cfg80211: amend regulatory NULL dereference fix
[pandora-kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...)                  \
53         printk(KERN_DEBUG pr_fmt(format), ##args)
54 #else
55 #define REG_DBG_PRINT(args...)
56 #endif
57
58 static struct regulatory_request core_request_world = {
59         .initiator = NL80211_REGDOM_SET_BY_CORE,
60         .alpha2[0] = '0',
61         .alpha2[1] = '0',
62         .intersect = false,
63         .processed = true,
64         .country_ie_env = ENVIRON_ANY,
65 };
66
67 /* Receipt of information from last regulatory request */
68 static struct regulatory_request *last_request = &core_request_world;
69
70 /* To trigger userspace events */
71 static struct platform_device *reg_pdev;
72
73 static struct device_type reg_device_type = {
74         .uevent = reg_device_uevent,
75 };
76
77 /*
78  * Central wireless core regulatory domains, we only need two,
79  * the current one and a world regulatory domain in case we have no
80  * information to give us an alpha2
81  */
82 const struct ieee80211_regdomain *cfg80211_regdomain;
83
84 /*
85  * Protects static reg.c components:
86  *     - cfg80211_world_regdom
87  *     - cfg80211_regdom
88  *     - last_request
89  */
90 static DEFINE_MUTEX(reg_mutex);
91
92 static inline void assert_reg_lock(void)
93 {
94         lockdep_assert_held(&reg_mutex);
95 }
96
97 /* Used to queue up regulatory hints */
98 static LIST_HEAD(reg_requests_list);
99 static spinlock_t reg_requests_lock;
100
101 /* Used to queue up beacon hints for review */
102 static LIST_HEAD(reg_pending_beacons);
103 static spinlock_t reg_pending_beacons_lock;
104
105 /* Used to keep track of processed beacon hints */
106 static LIST_HEAD(reg_beacon_list);
107
108 struct reg_beacon {
109         struct list_head list;
110         struct ieee80211_channel chan;
111 };
112
113 static void reg_todo(struct work_struct *work);
114 static DECLARE_WORK(reg_work, reg_todo);
115
116 static void reg_timeout_work(struct work_struct *work);
117 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
118
119 /* We keep a static world regulatory domain in case of the absence of CRDA */
120 static const struct ieee80211_regdomain world_regdom = {
121         .n_reg_rules = 5,
122         .alpha2 =  "00",
123         .reg_rules = {
124                 /* IEEE 802.11b/g, channels 1..11 */
125                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
126                 /* IEEE 802.11b/g, channels 12..13. No HT40
127                  * channel fits here. */
128                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
129                         NL80211_RRF_PASSIVE_SCAN |
130                         NL80211_RRF_NO_IBSS),
131                 /* IEEE 802.11 channel 14 - Only JP enables
132                  * this and for 802.11b only */
133                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
134                         NL80211_RRF_PASSIVE_SCAN |
135                         NL80211_RRF_NO_IBSS |
136                         NL80211_RRF_NO_OFDM),
137                 /* IEEE 802.11a, channel 36..48 */
138                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
139                         NL80211_RRF_PASSIVE_SCAN |
140                         NL80211_RRF_NO_IBSS),
141
142                 /* NB: 5260 MHz - 5700 MHz requies DFS */
143
144                 /* IEEE 802.11a, channel 149..165 */
145                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
146                         NL80211_RRF_PASSIVE_SCAN |
147                         NL80211_RRF_NO_IBSS),
148         }
149 };
150
151 static const struct ieee80211_regdomain *cfg80211_world_regdom =
152         &world_regdom;
153
154 static char *ieee80211_regdom = "00";
155 static char user_alpha2[2];
156
157 module_param(ieee80211_regdom, charp, 0444);
158 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
159
160 static void reset_regdomains(bool full_reset)
161 {
162         /* avoid freeing static information or freeing something twice */
163         if (cfg80211_regdomain == cfg80211_world_regdom)
164                 cfg80211_regdomain = NULL;
165         if (cfg80211_world_regdom == &world_regdom)
166                 cfg80211_world_regdom = NULL;
167         if (cfg80211_regdomain == &world_regdom)
168                 cfg80211_regdomain = NULL;
169
170         kfree(cfg80211_regdomain);
171         kfree(cfg80211_world_regdom);
172
173         cfg80211_world_regdom = &world_regdom;
174         cfg80211_regdomain = NULL;
175
176         if (!full_reset)
177                 return;
178
179         if (last_request != &core_request_world)
180                 kfree(last_request);
181         last_request = &core_request_world;
182 }
183
184 /*
185  * Dynamic world regulatory domain requested by the wireless
186  * core upon initialization
187  */
188 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
189 {
190         BUG_ON(!last_request);
191
192         reset_regdomains(false);
193
194         cfg80211_world_regdom = rd;
195         cfg80211_regdomain = rd;
196 }
197
198 bool is_world_regdom(const char *alpha2)
199 {
200         if (!alpha2)
201                 return false;
202         if (alpha2[0] == '0' && alpha2[1] == '0')
203                 return true;
204         return false;
205 }
206
207 static bool is_alpha2_set(const char *alpha2)
208 {
209         if (!alpha2)
210                 return false;
211         if (alpha2[0] != 0 && alpha2[1] != 0)
212                 return true;
213         return false;
214 }
215
216 static bool is_unknown_alpha2(const char *alpha2)
217 {
218         if (!alpha2)
219                 return false;
220         /*
221          * Special case where regulatory domain was built by driver
222          * but a specific alpha2 cannot be determined
223          */
224         if (alpha2[0] == '9' && alpha2[1] == '9')
225                 return true;
226         return false;
227 }
228
229 static bool is_intersected_alpha2(const char *alpha2)
230 {
231         if (!alpha2)
232                 return false;
233         /*
234          * Special case where regulatory domain is the
235          * result of an intersection between two regulatory domain
236          * structures
237          */
238         if (alpha2[0] == '9' && alpha2[1] == '8')
239                 return true;
240         return false;
241 }
242
243 static bool is_an_alpha2(const char *alpha2)
244 {
245         if (!alpha2)
246                 return false;
247         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
248                 return true;
249         return false;
250 }
251
252 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
253 {
254         if (!alpha2_x || !alpha2_y)
255                 return false;
256         if (alpha2_x[0] == alpha2_y[0] &&
257                 alpha2_x[1] == alpha2_y[1])
258                 return true;
259         return false;
260 }
261
262 static bool regdom_changes(const char *alpha2)
263 {
264         assert_cfg80211_lock();
265
266         if (!cfg80211_regdomain)
267                 return true;
268         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
269                 return false;
270         return true;
271 }
272
273 /*
274  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
275  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
276  * has ever been issued.
277  */
278 static bool is_user_regdom_saved(void)
279 {
280         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
281                 return false;
282
283         /* This would indicate a mistake on the design */
284         if (WARN((!is_world_regdom(user_alpha2) &&
285                   !is_an_alpha2(user_alpha2)),
286                  "Unexpected user alpha2: %c%c\n",
287                  user_alpha2[0],
288                  user_alpha2[1]))
289                 return false;
290
291         return true;
292 }
293
294 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
295                          const struct ieee80211_regdomain *src_regd)
296 {
297         struct ieee80211_regdomain *regd;
298         int size_of_regd = 0;
299         unsigned int i;
300
301         size_of_regd = sizeof(struct ieee80211_regdomain) +
302           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
303
304         regd = kzalloc(size_of_regd, GFP_KERNEL);
305         if (!regd)
306                 return -ENOMEM;
307
308         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
309
310         for (i = 0; i < src_regd->n_reg_rules; i++)
311                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
312                         sizeof(struct ieee80211_reg_rule));
313
314         *dst_regd = regd;
315         return 0;
316 }
317
318 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
319 struct reg_regdb_search_request {
320         char alpha2[2];
321         struct list_head list;
322 };
323
324 static LIST_HEAD(reg_regdb_search_list);
325 static DEFINE_MUTEX(reg_regdb_search_mutex);
326
327 static void reg_regdb_search(struct work_struct *work)
328 {
329         struct reg_regdb_search_request *request;
330         const struct ieee80211_regdomain *curdom, *regdom;
331         int i, r;
332
333         mutex_lock(&reg_regdb_search_mutex);
334         while (!list_empty(&reg_regdb_search_list)) {
335                 request = list_first_entry(&reg_regdb_search_list,
336                                            struct reg_regdb_search_request,
337                                            list);
338                 list_del(&request->list);
339
340                 for (i=0; i<reg_regdb_size; i++) {
341                         curdom = reg_regdb[i];
342
343                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
344                                 r = reg_copy_regd(&regdom, curdom);
345                                 if (r)
346                                         break;
347                                 mutex_lock(&cfg80211_mutex);
348                                 set_regdom(regdom);
349                                 mutex_unlock(&cfg80211_mutex);
350                                 break;
351                         }
352                 }
353
354                 kfree(request);
355         }
356         mutex_unlock(&reg_regdb_search_mutex);
357 }
358
359 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
360
361 static void reg_regdb_query(const char *alpha2)
362 {
363         struct reg_regdb_search_request *request;
364
365         if (!alpha2)
366                 return;
367
368         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
369         if (!request)
370                 return;
371
372         memcpy(request->alpha2, alpha2, 2);
373
374         mutex_lock(&reg_regdb_search_mutex);
375         list_add_tail(&request->list, &reg_regdb_search_list);
376         mutex_unlock(&reg_regdb_search_mutex);
377
378         schedule_work(&reg_regdb_work);
379 }
380 #else
381 static inline void reg_regdb_query(const char *alpha2) {}
382 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
383
384 /*
385  * This lets us keep regulatory code which is updated on a regulatory
386  * basis in userspace. Country information is filled in by
387  * reg_device_uevent
388  */
389 static int call_crda(const char *alpha2)
390 {
391         if (!is_world_regdom((char *) alpha2))
392                 pr_info("Calling CRDA for country: %c%c\n",
393                         alpha2[0], alpha2[1]);
394         else
395                 pr_info("Calling CRDA to update world regulatory domain\n");
396
397         /* query internal regulatory database (if it exists) */
398         reg_regdb_query(alpha2);
399
400         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
401 }
402
403 /* Used by nl80211 before kmalloc'ing our regulatory domain */
404 bool reg_is_valid_request(const char *alpha2)
405 {
406         assert_cfg80211_lock();
407
408         if (!last_request)
409                 return false;
410
411         return alpha2_equal(last_request->alpha2, alpha2);
412 }
413
414 /* Sanity check on a regulatory rule */
415 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
416 {
417         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
418         u32 freq_diff;
419
420         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
421                 return false;
422
423         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
424                 return false;
425
426         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
427
428         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
429                         freq_range->max_bandwidth_khz > freq_diff)
430                 return false;
431
432         return true;
433 }
434
435 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
436 {
437         const struct ieee80211_reg_rule *reg_rule = NULL;
438         unsigned int i;
439
440         if (!rd->n_reg_rules)
441                 return false;
442
443         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
444                 return false;
445
446         for (i = 0; i < rd->n_reg_rules; i++) {
447                 reg_rule = &rd->reg_rules[i];
448                 if (!is_valid_reg_rule(reg_rule))
449                         return false;
450         }
451
452         return true;
453 }
454
455 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
456                             u32 center_freq_khz,
457                             u32 bw_khz)
458 {
459         u32 start_freq_khz, end_freq_khz;
460
461         start_freq_khz = center_freq_khz - (bw_khz/2);
462         end_freq_khz = center_freq_khz + (bw_khz/2);
463
464         if (start_freq_khz >= freq_range->start_freq_khz &&
465             end_freq_khz <= freq_range->end_freq_khz)
466                 return true;
467
468         return false;
469 }
470
471 /**
472  * freq_in_rule_band - tells us if a frequency is in a frequency band
473  * @freq_range: frequency rule we want to query
474  * @freq_khz: frequency we are inquiring about
475  *
476  * This lets us know if a specific frequency rule is or is not relevant to
477  * a specific frequency's band. Bands are device specific and artificial
478  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
479  * safe for now to assume that a frequency rule should not be part of a
480  * frequency's band if the start freq or end freq are off by more than 2 GHz.
481  * This resolution can be lowered and should be considered as we add
482  * regulatory rule support for other "bands".
483  **/
484 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
485         u32 freq_khz)
486 {
487 #define ONE_GHZ_IN_KHZ  1000000
488         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
489                 return true;
490         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
491                 return true;
492         return false;
493 #undef ONE_GHZ_IN_KHZ
494 }
495
496 /*
497  * Helper for regdom_intersect(), this does the real
498  * mathematical intersection fun
499  */
500 static int reg_rules_intersect(
501         const struct ieee80211_reg_rule *rule1,
502         const struct ieee80211_reg_rule *rule2,
503         struct ieee80211_reg_rule *intersected_rule)
504 {
505         const struct ieee80211_freq_range *freq_range1, *freq_range2;
506         struct ieee80211_freq_range *freq_range;
507         const struct ieee80211_power_rule *power_rule1, *power_rule2;
508         struct ieee80211_power_rule *power_rule;
509         u32 freq_diff;
510
511         freq_range1 = &rule1->freq_range;
512         freq_range2 = &rule2->freq_range;
513         freq_range = &intersected_rule->freq_range;
514
515         power_rule1 = &rule1->power_rule;
516         power_rule2 = &rule2->power_rule;
517         power_rule = &intersected_rule->power_rule;
518
519         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
520                 freq_range2->start_freq_khz);
521         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
522                 freq_range2->end_freq_khz);
523         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
524                 freq_range2->max_bandwidth_khz);
525
526         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
527         if (freq_range->max_bandwidth_khz > freq_diff)
528                 freq_range->max_bandwidth_khz = freq_diff;
529
530         power_rule->max_eirp = min(power_rule1->max_eirp,
531                 power_rule2->max_eirp);
532         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
533                 power_rule2->max_antenna_gain);
534
535         intersected_rule->flags = (rule1->flags | rule2->flags);
536
537         if (!is_valid_reg_rule(intersected_rule))
538                 return -EINVAL;
539
540         return 0;
541 }
542
543 /**
544  * regdom_intersect - do the intersection between two regulatory domains
545  * @rd1: first regulatory domain
546  * @rd2: second regulatory domain
547  *
548  * Use this function to get the intersection between two regulatory domains.
549  * Once completed we will mark the alpha2 for the rd as intersected, "98",
550  * as no one single alpha2 can represent this regulatory domain.
551  *
552  * Returns a pointer to the regulatory domain structure which will hold the
553  * resulting intersection of rules between rd1 and rd2. We will
554  * kzalloc() this structure for you.
555  */
556 static struct ieee80211_regdomain *regdom_intersect(
557         const struct ieee80211_regdomain *rd1,
558         const struct ieee80211_regdomain *rd2)
559 {
560         int r, size_of_regd;
561         unsigned int x, y;
562         unsigned int num_rules = 0, rule_idx = 0;
563         const struct ieee80211_reg_rule *rule1, *rule2;
564         struct ieee80211_reg_rule *intersected_rule;
565         struct ieee80211_regdomain *rd;
566         /* This is just a dummy holder to help us count */
567         struct ieee80211_reg_rule irule;
568
569         /* Uses the stack temporarily for counter arithmetic */
570         intersected_rule = &irule;
571
572         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
573
574         if (!rd1 || !rd2)
575                 return NULL;
576
577         /*
578          * First we get a count of the rules we'll need, then we actually
579          * build them. This is to so we can malloc() and free() a
580          * regdomain once. The reason we use reg_rules_intersect() here
581          * is it will return -EINVAL if the rule computed makes no sense.
582          * All rules that do check out OK are valid.
583          */
584
585         for (x = 0; x < rd1->n_reg_rules; x++) {
586                 rule1 = &rd1->reg_rules[x];
587                 for (y = 0; y < rd2->n_reg_rules; y++) {
588                         rule2 = &rd2->reg_rules[y];
589                         if (!reg_rules_intersect(rule1, rule2,
590                                         intersected_rule))
591                                 num_rules++;
592                         memset(intersected_rule, 0,
593                                         sizeof(struct ieee80211_reg_rule));
594                 }
595         }
596
597         if (!num_rules)
598                 return NULL;
599
600         size_of_regd = sizeof(struct ieee80211_regdomain) +
601                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
602
603         rd = kzalloc(size_of_regd, GFP_KERNEL);
604         if (!rd)
605                 return NULL;
606
607         for (x = 0; x < rd1->n_reg_rules; x++) {
608                 rule1 = &rd1->reg_rules[x];
609                 for (y = 0; y < rd2->n_reg_rules; y++) {
610                         rule2 = &rd2->reg_rules[y];
611                         /*
612                          * This time around instead of using the stack lets
613                          * write to the target rule directly saving ourselves
614                          * a memcpy()
615                          */
616                         intersected_rule = &rd->reg_rules[rule_idx];
617                         r = reg_rules_intersect(rule1, rule2,
618                                 intersected_rule);
619                         /*
620                          * No need to memset here the intersected rule here as
621                          * we're not using the stack anymore
622                          */
623                         if (r)
624                                 continue;
625                         rule_idx++;
626                 }
627         }
628
629         if (rule_idx != num_rules) {
630                 kfree(rd);
631                 return NULL;
632         }
633
634         rd->n_reg_rules = num_rules;
635         rd->alpha2[0] = '9';
636         rd->alpha2[1] = '8';
637
638         return rd;
639 }
640
641 /*
642  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
643  * want to just have the channel structure use these
644  */
645 static u32 map_regdom_flags(u32 rd_flags)
646 {
647         u32 channel_flags = 0;
648         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
649                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
650         if (rd_flags & NL80211_RRF_NO_IBSS)
651                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
652         if (rd_flags & NL80211_RRF_DFS)
653                 channel_flags |= IEEE80211_CHAN_RADAR;
654         return channel_flags;
655 }
656
657 static int freq_reg_info_regd(struct wiphy *wiphy,
658                               u32 center_freq,
659                               u32 desired_bw_khz,
660                               const struct ieee80211_reg_rule **reg_rule,
661                               const struct ieee80211_regdomain *custom_regd)
662 {
663         int i;
664         bool band_rule_found = false;
665         const struct ieee80211_regdomain *regd;
666         bool bw_fits = false;
667
668         if (!desired_bw_khz)
669                 desired_bw_khz = MHZ_TO_KHZ(20);
670
671         regd = custom_regd ? custom_regd : cfg80211_regdomain;
672
673         /*
674          * Follow the driver's regulatory domain, if present, unless a country
675          * IE has been processed or a user wants to help complaince further
676          */
677         if (!custom_regd &&
678             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
679             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
680             wiphy->regd)
681                 regd = wiphy->regd;
682
683         if (!regd)
684                 return -EINVAL;
685
686         for (i = 0; i < regd->n_reg_rules; i++) {
687                 const struct ieee80211_reg_rule *rr;
688                 const struct ieee80211_freq_range *fr = NULL;
689
690                 rr = &regd->reg_rules[i];
691                 fr = &rr->freq_range;
692
693                 /*
694                  * We only need to know if one frequency rule was
695                  * was in center_freq's band, that's enough, so lets
696                  * not overwrite it once found
697                  */
698                 if (!band_rule_found)
699                         band_rule_found = freq_in_rule_band(fr, center_freq);
700
701                 bw_fits = reg_does_bw_fit(fr,
702                                           center_freq,
703                                           desired_bw_khz);
704
705                 if (band_rule_found && bw_fits) {
706                         *reg_rule = rr;
707                         return 0;
708                 }
709         }
710
711         if (!band_rule_found)
712                 return -ERANGE;
713
714         return -EINVAL;
715 }
716
717 int freq_reg_info(struct wiphy *wiphy,
718                   u32 center_freq,
719                   u32 desired_bw_khz,
720                   const struct ieee80211_reg_rule **reg_rule)
721 {
722         assert_cfg80211_lock();
723         return freq_reg_info_regd(wiphy,
724                                   center_freq,
725                                   desired_bw_khz,
726                                   reg_rule,
727                                   NULL);
728 }
729 EXPORT_SYMBOL(freq_reg_info);
730
731 #ifdef CONFIG_CFG80211_REG_DEBUG
732 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
733 {
734         switch (initiator) {
735         case NL80211_REGDOM_SET_BY_CORE:
736                 return "Set by core";
737         case NL80211_REGDOM_SET_BY_USER:
738                 return "Set by user";
739         case NL80211_REGDOM_SET_BY_DRIVER:
740                 return "Set by driver";
741         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
742                 return "Set by country IE";
743         default:
744                 WARN_ON(1);
745                 return "Set by bug";
746         }
747 }
748
749 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
750                                     u32 desired_bw_khz,
751                                     const struct ieee80211_reg_rule *reg_rule)
752 {
753         const struct ieee80211_power_rule *power_rule;
754         const struct ieee80211_freq_range *freq_range;
755         char max_antenna_gain[32];
756
757         power_rule = &reg_rule->power_rule;
758         freq_range = &reg_rule->freq_range;
759
760         if (!power_rule->max_antenna_gain)
761                 snprintf(max_antenna_gain, 32, "N/A");
762         else
763                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
764
765         REG_DBG_PRINT("Updating information on frequency %d MHz "
766                       "for a %d MHz width channel with regulatory rule:\n",
767                       chan->center_freq,
768                       KHZ_TO_MHZ(desired_bw_khz));
769
770         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
771                       freq_range->start_freq_khz,
772                       freq_range->end_freq_khz,
773                       freq_range->max_bandwidth_khz,
774                       max_antenna_gain,
775                       power_rule->max_eirp);
776 }
777 #else
778 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
779                                     u32 desired_bw_khz,
780                                     const struct ieee80211_reg_rule *reg_rule)
781 {
782         return;
783 }
784 #endif
785
786 /*
787  * Note that right now we assume the desired channel bandwidth
788  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
789  * per channel, the primary and the extension channel). To support
790  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
791  * new ieee80211_channel.target_bw and re run the regulatory check
792  * on the wiphy with the target_bw specified. Then we can simply use
793  * that below for the desired_bw_khz below.
794  */
795 static void handle_channel(struct wiphy *wiphy,
796                            enum nl80211_reg_initiator initiator,
797                            enum ieee80211_band band,
798                            unsigned int chan_idx)
799 {
800         int r;
801         u32 flags, bw_flags = 0;
802         u32 desired_bw_khz = MHZ_TO_KHZ(20);
803         const struct ieee80211_reg_rule *reg_rule = NULL;
804         const struct ieee80211_power_rule *power_rule = NULL;
805         const struct ieee80211_freq_range *freq_range = NULL;
806         struct ieee80211_supported_band *sband;
807         struct ieee80211_channel *chan;
808         struct wiphy *request_wiphy = NULL;
809
810         assert_cfg80211_lock();
811
812         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
813
814         sband = wiphy->bands[band];
815         BUG_ON(chan_idx >= sband->n_channels);
816         chan = &sband->channels[chan_idx];
817
818         flags = chan->orig_flags;
819
820         r = freq_reg_info(wiphy,
821                           MHZ_TO_KHZ(chan->center_freq),
822                           desired_bw_khz,
823                           &reg_rule);
824
825         if (r) {
826                 /*
827                  * We will disable all channels that do not match our
828                  * received regulatory rule unless the hint is coming
829                  * from a Country IE and the Country IE had no information
830                  * about a band. The IEEE 802.11 spec allows for an AP
831                  * to send only a subset of the regulatory rules allowed,
832                  * so an AP in the US that only supports 2.4 GHz may only send
833                  * a country IE with information for the 2.4 GHz band
834                  * while 5 GHz is still supported.
835                  */
836                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
837                     r == -ERANGE)
838                         return;
839
840                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
841                 chan->flags = IEEE80211_CHAN_DISABLED;
842                 return;
843         }
844
845         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
846
847         power_rule = &reg_rule->power_rule;
848         freq_range = &reg_rule->freq_range;
849
850         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
851                 bw_flags = IEEE80211_CHAN_NO_HT40;
852
853         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
854             request_wiphy && request_wiphy == wiphy &&
855             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
856                 /*
857                  * This guarantees the driver's requested regulatory domain
858                  * will always be used as a base for further regulatory
859                  * settings
860                  */
861                 chan->flags = chan->orig_flags =
862                         map_regdom_flags(reg_rule->flags) | bw_flags;
863                 chan->max_antenna_gain = chan->orig_mag =
864                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
865                 chan->max_power = chan->orig_mpwr =
866                         (int) MBM_TO_DBM(power_rule->max_eirp);
867                 return;
868         }
869
870         chan->beacon_found = false;
871         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
872         chan->max_antenna_gain = min(chan->orig_mag,
873                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
874         if (chan->orig_mpwr)
875                 chan->max_power = min(chan->orig_mpwr,
876                         (int) MBM_TO_DBM(power_rule->max_eirp));
877         else
878                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
879 }
880
881 static void handle_band(struct wiphy *wiphy,
882                         enum ieee80211_band band,
883                         enum nl80211_reg_initiator initiator)
884 {
885         unsigned int i;
886         struct ieee80211_supported_band *sband;
887
888         BUG_ON(!wiphy->bands[band]);
889         sband = wiphy->bands[band];
890
891         for (i = 0; i < sband->n_channels; i++)
892                 handle_channel(wiphy, initiator, band, i);
893 }
894
895 static bool ignore_reg_update(struct wiphy *wiphy,
896                               enum nl80211_reg_initiator initiator)
897 {
898         if (!last_request) {
899                 REG_DBG_PRINT("Ignoring regulatory request %s since "
900                               "last_request is not set\n",
901                               reg_initiator_name(initiator));
902                 return true;
903         }
904
905         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
906             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
907                 REG_DBG_PRINT("Ignoring regulatory request %s "
908                               "since the driver uses its own custom "
909                               "regulatory domain\n",
910                               reg_initiator_name(initiator));
911                 return true;
912         }
913
914         /*
915          * wiphy->regd will be set once the device has its own
916          * desired regulatory domain set
917          */
918         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
919             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
920             !is_world_regdom(last_request->alpha2)) {
921                 REG_DBG_PRINT("Ignoring regulatory request %s "
922                               "since the driver requires its own regulatory "
923                               "domain to be set first\n",
924                               reg_initiator_name(initiator));
925                 return true;
926         }
927
928         return false;
929 }
930
931 static void handle_reg_beacon(struct wiphy *wiphy,
932                               unsigned int chan_idx,
933                               struct reg_beacon *reg_beacon)
934 {
935         struct ieee80211_supported_band *sband;
936         struct ieee80211_channel *chan;
937         bool channel_changed = false;
938         struct ieee80211_channel chan_before;
939
940         assert_cfg80211_lock();
941
942         sband = wiphy->bands[reg_beacon->chan.band];
943         chan = &sband->channels[chan_idx];
944
945         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
946                 return;
947
948         if (chan->beacon_found)
949                 return;
950
951         chan->beacon_found = true;
952
953         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
954                 return;
955
956         chan_before.center_freq = chan->center_freq;
957         chan_before.flags = chan->flags;
958
959         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
960                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
961                 channel_changed = true;
962         }
963
964         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
965                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
966                 channel_changed = true;
967         }
968
969         if (channel_changed)
970                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
971 }
972
973 /*
974  * Called when a scan on a wiphy finds a beacon on
975  * new channel
976  */
977 static void wiphy_update_new_beacon(struct wiphy *wiphy,
978                                     struct reg_beacon *reg_beacon)
979 {
980         unsigned int i;
981         struct ieee80211_supported_band *sband;
982
983         assert_cfg80211_lock();
984
985         if (!wiphy->bands[reg_beacon->chan.band])
986                 return;
987
988         sband = wiphy->bands[reg_beacon->chan.band];
989
990         for (i = 0; i < sband->n_channels; i++)
991                 handle_reg_beacon(wiphy, i, reg_beacon);
992 }
993
994 /*
995  * Called upon reg changes or a new wiphy is added
996  */
997 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
998 {
999         unsigned int i;
1000         struct ieee80211_supported_band *sband;
1001         struct reg_beacon *reg_beacon;
1002
1003         assert_cfg80211_lock();
1004
1005         if (list_empty(&reg_beacon_list))
1006                 return;
1007
1008         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1009                 if (!wiphy->bands[reg_beacon->chan.band])
1010                         continue;
1011                 sband = wiphy->bands[reg_beacon->chan.band];
1012                 for (i = 0; i < sband->n_channels; i++)
1013                         handle_reg_beacon(wiphy, i, reg_beacon);
1014         }
1015 }
1016
1017 static bool reg_is_world_roaming(struct wiphy *wiphy)
1018 {
1019         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1020             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1021                 return true;
1022         if (last_request &&
1023             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1024             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1025                 return true;
1026         return false;
1027 }
1028
1029 /* Reap the advantages of previously found beacons */
1030 static void reg_process_beacons(struct wiphy *wiphy)
1031 {
1032         /*
1033          * Means we are just firing up cfg80211, so no beacons would
1034          * have been processed yet.
1035          */
1036         if (!last_request)
1037                 return;
1038         if (!reg_is_world_roaming(wiphy))
1039                 return;
1040         wiphy_update_beacon_reg(wiphy);
1041 }
1042
1043 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1044 {
1045         if (!chan)
1046                 return true;
1047         if (chan->flags & IEEE80211_CHAN_DISABLED)
1048                 return true;
1049         /* This would happen when regulatory rules disallow HT40 completely */
1050         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1051                 return true;
1052         return false;
1053 }
1054
1055 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1056                                          enum ieee80211_band band,
1057                                          unsigned int chan_idx)
1058 {
1059         struct ieee80211_supported_band *sband;
1060         struct ieee80211_channel *channel;
1061         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1062         unsigned int i;
1063
1064         assert_cfg80211_lock();
1065
1066         sband = wiphy->bands[band];
1067         BUG_ON(chan_idx >= sband->n_channels);
1068         channel = &sband->channels[chan_idx];
1069
1070         if (is_ht40_not_allowed(channel)) {
1071                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1072                 return;
1073         }
1074
1075         /*
1076          * We need to ensure the extension channels exist to
1077          * be able to use HT40- or HT40+, this finds them (or not)
1078          */
1079         for (i = 0; i < sband->n_channels; i++) {
1080                 struct ieee80211_channel *c = &sband->channels[i];
1081                 if (c->center_freq == (channel->center_freq - 20))
1082                         channel_before = c;
1083                 if (c->center_freq == (channel->center_freq + 20))
1084                         channel_after = c;
1085         }
1086
1087         /*
1088          * Please note that this assumes target bandwidth is 20 MHz,
1089          * if that ever changes we also need to change the below logic
1090          * to include that as well.
1091          */
1092         if (is_ht40_not_allowed(channel_before))
1093                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1094         else
1095                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1096
1097         if (is_ht40_not_allowed(channel_after))
1098                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1099         else
1100                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1101 }
1102
1103 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1104                                       enum ieee80211_band band)
1105 {
1106         unsigned int i;
1107         struct ieee80211_supported_band *sband;
1108
1109         BUG_ON(!wiphy->bands[band]);
1110         sband = wiphy->bands[band];
1111
1112         for (i = 0; i < sband->n_channels; i++)
1113                 reg_process_ht_flags_channel(wiphy, band, i);
1114 }
1115
1116 static void reg_process_ht_flags(struct wiphy *wiphy)
1117 {
1118         enum ieee80211_band band;
1119
1120         if (!wiphy)
1121                 return;
1122
1123         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1124                 if (wiphy->bands[band])
1125                         reg_process_ht_flags_band(wiphy, band);
1126         }
1127
1128 }
1129
1130 static void wiphy_update_regulatory(struct wiphy *wiphy,
1131                                     enum nl80211_reg_initiator initiator)
1132 {
1133         enum ieee80211_band band;
1134
1135         assert_reg_lock();
1136
1137         if (ignore_reg_update(wiphy, initiator))
1138                 return;
1139
1140         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1141                 if (wiphy->bands[band])
1142                         handle_band(wiphy, band, initiator);
1143         }
1144
1145         reg_process_beacons(wiphy);
1146         reg_process_ht_flags(wiphy);
1147         if (wiphy->reg_notifier)
1148                 wiphy->reg_notifier(wiphy, last_request);
1149 }
1150
1151 void regulatory_update(struct wiphy *wiphy,
1152                        enum nl80211_reg_initiator setby)
1153 {
1154         mutex_lock(&reg_mutex);
1155         wiphy_update_regulatory(wiphy, setby);
1156         mutex_unlock(&reg_mutex);
1157 }
1158
1159 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1160 {
1161         struct cfg80211_registered_device *rdev;
1162
1163         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1164                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1165 }
1166
1167 static void handle_channel_custom(struct wiphy *wiphy,
1168                                   enum ieee80211_band band,
1169                                   unsigned int chan_idx,
1170                                   const struct ieee80211_regdomain *regd)
1171 {
1172         int r;
1173         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1174         u32 bw_flags = 0;
1175         const struct ieee80211_reg_rule *reg_rule = NULL;
1176         const struct ieee80211_power_rule *power_rule = NULL;
1177         const struct ieee80211_freq_range *freq_range = NULL;
1178         struct ieee80211_supported_band *sband;
1179         struct ieee80211_channel *chan;
1180
1181         assert_reg_lock();
1182
1183         sband = wiphy->bands[band];
1184         BUG_ON(chan_idx >= sband->n_channels);
1185         chan = &sband->channels[chan_idx];
1186
1187         r = freq_reg_info_regd(wiphy,
1188                                MHZ_TO_KHZ(chan->center_freq),
1189                                desired_bw_khz,
1190                                &reg_rule,
1191                                regd);
1192
1193         if (r) {
1194                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1195                               "regd has no rule that fits a %d MHz "
1196                               "wide channel\n",
1197                               chan->center_freq,
1198                               KHZ_TO_MHZ(desired_bw_khz));
1199                 chan->flags = IEEE80211_CHAN_DISABLED;
1200                 return;
1201         }
1202
1203         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1204
1205         power_rule = &reg_rule->power_rule;
1206         freq_range = &reg_rule->freq_range;
1207
1208         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1209                 bw_flags = IEEE80211_CHAN_NO_HT40;
1210
1211         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1212         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1213         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1214 }
1215
1216 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1217                                const struct ieee80211_regdomain *regd)
1218 {
1219         unsigned int i;
1220         struct ieee80211_supported_band *sband;
1221
1222         BUG_ON(!wiphy->bands[band]);
1223         sband = wiphy->bands[band];
1224
1225         for (i = 0; i < sband->n_channels; i++)
1226                 handle_channel_custom(wiphy, band, i, regd);
1227 }
1228
1229 /* Used by drivers prior to wiphy registration */
1230 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1231                                    const struct ieee80211_regdomain *regd)
1232 {
1233         enum ieee80211_band band;
1234         unsigned int bands_set = 0;
1235
1236         mutex_lock(&reg_mutex);
1237         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1238                 if (!wiphy->bands[band])
1239                         continue;
1240                 handle_band_custom(wiphy, band, regd);
1241                 bands_set++;
1242         }
1243         mutex_unlock(&reg_mutex);
1244
1245         /*
1246          * no point in calling this if it won't have any effect
1247          * on your device's supportd bands.
1248          */
1249         WARN_ON(!bands_set);
1250 }
1251 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1252
1253 /*
1254  * Return value which can be used by ignore_request() to indicate
1255  * it has been determined we should intersect two regulatory domains
1256  */
1257 #define REG_INTERSECT   1
1258
1259 /* This has the logic which determines when a new request
1260  * should be ignored. */
1261 static int ignore_request(struct wiphy *wiphy,
1262                           struct regulatory_request *pending_request)
1263 {
1264         struct wiphy *last_wiphy = NULL;
1265
1266         assert_cfg80211_lock();
1267
1268         /* All initial requests are respected */
1269         if (!last_request)
1270                 return 0;
1271
1272         switch (pending_request->initiator) {
1273         case NL80211_REGDOM_SET_BY_CORE:
1274                 return 0;
1275         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1276
1277                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1278
1279                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1280                         return -EINVAL;
1281                 if (last_request->initiator ==
1282                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1283                         if (last_wiphy != wiphy) {
1284                                 /*
1285                                  * Two cards with two APs claiming different
1286                                  * Country IE alpha2s. We could
1287                                  * intersect them, but that seems unlikely
1288                                  * to be correct. Reject second one for now.
1289                                  */
1290                                 if (regdom_changes(pending_request->alpha2))
1291                                         return -EOPNOTSUPP;
1292                                 return -EALREADY;
1293                         }
1294                         /*
1295                          * Two consecutive Country IE hints on the same wiphy.
1296                          * This should be picked up early by the driver/stack
1297                          */
1298                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1299                                 return 0;
1300                         return -EALREADY;
1301                 }
1302                 return 0;
1303         case NL80211_REGDOM_SET_BY_DRIVER:
1304                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1305                         if (regdom_changes(pending_request->alpha2))
1306                                 return 0;
1307                         return -EALREADY;
1308                 }
1309
1310                 /*
1311                  * This would happen if you unplug and plug your card
1312                  * back in or if you add a new device for which the previously
1313                  * loaded card also agrees on the regulatory domain.
1314                  */
1315                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1316                     !regdom_changes(pending_request->alpha2))
1317                         return -EALREADY;
1318
1319                 return REG_INTERSECT;
1320         case NL80211_REGDOM_SET_BY_USER:
1321                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1322                         return REG_INTERSECT;
1323                 /*
1324                  * If the user knows better the user should set the regdom
1325                  * to their country before the IE is picked up
1326                  */
1327                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1328                           last_request->intersect)
1329                         return -EOPNOTSUPP;
1330                 /*
1331                  * Process user requests only after previous user/driver/core
1332                  * requests have been processed
1333                  */
1334                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1335                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1336                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1337                         if (regdom_changes(last_request->alpha2))
1338                                 return -EAGAIN;
1339                 }
1340
1341                 if (!regdom_changes(pending_request->alpha2))
1342                         return -EALREADY;
1343
1344                 return 0;
1345         }
1346
1347         return -EINVAL;
1348 }
1349
1350 static void reg_set_request_processed(void)
1351 {
1352         bool need_more_processing = false;
1353
1354         last_request->processed = true;
1355
1356         spin_lock(&reg_requests_lock);
1357         if (!list_empty(&reg_requests_list))
1358                 need_more_processing = true;
1359         spin_unlock(&reg_requests_lock);
1360
1361         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1362                 cancel_delayed_work_sync(&reg_timeout);
1363
1364         if (need_more_processing)
1365                 schedule_work(&reg_work);
1366 }
1367
1368 /**
1369  * __regulatory_hint - hint to the wireless core a regulatory domain
1370  * @wiphy: if the hint comes from country information from an AP, this
1371  *      is required to be set to the wiphy that received the information
1372  * @pending_request: the regulatory request currently being processed
1373  *
1374  * The Wireless subsystem can use this function to hint to the wireless core
1375  * what it believes should be the current regulatory domain.
1376  *
1377  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1378  * already been set or other standard error codes.
1379  *
1380  * Caller must hold &cfg80211_mutex and &reg_mutex
1381  */
1382 static int __regulatory_hint(struct wiphy *wiphy,
1383                              struct regulatory_request *pending_request)
1384 {
1385         bool intersect = false;
1386         int r = 0;
1387
1388         assert_cfg80211_lock();
1389
1390         r = ignore_request(wiphy, pending_request);
1391
1392         if (r == REG_INTERSECT) {
1393                 if (pending_request->initiator ==
1394                     NL80211_REGDOM_SET_BY_DRIVER) {
1395                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1396                         if (r) {
1397                                 kfree(pending_request);
1398                                 return r;
1399                         }
1400                 }
1401                 intersect = true;
1402         } else if (r) {
1403                 /*
1404                  * If the regulatory domain being requested by the
1405                  * driver has already been set just copy it to the
1406                  * wiphy
1407                  */
1408                 if (r == -EALREADY &&
1409                     pending_request->initiator ==
1410                     NL80211_REGDOM_SET_BY_DRIVER) {
1411                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1412                         if (r) {
1413                                 kfree(pending_request);
1414                                 return r;
1415                         }
1416                         r = -EALREADY;
1417                         goto new_request;
1418                 }
1419                 kfree(pending_request);
1420                 return r;
1421         }
1422
1423 new_request:
1424         if (last_request != &core_request_world)
1425                 kfree(last_request);
1426
1427         last_request = pending_request;
1428         last_request->intersect = intersect;
1429
1430         pending_request = NULL;
1431
1432         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1433                 user_alpha2[0] = last_request->alpha2[0];
1434                 user_alpha2[1] = last_request->alpha2[1];
1435         }
1436
1437         /* When r == REG_INTERSECT we do need to call CRDA */
1438         if (r < 0) {
1439                 /*
1440                  * Since CRDA will not be called in this case as we already
1441                  * have applied the requested regulatory domain before we just
1442                  * inform userspace we have processed the request
1443                  */
1444                 if (r == -EALREADY) {
1445                         nl80211_send_reg_change_event(last_request);
1446                         reg_set_request_processed();
1447                 }
1448                 return r;
1449         }
1450
1451         return call_crda(last_request->alpha2);
1452 }
1453
1454 /* This processes *all* regulatory hints */
1455 static void reg_process_hint(struct regulatory_request *reg_request)
1456 {
1457         int r = 0;
1458         struct wiphy *wiphy = NULL;
1459         enum nl80211_reg_initiator initiator = reg_request->initiator;
1460
1461         BUG_ON(!reg_request->alpha2);
1462
1463         if (wiphy_idx_valid(reg_request->wiphy_idx))
1464                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1465
1466         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1467             !wiphy) {
1468                 kfree(reg_request);
1469                 return;
1470         }
1471
1472         r = __regulatory_hint(wiphy, reg_request);
1473         /* This is required so that the orig_* parameters are saved */
1474         if (r == -EALREADY && wiphy &&
1475             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1476                 wiphy_update_regulatory(wiphy, initiator);
1477                 return;
1478         }
1479
1480         /*
1481          * We only time out user hints, given that they should be the only
1482          * source of bogus requests.
1483          */
1484         if (r != -EALREADY &&
1485             reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1486                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1487 }
1488
1489 /*
1490  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1491  * Regulatory hints come on a first come first serve basis and we
1492  * must process each one atomically.
1493  */
1494 static void reg_process_pending_hints(void)
1495 {
1496         struct regulatory_request *reg_request;
1497
1498         mutex_lock(&cfg80211_mutex);
1499         mutex_lock(&reg_mutex);
1500
1501         /* When last_request->processed becomes true this will be rescheduled */
1502         if (last_request && !last_request->processed) {
1503                 REG_DBG_PRINT("Pending regulatory request, waiting "
1504                               "for it to be processed...\n");
1505                 goto out;
1506         }
1507
1508         spin_lock(&reg_requests_lock);
1509
1510         if (list_empty(&reg_requests_list)) {
1511                 spin_unlock(&reg_requests_lock);
1512                 goto out;
1513         }
1514
1515         reg_request = list_first_entry(&reg_requests_list,
1516                                        struct regulatory_request,
1517                                        list);
1518         list_del_init(&reg_request->list);
1519
1520         spin_unlock(&reg_requests_lock);
1521
1522         reg_process_hint(reg_request);
1523
1524 out:
1525         mutex_unlock(&reg_mutex);
1526         mutex_unlock(&cfg80211_mutex);
1527 }
1528
1529 /* Processes beacon hints -- this has nothing to do with country IEs */
1530 static void reg_process_pending_beacon_hints(void)
1531 {
1532         struct cfg80211_registered_device *rdev;
1533         struct reg_beacon *pending_beacon, *tmp;
1534
1535         /*
1536          * No need to hold the reg_mutex here as we just touch wiphys
1537          * and do not read or access regulatory variables.
1538          */
1539         mutex_lock(&cfg80211_mutex);
1540
1541         /* This goes through the _pending_ beacon list */
1542         spin_lock_bh(&reg_pending_beacons_lock);
1543
1544         if (list_empty(&reg_pending_beacons)) {
1545                 spin_unlock_bh(&reg_pending_beacons_lock);
1546                 goto out;
1547         }
1548
1549         list_for_each_entry_safe(pending_beacon, tmp,
1550                                  &reg_pending_beacons, list) {
1551
1552                 list_del_init(&pending_beacon->list);
1553
1554                 /* Applies the beacon hint to current wiphys */
1555                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1556                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1557
1558                 /* Remembers the beacon hint for new wiphys or reg changes */
1559                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1560         }
1561
1562         spin_unlock_bh(&reg_pending_beacons_lock);
1563 out:
1564         mutex_unlock(&cfg80211_mutex);
1565 }
1566
1567 static void reg_todo(struct work_struct *work)
1568 {
1569         reg_process_pending_hints();
1570         reg_process_pending_beacon_hints();
1571 }
1572
1573 static void queue_regulatory_request(struct regulatory_request *request)
1574 {
1575         if (isalpha(request->alpha2[0]))
1576                 request->alpha2[0] = toupper(request->alpha2[0]);
1577         if (isalpha(request->alpha2[1]))
1578                 request->alpha2[1] = toupper(request->alpha2[1]);
1579
1580         spin_lock(&reg_requests_lock);
1581         list_add_tail(&request->list, &reg_requests_list);
1582         spin_unlock(&reg_requests_lock);
1583
1584         schedule_work(&reg_work);
1585 }
1586
1587 /*
1588  * Core regulatory hint -- happens during cfg80211_init()
1589  * and when we restore regulatory settings.
1590  */
1591 static int regulatory_hint_core(const char *alpha2)
1592 {
1593         struct regulatory_request *request;
1594
1595         request = kzalloc(sizeof(struct regulatory_request),
1596                           GFP_KERNEL);
1597         if (!request)
1598                 return -ENOMEM;
1599
1600         request->alpha2[0] = alpha2[0];
1601         request->alpha2[1] = alpha2[1];
1602         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1603
1604         queue_regulatory_request(request);
1605
1606         return 0;
1607 }
1608
1609 /* User hints */
1610 int regulatory_hint_user(const char *alpha2)
1611 {
1612         struct regulatory_request *request;
1613
1614         BUG_ON(!alpha2);
1615
1616         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1617         if (!request)
1618                 return -ENOMEM;
1619
1620         request->wiphy_idx = WIPHY_IDX_STALE;
1621         request->alpha2[0] = alpha2[0];
1622         request->alpha2[1] = alpha2[1];
1623         request->initiator = NL80211_REGDOM_SET_BY_USER;
1624
1625         queue_regulatory_request(request);
1626
1627         return 0;
1628 }
1629
1630 /* Driver hints */
1631 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1632 {
1633         struct regulatory_request *request;
1634
1635         BUG_ON(!alpha2);
1636         BUG_ON(!wiphy);
1637
1638         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1639         if (!request)
1640                 return -ENOMEM;
1641
1642         request->wiphy_idx = get_wiphy_idx(wiphy);
1643
1644         /* Must have registered wiphy first */
1645         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1646
1647         request->alpha2[0] = alpha2[0];
1648         request->alpha2[1] = alpha2[1];
1649         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1650
1651         queue_regulatory_request(request);
1652
1653         return 0;
1654 }
1655 EXPORT_SYMBOL(regulatory_hint);
1656
1657 /*
1658  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1659  * therefore cannot iterate over the rdev list here.
1660  */
1661 void regulatory_hint_11d(struct wiphy *wiphy,
1662                          enum ieee80211_band band,
1663                          u8 *country_ie,
1664                          u8 country_ie_len)
1665 {
1666         char alpha2[2];
1667         enum environment_cap env = ENVIRON_ANY;
1668         struct regulatory_request *request;
1669
1670         mutex_lock(&reg_mutex);
1671
1672         if (unlikely(!last_request))
1673                 goto out;
1674
1675         /* IE len must be evenly divisible by 2 */
1676         if (country_ie_len & 0x01)
1677                 goto out;
1678
1679         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1680                 goto out;
1681
1682         alpha2[0] = country_ie[0];
1683         alpha2[1] = country_ie[1];
1684
1685         if (country_ie[2] == 'I')
1686                 env = ENVIRON_INDOOR;
1687         else if (country_ie[2] == 'O')
1688                 env = ENVIRON_OUTDOOR;
1689
1690         /*
1691          * We will run this only upon a successful connection on cfg80211.
1692          * We leave conflict resolution to the workqueue, where can hold
1693          * cfg80211_mutex.
1694          */
1695         if (likely(last_request->initiator ==
1696             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1697             wiphy_idx_valid(last_request->wiphy_idx)))
1698                 goto out;
1699
1700         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1701         if (!request)
1702                 goto out;
1703
1704         request->wiphy_idx = get_wiphy_idx(wiphy);
1705         request->alpha2[0] = alpha2[0];
1706         request->alpha2[1] = alpha2[1];
1707         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1708         request->country_ie_env = env;
1709
1710         mutex_unlock(&reg_mutex);
1711
1712         queue_regulatory_request(request);
1713
1714         return;
1715
1716 out:
1717         mutex_unlock(&reg_mutex);
1718 }
1719
1720 static void restore_alpha2(char *alpha2, bool reset_user)
1721 {
1722         /* indicates there is no alpha2 to consider for restoration */
1723         alpha2[0] = '9';
1724         alpha2[1] = '7';
1725
1726         /* The user setting has precedence over the module parameter */
1727         if (is_user_regdom_saved()) {
1728                 /* Unless we're asked to ignore it and reset it */
1729                 if (reset_user) {
1730                         REG_DBG_PRINT("Restoring regulatory settings "
1731                                "including user preference\n");
1732                         user_alpha2[0] = '9';
1733                         user_alpha2[1] = '7';
1734
1735                         /*
1736                          * If we're ignoring user settings, we still need to
1737                          * check the module parameter to ensure we put things
1738                          * back as they were for a full restore.
1739                          */
1740                         if (!is_world_regdom(ieee80211_regdom)) {
1741                                 REG_DBG_PRINT("Keeping preference on "
1742                                        "module parameter ieee80211_regdom: %c%c\n",
1743                                        ieee80211_regdom[0],
1744                                        ieee80211_regdom[1]);
1745                                 alpha2[0] = ieee80211_regdom[0];
1746                                 alpha2[1] = ieee80211_regdom[1];
1747                         }
1748                 } else {
1749                         REG_DBG_PRINT("Restoring regulatory settings "
1750                                "while preserving user preference for: %c%c\n",
1751                                user_alpha2[0],
1752                                user_alpha2[1]);
1753                         alpha2[0] = user_alpha2[0];
1754                         alpha2[1] = user_alpha2[1];
1755                 }
1756         } else if (!is_world_regdom(ieee80211_regdom)) {
1757                 REG_DBG_PRINT("Keeping preference on "
1758                        "module parameter ieee80211_regdom: %c%c\n",
1759                        ieee80211_regdom[0],
1760                        ieee80211_regdom[1]);
1761                 alpha2[0] = ieee80211_regdom[0];
1762                 alpha2[1] = ieee80211_regdom[1];
1763         } else
1764                 REG_DBG_PRINT("Restoring regulatory settings\n");
1765 }
1766
1767 /*
1768  * Restoring regulatory settings involves ingoring any
1769  * possibly stale country IE information and user regulatory
1770  * settings if so desired, this includes any beacon hints
1771  * learned as we could have traveled outside to another country
1772  * after disconnection. To restore regulatory settings we do
1773  * exactly what we did at bootup:
1774  *
1775  *   - send a core regulatory hint
1776  *   - send a user regulatory hint if applicable
1777  *
1778  * Device drivers that send a regulatory hint for a specific country
1779  * keep their own regulatory domain on wiphy->regd so that does does
1780  * not need to be remembered.
1781  */
1782 static void restore_regulatory_settings(bool reset_user)
1783 {
1784         char alpha2[2];
1785         struct reg_beacon *reg_beacon, *btmp;
1786         struct regulatory_request *reg_request, *tmp;
1787         LIST_HEAD(tmp_reg_req_list);
1788
1789         mutex_lock(&cfg80211_mutex);
1790         mutex_lock(&reg_mutex);
1791
1792         reset_regdomains(true);
1793         restore_alpha2(alpha2, reset_user);
1794
1795         /*
1796          * If there's any pending requests we simply
1797          * stash them to a temporary pending queue and
1798          * add then after we've restored regulatory
1799          * settings.
1800          */
1801         spin_lock(&reg_requests_lock);
1802         if (!list_empty(&reg_requests_list)) {
1803                 list_for_each_entry_safe(reg_request, tmp,
1804                                          &reg_requests_list, list) {
1805                         if (reg_request->initiator !=
1806                             NL80211_REGDOM_SET_BY_USER)
1807                                 continue;
1808                         list_del(&reg_request->list);
1809                         list_add_tail(&reg_request->list, &tmp_reg_req_list);
1810                 }
1811         }
1812         spin_unlock(&reg_requests_lock);
1813
1814         /* Clear beacon hints */
1815         spin_lock_bh(&reg_pending_beacons_lock);
1816         if (!list_empty(&reg_pending_beacons)) {
1817                 list_for_each_entry_safe(reg_beacon, btmp,
1818                                          &reg_pending_beacons, list) {
1819                         list_del(&reg_beacon->list);
1820                         kfree(reg_beacon);
1821                 }
1822         }
1823         spin_unlock_bh(&reg_pending_beacons_lock);
1824
1825         if (!list_empty(&reg_beacon_list)) {
1826                 list_for_each_entry_safe(reg_beacon, btmp,
1827                                          &reg_beacon_list, list) {
1828                         list_del(&reg_beacon->list);
1829                         kfree(reg_beacon);
1830                 }
1831         }
1832
1833         /* First restore to the basic regulatory settings */
1834         cfg80211_regdomain = cfg80211_world_regdom;
1835
1836         mutex_unlock(&reg_mutex);
1837         mutex_unlock(&cfg80211_mutex);
1838
1839         regulatory_hint_core(cfg80211_regdomain->alpha2);
1840
1841         /*
1842          * This restores the ieee80211_regdom module parameter
1843          * preference or the last user requested regulatory
1844          * settings, user regulatory settings takes precedence.
1845          */
1846         if (is_an_alpha2(alpha2))
1847                 regulatory_hint_user(user_alpha2);
1848
1849         if (list_empty(&tmp_reg_req_list))
1850                 return;
1851
1852         mutex_lock(&cfg80211_mutex);
1853         mutex_lock(&reg_mutex);
1854
1855         spin_lock(&reg_requests_lock);
1856         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1857                 REG_DBG_PRINT("Adding request for country %c%c back "
1858                               "into the queue\n",
1859                               reg_request->alpha2[0],
1860                               reg_request->alpha2[1]);
1861                 list_del(&reg_request->list);
1862                 list_add_tail(&reg_request->list, &reg_requests_list);
1863         }
1864         spin_unlock(&reg_requests_lock);
1865
1866         mutex_unlock(&reg_mutex);
1867         mutex_unlock(&cfg80211_mutex);
1868
1869         REG_DBG_PRINT("Kicking the queue\n");
1870
1871         schedule_work(&reg_work);
1872 }
1873
1874 void regulatory_hint_disconnect(void)
1875 {
1876         REG_DBG_PRINT("All devices are disconnected, going to "
1877                       "restore regulatory settings\n");
1878         restore_regulatory_settings(false);
1879 }
1880
1881 static bool freq_is_chan_12_13_14(u16 freq)
1882 {
1883         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1884             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1885             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1886                 return true;
1887         return false;
1888 }
1889
1890 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1891                                  struct ieee80211_channel *beacon_chan,
1892                                  gfp_t gfp)
1893 {
1894         struct reg_beacon *reg_beacon;
1895
1896         if (likely((beacon_chan->beacon_found ||
1897             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1898             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1899              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1900                 return 0;
1901
1902         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1903         if (!reg_beacon)
1904                 return -ENOMEM;
1905
1906         REG_DBG_PRINT("Found new beacon on "
1907                       "frequency: %d MHz (Ch %d) on %s\n",
1908                       beacon_chan->center_freq,
1909                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1910                       wiphy_name(wiphy));
1911
1912         memcpy(&reg_beacon->chan, beacon_chan,
1913                 sizeof(struct ieee80211_channel));
1914
1915
1916         /*
1917          * Since we can be called from BH or and non-BH context
1918          * we must use spin_lock_bh()
1919          */
1920         spin_lock_bh(&reg_pending_beacons_lock);
1921         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1922         spin_unlock_bh(&reg_pending_beacons_lock);
1923
1924         schedule_work(&reg_work);
1925
1926         return 0;
1927 }
1928
1929 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1930 {
1931         unsigned int i;
1932         const struct ieee80211_reg_rule *reg_rule = NULL;
1933         const struct ieee80211_freq_range *freq_range = NULL;
1934         const struct ieee80211_power_rule *power_rule = NULL;
1935
1936         pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1937
1938         for (i = 0; i < rd->n_reg_rules; i++) {
1939                 reg_rule = &rd->reg_rules[i];
1940                 freq_range = &reg_rule->freq_range;
1941                 power_rule = &reg_rule->power_rule;
1942
1943                 /*
1944                  * There may not be documentation for max antenna gain
1945                  * in certain regions
1946                  */
1947                 if (power_rule->max_antenna_gain)
1948                         pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1949                                 freq_range->start_freq_khz,
1950                                 freq_range->end_freq_khz,
1951                                 freq_range->max_bandwidth_khz,
1952                                 power_rule->max_antenna_gain,
1953                                 power_rule->max_eirp);
1954                 else
1955                         pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1956                                 freq_range->start_freq_khz,
1957                                 freq_range->end_freq_khz,
1958                                 freq_range->max_bandwidth_khz,
1959                                 power_rule->max_eirp);
1960         }
1961 }
1962
1963 static void print_regdomain(const struct ieee80211_regdomain *rd)
1964 {
1965
1966         if (is_intersected_alpha2(rd->alpha2)) {
1967
1968                 if (last_request->initiator ==
1969                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1970                         struct cfg80211_registered_device *rdev;
1971                         rdev = cfg80211_rdev_by_wiphy_idx(
1972                                 last_request->wiphy_idx);
1973                         if (rdev) {
1974                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1975                                         rdev->country_ie_alpha2[0],
1976                                         rdev->country_ie_alpha2[1]);
1977                         } else
1978                                 pr_info("Current regulatory domain intersected:\n");
1979                 } else
1980                         pr_info("Current regulatory domain intersected:\n");
1981         } else if (is_world_regdom(rd->alpha2))
1982                 pr_info("World regulatory domain updated:\n");
1983         else {
1984                 if (is_unknown_alpha2(rd->alpha2))
1985                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1986                 else
1987                         pr_info("Regulatory domain changed to country: %c%c\n",
1988                                 rd->alpha2[0], rd->alpha2[1]);
1989         }
1990         print_rd_rules(rd);
1991 }
1992
1993 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1994 {
1995         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1996         print_rd_rules(rd);
1997 }
1998
1999 /* Takes ownership of rd only if it doesn't fail */
2000 static int __set_regdom(const struct ieee80211_regdomain *rd)
2001 {
2002         const struct ieee80211_regdomain *intersected_rd = NULL;
2003         struct cfg80211_registered_device *rdev = NULL;
2004         struct wiphy *request_wiphy;
2005         /* Some basic sanity checks first */
2006
2007         if (is_world_regdom(rd->alpha2)) {
2008                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2009                         return -EINVAL;
2010                 update_world_regdomain(rd);
2011                 return 0;
2012         }
2013
2014         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2015                         !is_unknown_alpha2(rd->alpha2))
2016                 return -EINVAL;
2017
2018         if (!last_request)
2019                 return -EINVAL;
2020
2021         /*
2022          * Lets only bother proceeding on the same alpha2 if the current
2023          * rd is non static (it means CRDA was present and was used last)
2024          * and the pending request came in from a country IE
2025          */
2026         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2027                 /*
2028                  * If someone else asked us to change the rd lets only bother
2029                  * checking if the alpha2 changes if CRDA was already called
2030                  */
2031                 if (!regdom_changes(rd->alpha2))
2032                         return -EINVAL;
2033         }
2034
2035         /*
2036          * Now lets set the regulatory domain, update all driver channels
2037          * and finally inform them of what we have done, in case they want
2038          * to review or adjust their own settings based on their own
2039          * internal EEPROM data
2040          */
2041
2042         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2043                 return -EINVAL;
2044
2045         if (!is_valid_rd(rd)) {
2046                 pr_err("Invalid regulatory domain detected:\n");
2047                 print_regdomain_info(rd);
2048                 return -EINVAL;
2049         }
2050
2051         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2052         if (!request_wiphy &&
2053             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2054              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2055                 schedule_delayed_work(&reg_timeout, 0);
2056                 return -ENODEV;
2057         }
2058
2059         if (!last_request->intersect) {
2060                 int r;
2061
2062                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2063                         reset_regdomains(false);
2064                         cfg80211_regdomain = rd;
2065                         return 0;
2066                 }
2067
2068                 /*
2069                  * For a driver hint, lets copy the regulatory domain the
2070                  * driver wanted to the wiphy to deal with conflicts
2071                  */
2072
2073                 /*
2074                  * Userspace could have sent two replies with only
2075                  * one kernel request.
2076                  */
2077                 if (request_wiphy->regd)
2078                         return -EALREADY;
2079
2080                 r = reg_copy_regd(&request_wiphy->regd, rd);
2081                 if (r)
2082                         return r;
2083
2084                 reset_regdomains(false);
2085                 cfg80211_regdomain = rd;
2086                 return 0;
2087         }
2088
2089         /* Intersection requires a bit more work */
2090
2091         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2092
2093                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2094                 if (!intersected_rd)
2095                         return -EINVAL;
2096
2097                 /*
2098                  * We can trash what CRDA provided now.
2099                  * However if a driver requested this specific regulatory
2100                  * domain we keep it for its private use
2101                  */
2102                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2103                         request_wiphy->regd = rd;
2104                 else
2105                         kfree(rd);
2106
2107                 rd = NULL;
2108
2109                 reset_regdomains(false);
2110                 cfg80211_regdomain = intersected_rd;
2111
2112                 return 0;
2113         }
2114
2115         if (!intersected_rd)
2116                 return -EINVAL;
2117
2118         rdev = wiphy_to_dev(request_wiphy);
2119
2120         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2121         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2122         rdev->env = last_request->country_ie_env;
2123
2124         BUG_ON(intersected_rd == rd);
2125
2126         kfree(rd);
2127         rd = NULL;
2128
2129         reset_regdomains(false);
2130         cfg80211_regdomain = intersected_rd;
2131
2132         return 0;
2133 }
2134
2135
2136 /*
2137  * Use this call to set the current regulatory domain. Conflicts with
2138  * multiple drivers can be ironed out later. Caller must've already
2139  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2140  */
2141 int set_regdom(const struct ieee80211_regdomain *rd)
2142 {
2143         int r;
2144
2145         assert_cfg80211_lock();
2146
2147         mutex_lock(&reg_mutex);
2148
2149         /* Note that this doesn't update the wiphys, this is done below */
2150         r = __set_regdom(rd);
2151         if (r) {
2152                 kfree(rd);
2153                 mutex_unlock(&reg_mutex);
2154                 return r;
2155         }
2156
2157         /* This would make this whole thing pointless */
2158         if (!last_request->intersect)
2159                 BUG_ON(rd != cfg80211_regdomain);
2160
2161         /* update all wiphys now with the new established regulatory domain */
2162         update_all_wiphy_regulatory(last_request->initiator);
2163
2164         print_regdomain(cfg80211_regdomain);
2165
2166         nl80211_send_reg_change_event(last_request);
2167
2168         reg_set_request_processed();
2169
2170         mutex_unlock(&reg_mutex);
2171
2172         return r;
2173 }
2174
2175 #ifdef CONFIG_HOTPLUG
2176 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2177 {
2178         if (last_request && !last_request->processed) {
2179                 if (add_uevent_var(env, "COUNTRY=%c%c",
2180                                    last_request->alpha2[0],
2181                                    last_request->alpha2[1]))
2182                         return -ENOMEM;
2183         }
2184
2185         return 0;
2186 }
2187 #else
2188 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2189 {
2190         return -ENODEV;
2191 }
2192 #endif /* CONFIG_HOTPLUG */
2193
2194 /* Caller must hold cfg80211_mutex */
2195 void reg_device_remove(struct wiphy *wiphy)
2196 {
2197         struct wiphy *request_wiphy = NULL;
2198
2199         assert_cfg80211_lock();
2200
2201         mutex_lock(&reg_mutex);
2202
2203         kfree(wiphy->regd);
2204
2205         if (last_request)
2206                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2207
2208         if (!request_wiphy || request_wiphy != wiphy)
2209                 goto out;
2210
2211         last_request->wiphy_idx = WIPHY_IDX_STALE;
2212         last_request->country_ie_env = ENVIRON_ANY;
2213 out:
2214         mutex_unlock(&reg_mutex);
2215 }
2216
2217 static void reg_timeout_work(struct work_struct *work)
2218 {
2219         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2220                       "restoring regulatory settings\n");
2221         restore_regulatory_settings(true);
2222 }
2223
2224 int __init regulatory_init(void)
2225 {
2226         int err = 0;
2227
2228         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2229         if (IS_ERR(reg_pdev))
2230                 return PTR_ERR(reg_pdev);
2231
2232         reg_pdev->dev.type = &reg_device_type;
2233
2234         spin_lock_init(&reg_requests_lock);
2235         spin_lock_init(&reg_pending_beacons_lock);
2236
2237         cfg80211_regdomain = cfg80211_world_regdom;
2238
2239         user_alpha2[0] = '9';
2240         user_alpha2[1] = '7';
2241
2242         /* We always try to get an update for the static regdomain */
2243         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2244         if (err) {
2245                 if (err == -ENOMEM)
2246                         return err;
2247                 /*
2248                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2249                  * memory which is handled and propagated appropriately above
2250                  * but it can also fail during a netlink_broadcast() or during
2251                  * early boot for call_usermodehelper(). For now treat these
2252                  * errors as non-fatal.
2253                  */
2254                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2255 #ifdef CONFIG_CFG80211_REG_DEBUG
2256                 /* We want to find out exactly why when debugging */
2257                 WARN_ON(err);
2258 #endif
2259         }
2260
2261         /*
2262          * Finally, if the user set the module parameter treat it
2263          * as a user hint.
2264          */
2265         if (!is_world_regdom(ieee80211_regdom))
2266                 regulatory_hint_user(ieee80211_regdom);
2267
2268         return 0;
2269 }
2270
2271 void /* __init_or_exit */ regulatory_exit(void)
2272 {
2273         struct regulatory_request *reg_request, *tmp;
2274         struct reg_beacon *reg_beacon, *btmp;
2275
2276         cancel_work_sync(&reg_work);
2277         cancel_delayed_work_sync(&reg_timeout);
2278
2279         mutex_lock(&cfg80211_mutex);
2280         mutex_lock(&reg_mutex);
2281
2282         reset_regdomains(true);
2283
2284         dev_set_uevent_suppress(&reg_pdev->dev, true);
2285
2286         platform_device_unregister(reg_pdev);
2287
2288         spin_lock_bh(&reg_pending_beacons_lock);
2289         if (!list_empty(&reg_pending_beacons)) {
2290                 list_for_each_entry_safe(reg_beacon, btmp,
2291                                          &reg_pending_beacons, list) {
2292                         list_del(&reg_beacon->list);
2293                         kfree(reg_beacon);
2294                 }
2295         }
2296         spin_unlock_bh(&reg_pending_beacons_lock);
2297
2298         if (!list_empty(&reg_beacon_list)) {
2299                 list_for_each_entry_safe(reg_beacon, btmp,
2300                                          &reg_beacon_list, list) {
2301                         list_del(&reg_beacon->list);
2302                         kfree(reg_beacon);
2303                 }
2304         }
2305
2306         spin_lock(&reg_requests_lock);
2307         if (!list_empty(&reg_requests_list)) {
2308                 list_for_each_entry_safe(reg_request, tmp,
2309                                          &reg_requests_list, list) {
2310                         list_del(&reg_request->list);
2311                         kfree(reg_request);
2312                 }
2313         }
2314         spin_unlock(&reg_requests_lock);
2315
2316         mutex_unlock(&reg_mutex);
2317         mutex_unlock(&cfg80211_mutex);
2318 }