Merge branch 'tty-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[pandora-kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...)                  \
53         printk(KERN_DEBUG pr_fmt(format), ##args)
54 #else
55 #define REG_DBG_PRINT(args...)
56 #endif
57
58 /* Receipt of information from last regulatory request */
59 static struct regulatory_request *last_request;
60
61 /* To trigger userspace events */
62 static struct platform_device *reg_pdev;
63
64 static struct device_type reg_device_type = {
65         .uevent = reg_device_uevent,
66 };
67
68 /*
69  * Central wireless core regulatory domains, we only need two,
70  * the current one and a world regulatory domain in case we have no
71  * information to give us an alpha2
72  */
73 const struct ieee80211_regdomain *cfg80211_regdomain;
74
75 /*
76  * Protects static reg.c components:
77  *     - cfg80211_world_regdom
78  *     - cfg80211_regdom
79  *     - last_request
80  */
81 static DEFINE_MUTEX(reg_mutex);
82
83 static inline void assert_reg_lock(void)
84 {
85         lockdep_assert_held(&reg_mutex);
86 }
87
88 /* Used to queue up regulatory hints */
89 static LIST_HEAD(reg_requests_list);
90 static spinlock_t reg_requests_lock;
91
92 /* Used to queue up beacon hints for review */
93 static LIST_HEAD(reg_pending_beacons);
94 static spinlock_t reg_pending_beacons_lock;
95
96 /* Used to keep track of processed beacon hints */
97 static LIST_HEAD(reg_beacon_list);
98
99 struct reg_beacon {
100         struct list_head list;
101         struct ieee80211_channel chan;
102 };
103
104 static void reg_todo(struct work_struct *work);
105 static DECLARE_WORK(reg_work, reg_todo);
106
107 static void reg_timeout_work(struct work_struct *work);
108 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
109
110 /* We keep a static world regulatory domain in case of the absence of CRDA */
111 static const struct ieee80211_regdomain world_regdom = {
112         .n_reg_rules = 5,
113         .alpha2 =  "00",
114         .reg_rules = {
115                 /* IEEE 802.11b/g, channels 1..11 */
116                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
117                 /* IEEE 802.11b/g, channels 12..13. No HT40
118                  * channel fits here. */
119                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
120                         NL80211_RRF_PASSIVE_SCAN |
121                         NL80211_RRF_NO_IBSS),
122                 /* IEEE 802.11 channel 14 - Only JP enables
123                  * this and for 802.11b only */
124                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
125                         NL80211_RRF_PASSIVE_SCAN |
126                         NL80211_RRF_NO_IBSS |
127                         NL80211_RRF_NO_OFDM),
128                 /* IEEE 802.11a, channel 36..48 */
129                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
130                         NL80211_RRF_PASSIVE_SCAN |
131                         NL80211_RRF_NO_IBSS),
132
133                 /* NB: 5260 MHz - 5700 MHz requies DFS */
134
135                 /* IEEE 802.11a, channel 149..165 */
136                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
137                         NL80211_RRF_PASSIVE_SCAN |
138                         NL80211_RRF_NO_IBSS),
139         }
140 };
141
142 static const struct ieee80211_regdomain *cfg80211_world_regdom =
143         &world_regdom;
144
145 static char *ieee80211_regdom = "00";
146 static char user_alpha2[2];
147
148 module_param(ieee80211_regdom, charp, 0444);
149 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
150
151 static void reset_regdomains(void)
152 {
153         /* avoid freeing static information or freeing something twice */
154         if (cfg80211_regdomain == cfg80211_world_regdom)
155                 cfg80211_regdomain = NULL;
156         if (cfg80211_world_regdom == &world_regdom)
157                 cfg80211_world_regdom = NULL;
158         if (cfg80211_regdomain == &world_regdom)
159                 cfg80211_regdomain = NULL;
160
161         kfree(cfg80211_regdomain);
162         kfree(cfg80211_world_regdom);
163
164         cfg80211_world_regdom = &world_regdom;
165         cfg80211_regdomain = NULL;
166 }
167
168 /*
169  * Dynamic world regulatory domain requested by the wireless
170  * core upon initialization
171  */
172 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
173 {
174         BUG_ON(!last_request);
175
176         reset_regdomains();
177
178         cfg80211_world_regdom = rd;
179         cfg80211_regdomain = rd;
180 }
181
182 bool is_world_regdom(const char *alpha2)
183 {
184         if (!alpha2)
185                 return false;
186         if (alpha2[0] == '0' && alpha2[1] == '0')
187                 return true;
188         return false;
189 }
190
191 static bool is_alpha2_set(const char *alpha2)
192 {
193         if (!alpha2)
194                 return false;
195         if (alpha2[0] != 0 && alpha2[1] != 0)
196                 return true;
197         return false;
198 }
199
200 static bool is_unknown_alpha2(const char *alpha2)
201 {
202         if (!alpha2)
203                 return false;
204         /*
205          * Special case where regulatory domain was built by driver
206          * but a specific alpha2 cannot be determined
207          */
208         if (alpha2[0] == '9' && alpha2[1] == '9')
209                 return true;
210         return false;
211 }
212
213 static bool is_intersected_alpha2(const char *alpha2)
214 {
215         if (!alpha2)
216                 return false;
217         /*
218          * Special case where regulatory domain is the
219          * result of an intersection between two regulatory domain
220          * structures
221          */
222         if (alpha2[0] == '9' && alpha2[1] == '8')
223                 return true;
224         return false;
225 }
226
227 static bool is_an_alpha2(const char *alpha2)
228 {
229         if (!alpha2)
230                 return false;
231         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
232                 return true;
233         return false;
234 }
235
236 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
237 {
238         if (!alpha2_x || !alpha2_y)
239                 return false;
240         if (alpha2_x[0] == alpha2_y[0] &&
241                 alpha2_x[1] == alpha2_y[1])
242                 return true;
243         return false;
244 }
245
246 static bool regdom_changes(const char *alpha2)
247 {
248         assert_cfg80211_lock();
249
250         if (!cfg80211_regdomain)
251                 return true;
252         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
253                 return false;
254         return true;
255 }
256
257 /*
258  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
259  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
260  * has ever been issued.
261  */
262 static bool is_user_regdom_saved(void)
263 {
264         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
265                 return false;
266
267         /* This would indicate a mistake on the design */
268         if (WARN((!is_world_regdom(user_alpha2) &&
269                   !is_an_alpha2(user_alpha2)),
270                  "Unexpected user alpha2: %c%c\n",
271                  user_alpha2[0],
272                  user_alpha2[1]))
273                 return false;
274
275         return true;
276 }
277
278 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
279                          const struct ieee80211_regdomain *src_regd)
280 {
281         struct ieee80211_regdomain *regd;
282         int size_of_regd = 0;
283         unsigned int i;
284
285         size_of_regd = sizeof(struct ieee80211_regdomain) +
286           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
287
288         regd = kzalloc(size_of_regd, GFP_KERNEL);
289         if (!regd)
290                 return -ENOMEM;
291
292         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
293
294         for (i = 0; i < src_regd->n_reg_rules; i++)
295                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
296                         sizeof(struct ieee80211_reg_rule));
297
298         *dst_regd = regd;
299         return 0;
300 }
301
302 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
303 struct reg_regdb_search_request {
304         char alpha2[2];
305         struct list_head list;
306 };
307
308 static LIST_HEAD(reg_regdb_search_list);
309 static DEFINE_MUTEX(reg_regdb_search_mutex);
310
311 static void reg_regdb_search(struct work_struct *work)
312 {
313         struct reg_regdb_search_request *request;
314         const struct ieee80211_regdomain *curdom, *regdom;
315         int i, r;
316
317         mutex_lock(&reg_regdb_search_mutex);
318         while (!list_empty(&reg_regdb_search_list)) {
319                 request = list_first_entry(&reg_regdb_search_list,
320                                            struct reg_regdb_search_request,
321                                            list);
322                 list_del(&request->list);
323
324                 for (i=0; i<reg_regdb_size; i++) {
325                         curdom = reg_regdb[i];
326
327                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
328                                 r = reg_copy_regd(&regdom, curdom);
329                                 if (r)
330                                         break;
331                                 mutex_lock(&cfg80211_mutex);
332                                 set_regdom(regdom);
333                                 mutex_unlock(&cfg80211_mutex);
334                                 break;
335                         }
336                 }
337
338                 kfree(request);
339         }
340         mutex_unlock(&reg_regdb_search_mutex);
341 }
342
343 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
344
345 static void reg_regdb_query(const char *alpha2)
346 {
347         struct reg_regdb_search_request *request;
348
349         if (!alpha2)
350                 return;
351
352         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
353         if (!request)
354                 return;
355
356         memcpy(request->alpha2, alpha2, 2);
357
358         mutex_lock(&reg_regdb_search_mutex);
359         list_add_tail(&request->list, &reg_regdb_search_list);
360         mutex_unlock(&reg_regdb_search_mutex);
361
362         schedule_work(&reg_regdb_work);
363 }
364 #else
365 static inline void reg_regdb_query(const char *alpha2) {}
366 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
367
368 /*
369  * This lets us keep regulatory code which is updated on a regulatory
370  * basis in userspace. Country information is filled in by
371  * reg_device_uevent
372  */
373 static int call_crda(const char *alpha2)
374 {
375         if (!is_world_regdom((char *) alpha2))
376                 pr_info("Calling CRDA for country: %c%c\n",
377                         alpha2[0], alpha2[1]);
378         else
379                 pr_info("Calling CRDA to update world regulatory domain\n");
380
381         /* query internal regulatory database (if it exists) */
382         reg_regdb_query(alpha2);
383
384         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
385 }
386
387 /* Used by nl80211 before kmalloc'ing our regulatory domain */
388 bool reg_is_valid_request(const char *alpha2)
389 {
390         assert_cfg80211_lock();
391
392         if (!last_request)
393                 return false;
394
395         return alpha2_equal(last_request->alpha2, alpha2);
396 }
397
398 /* Sanity check on a regulatory rule */
399 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
400 {
401         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
402         u32 freq_diff;
403
404         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
405                 return false;
406
407         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
408                 return false;
409
410         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
411
412         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
413                         freq_range->max_bandwidth_khz > freq_diff)
414                 return false;
415
416         return true;
417 }
418
419 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
420 {
421         const struct ieee80211_reg_rule *reg_rule = NULL;
422         unsigned int i;
423
424         if (!rd->n_reg_rules)
425                 return false;
426
427         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
428                 return false;
429
430         for (i = 0; i < rd->n_reg_rules; i++) {
431                 reg_rule = &rd->reg_rules[i];
432                 if (!is_valid_reg_rule(reg_rule))
433                         return false;
434         }
435
436         return true;
437 }
438
439 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
440                             u32 center_freq_khz,
441                             u32 bw_khz)
442 {
443         u32 start_freq_khz, end_freq_khz;
444
445         start_freq_khz = center_freq_khz - (bw_khz/2);
446         end_freq_khz = center_freq_khz + (bw_khz/2);
447
448         if (start_freq_khz >= freq_range->start_freq_khz &&
449             end_freq_khz <= freq_range->end_freq_khz)
450                 return true;
451
452         return false;
453 }
454
455 /**
456  * freq_in_rule_band - tells us if a frequency is in a frequency band
457  * @freq_range: frequency rule we want to query
458  * @freq_khz: frequency we are inquiring about
459  *
460  * This lets us know if a specific frequency rule is or is not relevant to
461  * a specific frequency's band. Bands are device specific and artificial
462  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
463  * safe for now to assume that a frequency rule should not be part of a
464  * frequency's band if the start freq or end freq are off by more than 2 GHz.
465  * This resolution can be lowered and should be considered as we add
466  * regulatory rule support for other "bands".
467  **/
468 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
469         u32 freq_khz)
470 {
471 #define ONE_GHZ_IN_KHZ  1000000
472         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473                 return true;
474         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475                 return true;
476         return false;
477 #undef ONE_GHZ_IN_KHZ
478 }
479
480 /*
481  * Helper for regdom_intersect(), this does the real
482  * mathematical intersection fun
483  */
484 static int reg_rules_intersect(
485         const struct ieee80211_reg_rule *rule1,
486         const struct ieee80211_reg_rule *rule2,
487         struct ieee80211_reg_rule *intersected_rule)
488 {
489         const struct ieee80211_freq_range *freq_range1, *freq_range2;
490         struct ieee80211_freq_range *freq_range;
491         const struct ieee80211_power_rule *power_rule1, *power_rule2;
492         struct ieee80211_power_rule *power_rule;
493         u32 freq_diff;
494
495         freq_range1 = &rule1->freq_range;
496         freq_range2 = &rule2->freq_range;
497         freq_range = &intersected_rule->freq_range;
498
499         power_rule1 = &rule1->power_rule;
500         power_rule2 = &rule2->power_rule;
501         power_rule = &intersected_rule->power_rule;
502
503         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
504                 freq_range2->start_freq_khz);
505         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
506                 freq_range2->end_freq_khz);
507         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
508                 freq_range2->max_bandwidth_khz);
509
510         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
511         if (freq_range->max_bandwidth_khz > freq_diff)
512                 freq_range->max_bandwidth_khz = freq_diff;
513
514         power_rule->max_eirp = min(power_rule1->max_eirp,
515                 power_rule2->max_eirp);
516         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
517                 power_rule2->max_antenna_gain);
518
519         intersected_rule->flags = (rule1->flags | rule2->flags);
520
521         if (!is_valid_reg_rule(intersected_rule))
522                 return -EINVAL;
523
524         return 0;
525 }
526
527 /**
528  * regdom_intersect - do the intersection between two regulatory domains
529  * @rd1: first regulatory domain
530  * @rd2: second regulatory domain
531  *
532  * Use this function to get the intersection between two regulatory domains.
533  * Once completed we will mark the alpha2 for the rd as intersected, "98",
534  * as no one single alpha2 can represent this regulatory domain.
535  *
536  * Returns a pointer to the regulatory domain structure which will hold the
537  * resulting intersection of rules between rd1 and rd2. We will
538  * kzalloc() this structure for you.
539  */
540 static struct ieee80211_regdomain *regdom_intersect(
541         const struct ieee80211_regdomain *rd1,
542         const struct ieee80211_regdomain *rd2)
543 {
544         int r, size_of_regd;
545         unsigned int x, y;
546         unsigned int num_rules = 0, rule_idx = 0;
547         const struct ieee80211_reg_rule *rule1, *rule2;
548         struct ieee80211_reg_rule *intersected_rule;
549         struct ieee80211_regdomain *rd;
550         /* This is just a dummy holder to help us count */
551         struct ieee80211_reg_rule irule;
552
553         /* Uses the stack temporarily for counter arithmetic */
554         intersected_rule = &irule;
555
556         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
557
558         if (!rd1 || !rd2)
559                 return NULL;
560
561         /*
562          * First we get a count of the rules we'll need, then we actually
563          * build them. This is to so we can malloc() and free() a
564          * regdomain once. The reason we use reg_rules_intersect() here
565          * is it will return -EINVAL if the rule computed makes no sense.
566          * All rules that do check out OK are valid.
567          */
568
569         for (x = 0; x < rd1->n_reg_rules; x++) {
570                 rule1 = &rd1->reg_rules[x];
571                 for (y = 0; y < rd2->n_reg_rules; y++) {
572                         rule2 = &rd2->reg_rules[y];
573                         if (!reg_rules_intersect(rule1, rule2,
574                                         intersected_rule))
575                                 num_rules++;
576                         memset(intersected_rule, 0,
577                                         sizeof(struct ieee80211_reg_rule));
578                 }
579         }
580
581         if (!num_rules)
582                 return NULL;
583
584         size_of_regd = sizeof(struct ieee80211_regdomain) +
585                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
586
587         rd = kzalloc(size_of_regd, GFP_KERNEL);
588         if (!rd)
589                 return NULL;
590
591         for (x = 0; x < rd1->n_reg_rules; x++) {
592                 rule1 = &rd1->reg_rules[x];
593                 for (y = 0; y < rd2->n_reg_rules; y++) {
594                         rule2 = &rd2->reg_rules[y];
595                         /*
596                          * This time around instead of using the stack lets
597                          * write to the target rule directly saving ourselves
598                          * a memcpy()
599                          */
600                         intersected_rule = &rd->reg_rules[rule_idx];
601                         r = reg_rules_intersect(rule1, rule2,
602                                 intersected_rule);
603                         /*
604                          * No need to memset here the intersected rule here as
605                          * we're not using the stack anymore
606                          */
607                         if (r)
608                                 continue;
609                         rule_idx++;
610                 }
611         }
612
613         if (rule_idx != num_rules) {
614                 kfree(rd);
615                 return NULL;
616         }
617
618         rd->n_reg_rules = num_rules;
619         rd->alpha2[0] = '9';
620         rd->alpha2[1] = '8';
621
622         return rd;
623 }
624
625 /*
626  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
627  * want to just have the channel structure use these
628  */
629 static u32 map_regdom_flags(u32 rd_flags)
630 {
631         u32 channel_flags = 0;
632         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
633                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
634         if (rd_flags & NL80211_RRF_NO_IBSS)
635                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
636         if (rd_flags & NL80211_RRF_DFS)
637                 channel_flags |= IEEE80211_CHAN_RADAR;
638         return channel_flags;
639 }
640
641 static int freq_reg_info_regd(struct wiphy *wiphy,
642                               u32 center_freq,
643                               u32 desired_bw_khz,
644                               const struct ieee80211_reg_rule **reg_rule,
645                               const struct ieee80211_regdomain *custom_regd)
646 {
647         int i;
648         bool band_rule_found = false;
649         const struct ieee80211_regdomain *regd;
650         bool bw_fits = false;
651
652         if (!desired_bw_khz)
653                 desired_bw_khz = MHZ_TO_KHZ(20);
654
655         regd = custom_regd ? custom_regd : cfg80211_regdomain;
656
657         /*
658          * Follow the driver's regulatory domain, if present, unless a country
659          * IE has been processed or a user wants to help complaince further
660          */
661         if (!custom_regd &&
662             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
663             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664             wiphy->regd)
665                 regd = wiphy->regd;
666
667         if (!regd)
668                 return -EINVAL;
669
670         for (i = 0; i < regd->n_reg_rules; i++) {
671                 const struct ieee80211_reg_rule *rr;
672                 const struct ieee80211_freq_range *fr = NULL;
673
674                 rr = &regd->reg_rules[i];
675                 fr = &rr->freq_range;
676
677                 /*
678                  * We only need to know if one frequency rule was
679                  * was in center_freq's band, that's enough, so lets
680                  * not overwrite it once found
681                  */
682                 if (!band_rule_found)
683                         band_rule_found = freq_in_rule_band(fr, center_freq);
684
685                 bw_fits = reg_does_bw_fit(fr,
686                                           center_freq,
687                                           desired_bw_khz);
688
689                 if (band_rule_found && bw_fits) {
690                         *reg_rule = rr;
691                         return 0;
692                 }
693         }
694
695         if (!band_rule_found)
696                 return -ERANGE;
697
698         return -EINVAL;
699 }
700
701 int freq_reg_info(struct wiphy *wiphy,
702                   u32 center_freq,
703                   u32 desired_bw_khz,
704                   const struct ieee80211_reg_rule **reg_rule)
705 {
706         assert_cfg80211_lock();
707         return freq_reg_info_regd(wiphy,
708                                   center_freq,
709                                   desired_bw_khz,
710                                   reg_rule,
711                                   NULL);
712 }
713 EXPORT_SYMBOL(freq_reg_info);
714
715 #ifdef CONFIG_CFG80211_REG_DEBUG
716 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
717 {
718         switch (initiator) {
719         case NL80211_REGDOM_SET_BY_CORE:
720                 return "Set by core";
721         case NL80211_REGDOM_SET_BY_USER:
722                 return "Set by user";
723         case NL80211_REGDOM_SET_BY_DRIVER:
724                 return "Set by driver";
725         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
726                 return "Set by country IE";
727         default:
728                 WARN_ON(1);
729                 return "Set by bug";
730         }
731 }
732
733 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
734                                     u32 desired_bw_khz,
735                                     const struct ieee80211_reg_rule *reg_rule)
736 {
737         const struct ieee80211_power_rule *power_rule;
738         const struct ieee80211_freq_range *freq_range;
739         char max_antenna_gain[32];
740
741         power_rule = &reg_rule->power_rule;
742         freq_range = &reg_rule->freq_range;
743
744         if (!power_rule->max_antenna_gain)
745                 snprintf(max_antenna_gain, 32, "N/A");
746         else
747                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
748
749         REG_DBG_PRINT("Updating information on frequency %d MHz "
750                       "for a %d MHz width channel with regulatory rule:\n",
751                       chan->center_freq,
752                       KHZ_TO_MHZ(desired_bw_khz));
753
754         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
755                       freq_range->start_freq_khz,
756                       freq_range->end_freq_khz,
757                       freq_range->max_bandwidth_khz,
758                       max_antenna_gain,
759                       power_rule->max_eirp);
760 }
761 #else
762 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
763                                     u32 desired_bw_khz,
764                                     const struct ieee80211_reg_rule *reg_rule)
765 {
766         return;
767 }
768 #endif
769
770 /*
771  * Note that right now we assume the desired channel bandwidth
772  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
773  * per channel, the primary and the extension channel). To support
774  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
775  * new ieee80211_channel.target_bw and re run the regulatory check
776  * on the wiphy with the target_bw specified. Then we can simply use
777  * that below for the desired_bw_khz below.
778  */
779 static void handle_channel(struct wiphy *wiphy,
780                            enum nl80211_reg_initiator initiator,
781                            enum ieee80211_band band,
782                            unsigned int chan_idx)
783 {
784         int r;
785         u32 flags, bw_flags = 0;
786         u32 desired_bw_khz = MHZ_TO_KHZ(20);
787         const struct ieee80211_reg_rule *reg_rule = NULL;
788         const struct ieee80211_power_rule *power_rule = NULL;
789         const struct ieee80211_freq_range *freq_range = NULL;
790         struct ieee80211_supported_band *sband;
791         struct ieee80211_channel *chan;
792         struct wiphy *request_wiphy = NULL;
793
794         assert_cfg80211_lock();
795
796         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
797
798         sband = wiphy->bands[band];
799         BUG_ON(chan_idx >= sband->n_channels);
800         chan = &sband->channels[chan_idx];
801
802         flags = chan->orig_flags;
803
804         r = freq_reg_info(wiphy,
805                           MHZ_TO_KHZ(chan->center_freq),
806                           desired_bw_khz,
807                           &reg_rule);
808
809         if (r) {
810                 /*
811                  * We will disable all channels that do not match our
812                  * received regulatory rule unless the hint is coming
813                  * from a Country IE and the Country IE had no information
814                  * about a band. The IEEE 802.11 spec allows for an AP
815                  * to send only a subset of the regulatory rules allowed,
816                  * so an AP in the US that only supports 2.4 GHz may only send
817                  * a country IE with information for the 2.4 GHz band
818                  * while 5 GHz is still supported.
819                  */
820                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
821                     r == -ERANGE)
822                         return;
823
824                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
825                 chan->flags = IEEE80211_CHAN_DISABLED;
826                 return;
827         }
828
829         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
830
831         power_rule = &reg_rule->power_rule;
832         freq_range = &reg_rule->freq_range;
833
834         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
835                 bw_flags = IEEE80211_CHAN_NO_HT40;
836
837         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
838             request_wiphy && request_wiphy == wiphy &&
839             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
840                 /*
841                  * This guarantees the driver's requested regulatory domain
842                  * will always be used as a base for further regulatory
843                  * settings
844                  */
845                 chan->flags = chan->orig_flags =
846                         map_regdom_flags(reg_rule->flags) | bw_flags;
847                 chan->max_antenna_gain = chan->orig_mag =
848                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
849                 chan->max_power = chan->orig_mpwr =
850                         (int) MBM_TO_DBM(power_rule->max_eirp);
851                 return;
852         }
853
854         chan->beacon_found = false;
855         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
856         chan->max_antenna_gain = min(chan->orig_mag,
857                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
858         if (chan->orig_mpwr)
859                 chan->max_power = min(chan->orig_mpwr,
860                         (int) MBM_TO_DBM(power_rule->max_eirp));
861         else
862                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
863 }
864
865 static void handle_band(struct wiphy *wiphy,
866                         enum ieee80211_band band,
867                         enum nl80211_reg_initiator initiator)
868 {
869         unsigned int i;
870         struct ieee80211_supported_band *sband;
871
872         BUG_ON(!wiphy->bands[band]);
873         sband = wiphy->bands[band];
874
875         for (i = 0; i < sband->n_channels; i++)
876                 handle_channel(wiphy, initiator, band, i);
877 }
878
879 static bool ignore_reg_update(struct wiphy *wiphy,
880                               enum nl80211_reg_initiator initiator)
881 {
882         if (!last_request) {
883                 REG_DBG_PRINT("Ignoring regulatory request %s since "
884                               "last_request is not set\n",
885                               reg_initiator_name(initiator));
886                 return true;
887         }
888
889         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
890             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
891                 REG_DBG_PRINT("Ignoring regulatory request %s "
892                               "since the driver uses its own custom "
893                               "regulatory domain\n",
894                               reg_initiator_name(initiator));
895                 return true;
896         }
897
898         /*
899          * wiphy->regd will be set once the device has its own
900          * desired regulatory domain set
901          */
902         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
903             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
904             !is_world_regdom(last_request->alpha2)) {
905                 REG_DBG_PRINT("Ignoring regulatory request %s "
906                               "since the driver requires its own regulatory "
907                               "domain to be set first\n",
908                               reg_initiator_name(initiator));
909                 return true;
910         }
911
912         return false;
913 }
914
915 static void handle_reg_beacon(struct wiphy *wiphy,
916                               unsigned int chan_idx,
917                               struct reg_beacon *reg_beacon)
918 {
919         struct ieee80211_supported_band *sband;
920         struct ieee80211_channel *chan;
921         bool channel_changed = false;
922         struct ieee80211_channel chan_before;
923
924         assert_cfg80211_lock();
925
926         sband = wiphy->bands[reg_beacon->chan.band];
927         chan = &sband->channels[chan_idx];
928
929         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
930                 return;
931
932         if (chan->beacon_found)
933                 return;
934
935         chan->beacon_found = true;
936
937         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
938                 return;
939
940         chan_before.center_freq = chan->center_freq;
941         chan_before.flags = chan->flags;
942
943         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
944                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
945                 channel_changed = true;
946         }
947
948         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
949                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
950                 channel_changed = true;
951         }
952
953         if (channel_changed)
954                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
955 }
956
957 /*
958  * Called when a scan on a wiphy finds a beacon on
959  * new channel
960  */
961 static void wiphy_update_new_beacon(struct wiphy *wiphy,
962                                     struct reg_beacon *reg_beacon)
963 {
964         unsigned int i;
965         struct ieee80211_supported_band *sband;
966
967         assert_cfg80211_lock();
968
969         if (!wiphy->bands[reg_beacon->chan.band])
970                 return;
971
972         sband = wiphy->bands[reg_beacon->chan.band];
973
974         for (i = 0; i < sband->n_channels; i++)
975                 handle_reg_beacon(wiphy, i, reg_beacon);
976 }
977
978 /*
979  * Called upon reg changes or a new wiphy is added
980  */
981 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
982 {
983         unsigned int i;
984         struct ieee80211_supported_band *sband;
985         struct reg_beacon *reg_beacon;
986
987         assert_cfg80211_lock();
988
989         if (list_empty(&reg_beacon_list))
990                 return;
991
992         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
993                 if (!wiphy->bands[reg_beacon->chan.band])
994                         continue;
995                 sband = wiphy->bands[reg_beacon->chan.band];
996                 for (i = 0; i < sband->n_channels; i++)
997                         handle_reg_beacon(wiphy, i, reg_beacon);
998         }
999 }
1000
1001 static bool reg_is_world_roaming(struct wiphy *wiphy)
1002 {
1003         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1004             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1005                 return true;
1006         if (last_request &&
1007             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1008             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1009                 return true;
1010         return false;
1011 }
1012
1013 /* Reap the advantages of previously found beacons */
1014 static void reg_process_beacons(struct wiphy *wiphy)
1015 {
1016         /*
1017          * Means we are just firing up cfg80211, so no beacons would
1018          * have been processed yet.
1019          */
1020         if (!last_request)
1021                 return;
1022         if (!reg_is_world_roaming(wiphy))
1023                 return;
1024         wiphy_update_beacon_reg(wiphy);
1025 }
1026
1027 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1028 {
1029         if (!chan)
1030                 return true;
1031         if (chan->flags & IEEE80211_CHAN_DISABLED)
1032                 return true;
1033         /* This would happen when regulatory rules disallow HT40 completely */
1034         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1035                 return true;
1036         return false;
1037 }
1038
1039 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1040                                          enum ieee80211_band band,
1041                                          unsigned int chan_idx)
1042 {
1043         struct ieee80211_supported_band *sband;
1044         struct ieee80211_channel *channel;
1045         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1046         unsigned int i;
1047
1048         assert_cfg80211_lock();
1049
1050         sband = wiphy->bands[band];
1051         BUG_ON(chan_idx >= sband->n_channels);
1052         channel = &sband->channels[chan_idx];
1053
1054         if (is_ht40_not_allowed(channel)) {
1055                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1056                 return;
1057         }
1058
1059         /*
1060          * We need to ensure the extension channels exist to
1061          * be able to use HT40- or HT40+, this finds them (or not)
1062          */
1063         for (i = 0; i < sband->n_channels; i++) {
1064                 struct ieee80211_channel *c = &sband->channels[i];
1065                 if (c->center_freq == (channel->center_freq - 20))
1066                         channel_before = c;
1067                 if (c->center_freq == (channel->center_freq + 20))
1068                         channel_after = c;
1069         }
1070
1071         /*
1072          * Please note that this assumes target bandwidth is 20 MHz,
1073          * if that ever changes we also need to change the below logic
1074          * to include that as well.
1075          */
1076         if (is_ht40_not_allowed(channel_before))
1077                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1078         else
1079                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1080
1081         if (is_ht40_not_allowed(channel_after))
1082                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1083         else
1084                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1085 }
1086
1087 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1088                                       enum ieee80211_band band)
1089 {
1090         unsigned int i;
1091         struct ieee80211_supported_band *sband;
1092
1093         BUG_ON(!wiphy->bands[band]);
1094         sband = wiphy->bands[band];
1095
1096         for (i = 0; i < sband->n_channels; i++)
1097                 reg_process_ht_flags_channel(wiphy, band, i);
1098 }
1099
1100 static void reg_process_ht_flags(struct wiphy *wiphy)
1101 {
1102         enum ieee80211_band band;
1103
1104         if (!wiphy)
1105                 return;
1106
1107         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1108                 if (wiphy->bands[band])
1109                         reg_process_ht_flags_band(wiphy, band);
1110         }
1111
1112 }
1113
1114 static void wiphy_update_regulatory(struct wiphy *wiphy,
1115                                     enum nl80211_reg_initiator initiator)
1116 {
1117         enum ieee80211_band band;
1118
1119         assert_reg_lock();
1120
1121         if (ignore_reg_update(wiphy, initiator))
1122                 return;
1123
1124         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1125                 if (wiphy->bands[band])
1126                         handle_band(wiphy, band, initiator);
1127         }
1128
1129         reg_process_beacons(wiphy);
1130         reg_process_ht_flags(wiphy);
1131         if (wiphy->reg_notifier)
1132                 wiphy->reg_notifier(wiphy, last_request);
1133 }
1134
1135 void regulatory_update(struct wiphy *wiphy,
1136                        enum nl80211_reg_initiator setby)
1137 {
1138         mutex_lock(&reg_mutex);
1139         wiphy_update_regulatory(wiphy, setby);
1140         mutex_unlock(&reg_mutex);
1141 }
1142
1143 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1144 {
1145         struct cfg80211_registered_device *rdev;
1146
1147         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1148                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1149 }
1150
1151 static void handle_channel_custom(struct wiphy *wiphy,
1152                                   enum ieee80211_band band,
1153                                   unsigned int chan_idx,
1154                                   const struct ieee80211_regdomain *regd)
1155 {
1156         int r;
1157         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1158         u32 bw_flags = 0;
1159         const struct ieee80211_reg_rule *reg_rule = NULL;
1160         const struct ieee80211_power_rule *power_rule = NULL;
1161         const struct ieee80211_freq_range *freq_range = NULL;
1162         struct ieee80211_supported_band *sband;
1163         struct ieee80211_channel *chan;
1164
1165         assert_reg_lock();
1166
1167         sband = wiphy->bands[band];
1168         BUG_ON(chan_idx >= sband->n_channels);
1169         chan = &sband->channels[chan_idx];
1170
1171         r = freq_reg_info_regd(wiphy,
1172                                MHZ_TO_KHZ(chan->center_freq),
1173                                desired_bw_khz,
1174                                &reg_rule,
1175                                regd);
1176
1177         if (r) {
1178                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1179                               "regd has no rule that fits a %d MHz "
1180                               "wide channel\n",
1181                               chan->center_freq,
1182                               KHZ_TO_MHZ(desired_bw_khz));
1183                 chan->flags = IEEE80211_CHAN_DISABLED;
1184                 return;
1185         }
1186
1187         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1188
1189         power_rule = &reg_rule->power_rule;
1190         freq_range = &reg_rule->freq_range;
1191
1192         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1193                 bw_flags = IEEE80211_CHAN_NO_HT40;
1194
1195         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1196         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1197         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1198 }
1199
1200 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1201                                const struct ieee80211_regdomain *regd)
1202 {
1203         unsigned int i;
1204         struct ieee80211_supported_band *sband;
1205
1206         BUG_ON(!wiphy->bands[band]);
1207         sband = wiphy->bands[band];
1208
1209         for (i = 0; i < sband->n_channels; i++)
1210                 handle_channel_custom(wiphy, band, i, regd);
1211 }
1212
1213 /* Used by drivers prior to wiphy registration */
1214 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1215                                    const struct ieee80211_regdomain *regd)
1216 {
1217         enum ieee80211_band band;
1218         unsigned int bands_set = 0;
1219
1220         mutex_lock(&reg_mutex);
1221         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1222                 if (!wiphy->bands[band])
1223                         continue;
1224                 handle_band_custom(wiphy, band, regd);
1225                 bands_set++;
1226         }
1227         mutex_unlock(&reg_mutex);
1228
1229         /*
1230          * no point in calling this if it won't have any effect
1231          * on your device's supportd bands.
1232          */
1233         WARN_ON(!bands_set);
1234 }
1235 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1236
1237 /*
1238  * Return value which can be used by ignore_request() to indicate
1239  * it has been determined we should intersect two regulatory domains
1240  */
1241 #define REG_INTERSECT   1
1242
1243 /* This has the logic which determines when a new request
1244  * should be ignored. */
1245 static int ignore_request(struct wiphy *wiphy,
1246                           struct regulatory_request *pending_request)
1247 {
1248         struct wiphy *last_wiphy = NULL;
1249
1250         assert_cfg80211_lock();
1251
1252         /* All initial requests are respected */
1253         if (!last_request)
1254                 return 0;
1255
1256         switch (pending_request->initiator) {
1257         case NL80211_REGDOM_SET_BY_CORE:
1258                 return 0;
1259         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1260
1261                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1262
1263                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1264                         return -EINVAL;
1265                 if (last_request->initiator ==
1266                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1267                         if (last_wiphy != wiphy) {
1268                                 /*
1269                                  * Two cards with two APs claiming different
1270                                  * Country IE alpha2s. We could
1271                                  * intersect them, but that seems unlikely
1272                                  * to be correct. Reject second one for now.
1273                                  */
1274                                 if (regdom_changes(pending_request->alpha2))
1275                                         return -EOPNOTSUPP;
1276                                 return -EALREADY;
1277                         }
1278                         /*
1279                          * Two consecutive Country IE hints on the same wiphy.
1280                          * This should be picked up early by the driver/stack
1281                          */
1282                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1283                                 return 0;
1284                         return -EALREADY;
1285                 }
1286                 return 0;
1287         case NL80211_REGDOM_SET_BY_DRIVER:
1288                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1289                         if (regdom_changes(pending_request->alpha2))
1290                                 return 0;
1291                         return -EALREADY;
1292                 }
1293
1294                 /*
1295                  * This would happen if you unplug and plug your card
1296                  * back in or if you add a new device for which the previously
1297                  * loaded card also agrees on the regulatory domain.
1298                  */
1299                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1300                     !regdom_changes(pending_request->alpha2))
1301                         return -EALREADY;
1302
1303                 return REG_INTERSECT;
1304         case NL80211_REGDOM_SET_BY_USER:
1305                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1306                         return REG_INTERSECT;
1307                 /*
1308                  * If the user knows better the user should set the regdom
1309                  * to their country before the IE is picked up
1310                  */
1311                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1312                           last_request->intersect)
1313                         return -EOPNOTSUPP;
1314                 /*
1315                  * Process user requests only after previous user/driver/core
1316                  * requests have been processed
1317                  */
1318                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1319                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1320                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1321                         if (regdom_changes(last_request->alpha2))
1322                                 return -EAGAIN;
1323                 }
1324
1325                 if (!regdom_changes(pending_request->alpha2))
1326                         return -EALREADY;
1327
1328                 return 0;
1329         }
1330
1331         return -EINVAL;
1332 }
1333
1334 static void reg_set_request_processed(void)
1335 {
1336         bool need_more_processing = false;
1337
1338         last_request->processed = true;
1339
1340         spin_lock(&reg_requests_lock);
1341         if (!list_empty(&reg_requests_list))
1342                 need_more_processing = true;
1343         spin_unlock(&reg_requests_lock);
1344
1345         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1346                 cancel_delayed_work_sync(&reg_timeout);
1347
1348         if (need_more_processing)
1349                 schedule_work(&reg_work);
1350 }
1351
1352 /**
1353  * __regulatory_hint - hint to the wireless core a regulatory domain
1354  * @wiphy: if the hint comes from country information from an AP, this
1355  *      is required to be set to the wiphy that received the information
1356  * @pending_request: the regulatory request currently being processed
1357  *
1358  * The Wireless subsystem can use this function to hint to the wireless core
1359  * what it believes should be the current regulatory domain.
1360  *
1361  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1362  * already been set or other standard error codes.
1363  *
1364  * Caller must hold &cfg80211_mutex and &reg_mutex
1365  */
1366 static int __regulatory_hint(struct wiphy *wiphy,
1367                              struct regulatory_request *pending_request)
1368 {
1369         bool intersect = false;
1370         int r = 0;
1371
1372         assert_cfg80211_lock();
1373
1374         r = ignore_request(wiphy, pending_request);
1375
1376         if (r == REG_INTERSECT) {
1377                 if (pending_request->initiator ==
1378                     NL80211_REGDOM_SET_BY_DRIVER) {
1379                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1380                         if (r) {
1381                                 kfree(pending_request);
1382                                 return r;
1383                         }
1384                 }
1385                 intersect = true;
1386         } else if (r) {
1387                 /*
1388                  * If the regulatory domain being requested by the
1389                  * driver has already been set just copy it to the
1390                  * wiphy
1391                  */
1392                 if (r == -EALREADY &&
1393                     pending_request->initiator ==
1394                     NL80211_REGDOM_SET_BY_DRIVER) {
1395                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1396                         if (r) {
1397                                 kfree(pending_request);
1398                                 return r;
1399                         }
1400                         r = -EALREADY;
1401                         goto new_request;
1402                 }
1403                 kfree(pending_request);
1404                 return r;
1405         }
1406
1407 new_request:
1408         kfree(last_request);
1409
1410         last_request = pending_request;
1411         last_request->intersect = intersect;
1412
1413         pending_request = NULL;
1414
1415         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1416                 user_alpha2[0] = last_request->alpha2[0];
1417                 user_alpha2[1] = last_request->alpha2[1];
1418         }
1419
1420         /* When r == REG_INTERSECT we do need to call CRDA */
1421         if (r < 0) {
1422                 /*
1423                  * Since CRDA will not be called in this case as we already
1424                  * have applied the requested regulatory domain before we just
1425                  * inform userspace we have processed the request
1426                  */
1427                 if (r == -EALREADY) {
1428                         nl80211_send_reg_change_event(last_request);
1429                         reg_set_request_processed();
1430                 }
1431                 return r;
1432         }
1433
1434         return call_crda(last_request->alpha2);
1435 }
1436
1437 /* This processes *all* regulatory hints */
1438 static void reg_process_hint(struct regulatory_request *reg_request)
1439 {
1440         int r = 0;
1441         struct wiphy *wiphy = NULL;
1442         enum nl80211_reg_initiator initiator = reg_request->initiator;
1443
1444         BUG_ON(!reg_request->alpha2);
1445
1446         if (wiphy_idx_valid(reg_request->wiphy_idx))
1447                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1448
1449         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1450             !wiphy) {
1451                 kfree(reg_request);
1452                 return;
1453         }
1454
1455         r = __regulatory_hint(wiphy, reg_request);
1456         /* This is required so that the orig_* parameters are saved */
1457         if (r == -EALREADY && wiphy &&
1458             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1459                 wiphy_update_regulatory(wiphy, initiator);
1460                 return;
1461         }
1462
1463         /*
1464          * We only time out user hints, given that they should be the only
1465          * source of bogus requests.
1466          */
1467         if (r != -EALREADY &&
1468             reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1469                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1470 }
1471
1472 /*
1473  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1474  * Regulatory hints come on a first come first serve basis and we
1475  * must process each one atomically.
1476  */
1477 static void reg_process_pending_hints(void)
1478 {
1479         struct regulatory_request *reg_request;
1480
1481         mutex_lock(&cfg80211_mutex);
1482         mutex_lock(&reg_mutex);
1483
1484         /* When last_request->processed becomes true this will be rescheduled */
1485         if (last_request && !last_request->processed) {
1486                 REG_DBG_PRINT("Pending regulatory request, waiting "
1487                               "for it to be processed...\n");
1488                 goto out;
1489         }
1490
1491         spin_lock(&reg_requests_lock);
1492
1493         if (list_empty(&reg_requests_list)) {
1494                 spin_unlock(&reg_requests_lock);
1495                 goto out;
1496         }
1497
1498         reg_request = list_first_entry(&reg_requests_list,
1499                                        struct regulatory_request,
1500                                        list);
1501         list_del_init(&reg_request->list);
1502
1503         spin_unlock(&reg_requests_lock);
1504
1505         reg_process_hint(reg_request);
1506
1507 out:
1508         mutex_unlock(&reg_mutex);
1509         mutex_unlock(&cfg80211_mutex);
1510 }
1511
1512 /* Processes beacon hints -- this has nothing to do with country IEs */
1513 static void reg_process_pending_beacon_hints(void)
1514 {
1515         struct cfg80211_registered_device *rdev;
1516         struct reg_beacon *pending_beacon, *tmp;
1517
1518         /*
1519          * No need to hold the reg_mutex here as we just touch wiphys
1520          * and do not read or access regulatory variables.
1521          */
1522         mutex_lock(&cfg80211_mutex);
1523
1524         /* This goes through the _pending_ beacon list */
1525         spin_lock_bh(&reg_pending_beacons_lock);
1526
1527         if (list_empty(&reg_pending_beacons)) {
1528                 spin_unlock_bh(&reg_pending_beacons_lock);
1529                 goto out;
1530         }
1531
1532         list_for_each_entry_safe(pending_beacon, tmp,
1533                                  &reg_pending_beacons, list) {
1534
1535                 list_del_init(&pending_beacon->list);
1536
1537                 /* Applies the beacon hint to current wiphys */
1538                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1539                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1540
1541                 /* Remembers the beacon hint for new wiphys or reg changes */
1542                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1543         }
1544
1545         spin_unlock_bh(&reg_pending_beacons_lock);
1546 out:
1547         mutex_unlock(&cfg80211_mutex);
1548 }
1549
1550 static void reg_todo(struct work_struct *work)
1551 {
1552         reg_process_pending_hints();
1553         reg_process_pending_beacon_hints();
1554 }
1555
1556 static void queue_regulatory_request(struct regulatory_request *request)
1557 {
1558         if (isalpha(request->alpha2[0]))
1559                 request->alpha2[0] = toupper(request->alpha2[0]);
1560         if (isalpha(request->alpha2[1]))
1561                 request->alpha2[1] = toupper(request->alpha2[1]);
1562
1563         spin_lock(&reg_requests_lock);
1564         list_add_tail(&request->list, &reg_requests_list);
1565         spin_unlock(&reg_requests_lock);
1566
1567         schedule_work(&reg_work);
1568 }
1569
1570 /*
1571  * Core regulatory hint -- happens during cfg80211_init()
1572  * and when we restore regulatory settings.
1573  */
1574 static int regulatory_hint_core(const char *alpha2)
1575 {
1576         struct regulatory_request *request;
1577
1578         kfree(last_request);
1579         last_request = NULL;
1580
1581         request = kzalloc(sizeof(struct regulatory_request),
1582                           GFP_KERNEL);
1583         if (!request)
1584                 return -ENOMEM;
1585
1586         request->alpha2[0] = alpha2[0];
1587         request->alpha2[1] = alpha2[1];
1588         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1589
1590         queue_regulatory_request(request);
1591
1592         return 0;
1593 }
1594
1595 /* User hints */
1596 int regulatory_hint_user(const char *alpha2)
1597 {
1598         struct regulatory_request *request;
1599
1600         BUG_ON(!alpha2);
1601
1602         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1603         if (!request)
1604                 return -ENOMEM;
1605
1606         request->wiphy_idx = WIPHY_IDX_STALE;
1607         request->alpha2[0] = alpha2[0];
1608         request->alpha2[1] = alpha2[1];
1609         request->initiator = NL80211_REGDOM_SET_BY_USER;
1610
1611         queue_regulatory_request(request);
1612
1613         return 0;
1614 }
1615
1616 /* Driver hints */
1617 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1618 {
1619         struct regulatory_request *request;
1620
1621         BUG_ON(!alpha2);
1622         BUG_ON(!wiphy);
1623
1624         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1625         if (!request)
1626                 return -ENOMEM;
1627
1628         request->wiphy_idx = get_wiphy_idx(wiphy);
1629
1630         /* Must have registered wiphy first */
1631         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1632
1633         request->alpha2[0] = alpha2[0];
1634         request->alpha2[1] = alpha2[1];
1635         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1636
1637         queue_regulatory_request(request);
1638
1639         return 0;
1640 }
1641 EXPORT_SYMBOL(regulatory_hint);
1642
1643 /*
1644  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1645  * therefore cannot iterate over the rdev list here.
1646  */
1647 void regulatory_hint_11d(struct wiphy *wiphy,
1648                          enum ieee80211_band band,
1649                          u8 *country_ie,
1650                          u8 country_ie_len)
1651 {
1652         char alpha2[2];
1653         enum environment_cap env = ENVIRON_ANY;
1654         struct regulatory_request *request;
1655
1656         mutex_lock(&reg_mutex);
1657
1658         if (unlikely(!last_request))
1659                 goto out;
1660
1661         /* IE len must be evenly divisible by 2 */
1662         if (country_ie_len & 0x01)
1663                 goto out;
1664
1665         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1666                 goto out;
1667
1668         alpha2[0] = country_ie[0];
1669         alpha2[1] = country_ie[1];
1670
1671         if (country_ie[2] == 'I')
1672                 env = ENVIRON_INDOOR;
1673         else if (country_ie[2] == 'O')
1674                 env = ENVIRON_OUTDOOR;
1675
1676         /*
1677          * We will run this only upon a successful connection on cfg80211.
1678          * We leave conflict resolution to the workqueue, where can hold
1679          * cfg80211_mutex.
1680          */
1681         if (likely(last_request->initiator ==
1682             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1683             wiphy_idx_valid(last_request->wiphy_idx)))
1684                 goto out;
1685
1686         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1687         if (!request)
1688                 goto out;
1689
1690         request->wiphy_idx = get_wiphy_idx(wiphy);
1691         request->alpha2[0] = alpha2[0];
1692         request->alpha2[1] = alpha2[1];
1693         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1694         request->country_ie_env = env;
1695
1696         mutex_unlock(&reg_mutex);
1697
1698         queue_regulatory_request(request);
1699
1700         return;
1701
1702 out:
1703         mutex_unlock(&reg_mutex);
1704 }
1705
1706 static void restore_alpha2(char *alpha2, bool reset_user)
1707 {
1708         /* indicates there is no alpha2 to consider for restoration */
1709         alpha2[0] = '9';
1710         alpha2[1] = '7';
1711
1712         /* The user setting has precedence over the module parameter */
1713         if (is_user_regdom_saved()) {
1714                 /* Unless we're asked to ignore it and reset it */
1715                 if (reset_user) {
1716                         REG_DBG_PRINT("Restoring regulatory settings "
1717                                "including user preference\n");
1718                         user_alpha2[0] = '9';
1719                         user_alpha2[1] = '7';
1720
1721                         /*
1722                          * If we're ignoring user settings, we still need to
1723                          * check the module parameter to ensure we put things
1724                          * back as they were for a full restore.
1725                          */
1726                         if (!is_world_regdom(ieee80211_regdom)) {
1727                                 REG_DBG_PRINT("Keeping preference on "
1728                                        "module parameter ieee80211_regdom: %c%c\n",
1729                                        ieee80211_regdom[0],
1730                                        ieee80211_regdom[1]);
1731                                 alpha2[0] = ieee80211_regdom[0];
1732                                 alpha2[1] = ieee80211_regdom[1];
1733                         }
1734                 } else {
1735                         REG_DBG_PRINT("Restoring regulatory settings "
1736                                "while preserving user preference for: %c%c\n",
1737                                user_alpha2[0],
1738                                user_alpha2[1]);
1739                         alpha2[0] = user_alpha2[0];
1740                         alpha2[1] = user_alpha2[1];
1741                 }
1742         } else if (!is_world_regdom(ieee80211_regdom)) {
1743                 REG_DBG_PRINT("Keeping preference on "
1744                        "module parameter ieee80211_regdom: %c%c\n",
1745                        ieee80211_regdom[0],
1746                        ieee80211_regdom[1]);
1747                 alpha2[0] = ieee80211_regdom[0];
1748                 alpha2[1] = ieee80211_regdom[1];
1749         } else
1750                 REG_DBG_PRINT("Restoring regulatory settings\n");
1751 }
1752
1753 /*
1754  * Restoring regulatory settings involves ingoring any
1755  * possibly stale country IE information and user regulatory
1756  * settings if so desired, this includes any beacon hints
1757  * learned as we could have traveled outside to another country
1758  * after disconnection. To restore regulatory settings we do
1759  * exactly what we did at bootup:
1760  *
1761  *   - send a core regulatory hint
1762  *   - send a user regulatory hint if applicable
1763  *
1764  * Device drivers that send a regulatory hint for a specific country
1765  * keep their own regulatory domain on wiphy->regd so that does does
1766  * not need to be remembered.
1767  */
1768 static void restore_regulatory_settings(bool reset_user)
1769 {
1770         char alpha2[2];
1771         struct reg_beacon *reg_beacon, *btmp;
1772         struct regulatory_request *reg_request, *tmp;
1773         LIST_HEAD(tmp_reg_req_list);
1774
1775         mutex_lock(&cfg80211_mutex);
1776         mutex_lock(&reg_mutex);
1777
1778         reset_regdomains();
1779         restore_alpha2(alpha2, reset_user);
1780
1781         /*
1782          * If there's any pending requests we simply
1783          * stash them to a temporary pending queue and
1784          * add then after we've restored regulatory
1785          * settings.
1786          */
1787         spin_lock(&reg_requests_lock);
1788         if (!list_empty(&reg_requests_list)) {
1789                 list_for_each_entry_safe(reg_request, tmp,
1790                                          &reg_requests_list, list) {
1791                         if (reg_request->initiator !=
1792                             NL80211_REGDOM_SET_BY_USER)
1793                                 continue;
1794                         list_del(&reg_request->list);
1795                         list_add_tail(&reg_request->list, &tmp_reg_req_list);
1796                 }
1797         }
1798         spin_unlock(&reg_requests_lock);
1799
1800         /* Clear beacon hints */
1801         spin_lock_bh(&reg_pending_beacons_lock);
1802         if (!list_empty(&reg_pending_beacons)) {
1803                 list_for_each_entry_safe(reg_beacon, btmp,
1804                                          &reg_pending_beacons, list) {
1805                         list_del(&reg_beacon->list);
1806                         kfree(reg_beacon);
1807                 }
1808         }
1809         spin_unlock_bh(&reg_pending_beacons_lock);
1810
1811         if (!list_empty(&reg_beacon_list)) {
1812                 list_for_each_entry_safe(reg_beacon, btmp,
1813                                          &reg_beacon_list, list) {
1814                         list_del(&reg_beacon->list);
1815                         kfree(reg_beacon);
1816                 }
1817         }
1818
1819         /* First restore to the basic regulatory settings */
1820         cfg80211_regdomain = cfg80211_world_regdom;
1821
1822         mutex_unlock(&reg_mutex);
1823         mutex_unlock(&cfg80211_mutex);
1824
1825         regulatory_hint_core(cfg80211_regdomain->alpha2);
1826
1827         /*
1828          * This restores the ieee80211_regdom module parameter
1829          * preference or the last user requested regulatory
1830          * settings, user regulatory settings takes precedence.
1831          */
1832         if (is_an_alpha2(alpha2))
1833                 regulatory_hint_user(user_alpha2);
1834
1835         if (list_empty(&tmp_reg_req_list))
1836                 return;
1837
1838         mutex_lock(&cfg80211_mutex);
1839         mutex_lock(&reg_mutex);
1840
1841         spin_lock(&reg_requests_lock);
1842         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1843                 REG_DBG_PRINT("Adding request for country %c%c back "
1844                               "into the queue\n",
1845                               reg_request->alpha2[0],
1846                               reg_request->alpha2[1]);
1847                 list_del(&reg_request->list);
1848                 list_add_tail(&reg_request->list, &reg_requests_list);
1849         }
1850         spin_unlock(&reg_requests_lock);
1851
1852         mutex_unlock(&reg_mutex);
1853         mutex_unlock(&cfg80211_mutex);
1854
1855         REG_DBG_PRINT("Kicking the queue\n");
1856
1857         schedule_work(&reg_work);
1858 }
1859
1860 void regulatory_hint_disconnect(void)
1861 {
1862         REG_DBG_PRINT("All devices are disconnected, going to "
1863                       "restore regulatory settings\n");
1864         restore_regulatory_settings(false);
1865 }
1866
1867 static bool freq_is_chan_12_13_14(u16 freq)
1868 {
1869         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1870             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1871             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1872                 return true;
1873         return false;
1874 }
1875
1876 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1877                                  struct ieee80211_channel *beacon_chan,
1878                                  gfp_t gfp)
1879 {
1880         struct reg_beacon *reg_beacon;
1881
1882         if (likely((beacon_chan->beacon_found ||
1883             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1884             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1885              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1886                 return 0;
1887
1888         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1889         if (!reg_beacon)
1890                 return -ENOMEM;
1891
1892         REG_DBG_PRINT("Found new beacon on "
1893                       "frequency: %d MHz (Ch %d) on %s\n",
1894                       beacon_chan->center_freq,
1895                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1896                       wiphy_name(wiphy));
1897
1898         memcpy(&reg_beacon->chan, beacon_chan,
1899                 sizeof(struct ieee80211_channel));
1900
1901
1902         /*
1903          * Since we can be called from BH or and non-BH context
1904          * we must use spin_lock_bh()
1905          */
1906         spin_lock_bh(&reg_pending_beacons_lock);
1907         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1908         spin_unlock_bh(&reg_pending_beacons_lock);
1909
1910         schedule_work(&reg_work);
1911
1912         return 0;
1913 }
1914
1915 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1916 {
1917         unsigned int i;
1918         const struct ieee80211_reg_rule *reg_rule = NULL;
1919         const struct ieee80211_freq_range *freq_range = NULL;
1920         const struct ieee80211_power_rule *power_rule = NULL;
1921
1922         pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1923
1924         for (i = 0; i < rd->n_reg_rules; i++) {
1925                 reg_rule = &rd->reg_rules[i];
1926                 freq_range = &reg_rule->freq_range;
1927                 power_rule = &reg_rule->power_rule;
1928
1929                 /*
1930                  * There may not be documentation for max antenna gain
1931                  * in certain regions
1932                  */
1933                 if (power_rule->max_antenna_gain)
1934                         pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1935                                 freq_range->start_freq_khz,
1936                                 freq_range->end_freq_khz,
1937                                 freq_range->max_bandwidth_khz,
1938                                 power_rule->max_antenna_gain,
1939                                 power_rule->max_eirp);
1940                 else
1941                         pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1942                                 freq_range->start_freq_khz,
1943                                 freq_range->end_freq_khz,
1944                                 freq_range->max_bandwidth_khz,
1945                                 power_rule->max_eirp);
1946         }
1947 }
1948
1949 static void print_regdomain(const struct ieee80211_regdomain *rd)
1950 {
1951
1952         if (is_intersected_alpha2(rd->alpha2)) {
1953
1954                 if (last_request->initiator ==
1955                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1956                         struct cfg80211_registered_device *rdev;
1957                         rdev = cfg80211_rdev_by_wiphy_idx(
1958                                 last_request->wiphy_idx);
1959                         if (rdev) {
1960                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1961                                         rdev->country_ie_alpha2[0],
1962                                         rdev->country_ie_alpha2[1]);
1963                         } else
1964                                 pr_info("Current regulatory domain intersected:\n");
1965                 } else
1966                         pr_info("Current regulatory domain intersected:\n");
1967         } else if (is_world_regdom(rd->alpha2))
1968                 pr_info("World regulatory domain updated:\n");
1969         else {
1970                 if (is_unknown_alpha2(rd->alpha2))
1971                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1972                 else
1973                         pr_info("Regulatory domain changed to country: %c%c\n",
1974                                 rd->alpha2[0], rd->alpha2[1]);
1975         }
1976         print_rd_rules(rd);
1977 }
1978
1979 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1980 {
1981         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1982         print_rd_rules(rd);
1983 }
1984
1985 /* Takes ownership of rd only if it doesn't fail */
1986 static int __set_regdom(const struct ieee80211_regdomain *rd)
1987 {
1988         const struct ieee80211_regdomain *intersected_rd = NULL;
1989         struct cfg80211_registered_device *rdev = NULL;
1990         struct wiphy *request_wiphy;
1991         /* Some basic sanity checks first */
1992
1993         if (is_world_regdom(rd->alpha2)) {
1994                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1995                         return -EINVAL;
1996                 update_world_regdomain(rd);
1997                 return 0;
1998         }
1999
2000         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2001                         !is_unknown_alpha2(rd->alpha2))
2002                 return -EINVAL;
2003
2004         if (!last_request)
2005                 return -EINVAL;
2006
2007         /*
2008          * Lets only bother proceeding on the same alpha2 if the current
2009          * rd is non static (it means CRDA was present and was used last)
2010          * and the pending request came in from a country IE
2011          */
2012         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2013                 /*
2014                  * If someone else asked us to change the rd lets only bother
2015                  * checking if the alpha2 changes if CRDA was already called
2016                  */
2017                 if (!regdom_changes(rd->alpha2))
2018                         return -EINVAL;
2019         }
2020
2021         /*
2022          * Now lets set the regulatory domain, update all driver channels
2023          * and finally inform them of what we have done, in case they want
2024          * to review or adjust their own settings based on their own
2025          * internal EEPROM data
2026          */
2027
2028         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2029                 return -EINVAL;
2030
2031         if (!is_valid_rd(rd)) {
2032                 pr_err("Invalid regulatory domain detected:\n");
2033                 print_regdomain_info(rd);
2034                 return -EINVAL;
2035         }
2036
2037         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2038
2039         if (!last_request->intersect) {
2040                 int r;
2041
2042                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2043                         reset_regdomains();
2044                         cfg80211_regdomain = rd;
2045                         return 0;
2046                 }
2047
2048                 /*
2049                  * For a driver hint, lets copy the regulatory domain the
2050                  * driver wanted to the wiphy to deal with conflicts
2051                  */
2052
2053                 /*
2054                  * Userspace could have sent two replies with only
2055                  * one kernel request.
2056                  */
2057                 if (request_wiphy->regd)
2058                         return -EALREADY;
2059
2060                 r = reg_copy_regd(&request_wiphy->regd, rd);
2061                 if (r)
2062                         return r;
2063
2064                 reset_regdomains();
2065                 cfg80211_regdomain = rd;
2066                 return 0;
2067         }
2068
2069         /* Intersection requires a bit more work */
2070
2071         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2072
2073                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2074                 if (!intersected_rd)
2075                         return -EINVAL;
2076
2077                 /*
2078                  * We can trash what CRDA provided now.
2079                  * However if a driver requested this specific regulatory
2080                  * domain we keep it for its private use
2081                  */
2082                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2083                         request_wiphy->regd = rd;
2084                 else
2085                         kfree(rd);
2086
2087                 rd = NULL;
2088
2089                 reset_regdomains();
2090                 cfg80211_regdomain = intersected_rd;
2091
2092                 return 0;
2093         }
2094
2095         if (!intersected_rd)
2096                 return -EINVAL;
2097
2098         rdev = wiphy_to_dev(request_wiphy);
2099
2100         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2101         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2102         rdev->env = last_request->country_ie_env;
2103
2104         BUG_ON(intersected_rd == rd);
2105
2106         kfree(rd);
2107         rd = NULL;
2108
2109         reset_regdomains();
2110         cfg80211_regdomain = intersected_rd;
2111
2112         return 0;
2113 }
2114
2115
2116 /*
2117  * Use this call to set the current regulatory domain. Conflicts with
2118  * multiple drivers can be ironed out later. Caller must've already
2119  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2120  */
2121 int set_regdom(const struct ieee80211_regdomain *rd)
2122 {
2123         int r;
2124
2125         assert_cfg80211_lock();
2126
2127         mutex_lock(&reg_mutex);
2128
2129         /* Note that this doesn't update the wiphys, this is done below */
2130         r = __set_regdom(rd);
2131         if (r) {
2132                 kfree(rd);
2133                 mutex_unlock(&reg_mutex);
2134                 return r;
2135         }
2136
2137         /* This would make this whole thing pointless */
2138         if (!last_request->intersect)
2139                 BUG_ON(rd != cfg80211_regdomain);
2140
2141         /* update all wiphys now with the new established regulatory domain */
2142         update_all_wiphy_regulatory(last_request->initiator);
2143
2144         print_regdomain(cfg80211_regdomain);
2145
2146         nl80211_send_reg_change_event(last_request);
2147
2148         reg_set_request_processed();
2149
2150         mutex_unlock(&reg_mutex);
2151
2152         return r;
2153 }
2154
2155 #ifdef CONFIG_HOTPLUG
2156 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2157 {
2158         if (last_request && !last_request->processed) {
2159                 if (add_uevent_var(env, "COUNTRY=%c%c",
2160                                    last_request->alpha2[0],
2161                                    last_request->alpha2[1]))
2162                         return -ENOMEM;
2163         }
2164
2165         return 0;
2166 }
2167 #else
2168 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2169 {
2170         return -ENODEV;
2171 }
2172 #endif /* CONFIG_HOTPLUG */
2173
2174 /* Caller must hold cfg80211_mutex */
2175 void reg_device_remove(struct wiphy *wiphy)
2176 {
2177         struct wiphy *request_wiphy = NULL;
2178
2179         assert_cfg80211_lock();
2180
2181         mutex_lock(&reg_mutex);
2182
2183         kfree(wiphy->regd);
2184
2185         if (last_request)
2186                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2187
2188         if (!request_wiphy || request_wiphy != wiphy)
2189                 goto out;
2190
2191         last_request->wiphy_idx = WIPHY_IDX_STALE;
2192         last_request->country_ie_env = ENVIRON_ANY;
2193 out:
2194         mutex_unlock(&reg_mutex);
2195 }
2196
2197 static void reg_timeout_work(struct work_struct *work)
2198 {
2199         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2200                       "restoring regulatory settings\n");
2201         restore_regulatory_settings(true);
2202 }
2203
2204 int __init regulatory_init(void)
2205 {
2206         int err = 0;
2207
2208         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2209         if (IS_ERR(reg_pdev))
2210                 return PTR_ERR(reg_pdev);
2211
2212         reg_pdev->dev.type = &reg_device_type;
2213
2214         spin_lock_init(&reg_requests_lock);
2215         spin_lock_init(&reg_pending_beacons_lock);
2216
2217         cfg80211_regdomain = cfg80211_world_regdom;
2218
2219         user_alpha2[0] = '9';
2220         user_alpha2[1] = '7';
2221
2222         /* We always try to get an update for the static regdomain */
2223         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2224         if (err) {
2225                 if (err == -ENOMEM)
2226                         return err;
2227                 /*
2228                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2229                  * memory which is handled and propagated appropriately above
2230                  * but it can also fail during a netlink_broadcast() or during
2231                  * early boot for call_usermodehelper(). For now treat these
2232                  * errors as non-fatal.
2233                  */
2234                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2235 #ifdef CONFIG_CFG80211_REG_DEBUG
2236                 /* We want to find out exactly why when debugging */
2237                 WARN_ON(err);
2238 #endif
2239         }
2240
2241         /*
2242          * Finally, if the user set the module parameter treat it
2243          * as a user hint.
2244          */
2245         if (!is_world_regdom(ieee80211_regdom))
2246                 regulatory_hint_user(ieee80211_regdom);
2247
2248         return 0;
2249 }
2250
2251 void /* __init_or_exit */ regulatory_exit(void)
2252 {
2253         struct regulatory_request *reg_request, *tmp;
2254         struct reg_beacon *reg_beacon, *btmp;
2255
2256         cancel_work_sync(&reg_work);
2257         cancel_delayed_work_sync(&reg_timeout);
2258
2259         mutex_lock(&cfg80211_mutex);
2260         mutex_lock(&reg_mutex);
2261
2262         reset_regdomains();
2263
2264         kfree(last_request);
2265
2266         platform_device_unregister(reg_pdev);
2267
2268         spin_lock_bh(&reg_pending_beacons_lock);
2269         if (!list_empty(&reg_pending_beacons)) {
2270                 list_for_each_entry_safe(reg_beacon, btmp,
2271                                          &reg_pending_beacons, list) {
2272                         list_del(&reg_beacon->list);
2273                         kfree(reg_beacon);
2274                 }
2275         }
2276         spin_unlock_bh(&reg_pending_beacons_lock);
2277
2278         if (!list_empty(&reg_beacon_list)) {
2279                 list_for_each_entry_safe(reg_beacon, btmp,
2280                                          &reg_beacon_list, list) {
2281                         list_del(&reg_beacon->list);
2282                         kfree(reg_beacon);
2283                 }
2284         }
2285
2286         spin_lock(&reg_requests_lock);
2287         if (!list_empty(&reg_requests_list)) {
2288                 list_for_each_entry_safe(reg_request, tmp,
2289                                          &reg_requests_list, list) {
2290                         list_del(&reg_request->list);
2291                         kfree(reg_request);
2292                 }
2293         }
2294         spin_unlock(&reg_requests_lock);
2295
2296         mutex_unlock(&reg_mutex);
2297         mutex_unlock(&cfg80211_mutex);
2298 }