         int err;
4763         struct avc_audit_data ad;
4764
4765         err = secondary_ops->netlink_recv(skb, capability);
4766         if (err)
4767                 return err;
4768
4769         AVC_AUDIT_DATA_INIT(&ad, CAP);
4770         ad.u.cap = capability;
4771
4772         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4773                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4774 }
4775
4776 static int ipc_alloc_security(struct task_struct *task,
4777                               struct kern_ipc_perm *perm,
4778                               u16 sclass)
4779 {
4780         struct task_security_struct *tsec = task->security;
4781         struct ipc_security_struct *isec;
4782
4783         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4784         if (!isec)
4785                 return -ENOMEM;
4786
4787         isec->sclass = sclass;
4788         isec->sid = tsec->sid;
4789         perm->security = isec;
4790
4791         return 0;
4792 }
4793
4794 static void ipc_free_security(struct kern_ipc_perm *perm)
4795 {
4796         struct ipc_security_struct *isec = perm->security;
4797         perm->security = NULL;
4798         kfree(isec);
4799 }
4800
4801 static int msg_msg_alloc_security(struct msg_msg *msg)
4802 {
4803         struct msg_security_struct *msec;
4804
4805         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4806         if (!msec)
4807                 return -ENOMEM;
4808
4809         msec->sid = SECINITSID_UNLABELED;
4810         msg->security = msec;
4811
4812         return 0;
4813 }
4814
4815 static void msg_msg_free_security(struct msg_msg *msg)
4816 {
4817         struct msg_security_struct *msec = msg->security;
4818
4819         msg->security = NULL;
4820         kfree(msec);
4821 }
4822
4823 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4824                         u32 perms)
4825 {
4826         struct task_security_struct *tsec;
4827         struct ipc_security_struct *isec;
4828         struct avc_audit_data ad;
4829
4830         tsec = current->security;
4831         isec = ipc_perms->security;
4832
4833         AVC_AUDIT_DATA_INIT(&ad, IPC);
4834         ad.u.ipc_id = ipc_perms->key;
4835
4836         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4837 }
4838
4839 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4840 {
4841         return msg_msg_alloc_security(msg);
4842 }
4843
4844 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4845 {
4846         msg_msg_free_security(msg);
4847 }
4848
4849 /* message queue security operations */
4850 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4851 {
4852         struct task_security_struct *tsec;
4853         struct ipc_security_struct *isec;
4854         struct avc_audit_data ad;
4855         int rc;
4856
4857         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4858         if (rc)
4859                 return rc;
4860
4861         tsec = current->security;
4862         isec = msq->q_perm.security;
4863
4864         AVC_AUDIT_DATA_INIT(&ad, IPC);
4865         ad.u.ipc_id = msq->q_perm.key;
4866
4867         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4868                           MSGQ__CREATE, &ad);
4869         if (rc) {
4870                 ipc_free_security(&msq->q_perm);
4871                 return rc;
4872         }
4873         return 0;
4874 }
4875
4876 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4877 {
4878         ipc_free_security(&msq->q_perm);
4879 }
4880
4881 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4882 {
4883         struct task_security_struct *tsec;
4884         struct ipc_security_struct *isec;
4885         struct avc_audit_data ad;
4886
4887         tsec = current->security;
4888         isec = msq->q_perm.security;
4889
4890         AVC_AUDIT_DATA_INIT(&ad, IPC);
4891         ad.u.ipc_id = msq->q_perm.key;
4892
4893         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4894                             MSGQ__ASSOCIATE, &ad);
4895 }
4896
4897 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4898 {
4899         int err;
4900         int perms;
4901
4902         switch (cmd) {
4903         case IPC_INFO:
4904         case MSG_INFO:
4905                 /* No specific object, just general system-wide information. */
4906                 return task_has_system(current, SYSTEM__IPC_INFO);
4907         case IPC_STAT:
4908         case MSG_STAT:
4909                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4910                 break;
4911         case IPC_SET:
4912                 perms = MSGQ__SETATTR;
4913                 break;
4914         case IPC_RMID:
4915                 perms = MSGQ__DESTROY;
4916                 break;
4917         default:
4918                 return 0;
4919         }
4920
4921         err = ipc_has_perm(&msq->q_perm, perms);
4922         return err;
4923 }
4924
4925 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4926 {
4927         struct task_security_struct *tsec;
4928         struct ipc_security_struct *isec;
4929         struct msg_security_struct *msec;
4930         struct avc_audit_data ad;
4931         int rc;
4932
4933         tsec = current->security;
4934         isec = msq->q_perm.security;
4935         msec = msg->security;
4936
4937         /*
4938          * First time through, need to assign label to the message
4939          */
4940         if (msec->sid == SECINITSID_UNLABELED) {
4941                 /*
4942                  * Compute new sid based on current process and
4943                  * message queue this message will be stored in
4944                  */
4945                 rc = security_transition_sid(tsec->sid,
4946                                              isec->sid,
4947                                              SECCLASS_MSG,
4948                                              &msec->sid);
4949                 if (rc)
4950                         return rc;
4951         }
4952
4953         AVC_AUDIT_DATA_INIT(&ad, IPC);
4954         ad.u.ipc_id = msq->q_perm.key;
4955
4956         /* Can this process write to the queue? */
4957         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4958                           MSGQ__WRITE, &ad);
4959         if (!rc)
4960                 /* Can this process send the message */
4961                 rc = avc_has_perm(tsec->sid, msec->sid,
4962                                   SECCLASS_MSG, MSG__SEND, &ad);
4963         if (!rc)
4964                 /* Can the message be put in the queue? */
4965                 rc = avc_has_perm(msec->sid, isec->sid,
4966                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4967
4968         return rc;
4969 }
4970
4971 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4972                                     struct task_struct *target,
4973                                     long type, int mode)
4974 {
4975         struct task_security_struct *tsec;
4976         struct ipc_security_struct *isec;
4977         struct msg_security_struct *msec;
4978         struct avc_audit_data ad;
4979         int rc;
4980
4981         tsec = target->security;
4982         isec = msq->q_perm.security;
4983         msec = msg->security;
4984
4985         AVC_AUDIT_DATA_INIT(&ad, IPC);
4986         ad.u.ipc_id = msq->q_perm.key;
4987
4988         rc = avc_has_perm(tsec->sid, isec->sid,
4989                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4990         if (!rc)
4991                 rc = avc_has_perm(tsec->sid, msec->sid,
4992                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4993         return rc;
4994 }
4995
4996 /* Shared Memory security operations */
4997 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4998 {
4999         struct task_security_struct *tsec;
5000         struct ipc_security_struct *isec;
5001         struct avc_audit_data ad;
5002         int rc;
5003
5004         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5005         if (rc)
5006                 return rc;
5007
5008         tsec = current->security;
5009         isec = shp->shm_perm.security;
5010
5011         AVC_AUDIT_DATA_INIT(&ad, IPC);
5012         ad.u.ipc_id = shp->shm_perm.key;
5013
5014         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5015                           SHM__CREATE, &ad);
5016         if (rc) {
5017                 ipc_free_security(&shp->shm_perm);
5018                 return rc;
5019         }
5020         return 0;
5021 }
5022
5023 static void selinux_shm_free_security(struct shmid_kernel *shp)
5024 {
5025         ipc_free_security(&shp->shm_perm);
5026 }
5027
5028 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5029 {
5030         struct task_security_struct *tsec;
5031         struct ipc_security_struct *isec;
5032         struct avc_audit_data ad;
5033
5034         tsec = current->security;
5035         isec = shp->shm_perm.security;
5036
5037         AVC_AUDIT_DATA_INIT(&ad, IPC);
5038         ad.u.ipc_id = shp->shm_perm.key;
5039
5040         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5041                             SHM__ASSOCIATE, &ad);
5042 }
5043
5044 /* Note, at this point, shp is locked down */
5045 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5046 {
5047         int perms;
5048         int err;
5049
5050         switch (cmd) {
5051         case IPC_INFO:
5052         case SHM_INFO:
5053                 /* No specific object, just general system-wide information. */
5054                 return task_has_system(current, SYSTEM__IPC_INFO);
5055         case IPC_STAT:
5056         case SHM_STAT:
5057                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5058                 break;
5059         case IPC_SET:
5060                 perms = SHM__SETATTR;
5061                 break;
5062         case SHM_LOCK:
5063         case SHM_UNLOCK:
5064                 perms = SHM__LOCK;
5065                 break;
5066         case IPC_RMID:
5067                 perms = SHM__DESTROY;
5068                 break;
5069         default:
5070                 return 0;
5071         }
5072
5073         err = ipc_has_perm(&shp->shm_perm, perms);
5074         return err;
5075 }
5076
5077 static int selinux_shm_shmat(struct shmid_kernel *shp,
5078                              char __user *shmaddr, int shmflg)
5079 {
5080         u32 perms;
5081         int rc;
5082
5083         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5084         if (rc)
5085                 return rc;
5086
5087         if (shmflg & SHM_RDONLY)
5088                 perms = SHM__READ;
5089         else
5090                 perms = SHM__READ | SHM__WRITE;
5091
5092         return ipc_has_perm(&shp->shm_perm, perms);
5093 }
5094
5095 /* Semaphore security operations */
5096 static int selinux_sem_alloc_security(struct sem_array *sma)
5097 {
5098         struct task_security_struct *tsec;
5099         struct ipc_security_struct *isec;
5100         struct avc_audit_data ad;
5101         int rc;
5102
5103         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5104         if (rc)
5105                 return rc;
5106
5107         tsec = current->security;
5108         isec = sma->sem_perm.security;
5109
5110         AVC_AUDIT_DATA_INIT(&ad, IPC);
5111         ad.u.ipc_id = sma->sem_perm.key;
5112
5113         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5114                           SEM__CREATE, &ad);
5115         if (rc) {
5116                 ipc_free_security(&sma->sem_perm);
5117                 return rc;
5118         }
5119         return 0;
5120 }
5121
5122 static void selinux_sem_free_security(struct sem_array *sma)
5123 {
5124         ipc_free_security(&sma->sem_perm);
5125 }
5126
5127 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5128 {
5129         struct task_security_struct *tsec;
5130         struct ipc_security_struct *isec;
5131         struct avc_audit_data ad;
5132
5133         tsec = current->security;
5134         isec = sma->sem_perm.security;
5135
5136         AVC_AUDIT_DATA_INIT(&ad, IPC);
5137         ad.u.ipc_id = sma->sem_perm.key;
5138
5139         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5140                             SEM__ASSOCIATE, &ad);
5141 }
5142
5143 /* Note, at this point, sma is locked down */
5144 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5145 {
5146         int err;
5147         u32 perms;
5148
5149         switch (cmd) {
5150         case IPC_INFO:
5151         case SEM_INFO:
5152                 /* No specific object, just general system-wide information. */
5153                 return task_has_system(current, SYSTEM__IPC_INFO);
5154         case GETPID:
5155         case GETNCNT:
5156         case GETZCNT:
5157                 perms = SEM__GETATTR;
5158                 break;
5159         case GETVAL:
5160         case GETALL:
5161                 perms = SEM__READ;
5162                 break;
5163         case SETVAL:
5164         case SETALL:
5165                 perms = SEM__WRITE;
5166                 break;
5167         case IPC_RMID:
5168                 perms = SEM__DESTROY;
5169                 break;
5170         case IPC_SET:
5171                 perms = SEM__SETATTR;
5172                 break;
5173         case IPC_STAT:
5174         case SEM_STAT:
5175                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5176                 break;
5177         default:
5178                 return 0;
5179         }
5180
5181         err = ipc_has_perm(&sma->sem_perm, perms);
5182         return err;
5183 }
5184
5185 static int selinux_sem_semop(struct sem_array *sma,
5186                              struct sembuf *sops, unsigned nsops, int alter)
5187 {
5188         u32 perms;
5189
5190         if (alter)
5191                 perms = SEM__READ | SEM__WRITE;
5192         else
5193                 perms = SEM__READ;
5194
5195         return ipc_has_perm(&sma->sem_perm, perms);
5196 }
5197
5198 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5199 {
5200         u32 av = 0;
5201
5202         av = 0;
5203         if (flag & S_IRUGO)
5204                 av |= IPC__UNIX_READ;
5205         if (flag & S_IWUGO)
5206                 av |= IPC__UNIX_WRITE;
5207
5208         if (av == 0)
5209                 return 0;
5210
5211         return ipc_has_perm(ipcp, av);
5212 }
5213
5214 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5215 {
5216         struct ipc_security_struct *isec = ipcp->security;
5217         *secid = isec->sid;
5218 }
5219
5220 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5221 {
5222         if (inode)
5223                 inode_doinit_with_dentry(inode, dentry);
5224 }
5225
5226 static int selinux_getprocattr(struct task_struct *p,
5227                                char *name, char **value)
5228 {
5229         struct task_security_struct *tsec;
5230         u32 sid;
5231         int error;
5232         unsigned len;
5233
5234         if (current != p) {
5235                 error = task_has_perm(current, p, PROCESS__GETATTR);
5236                 if (error)
5237                         return error;
5238         }
5239
5240         tsec = p->security;
5241
5242         if (!strcmp(name, "current"))
5243                 sid = tsec->sid;
5244         else if (!strcmp(name, "prev"))
5245                 sid = tsec->osid;
5246         else if (!strcmp(name, "exec"))
5247                 sid = tsec->exec_sid;
5248         else if (!strcmp(name, "fscreate"))
5249                 sid = tsec->create_sid;
5250         else if (!strcmp(name, "keycreate"))
5251                 sid = tsec->keycreate_sid;
5252         else if (!strcmp(name, "sockcreate"))
5253                 sid = tsec->sockcreate_sid;
5254         else
5255                 return -EINVAL;
5256
5257         if (!sid)
5258                 return 0;
5259
5260         error = security_sid_to_context(sid, value, &len);
5261         if (error)
5262                 return error;
5263         return len;
5264 }
5265
5266 static int selinux_setprocattr(struct task_struct *p,
5267                                char *name, void *value, size_t size)
5268 {
5269         struct task_security_struct *tsec;
5270         struct task_struct *tracer;
5271         u32 sid = 0;
5272         int error;
5273         char *str = value;
5274
5275         if (current != p) {
5276                 /* SELinux only allows a process to change its own
5277                    security attributes. */
5278                 return -EACCES;
5279         }
5280
5281         /*
5282          * Basic control over ability to set these attributes at all.
5283          * current == p, but we'll pass them separately in case the
5284          * above restriction is ever removed.
5285          */
5286         if (!strcmp(name, "exec"))
5287                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5288         else if (!strcmp(name, "fscreate"))
5289                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5290         else if (!strcmp(name, "keycreate"))
5291                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5292         else if (!strcmp(name, "sockcreate"))
5293                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5294         else if (!strcmp(name, "current"))
5295                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5296         else
5297                 error = -EINVAL;
5298         if (error)
5299                 return error;
5300
5301         /* Obtain a SID for the context, if one was specified. */
5302         if (size && str[1] && str[1] != '\n') {
5303                 if (str[size-1] == '\n') {
5304                         str[size-1] = 0;
5305                         size--;
5306                 }
5307                 error = security_context_to_sid(value, size, &sid);
5308                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5309                         if (!capable(CAP_MAC_ADMIN))
5310                                 return error;
5311                         error = security_context_to_sid_force(value, size,
5312                                                               &sid);
5313                 }
5314                 if (error)
5315                         return error;
5316         }
5317
5318         /* Permission checking based on the specified context is
5319            performed during the actual operation (execve,
5320            open/mkdir/...), when we know the full context of the
5321            operation.  See selinux_bprm_set_security for the execve
5322            checks and may_create for the file creation checks. The
5323            operation will then fail if the context is not permitted. */
5324         tsec = p->security;
5325         if (!strcmp(name, "exec"))
5326                 tsec->exec_sid = sid;
5327         else if (!strcmp(name, "fscreate"))
5328                 tsec->create_sid = sid;
5329         else if (!strcmp(name, "keycreate")) {
5330                 error = may_create_key(sid, p);
5331                 if (error)
5332                         return error;
5333                 tsec->keycreate_sid = sid;
5334         } else if (!strcmp(name, "sockcreate"))
5335                 tsec->sockcreate_sid = sid;
5336         else if (!strcmp(name, "current")) {
5337                 struct av_decision avd;
5338
5339                 if (sid == 0)
5340                         return -EINVAL;
5341                 /*
5342                  * SELinux allows to change context in the following case only.
5343                  *  - Single threaded processes.
5344                  *  - Multi threaded processes intend to change its context into
5345                  *    more restricted domain (defined by TYPEBOUNDS statement).
5346                  */
5347                 if (atomic_read(&p->mm->mm_users) != 1) {
5348                         struct task_struct *g, *t;
5349                         struct mm_struct *mm = p->mm;
5350                         read_lock(&tasklist_lock);
5351                         do_each_thread(g, t) {
5352                                 if (t->mm == mm && t != p) {
5353                                         read_unlock(&tasklist_lock);
5354                                         error = security_bounded_transition(tsec->sid, sid);
5355                                         if (!error)
5356                                                 goto boundary_ok;
5357
5358                                         return error;
5359                                 }
5360                         } while_each_thread(g, t);
5361                         read_unlock(&tasklist_lock);
5362                 }
5363 boundary_ok:
5364
5365                 /* Check permissions for the transition. */
5366                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5367                                      PROCESS__DYNTRANSITION, NULL);
5368                 if (error)
5369                         return error;
5370
5371                 /* Check for ptracing, and update the task SID if ok.
5372                    Otherwise, leave SID unchanged and fail. */
5373                 task_lock(p);
5374                 rcu_read_lock();
5375                 tracer = tracehook_tracer_task(p);
5376                 if (tracer != NULL) {
5377                         struct task_security_struct *ptsec = tracer->security;
5378                         u32 ptsid = ptsec->sid;
5379                         rcu_read_unlock();
5380                         error = avc_has_perm_noaudit(ptsid, sid,
5381                                                      SECCLASS_PROCESS,
5382                                                      PROCESS__PTRACE, 0, &avd);
5383                         if (!error)
5384                                 tsec->sid = sid;
5385                         task_unlock(p);
5386                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5387                                   PROCESS__PTRACE, &avd, error, NULL);
5388                         if (error)
5389                                 return error;
5390                 } else {
5391                         rcu_read_unlock();
5392                         tsec->sid = sid;
5393                         task_unlock(p);
5394                 }
5395         } else
5396                 return -EINVAL;
5397
5398         return size;
5399 }
5400
5401 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5402 {
5403         return security_sid_to_context(secid, secdata, seclen);
5404 }
5405
5406 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5407 {
5408         return security_context_to_sid(secdata, seclen, secid);
5409 }
5410
5411 static void selinux_release_secctx(char *secdata, u32 seclen)
5412 {
5413         kfree(secdata);
5414 }
5415
5416 #ifdef CONFIG_KEYS
5417
5418 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5419                              unsigned long flags)
5420 {
5421         struct task_security_struct *tsec = tsk->security;
5422         struct key_security_struct *ksec;
5423
5424         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5425         if (!ksec)
5426                 return -ENOMEM;
5427
5428         if (tsec->keycreate_sid)
5429                 ksec->sid = tsec->keycreate_sid;
5430         else
5431                 ksec->sid = tsec->sid;
5432         k->security = ksec;
5433
5434         return 0;
5435 }
5436
5437 static void selinux_key_free(struct key *k)
5438 {
5439         struct key_security_struct *ksec = k->security;
5440
5441         k->security = NULL;
5442         kfree(ksec);
5443 }
5444
5445 static int selinux_key_permission(key_ref_t key_ref,
5446                             struct task_struct *ctx,
5447                             key_perm_t perm)
5448 {
5449         struct key *key;
5450         struct task_security_struct *tsec;
5451         struct key_security_struct *ksec;
5452
5453         key = key_ref_to_ptr(key_ref);
5454
5455         tsec = ctx->security;
5456         ksec = key->security;
5457
5458         /* if no specific permissions are requested, we skip the
5459            permission check. No serious, additional covert channels
5460            appear to be created. */
5461         if (perm == 0)
5462                 return 0;
5463
5464         return avc_has_perm(tsec->sid, ksec->sid,
5465                             SECCLASS_KEY, perm, NULL);
5466 }
5467
5468 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5469 {
5470         struct key_security_struct *ksec = key->security;
5471         char *context = NULL;
5472         unsigned len;
5473         int rc;
5474
5475         rc = security_sid_to_context(ksec->sid, &context, &len);
5476         if (!rc)
5477                 rc = len;
5478         *_buffer = context;
5479         return rc;
5480 }
5481
5482 #endif
5483
5484 static struct security_operations selinux_ops = {
5485         .name =                         "selinux",
5486
5487         .ptrace_may_access =            selinux_ptrace_may_access,
5488         .ptrace_traceme =               selinux_ptrace_traceme,
5489         .capget =                       selinux_capget,
5490         .capset_check =                 selinux_capset_check,
5491         .capset_set =                   selinux_capset_set,
5492         .sysctl =                       selinux_sysctl,
5493         .capable =                      selinux_capable,
5494         .quotactl =                     selinux_quotactl,
5495         .quota_on =                     selinux_quota_on,
5496         .syslog =                       selinux_syslog,
5497         .vm_enough_memory =             selinux_vm_enough_memory,
5498
5499         .netlink_send =                 selinux_netlink_send,
5500         .netlink_recv =                 selinux_netlink_recv,
5501
5502         .bprm_alloc_security =          selinux_bprm_alloc_security,
5503         .bprm_free_security =           selinux_bprm_free_security,
5504         .bprm_apply_creds =             selinux_bprm_apply_creds,
5505         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5506         .bprm_set_security =            selinux_bprm_set_security,
5507         .bprm_check_security =          selinux_bprm_check_security,
5508         .bprm_secureexec =              selinux_bprm_secureexec,
5509
5510         .sb_alloc_security =            selinux_sb_alloc_security,
5511         .sb_free_security =             selinux_sb_free_security,
5512         .sb_copy_data =                 selinux_sb_copy_data,
5513         .sb_kern_mount =                selinux_sb_kern_mount,
5514         .sb_show_options =              selinux_sb_show_options,
5515         .sb_statfs =                    selinux_sb_statfs,
5516         .sb_mount =                     selinux_mount,
5517         .sb_umount =                    selinux_umount,
5518         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5519         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5520         .sb_parse_opts_str =            selinux_parse_opts_str,
5521
5522
5523         .inode_alloc_security =         selinux_inode_alloc_security,
5524         .inode_free_security =          selinux_inode_free_security,
5525         .inode_init_security =          selinux_inode_init_security,
5526         .inode_create =                 selinux_inode_create,
5527         .inode_link =                   selinux_inode_link,
5528         .inode_unlink =                 selinux_inode_unlink,
5529         .inode_symlink =                selinux_inode_symlink,
5530         .inode_mkdir =                  selinux_inode_mkdir,
5531         .inode_rmdir =                  selinux_inode_rmdir,
5532         .inode_mknod =                  selinux_inode_mknod,
5533         .inode_rename =                 selinux_inode_rename,
5534         .inode_readlink =               selinux_inode_readlink,
5535         .inode_follow_link =            selinux_inode_follow_link,
5536         .inode_permission =             selinux_inode_permission,
5537         .inode_setattr =                selinux_inode_setattr,
5538         .inode_getattr =                selinux_inode_getattr,
5539         .inode_setxattr =               selinux_inode_setxattr,
5540         .inode_post_setxattr =          selinux_inode_post_setxattr,
5541         .inode_getxattr =               selinux_inode_getxattr,
5542         .inode_listxattr =              selinux_inode_listxattr,
5543         .inode_removexattr =            selinux_inode_removexattr,
5544         .inode_getsecurity =            selinux_inode_getsecurity,
5545         .inode_setsecurity =            selinux_inode_setsecurity,
5546         .inode_listsecurity =           selinux_inode_listsecurity,
5547         .inode_need_killpriv =          selinux_inode_need_killpriv,
5548         .inode_killpriv =               selinux_inode_killpriv,
5549         .inode_getsecid =               selinux_inode_getsecid,
5550
5551         .file_permission =              selinux_file_permission,
5552         .file_alloc_security =          selinux_file_alloc_security,
5553         .file_free_security =           selinux_file_free_security,
5554         .file_ioctl =                   selinux_file_ioctl,
5555         .file_mmap =                    selinux_file_mmap,
5556         .file_mprotect =                selinux_file_mprotect,
5557         .file_lock =                    selinux_file_lock,
5558         .file_fcntl =                   selinux_file_fcntl,
5559         .file_set_fowner =              selinux_file_set_fowner,
5560         .file_send_sigiotask =          selinux_file_send_sigiotask,
5561         .file_receive =                 selinux_file_receive,
5562
5563         .dentry_open =                  selinux_dentry_open,
5564
5565         .task_create =                  selinux_task_create,
5566         .task_alloc_security =          selinux_task_alloc_security,
5567         .task_free_security =           selinux_task_free_security,
5568         .task_setuid =                  selinux_task_setuid,
5569         .task_post_setuid =             selinux_task_post_setuid,
5570         .task_setgid =                  selinux_task_setgid,
5571         .task_setpgid =                 selinux_task_setpgid,
5572         .task_getpgid =                 selinux_task_getpgid,
5573         .task_getsid =                  selinux_task_getsid,
5574         .task_getsecid =                selinux_task_getsecid,
5575         .task_setgroups =               selinux_task_setgroups,
5576         .task_setnice =                 selinux_task_setnice,
5577         .task_setioprio =               selinux_task_setioprio,
5578         .task_getioprio =               selinux_task_getioprio,
5579         .task_setrlimit =               selinux_task_setrlimit,
5580         .task_setscheduler =            selinux_task_setscheduler,
5581         .task_getscheduler =            selinux_task_getscheduler,
5582         .task_movememory =              selinux_task_movememory,
5583         .task_kill =                    selinux_task_kill,
5584         .task_wait =                    selinux_task_wait,
5585         .task_prctl =                   selinux_task_prctl,
5586         .task_reparent_to_init =        selinux_task_reparent_to_init,
5587         .task_to_inode =                selinux_task_to_inode,
5588
5589         .ipc_permission =               selinux_ipc_permission,
5590         .ipc_getsecid =                 selinux_ipc_getsecid,
5591
5592         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5593         .msg_msg_free_security =        selinux_msg_msg_free_security,
5594
5595         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5596         .msg_queue_free_security =      selinux_msg_queue_free_security,
5597         .msg_queue_associate =          selinux_msg_queue_associate,
5598         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5599         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5600         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5601
5602         .shm_alloc_security =           selinux_shm_alloc_security,
5603         .shm_free_security =            selinux_shm_free_security,
5604         .shm_associate =                selinux_shm_associate,
5605         .shm_shmctl =                   selinux_shm_shmctl,
5606         .shm_shmat =                    selinux_shm_shmat,
5607
5608         .sem_alloc_security =           selinux_sem_alloc_security,
5609         .sem_free_security =            selinux_sem_free_security,
5610         .sem_associate =                selinux_sem_associate,
5611         .sem_semctl =                   selinux_sem_semctl,
5612         .sem_semop =                    selinux_sem_semop,
5613
5614         .d_instantiate =                selinux_d_instantiate,
5615
5616         .getprocattr =                  selinux_getprocattr,
5617         .setprocattr =                  selinux_setprocattr,
5618
5619         .secid_to_secctx =              selinux_secid_to_secctx,
5620         .secctx_to_secid =              selinux_secctx_to_secid,
5621         .release_secctx =               selinux_release_secctx,
5622
5623         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5624         .unix_may_send =                selinux_socket_unix_may_send,
5625
5626         .socket_create =                selinux_socket_create,
5627         .socket_post_create =           selinux_socket_post_create,
5628         .socket_bind =                  selinux_socket_bind,
5629         .socket_connect =               selinux_socket_connect,
5630         .socket_listen =                selinux_socket_listen,
5631         .socket_accept =                selinux_socket_accept,
5632         .socket_sendmsg =               selinux_socket_sendmsg,
5633         .socket_recvmsg =               selinux_socket_recvmsg,
5634         .socket_getsockname =           selinux_socket_getsockname,
5635         .socket_getpeername =           selinux_socket_getpeername,
5636         .socket_getsockopt =            selinux_socket_getsockopt,
5637         .socket_setsockopt =            selinux_socket_setsockopt,
5638         .socket_shutdown =              selinux_socket_shutdown,
5639         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5640         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5641         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5642         .sk_alloc_security =            selinux_sk_alloc_security,
5643         .sk_free_security =             selinux_sk_free_security,
5644         .sk_clone_security =            selinux_sk_clone_security,
5645         .sk_getsecid =                  selinux_sk_getsecid,
5646         .sock_graft =                   selinux_sock_graft,
5647         .inet_conn_request =            selinux_inet_conn_request,
5648         .inet_csk_clone =               selinux_inet_csk_clone,
5649         .inet_conn_established =        selinux_inet_conn_established,
5650         .req_classify_flow =            selinux_req_classify_flow,
5651
5652 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5653         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5654         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5655         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5656         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5657         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5658         .xfrm_state_free_security =     selinux_xfrm_state_free,
5659         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5660         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5661         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5662         .xfrm_decode_session =          selinux_xfrm_decode_session,
5663 #endif
5664
5665 #ifdef CONFIG_KEYS
5666         .key_alloc =                    selinux_key_alloc,
5667         .key_free =                     selinux_key_free,
5668         .key_permission =               selinux_key_permission,
5669         .key_getsecurity =              selinux_key_getsecurity,
5670 #endif
5671
5672 #ifdef CONFIG_AUDIT
5673         .audit_rule_init =              selinux_audit_rule_init,
5674         .audit_rule_known =             selinux_audit_rule_known,
5675         .audit_rule_match =             selinux_audit_rule_match,
5676         .audit_rule_free =              selinux_audit_rule_free,
5677 #endif
5678 };
5679
5680 static __init int selinux_init(void)
5681 {
5682         struct task_security_struct *tsec;
5683
5684         if (!security_module_enable(&selinux_ops)) {
5685                 selinux_enabled = 0;
5686                 return 0;
5687         }
5688
5689         if (!selinux_enabled) {
5690                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5691                 return 0;
5692         }
5693
5694         printk(KERN_INFO "SELinux:  Initializing.\n");
5695
5696         /* Set the security state for the initial task. */
5697         if (task_alloc_security(current))
5698                 panic("SELinux:  Failed to initialize initial task.\n");
5699         tsec = current->security;
5700         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5701
5702         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5703                                             sizeof(struct inode_security_struct),
5704                                             0, SLAB_PANIC, NULL);
5705         avc_init();
5706
5707         secondary_ops = security_ops;
5708         if (!secondary_ops)
5709                 panic("SELinux: No initial security operations\n");
5710         if (register_security(&selinux_ops))
5711                 panic("SELinux: Unable to register with kernel.\n");
5712
5713         if (selinux_enforcing)
5714                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5715         else
5716                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5717
5718         return 0;
5719 }
5720
5721 void selinux_complete_init(void)
5722 {
5723         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5724
5725         /* Set up any superblocks initialized prior to the policy load. */
5726         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5727         spin_lock(&sb_lock);
5728         spin_lock(&sb_security_lock);
5729 next_sb:
5730         if (!list_empty(&superblock_security_head)) {
5731                 struct superblock_security_struct *sbsec =
5732                                 list_entry(superblock_security_head.next,
5733                                            struct superblock_security_struct,
5734                                            list);
5735                 struct super_block *sb = sbsec->sb;
5736                 sb->s_count++;
5737                 spin_unlock(&sb_security_lock);
5738                 spin_unlock(&sb_lock);
5739                 down_read(&sb->s_umount);
5740                 if (sb->s_root)
5741                         superblock_doinit(sb, NULL);
5742                 drop_super(sb);
5743                 spin_lock(&sb_lock);
5744                 spin_lock(&sb_security_lock);
5745                 list_del_init(&sbsec->list);
5746                 goto next_sb;
5747         }
5748         spin_unlock(&sb_security_lock);
5749         spin_unlock(&sb_lock);
5750 }
5751
5752 /* SELinux requires early initialization in order to label
5753    all processes and objects when they are created. */
5754 security_initcall(selinux_init);
5755
5756 #if defined(CONFIG_NETFILTER)
5757
5758 static struct nf_hook_ops selinux_ipv4_ops[] = {
5759         {
5760                 .hook =         selinux_ipv4_postroute,
5761                 .owner =        THIS_MODULE,
5762                 .pf =           PF_INET,
5763                 .hooknum =      NF_INET_POST_ROUTING,
5764                 .priority =     NF_IP_PRI_SELINUX_LAST,
5765         },
5766         {
5767                 .hook =         selinux_ipv4_forward,
5768                 .owner =        THIS_MODULE,
5769                 .pf =           PF_INET,
5770                 .hooknum =      NF_INET_FORWARD,
5771                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5772         },
5773         {
5774                 .hook =         selinux_ipv4_output,
5775                 .owner =        THIS_MODULE,
5776                 .pf =           PF_INET,
5777                 .hooknum =      NF_INET_LOCAL_OUT,
5778                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5779         }
5780 };
5781
5782 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5783
5784 static struct nf_hook_ops selinux_ipv6_ops[] = {
5785         {
5786                 .hook =         selinux_ipv6_postroute,
5787                 .owner =        THIS_MODULE,
5788                 .pf =           PF_INET6,
5789                 .hooknum =      NF_INET_POST_ROUTING,
5790                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5791         },
5792         {
5793                 .hook =         selinux_ipv6_forward,
5794                 .owner =        THIS_MODULE,
5795                 .pf =           PF_INET6,
5796                 .hooknum =      NF_INET_FORWARD,
5797                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5798         }
5799 };
5800
5801 #endif  /* IPV6 */
5802
5803 static int __init selinux_nf_ip_init(void)
5804 {
5805         int err = 0;
5806
5807         if (!selinux_enabled)
5808                 goto out;
5809
5810         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5811
5812         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5813         if (err)
5814                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5815
5816 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5817         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5818         if (err)
5819                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5820 #endif  /* IPV6 */
5821
5822 out:
5823         return err;
5824 }
5825
5826 __initcall(selinux_nf_ip_init);
5827
5828 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5829 static void selinux_nf_ip_exit(void)
5830 {
5831         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5832
5833         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5834 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5835         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5836 #endif  /* IPV6 */
5837 }
5838 #endif
5839
5840 #else /* CONFIG_NETFILTER */
5841
5842 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5843 #define selinux_nf_ip_exit()
5844 #endif
5845
5846 #endif /* CONFIG_NETFILTER */
5847
5848 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5849 static int selinux_disabled;
5850
5851 int selinux_disable(void)
5852 {
5853         extern void exit_sel_fs(void);
5854
5855         if (ss_initialized) {
5856                 /* Not permitted after initial policy load. */
5857                 return -EINVAL;
5858         }
5859
5860         if (selinux_disabled) {
5861                 /* Only do this once. */
5862                 return -EINVAL;
5863         }
5864
5865         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5866
5867         selinux_disabled = 1;
5868         selinux_enabled = 0;
5869
5870         /* Reset security_ops to the secondary module, dummy or capability. */
5871         security_ops = secondary_ops;
5872
5873         /* Unregister netfilter hooks. */
5874         selinux_nf_ip_exit();
5875
5876         /* Unregister selinuxfs. */
5877         exit_sel_fs();
5878
5879         return 0;
5880 }
5881 #endif