fix build on some compilers
[pandora-kernel.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops;       /* Initialized to NULL */
28
29 static inline int verify(struct security_operations *ops)
30 {
31         /* verify the security_operations structure exists */
32         if (!ops)
33                 return -EINVAL;
34         security_fixup_ops(ops);
35         return 0;
36 }
37
38 static void __init do_security_initcalls(void)
39 {
40         initcall_t *call;
41         call = __security_initcall_start;
42         while (call < __security_initcall_end) {
43                 (*call) ();
44                 call++;
45         }
46 }
47
48 /**
49  * security_init - initializes the security framework
50  *
51  * This should be called early in the kernel initialization sequence.
52  */
53 int __init security_init(void)
54 {
55         printk(KERN_INFO "Security Framework initialized\n");
56
57         security_fixup_ops(&default_security_ops);
58         security_ops = &default_security_ops;
59         do_security_initcalls();
60
61         return 0;
62 }
63
64 /* Save user chosen LSM */
65 static int __init choose_lsm(char *str)
66 {
67         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
68         return 1;
69 }
70 __setup("security=", choose_lsm);
71
72 /**
73  * security_module_enable - Load given security module on boot ?
74  * @ops: a pointer to the struct security_operations that is to be checked.
75  *
76  * Each LSM must pass this method before registering its own operations
77  * to avoid security registration races. This method may also be used
78  * to check if your LSM is currently loaded during kernel initialization.
79  *
80  * Return true if:
81  *      -The passed LSM is the one chosen by user at boot time,
82  *      -or user didsn't specify a specific LSM and we're the first to ask
83  *       for registeration permissoin,
84  *      -or the passed LSM is currently loaded.
85  * Otherwise, return false.
86  */
87 int __init security_module_enable(struct security_operations *ops)
88 {
89         if (!*chosen_lsm)
90                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
91         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
92                 return 0;
93
94         return 1;
95 }
96
97 /**
98  * register_security - registers a security framework with the kernel
99  * @ops: a pointer to the struct security_options that is to be registered
100  *
101  * This function is to allow a security module to register itself with the
102  * kernel security subsystem.  Some rudimentary checking is done on the @ops
103  * value passed to this function. You'll need to check first if your LSM
104  * is allowed to register its @ops by calling security_module_enable(@ops).
105  *
106  * If there is already a security module registered with the kernel,
107  * an error will be returned.  Otherwise 0 is returned on success.
108  */
109 int register_security(struct security_operations *ops)
110 {
111         if (verify(ops)) {
112                 printk(KERN_DEBUG "%s could not verify "
113                        "security_operations structure.\n", __func__);
114                 return -EINVAL;
115         }
116
117         if (security_ops != &default_security_ops)
118                 return -EAGAIN;
119
120         security_ops = ops;
121
122         return 0;
123 }
124
125 /* Security operations */
126
127 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
128 {
129         return security_ops->ptrace_may_access(child, mode);
130 }
131
132 int security_ptrace_traceme(struct task_struct *parent)
133 {
134         return security_ops->ptrace_traceme(parent);
135 }
136
137 int security_capget(struct task_struct *target,
138                      kernel_cap_t *effective,
139                      kernel_cap_t *inheritable,
140                      kernel_cap_t *permitted)
141 {
142         return security_ops->capget(target, effective, inheritable, permitted);
143 }
144
145 int security_capset_check(struct task_struct *target,
146                            kernel_cap_t *effective,
147                            kernel_cap_t *inheritable,
148                            kernel_cap_t *permitted)
149 {
150         return security_ops->capset_check(target, effective, inheritable, permitted);
151 }
152
153 void security_capset_set(struct task_struct *target,
154                           kernel_cap_t *effective,
155                           kernel_cap_t *inheritable,
156                           kernel_cap_t *permitted)
157 {
158         security_ops->capset_set(target, effective, inheritable, permitted);
159 }
160
161 int security_capable(struct task_struct *tsk, int cap)
162 {
163         return security_ops->capable(tsk, cap);
164 }
165
166 int security_acct(struct file *file)
167 {
168         return security_ops->acct(file);
169 }
170
171 int security_sysctl(struct ctl_table *table, int op)
172 {
173         return security_ops->sysctl(table, op);
174 }
175
176 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
177 {
178         return security_ops->quotactl(cmds, type, id, sb);
179 }
180
181 int security_quota_on(struct dentry *dentry)
182 {
183         return security_ops->quota_on(dentry);
184 }
185
186 int security_syslog(int type)
187 {
188         return security_ops->syslog(type);
189 }
190
191 int security_settime(struct timespec *ts, struct timezone *tz)
192 {
193         return security_ops->settime(ts, tz);
194 }
195
196 int security_vm_enough_memory(long pages)
197 {
198         WARN_ON(current->mm == NULL);
199         return security_ops->vm_enough_memory(current->mm, pages);
200 }
201
202 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
203 {
204         WARN_ON(mm == NULL);
205         return security_ops->vm_enough_memory(mm, pages);
206 }
207
208 int security_vm_enough_memory_kern(long pages)
209 {
210         /* If current->mm is a kernel thread then we will pass NULL,
211            for this specific case that is fine */
212         return security_ops->vm_enough_memory(current->mm, pages);
213 }
214
215 int security_bprm_alloc(struct linux_binprm *bprm)
216 {
217         return security_ops->bprm_alloc_security(bprm);
218 }
219
220 void security_bprm_free(struct linux_binprm *bprm)
221 {
222         security_ops->bprm_free_security(bprm);
223 }
224
225 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
226 {
227         security_ops->bprm_apply_creds(bprm, unsafe);
228 }
229
230 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
231 {
232         security_ops->bprm_post_apply_creds(bprm);
233 }
234
235 int security_bprm_set(struct linux_binprm *bprm)
236 {
237         return security_ops->bprm_set_security(bprm);
238 }
239
240 int security_bprm_check(struct linux_binprm *bprm)
241 {
242         return security_ops->bprm_check_security(bprm);
243 }
244
245 int security_bprm_secureexec(struct linux_binprm *bprm)
246 {
247         return security_ops->bprm_secureexec(bprm);
248 }
249
250 int security_sb_alloc(struct super_block *sb)
251 {
252         return security_ops->sb_alloc_security(sb);
253 }
254
255 void security_sb_free(struct super_block *sb)
256 {
257         security_ops->sb_free_security(sb);
258 }
259
260 int security_sb_copy_data(char *orig, char *copy)
261 {
262         return security_ops->sb_copy_data(orig, copy);
263 }
264 EXPORT_SYMBOL(security_sb_copy_data);
265
266 int security_sb_kern_mount(struct super_block *sb, void *data)
267 {
268         return security_ops->sb_kern_mount(sb, data);
269 }
270
271 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
272 {
273         return security_ops->sb_show_options(m, sb);
274 }
275
276 int security_sb_statfs(struct dentry *dentry)
277 {
278         return security_ops->sb_statfs(dentry);
279 }
280
281 int security_sb_mount(char *dev_name, struct path *path,
282                        char *type, unsigned long flags, void *data)
283 {
284         return security_ops->sb_mount(dev_name, path, type, flags, data);
285 }
286
287 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
288 {
289         return security_ops->sb_check_sb(mnt, path);
290 }
291
292 int security_sb_umount(struct vfsmount *mnt, int flags)
293 {
294         return security_ops->sb_umount(mnt, flags);
295 }
296
297 void security_sb_umount_close(struct vfsmount *mnt)
298 {
299         security_ops->sb_umount_close(mnt);
300 }
301
302 void security_sb_umount_busy(struct vfsmount *mnt)
303 {
304         security_ops->sb_umount_busy(mnt);
305 }
306
307 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
308 {
309         security_ops->sb_post_remount(mnt, flags, data);
310 }
311
312 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
313 {
314         security_ops->sb_post_addmount(mnt, mountpoint);
315 }
316
317 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
318 {
319         return security_ops->sb_pivotroot(old_path, new_path);
320 }
321
322 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
323 {
324         security_ops->sb_post_pivotroot(old_path, new_path);
325 }
326
327 int security_sb_set_mnt_opts(struct super_block *sb,
328                                 struct security_mnt_opts *opts)
329 {
330         return security_ops->sb_set_mnt_opts(sb, opts);
331 }
332 EXPORT_SYMBOL(security_sb_set_mnt_opts);
333
334 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
335                                 struct super_block *newsb)
336 {
337         security_ops->sb_clone_mnt_opts(oldsb, newsb);
338 }
339 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
340
341 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
342 {
343         return security_ops->sb_parse_opts_str(options, opts);
344 }
345 EXPORT_SYMBOL(security_sb_parse_opts_str);
346
347 int security_inode_alloc(struct inode *inode)
348 {
349         inode->i_security = NULL;
350         return security_ops->inode_alloc_security(inode);
351 }
352
353 void security_inode_free(struct inode *inode)
354 {
355         security_ops->inode_free_security(inode);
356 }
357
358 int security_inode_init_security(struct inode *inode, struct inode *dir,
359                                   char **name, void **value, size_t *len)
360 {
361         if (unlikely(IS_PRIVATE(inode)))
362                 return -EOPNOTSUPP;
363         return security_ops->inode_init_security(inode, dir, name, value, len);
364 }
365 EXPORT_SYMBOL(security_inode_init_security);
366
367 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
368 {
369         if (unlikely(IS_PRIVATE(dir)))
370                 return 0;
371         return security_ops->inode_create(dir, dentry, mode);
372 }
373
374 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
375                          struct dentry *new_dentry)
376 {
377         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
378                 return 0;
379         return security_ops->inode_link(old_dentry, dir, new_dentry);
380 }
381
382 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
383 {
384         if (unlikely(IS_PRIVATE(dentry->d_inode)))
385                 return 0;
386         return security_ops->inode_unlink(dir, dentry);
387 }
388
389 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
390                             const char *old_name)
391 {
392         if (unlikely(IS_PRIVATE(dir)))
393                 return 0;
394         return security_ops->inode_symlink(dir, dentry, old_name);
395 }
396
397 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
398 {
399         if (unlikely(IS_PRIVATE(dir)))
400                 return 0;
401         return security_ops->inode_mkdir(dir, dentry, mode);
402 }
403
404 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
405 {
406         if (unlikely(IS_PRIVATE(dentry->d_inode)))
407                 return 0;
408         return security_ops->inode_rmdir(dir, dentry);
409 }
410
411 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
412 {
413         if (unlikely(IS_PRIVATE(dir)))
414                 return 0;
415         return security_ops->inode_mknod(dir, dentry, mode, dev);
416 }
417
418 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
419                            struct inode *new_dir, struct dentry *new_dentry)
420 {
421         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
422             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
423                 return 0;
424         return security_ops->inode_rename(old_dir, old_dentry,
425                                            new_dir, new_dentry);
426 }
427
428 int security_inode_readlink(struct dentry *dentry)
429 {
430         if (unlikely(IS_PRIVATE(dentry->d_inode)))
431                 return 0;
432         return security_ops->inode_readlink(dentry);
433 }
434
435 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
436 {
437         if (unlikely(IS_PRIVATE(dentry->d_inode)))
438                 return 0;
439         return security_ops->inode_follow_link(dentry, nd);
440 }
441
442 int security_inode_permission(struct inode *inode, int mask)
443 {
444         if (unlikely(IS_PRIVATE(inode)))
445                 return 0;
446         return security_ops->inode_permission(inode, mask);
447 }
448
449 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
450 {
451         if (unlikely(IS_PRIVATE(dentry->d_inode)))
452                 return 0;
453         return security_ops->inode_setattr(dentry, attr);
454 }
455 EXPORT_SYMBOL_GPL(security_inode_setattr);
456
457 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
458 {
459         if (unlikely(IS_PRIVATE(dentry->d_inode)))
460                 return 0;
461         return security_ops->inode_getattr(mnt, dentry);
462 }
463
464 void security_inode_delete(struct inode *inode)
465 {
466         if (unlikely(IS_PRIVATE(inode)))
467                 return;
468         security_ops->inode_delete(inode);
469 }
470
471 int security_inode_setxattr(struct dentry *dentry, const char *name,
472                             const void *value, size_t size, int flags)
473 {
474         if (unlikely(IS_PRIVATE(dentry->d_inode)))
475                 return 0;
476         return security_ops->inode_setxattr(dentry, name, value, size, flags);
477 }
478
479 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
480                                   const void *value, size_t size, int flags)
481 {
482         if (unlikely(IS_PRIVATE(dentry->d_inode)))
483                 return;
484         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
485 }
486
487 int security_inode_getxattr(struct dentry *dentry, const char *name)
488 {
489         if (unlikely(IS_PRIVATE(dentry->d_inode)))
490                 return 0;
491         return security_ops->inode_getxattr(dentry, name);
492 }
493
494 int security_inode_listxattr(struct dentry *dentry)
495 {
496         if (unlikely(IS_PRIVATE(dentry->d_inode)))
497                 return 0;
498         return security_ops->inode_listxattr(dentry);
499 }
500
501 int security_inode_removexattr(struct dentry *dentry, const char *name)
502 {
503         if (unlikely(IS_PRIVATE(dentry->d_inode)))
504                 return 0;
505         return security_ops->inode_removexattr(dentry, name);
506 }
507
508 int security_inode_need_killpriv(struct dentry *dentry)
509 {
510         return security_ops->inode_need_killpriv(dentry);
511 }
512
513 int security_inode_killpriv(struct dentry *dentry)
514 {
515         return security_ops->inode_killpriv(dentry);
516 }
517
518 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
519 {
520         if (unlikely(IS_PRIVATE(inode)))
521                 return 0;
522         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
523 }
524
525 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
526 {
527         if (unlikely(IS_PRIVATE(inode)))
528                 return 0;
529         return security_ops->inode_setsecurity(inode, name, value, size, flags);
530 }
531
532 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
533 {
534         if (unlikely(IS_PRIVATE(inode)))
535                 return 0;
536         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
537 }
538
539 void security_inode_getsecid(const struct inode *inode, u32 *secid)
540 {
541         security_ops->inode_getsecid(inode, secid);
542 }
543
544 int security_file_permission(struct file *file, int mask)
545 {
546         return security_ops->file_permission(file, mask);
547 }
548
549 int security_file_alloc(struct file *file)
550 {
551         return security_ops->file_alloc_security(file);
552 }
553
554 void security_file_free(struct file *file)
555 {
556         security_ops->file_free_security(file);
557 }
558
559 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
560 {
561         return security_ops->file_ioctl(file, cmd, arg);
562 }
563
564 int security_file_mmap(struct file *file, unsigned long reqprot,
565                         unsigned long prot, unsigned long flags,
566                         unsigned long addr, unsigned long addr_only)
567 {
568         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
569 }
570
571 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
572                             unsigned long prot)
573 {
574         return security_ops->file_mprotect(vma, reqprot, prot);
575 }
576
577 int security_file_lock(struct file *file, unsigned int cmd)
578 {
579         return security_ops->file_lock(file, cmd);
580 }
581
582 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
583 {
584         return security_ops->file_fcntl(file, cmd, arg);
585 }
586
587 int security_file_set_fowner(struct file *file)
588 {
589         return security_ops->file_set_fowner(file);
590 }
591
592 int security_file_send_sigiotask(struct task_struct *tsk,
593                                   struct fown_struct *fown, int sig)
594 {
595         return security_ops->file_send_sigiotask(tsk, fown, sig);
596 }
597
598 int security_file_receive(struct file *file)
599 {
600         return security_ops->file_receive(file);
601 }
602
603 int security_dentry_open(struct file *file)
604 {
605         return security_ops->dentry_open(file);
606 }
607
608 int security_task_create(unsigned long clone_flags)
609 {
610         return security_ops->task_create(clone_flags);
611 }
612
613 int security_task_alloc(struct task_struct *p)
614 {
615         return security_ops->task_alloc_security(p);
616 }
617
618 void security_task_free(struct task_struct *p)
619 {
620         security_ops->task_free_security(p);
621 }
622
623 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
624 {
625         return security_ops->task_setuid(id0, id1, id2, flags);
626 }
627
628 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
629                                uid_t old_suid, int flags)
630 {
631         return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
632 }
633
634 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
635 {
636         return security_ops->task_setgid(id0, id1, id2, flags);
637 }
638
639 int security_task_setpgid(struct task_struct *p, pid_t pgid)
640 {
641         return security_ops->task_setpgid(p, pgid);
642 }
643
644 int security_task_getpgid(struct task_struct *p)
645 {
646         return security_ops->task_getpgid(p);
647 }
648
649 int security_task_getsid(struct task_struct *p)
650 {
651         return security_ops->task_getsid(p);
652 }
653
654 void security_task_getsecid(struct task_struct *p, u32 *secid)
655 {
656         security_ops->task_getsecid(p, secid);
657 }
658 EXPORT_SYMBOL(security_task_getsecid);
659
660 int security_task_setgroups(struct group_info *group_info)
661 {
662         return security_ops->task_setgroups(group_info);
663 }
664
665 int security_task_setnice(struct task_struct *p, int nice)
666 {
667         return security_ops->task_setnice(p, nice);
668 }
669
670 int security_task_setioprio(struct task_struct *p, int ioprio)
671 {
672         return security_ops->task_setioprio(p, ioprio);
673 }
674
675 int security_task_getioprio(struct task_struct *p)
676 {
677         return security_ops->task_getioprio(p);
678 }
679
680 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
681 {
682         return security_ops->task_setrlimit(resource, new_rlim);
683 }
684
685 int security_task_setscheduler(struct task_struct *p,
686                                 int policy, struct sched_param *lp)
687 {
688         return security_ops->task_setscheduler(p, policy, lp);
689 }
690
691 int security_task_getscheduler(struct task_struct *p)
692 {
693         return security_ops->task_getscheduler(p);
694 }
695
696 int security_task_movememory(struct task_struct *p)
697 {
698         return security_ops->task_movememory(p);
699 }
700
701 int security_task_kill(struct task_struct *p, struct siginfo *info,
702                         int sig, u32 secid)
703 {
704         return security_ops->task_kill(p, info, sig, secid);
705 }
706
707 int security_task_wait(struct task_struct *p)
708 {
709         return security_ops->task_wait(p);
710 }
711
712 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
713                          unsigned long arg4, unsigned long arg5, long *rc_p)
714 {
715         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
716 }
717
718 void security_task_reparent_to_init(struct task_struct *p)
719 {
720         security_ops->task_reparent_to_init(p);
721 }
722
723 void security_task_to_inode(struct task_struct *p, struct inode *inode)
724 {
725         security_ops->task_to_inode(p, inode);
726 }
727
728 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
729 {
730         return security_ops->ipc_permission(ipcp, flag);
731 }
732
733 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
734 {
735         security_ops->ipc_getsecid(ipcp, secid);
736 }
737
738 int security_msg_msg_alloc(struct msg_msg *msg)
739 {
740         return security_ops->msg_msg_alloc_security(msg);
741 }
742
743 void security_msg_msg_free(struct msg_msg *msg)
744 {
745         security_ops->msg_msg_free_security(msg);
746 }
747
748 int security_msg_queue_alloc(struct msg_queue *msq)
749 {
750         return security_ops->msg_queue_alloc_security(msq);
751 }
752
753 void security_msg_queue_free(struct msg_queue *msq)
754 {
755         security_ops->msg_queue_free_security(msq);
756 }
757
758 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
759 {
760         return security_ops->msg_queue_associate(msq, msqflg);
761 }
762
763 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
764 {
765         return security_ops->msg_queue_msgctl(msq, cmd);
766 }
767
768 int security_msg_queue_msgsnd(struct msg_queue *msq,
769                                struct msg_msg *msg, int msqflg)
770 {
771         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
772 }
773
774 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
775                                struct task_struct *target, long type, int mode)
776 {
777         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
778 }
779
780 int security_shm_alloc(struct shmid_kernel *shp)
781 {
782         return security_ops->shm_alloc_security(shp);
783 }
784
785 void security_shm_free(struct shmid_kernel *shp)
786 {
787         security_ops->shm_free_security(shp);
788 }
789
790 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
791 {
792         return security_ops->shm_associate(shp, shmflg);
793 }
794
795 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
796 {
797         return security_ops->shm_shmctl(shp, cmd);
798 }
799
800 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
801 {
802         return security_ops->shm_shmat(shp, shmaddr, shmflg);
803 }
804
805 int security_sem_alloc(struct sem_array *sma)
806 {
807         return security_ops->sem_alloc_security(sma);
808 }
809
810 void security_sem_free(struct sem_array *sma)
811 {
812         security_ops->sem_free_security(sma);
813 }
814
815 int security_sem_associate(struct sem_array *sma, int semflg)
816 {
817         return security_ops->sem_associate(sma, semflg);
818 }
819
820 int security_sem_semctl(struct sem_array *sma, int cmd)
821 {
822         return security_ops->sem_semctl(sma, cmd);
823 }
824
825 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
826                         unsigned nsops, int alter)
827 {
828         return security_ops->sem_semop(sma, sops, nsops, alter);
829 }
830
831 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
832 {
833         if (unlikely(inode && IS_PRIVATE(inode)))
834                 return;
835         security_ops->d_instantiate(dentry, inode);
836 }
837 EXPORT_SYMBOL(security_d_instantiate);
838
839 int security_getprocattr(struct task_struct *p, char *name, char **value)
840 {
841         return security_ops->getprocattr(p, name, value);
842 }
843
844 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
845 {
846         return security_ops->setprocattr(p, name, value, size);
847 }
848
849 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
850 {
851         return security_ops->netlink_send(sk, skb);
852 }
853
854 int security_netlink_recv(struct sk_buff *skb, int cap)
855 {
856         return security_ops->netlink_recv(skb, cap);
857 }
858 EXPORT_SYMBOL(security_netlink_recv);
859
860 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
861 {
862         return security_ops->secid_to_secctx(secid, secdata, seclen);
863 }
864 EXPORT_SYMBOL(security_secid_to_secctx);
865
866 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
867 {
868         return security_ops->secctx_to_secid(secdata, seclen, secid);
869 }
870 EXPORT_SYMBOL(security_secctx_to_secid);
871
872 void security_release_secctx(char *secdata, u32 seclen)
873 {
874         security_ops->release_secctx(secdata, seclen);
875 }
876 EXPORT_SYMBOL(security_release_secctx);
877
878 #ifdef CONFIG_SECURITY_NETWORK
879
880 int security_unix_stream_connect(struct socket *sock, struct socket *other,
881                                  struct sock *newsk)
882 {
883         return security_ops->unix_stream_connect(sock, other, newsk);
884 }
885 EXPORT_SYMBOL(security_unix_stream_connect);
886
887 int security_unix_may_send(struct socket *sock,  struct socket *other)
888 {
889         return security_ops->unix_may_send(sock, other);
890 }
891 EXPORT_SYMBOL(security_unix_may_send);
892
893 int security_socket_create(int family, int type, int protocol, int kern)
894 {
895         return security_ops->socket_create(family, type, protocol, kern);
896 }
897
898 int security_socket_post_create(struct socket *sock, int family,
899                                 int type, int protocol, int kern)
900 {
901         return security_ops->socket_post_create(sock, family, type,
902                                                 protocol, kern);
903 }
904
905 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
906 {
907         return security_ops->socket_bind(sock, address, addrlen);
908 }
909
910 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
911 {
912         return security_ops->socket_connect(sock, address, addrlen);
913 }
914
915 int security_socket_listen(struct socket *sock, int backlog)
916 {
917         return security_ops->socket_listen(sock, backlog);
918 }
919
920 int security_socket_accept(struct socket *sock, struct socket *newsock)
921 {
922         return security_ops->socket_accept(sock, newsock);
923 }
924
925 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
926 {
927         security_ops->socket_post_accept(sock, newsock);
928 }
929
930 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
931 {
932         return security_ops->socket_sendmsg(sock, msg, size);
933 }
934
935 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
936                             int size, int flags)
937 {
938         return security_ops->socket_recvmsg(sock, msg, size, flags);
939 }
940
941 int security_socket_getsockname(struct socket *sock)
942 {
943         return security_ops->socket_getsockname(sock);
944 }
945
946 int security_socket_getpeername(struct socket *sock)
947 {
948         return security_ops->socket_getpeername(sock);
949 }
950
951 int security_socket_getsockopt(struct socket *sock, int level, int optname)
952 {
953         return security_ops->socket_getsockopt(sock, level, optname);
954 }
955
956 int security_socket_setsockopt(struct socket *sock, int level, int optname)
957 {
958         return security_ops->socket_setsockopt(sock, level, optname);
959 }
960
961 int security_socket_shutdown(struct socket *sock, int how)
962 {
963         return security_ops->socket_shutdown(sock, how);
964 }
965
966 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
967 {
968         return security_ops->socket_sock_rcv_skb(sk, skb);
969 }
970 EXPORT_SYMBOL(security_sock_rcv_skb);
971
972 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
973                                       int __user *optlen, unsigned len)
974 {
975         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
976 }
977
978 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
979 {
980         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
981 }
982 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
983
984 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
985 {
986         return security_ops->sk_alloc_security(sk, family, priority);
987 }
988
989 void security_sk_free(struct sock *sk)
990 {
991         security_ops->sk_free_security(sk);
992 }
993
994 void security_sk_clone(const struct sock *sk, struct sock *newsk)
995 {
996         security_ops->sk_clone_security(sk, newsk);
997 }
998
999 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1000 {
1001         security_ops->sk_getsecid(sk, &fl->secid);
1002 }
1003 EXPORT_SYMBOL(security_sk_classify_flow);
1004
1005 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1006 {
1007         security_ops->req_classify_flow(req, fl);
1008 }
1009 EXPORT_SYMBOL(security_req_classify_flow);
1010
1011 void security_sock_graft(struct sock *sk, struct socket *parent)
1012 {
1013         security_ops->sock_graft(sk, parent);
1014 }
1015 EXPORT_SYMBOL(security_sock_graft);
1016
1017 int security_inet_conn_request(struct sock *sk,
1018                         struct sk_buff *skb, struct request_sock *req)
1019 {
1020         return security_ops->inet_conn_request(sk, skb, req);
1021 }
1022 EXPORT_SYMBOL(security_inet_conn_request);
1023
1024 void security_inet_csk_clone(struct sock *newsk,
1025                         const struct request_sock *req)
1026 {
1027         security_ops->inet_csk_clone(newsk, req);
1028 }
1029
1030 void security_inet_conn_established(struct sock *sk,
1031                         struct sk_buff *skb)
1032 {
1033         security_ops->inet_conn_established(sk, skb);
1034 }
1035
1036 #endif  /* CONFIG_SECURITY_NETWORK */
1037
1038 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1039
1040 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1041 {
1042         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1043 }
1044 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1045
1046 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1047                               struct xfrm_sec_ctx **new_ctxp)
1048 {
1049         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1050 }
1051
1052 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1053 {
1054         security_ops->xfrm_policy_free_security(ctx);
1055 }
1056 EXPORT_SYMBOL(security_xfrm_policy_free);
1057
1058 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1059 {
1060         return security_ops->xfrm_policy_delete_security(ctx);
1061 }
1062
1063 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1064 {
1065         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1066 }
1067 EXPORT_SYMBOL(security_xfrm_state_alloc);
1068
1069 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1070                                       struct xfrm_sec_ctx *polsec, u32 secid)
1071 {
1072         if (!polsec)
1073                 return 0;
1074         /*
1075          * We want the context to be taken from secid which is usually
1076          * from the sock.
1077          */
1078         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1079 }
1080
1081 int security_xfrm_state_delete(struct xfrm_state *x)
1082 {
1083         return security_ops->xfrm_state_delete_security(x);
1084 }
1085 EXPORT_SYMBOL(security_xfrm_state_delete);
1086
1087 void security_xfrm_state_free(struct xfrm_state *x)
1088 {
1089         security_ops->xfrm_state_free_security(x);
1090 }
1091
1092 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1093 {
1094         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1095 }
1096
1097 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1098                                        struct xfrm_policy *xp, struct flowi *fl)
1099 {
1100         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1101 }
1102
1103 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1104 {
1105         return security_ops->xfrm_decode_session(skb, secid, 1);
1106 }
1107
1108 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1109 {
1110         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1111
1112         BUG_ON(rc);
1113 }
1114 EXPORT_SYMBOL(security_skb_classify_flow);
1115
1116 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1117
1118 #ifdef CONFIG_KEYS
1119
1120 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1121 {
1122         return security_ops->key_alloc(key, tsk, flags);
1123 }
1124
1125 void security_key_free(struct key *key)
1126 {
1127         security_ops->key_free(key);
1128 }
1129
1130 int security_key_permission(key_ref_t key_ref,
1131                             struct task_struct *context, key_perm_t perm)
1132 {
1133         return security_ops->key_permission(key_ref, context, perm);
1134 }
1135
1136 int security_key_getsecurity(struct key *key, char **_buffer)
1137 {
1138         return security_ops->key_getsecurity(key, _buffer);
1139 }
1140
1141 #endif  /* CONFIG_KEYS */
1142
1143 #ifdef CONFIG_AUDIT
1144
1145 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1146 {
1147         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1148 }
1149
1150 int security_audit_rule_known(struct audit_krule *krule)
1151 {
1152         return security_ops->audit_rule_known(krule);
1153 }
1154
1155 void security_audit_rule_free(void *lsmrule)
1156 {
1157         security_ops->audit_rule_free(lsmrule);
1158 }
1159
1160 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1161                               struct audit_context *actx)
1162 {
1163         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1164 }
1165
1166 #endif /* CONFIG_AUDIT */