klist: Fix object alignment on 64-bit.
[pandora-kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53         do { \
54                 printk(KERN_DEBUG pr_fmt(format), ##args);      \
55         } while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
62
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
65
66 /*
67  * Central wireless core regulatory domains, we only need two,
68  * the current one and a world regulatory domain in case we have no
69  * information to give us an alpha2
70  */
71 const struct ieee80211_regdomain *cfg80211_regdomain;
72
73 /*
74  * Protects static reg.c components:
75  *     - cfg80211_world_regdom
76  *     - cfg80211_regdom
77  *     - last_request
78  */
79 static DEFINE_MUTEX(reg_mutex);
80
81 static inline void assert_reg_lock(void)
82 {
83         lockdep_assert_held(&reg_mutex);
84 }
85
86 /* Used to queue up regulatory hints */
87 static LIST_HEAD(reg_requests_list);
88 static spinlock_t reg_requests_lock;
89
90 /* Used to queue up beacon hints for review */
91 static LIST_HEAD(reg_pending_beacons);
92 static spinlock_t reg_pending_beacons_lock;
93
94 /* Used to keep track of processed beacon hints */
95 static LIST_HEAD(reg_beacon_list);
96
97 struct reg_beacon {
98         struct list_head list;
99         struct ieee80211_channel chan;
100 };
101
102 static void reg_todo(struct work_struct *work);
103 static DECLARE_WORK(reg_work, reg_todo);
104
105 /* We keep a static world regulatory domain in case of the absence of CRDA */
106 static const struct ieee80211_regdomain world_regdom = {
107         .n_reg_rules = 5,
108         .alpha2 =  "00",
109         .reg_rules = {
110                 /* IEEE 802.11b/g, channels 1..11 */
111                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
112                 /* IEEE 802.11b/g, channels 12..13. No HT40
113                  * channel fits here. */
114                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
115                         NL80211_RRF_PASSIVE_SCAN |
116                         NL80211_RRF_NO_IBSS),
117                 /* IEEE 802.11 channel 14 - Only JP enables
118                  * this and for 802.11b only */
119                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
120                         NL80211_RRF_PASSIVE_SCAN |
121                         NL80211_RRF_NO_IBSS |
122                         NL80211_RRF_NO_OFDM),
123                 /* IEEE 802.11a, channel 36..48 */
124                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
125                         NL80211_RRF_PASSIVE_SCAN |
126                         NL80211_RRF_NO_IBSS),
127
128                 /* NB: 5260 MHz - 5700 MHz requies DFS */
129
130                 /* IEEE 802.11a, channel 149..165 */
131                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
132                         NL80211_RRF_PASSIVE_SCAN |
133                         NL80211_RRF_NO_IBSS),
134         }
135 };
136
137 static const struct ieee80211_regdomain *cfg80211_world_regdom =
138         &world_regdom;
139
140 static char *ieee80211_regdom = "00";
141 static char user_alpha2[2];
142
143 module_param(ieee80211_regdom, charp, 0444);
144 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
145
146 static void reset_regdomains(void)
147 {
148         /* avoid freeing static information or freeing something twice */
149         if (cfg80211_regdomain == cfg80211_world_regdom)
150                 cfg80211_regdomain = NULL;
151         if (cfg80211_world_regdom == &world_regdom)
152                 cfg80211_world_regdom = NULL;
153         if (cfg80211_regdomain == &world_regdom)
154                 cfg80211_regdomain = NULL;
155
156         kfree(cfg80211_regdomain);
157         kfree(cfg80211_world_regdom);
158
159         cfg80211_world_regdom = &world_regdom;
160         cfg80211_regdomain = NULL;
161 }
162
163 /*
164  * Dynamic world regulatory domain requested by the wireless
165  * core upon initialization
166  */
167 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
168 {
169         BUG_ON(!last_request);
170
171         reset_regdomains();
172
173         cfg80211_world_regdom = rd;
174         cfg80211_regdomain = rd;
175 }
176
177 bool is_world_regdom(const char *alpha2)
178 {
179         if (!alpha2)
180                 return false;
181         if (alpha2[0] == '0' && alpha2[1] == '0')
182                 return true;
183         return false;
184 }
185
186 static bool is_alpha2_set(const char *alpha2)
187 {
188         if (!alpha2)
189                 return false;
190         if (alpha2[0] != 0 && alpha2[1] != 0)
191                 return true;
192         return false;
193 }
194
195 static bool is_unknown_alpha2(const char *alpha2)
196 {
197         if (!alpha2)
198                 return false;
199         /*
200          * Special case where regulatory domain was built by driver
201          * but a specific alpha2 cannot be determined
202          */
203         if (alpha2[0] == '9' && alpha2[1] == '9')
204                 return true;
205         return false;
206 }
207
208 static bool is_intersected_alpha2(const char *alpha2)
209 {
210         if (!alpha2)
211                 return false;
212         /*
213          * Special case where regulatory domain is the
214          * result of an intersection between two regulatory domain
215          * structures
216          */
217         if (alpha2[0] == '9' && alpha2[1] == '8')
218                 return true;
219         return false;
220 }
221
222 static bool is_an_alpha2(const char *alpha2)
223 {
224         if (!alpha2)
225                 return false;
226         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
227                 return true;
228         return false;
229 }
230
231 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
232 {
233         if (!alpha2_x || !alpha2_y)
234                 return false;
235         if (alpha2_x[0] == alpha2_y[0] &&
236                 alpha2_x[1] == alpha2_y[1])
237                 return true;
238         return false;
239 }
240
241 static bool regdom_changes(const char *alpha2)
242 {
243         assert_cfg80211_lock();
244
245         if (!cfg80211_regdomain)
246                 return true;
247         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
248                 return false;
249         return true;
250 }
251
252 /*
253  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
254  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
255  * has ever been issued.
256  */
257 static bool is_user_regdom_saved(void)
258 {
259         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
260                 return false;
261
262         /* This would indicate a mistake on the design */
263         if (WARN((!is_world_regdom(user_alpha2) &&
264                   !is_an_alpha2(user_alpha2)),
265                  "Unexpected user alpha2: %c%c\n",
266                  user_alpha2[0],
267                  user_alpha2[1]))
268                 return false;
269
270         return true;
271 }
272
273 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
274                          const struct ieee80211_regdomain *src_regd)
275 {
276         struct ieee80211_regdomain *regd;
277         int size_of_regd = 0;
278         unsigned int i;
279
280         size_of_regd = sizeof(struct ieee80211_regdomain) +
281           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
282
283         regd = kzalloc(size_of_regd, GFP_KERNEL);
284         if (!regd)
285                 return -ENOMEM;
286
287         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
288
289         for (i = 0; i < src_regd->n_reg_rules; i++)
290                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
291                         sizeof(struct ieee80211_reg_rule));
292
293         *dst_regd = regd;
294         return 0;
295 }
296
297 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
298 struct reg_regdb_search_request {
299         char alpha2[2];
300         struct list_head list;
301 };
302
303 static LIST_HEAD(reg_regdb_search_list);
304 static DEFINE_MUTEX(reg_regdb_search_mutex);
305
306 static void reg_regdb_search(struct work_struct *work)
307 {
308         struct reg_regdb_search_request *request;
309         const struct ieee80211_regdomain *curdom, *regdom;
310         int i, r;
311
312         mutex_lock(&reg_regdb_search_mutex);
313         while (!list_empty(&reg_regdb_search_list)) {
314                 request = list_first_entry(&reg_regdb_search_list,
315                                            struct reg_regdb_search_request,
316                                            list);
317                 list_del(&request->list);
318
319                 for (i=0; i<reg_regdb_size; i++) {
320                         curdom = reg_regdb[i];
321
322                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
323                                 r = reg_copy_regd(&regdom, curdom);
324                                 if (r)
325                                         break;
326                                 mutex_lock(&cfg80211_mutex);
327                                 set_regdom(regdom);
328                                 mutex_unlock(&cfg80211_mutex);
329                                 break;
330                         }
331                 }
332
333                 kfree(request);
334         }
335         mutex_unlock(&reg_regdb_search_mutex);
336 }
337
338 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
339
340 static void reg_regdb_query(const char *alpha2)
341 {
342         struct reg_regdb_search_request *request;
343
344         if (!alpha2)
345                 return;
346
347         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
348         if (!request)
349                 return;
350
351         memcpy(request->alpha2, alpha2, 2);
352
353         mutex_lock(&reg_regdb_search_mutex);
354         list_add_tail(&request->list, &reg_regdb_search_list);
355         mutex_unlock(&reg_regdb_search_mutex);
356
357         schedule_work(&reg_regdb_work);
358 }
359 #else
360 static inline void reg_regdb_query(const char *alpha2) {}
361 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
362
363 /*
364  * This lets us keep regulatory code which is updated on a regulatory
365  * basis in userspace.
366  */
367 static int call_crda(const char *alpha2)
368 {
369         char country_env[9 + 2] = "COUNTRY=";
370         char *envp[] = {
371                 country_env,
372                 NULL
373         };
374
375         if (!is_world_regdom((char *) alpha2))
376                 pr_info("Calling CRDA for country: %c%c\n",
377                         alpha2[0], alpha2[1]);
378         else
379                 pr_info("Calling CRDA to update world regulatory domain\n");
380
381         /* query internal regulatory database (if it exists) */
382         reg_regdb_query(alpha2);
383
384         country_env[8] = alpha2[0];
385         country_env[9] = alpha2[1];
386
387         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
388 }
389
390 /* Used by nl80211 before kmalloc'ing our regulatory domain */
391 bool reg_is_valid_request(const char *alpha2)
392 {
393         assert_cfg80211_lock();
394
395         if (!last_request)
396                 return false;
397
398         return alpha2_equal(last_request->alpha2, alpha2);
399 }
400
401 /* Sanity check on a regulatory rule */
402 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
403 {
404         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
405         u32 freq_diff;
406
407         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
408                 return false;
409
410         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
411                 return false;
412
413         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
414
415         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
416                         freq_range->max_bandwidth_khz > freq_diff)
417                 return false;
418
419         return true;
420 }
421
422 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
423 {
424         const struct ieee80211_reg_rule *reg_rule = NULL;
425         unsigned int i;
426
427         if (!rd->n_reg_rules)
428                 return false;
429
430         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
431                 return false;
432
433         for (i = 0; i < rd->n_reg_rules; i++) {
434                 reg_rule = &rd->reg_rules[i];
435                 if (!is_valid_reg_rule(reg_rule))
436                         return false;
437         }
438
439         return true;
440 }
441
442 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
443                             u32 center_freq_khz,
444                             u32 bw_khz)
445 {
446         u32 start_freq_khz, end_freq_khz;
447
448         start_freq_khz = center_freq_khz - (bw_khz/2);
449         end_freq_khz = center_freq_khz + (bw_khz/2);
450
451         if (start_freq_khz >= freq_range->start_freq_khz &&
452             end_freq_khz <= freq_range->end_freq_khz)
453                 return true;
454
455         return false;
456 }
457
458 /**
459  * freq_in_rule_band - tells us if a frequency is in a frequency band
460  * @freq_range: frequency rule we want to query
461  * @freq_khz: frequency we are inquiring about
462  *
463  * This lets us know if a specific frequency rule is or is not relevant to
464  * a specific frequency's band. Bands are device specific and artificial
465  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
466  * safe for now to assume that a frequency rule should not be part of a
467  * frequency's band if the start freq or end freq are off by more than 2 GHz.
468  * This resolution can be lowered and should be considered as we add
469  * regulatory rule support for other "bands".
470  **/
471 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
472         u32 freq_khz)
473 {
474 #define ONE_GHZ_IN_KHZ  1000000
475         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476                 return true;
477         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
478                 return true;
479         return false;
480 #undef ONE_GHZ_IN_KHZ
481 }
482
483 /*
484  * Helper for regdom_intersect(), this does the real
485  * mathematical intersection fun
486  */
487 static int reg_rules_intersect(
488         const struct ieee80211_reg_rule *rule1,
489         const struct ieee80211_reg_rule *rule2,
490         struct ieee80211_reg_rule *intersected_rule)
491 {
492         const struct ieee80211_freq_range *freq_range1, *freq_range2;
493         struct ieee80211_freq_range *freq_range;
494         const struct ieee80211_power_rule *power_rule1, *power_rule2;
495         struct ieee80211_power_rule *power_rule;
496         u32 freq_diff;
497
498         freq_range1 = &rule1->freq_range;
499         freq_range2 = &rule2->freq_range;
500         freq_range = &intersected_rule->freq_range;
501
502         power_rule1 = &rule1->power_rule;
503         power_rule2 = &rule2->power_rule;
504         power_rule = &intersected_rule->power_rule;
505
506         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
507                 freq_range2->start_freq_khz);
508         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
509                 freq_range2->end_freq_khz);
510         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
511                 freq_range2->max_bandwidth_khz);
512
513         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
514         if (freq_range->max_bandwidth_khz > freq_diff)
515                 freq_range->max_bandwidth_khz = freq_diff;
516
517         power_rule->max_eirp = min(power_rule1->max_eirp,
518                 power_rule2->max_eirp);
519         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
520                 power_rule2->max_antenna_gain);
521
522         intersected_rule->flags = (rule1->flags | rule2->flags);
523
524         if (!is_valid_reg_rule(intersected_rule))
525                 return -EINVAL;
526
527         return 0;
528 }
529
530 /**
531  * regdom_intersect - do the intersection between two regulatory domains
532  * @rd1: first regulatory domain
533  * @rd2: second regulatory domain
534  *
535  * Use this function to get the intersection between two regulatory domains.
536  * Once completed we will mark the alpha2 for the rd as intersected, "98",
537  * as no one single alpha2 can represent this regulatory domain.
538  *
539  * Returns a pointer to the regulatory domain structure which will hold the
540  * resulting intersection of rules between rd1 and rd2. We will
541  * kzalloc() this structure for you.
542  */
543 static struct ieee80211_regdomain *regdom_intersect(
544         const struct ieee80211_regdomain *rd1,
545         const struct ieee80211_regdomain *rd2)
546 {
547         int r, size_of_regd;
548         unsigned int x, y;
549         unsigned int num_rules = 0, rule_idx = 0;
550         const struct ieee80211_reg_rule *rule1, *rule2;
551         struct ieee80211_reg_rule *intersected_rule;
552         struct ieee80211_regdomain *rd;
553         /* This is just a dummy holder to help us count */
554         struct ieee80211_reg_rule irule;
555
556         /* Uses the stack temporarily for counter arithmetic */
557         intersected_rule = &irule;
558
559         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
560
561         if (!rd1 || !rd2)
562                 return NULL;
563
564         /*
565          * First we get a count of the rules we'll need, then we actually
566          * build them. This is to so we can malloc() and free() a
567          * regdomain once. The reason we use reg_rules_intersect() here
568          * is it will return -EINVAL if the rule computed makes no sense.
569          * All rules that do check out OK are valid.
570          */
571
572         for (x = 0; x < rd1->n_reg_rules; x++) {
573                 rule1 = &rd1->reg_rules[x];
574                 for (y = 0; y < rd2->n_reg_rules; y++) {
575                         rule2 = &rd2->reg_rules[y];
576                         if (!reg_rules_intersect(rule1, rule2,
577                                         intersected_rule))
578                                 num_rules++;
579                         memset(intersected_rule, 0,
580                                         sizeof(struct ieee80211_reg_rule));
581                 }
582         }
583
584         if (!num_rules)
585                 return NULL;
586
587         size_of_regd = sizeof(struct ieee80211_regdomain) +
588                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
589
590         rd = kzalloc(size_of_regd, GFP_KERNEL);
591         if (!rd)
592                 return NULL;
593
594         for (x = 0; x < rd1->n_reg_rules; x++) {
595                 rule1 = &rd1->reg_rules[x];
596                 for (y = 0; y < rd2->n_reg_rules; y++) {
597                         rule2 = &rd2->reg_rules[y];
598                         /*
599                          * This time around instead of using the stack lets
600                          * write to the target rule directly saving ourselves
601                          * a memcpy()
602                          */
603                         intersected_rule = &rd->reg_rules[rule_idx];
604                         r = reg_rules_intersect(rule1, rule2,
605                                 intersected_rule);
606                         /*
607                          * No need to memset here the intersected rule here as
608                          * we're not using the stack anymore
609                          */
610                         if (r)
611                                 continue;
612                         rule_idx++;
613                 }
614         }
615
616         if (rule_idx != num_rules) {
617                 kfree(rd);
618                 return NULL;
619         }
620
621         rd->n_reg_rules = num_rules;
622         rd->alpha2[0] = '9';
623         rd->alpha2[1] = '8';
624
625         return rd;
626 }
627
628 /*
629  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
630  * want to just have the channel structure use these
631  */
632 static u32 map_regdom_flags(u32 rd_flags)
633 {
634         u32 channel_flags = 0;
635         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
636                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
637         if (rd_flags & NL80211_RRF_NO_IBSS)
638                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
639         if (rd_flags & NL80211_RRF_DFS)
640                 channel_flags |= IEEE80211_CHAN_RADAR;
641         return channel_flags;
642 }
643
644 static int freq_reg_info_regd(struct wiphy *wiphy,
645                               u32 center_freq,
646                               u32 desired_bw_khz,
647                               const struct ieee80211_reg_rule **reg_rule,
648                               const struct ieee80211_regdomain *custom_regd)
649 {
650         int i;
651         bool band_rule_found = false;
652         const struct ieee80211_regdomain *regd;
653         bool bw_fits = false;
654
655         if (!desired_bw_khz)
656                 desired_bw_khz = MHZ_TO_KHZ(20);
657
658         regd = custom_regd ? custom_regd : cfg80211_regdomain;
659
660         /*
661          * Follow the driver's regulatory domain, if present, unless a country
662          * IE has been processed or a user wants to help complaince further
663          */
664         if (!custom_regd &&
665             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
666             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
667             wiphy->regd)
668                 regd = wiphy->regd;
669
670         if (!regd)
671                 return -EINVAL;
672
673         for (i = 0; i < regd->n_reg_rules; i++) {
674                 const struct ieee80211_reg_rule *rr;
675                 const struct ieee80211_freq_range *fr = NULL;
676                 const struct ieee80211_power_rule *pr = NULL;
677
678                 rr = &regd->reg_rules[i];
679                 fr = &rr->freq_range;
680                 pr = &rr->power_rule;
681
682                 /*
683                  * We only need to know if one frequency rule was
684                  * was in center_freq's band, that's enough, so lets
685                  * not overwrite it once found
686                  */
687                 if (!band_rule_found)
688                         band_rule_found = freq_in_rule_band(fr, center_freq);
689
690                 bw_fits = reg_does_bw_fit(fr,
691                                           center_freq,
692                                           desired_bw_khz);
693
694                 if (band_rule_found && bw_fits) {
695                         *reg_rule = rr;
696                         return 0;
697                 }
698         }
699
700         if (!band_rule_found)
701                 return -ERANGE;
702
703         return -EINVAL;
704 }
705
706 int freq_reg_info(struct wiphy *wiphy,
707                   u32 center_freq,
708                   u32 desired_bw_khz,
709                   const struct ieee80211_reg_rule **reg_rule)
710 {
711         assert_cfg80211_lock();
712         return freq_reg_info_regd(wiphy,
713                                   center_freq,
714                                   desired_bw_khz,
715                                   reg_rule,
716                                   NULL);
717 }
718 EXPORT_SYMBOL(freq_reg_info);
719
720 #ifdef CONFIG_CFG80211_REG_DEBUG
721 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
722 {
723         switch (initiator) {
724         case NL80211_REGDOM_SET_BY_CORE:
725                 return "Set by core";
726         case NL80211_REGDOM_SET_BY_USER:
727                 return "Set by user";
728         case NL80211_REGDOM_SET_BY_DRIVER:
729                 return "Set by driver";
730         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
731                 return "Set by country IE";
732         default:
733                 WARN_ON(1);
734                 return "Set by bug";
735         }
736 }
737
738 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
739                                     u32 desired_bw_khz,
740                                     const struct ieee80211_reg_rule *reg_rule)
741 {
742         const struct ieee80211_power_rule *power_rule;
743         const struct ieee80211_freq_range *freq_range;
744         char max_antenna_gain[32];
745
746         power_rule = &reg_rule->power_rule;
747         freq_range = &reg_rule->freq_range;
748
749         if (!power_rule->max_antenna_gain)
750                 snprintf(max_antenna_gain, 32, "N/A");
751         else
752                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
753
754         REG_DBG_PRINT("Updating information on frequency %d MHz "
755                       "for a %d MHz width channel with regulatory rule:\n",
756                       chan->center_freq,
757                       KHZ_TO_MHZ(desired_bw_khz));
758
759         REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
760                       freq_range->start_freq_khz,
761                       freq_range->end_freq_khz,
762                       max_antenna_gain,
763                       power_rule->max_eirp);
764 }
765 #else
766 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
767                                     u32 desired_bw_khz,
768                                     const struct ieee80211_reg_rule *reg_rule)
769 {
770         return;
771 }
772 #endif
773
774 /*
775  * Note that right now we assume the desired channel bandwidth
776  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
777  * per channel, the primary and the extension channel). To support
778  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
779  * new ieee80211_channel.target_bw and re run the regulatory check
780  * on the wiphy with the target_bw specified. Then we can simply use
781  * that below for the desired_bw_khz below.
782  */
783 static void handle_channel(struct wiphy *wiphy,
784                            enum nl80211_reg_initiator initiator,
785                            enum ieee80211_band band,
786                            unsigned int chan_idx)
787 {
788         int r;
789         u32 flags, bw_flags = 0;
790         u32 desired_bw_khz = MHZ_TO_KHZ(20);
791         const struct ieee80211_reg_rule *reg_rule = NULL;
792         const struct ieee80211_power_rule *power_rule = NULL;
793         const struct ieee80211_freq_range *freq_range = NULL;
794         struct ieee80211_supported_band *sband;
795         struct ieee80211_channel *chan;
796         struct wiphy *request_wiphy = NULL;
797
798         assert_cfg80211_lock();
799
800         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
801
802         sband = wiphy->bands[band];
803         BUG_ON(chan_idx >= sband->n_channels);
804         chan = &sband->channels[chan_idx];
805
806         flags = chan->orig_flags;
807
808         r = freq_reg_info(wiphy,
809                           MHZ_TO_KHZ(chan->center_freq),
810                           desired_bw_khz,
811                           &reg_rule);
812
813         if (r) {
814                 /*
815                  * We will disable all channels that do not match our
816                  * recieved regulatory rule unless the hint is coming
817                  * from a Country IE and the Country IE had no information
818                  * about a band. The IEEE 802.11 spec allows for an AP
819                  * to send only a subset of the regulatory rules allowed,
820                  * so an AP in the US that only supports 2.4 GHz may only send
821                  * a country IE with information for the 2.4 GHz band
822                  * while 5 GHz is still supported.
823                  */
824                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
825                     r == -ERANGE)
826                         return;
827
828                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
829                 chan->flags = IEEE80211_CHAN_DISABLED;
830                 return;
831         }
832
833         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
834
835         power_rule = &reg_rule->power_rule;
836         freq_range = &reg_rule->freq_range;
837
838         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
839                 bw_flags = IEEE80211_CHAN_NO_HT40;
840
841         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
842             request_wiphy && request_wiphy == wiphy &&
843             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
844                 /*
845                  * This gaurantees the driver's requested regulatory domain
846                  * will always be used as a base for further regulatory
847                  * settings
848                  */
849                 chan->flags = chan->orig_flags =
850                         map_regdom_flags(reg_rule->flags) | bw_flags;
851                 chan->max_antenna_gain = chan->orig_mag =
852                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
853                 chan->max_power = chan->orig_mpwr =
854                         (int) MBM_TO_DBM(power_rule->max_eirp);
855                 return;
856         }
857
858         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
859         chan->max_antenna_gain = min(chan->orig_mag,
860                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
861         if (chan->orig_mpwr)
862                 chan->max_power = min(chan->orig_mpwr,
863                         (int) MBM_TO_DBM(power_rule->max_eirp));
864         else
865                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
866 }
867
868 static void handle_band(struct wiphy *wiphy,
869                         enum ieee80211_band band,
870                         enum nl80211_reg_initiator initiator)
871 {
872         unsigned int i;
873         struct ieee80211_supported_band *sband;
874
875         BUG_ON(!wiphy->bands[band]);
876         sband = wiphy->bands[band];
877
878         for (i = 0; i < sband->n_channels; i++)
879                 handle_channel(wiphy, initiator, band, i);
880 }
881
882 static bool ignore_reg_update(struct wiphy *wiphy,
883                               enum nl80211_reg_initiator initiator)
884 {
885         if (!last_request) {
886                 REG_DBG_PRINT("Ignoring regulatory request %s since "
887                               "last_request is not set\n",
888                               reg_initiator_name(initiator));
889                 return true;
890         }
891
892         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
893             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
894                 REG_DBG_PRINT("Ignoring regulatory request %s "
895                               "since the driver uses its own custom "
896                               "regulatory domain ",
897                               reg_initiator_name(initiator));
898                 return true;
899         }
900
901         /*
902          * wiphy->regd will be set once the device has its own
903          * desired regulatory domain set
904          */
905         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
906             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
907             !is_world_regdom(last_request->alpha2)) {
908                 REG_DBG_PRINT("Ignoring regulatory request %s "
909                               "since the driver requires its own regulaotry "
910                               "domain to be set first",
911                               reg_initiator_name(initiator));
912                 return true;
913         }
914
915         return false;
916 }
917
918 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
919 {
920         struct cfg80211_registered_device *rdev;
921
922         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
923                 wiphy_update_regulatory(&rdev->wiphy, initiator);
924 }
925
926 static void handle_reg_beacon(struct wiphy *wiphy,
927                               unsigned int chan_idx,
928                               struct reg_beacon *reg_beacon)
929 {
930         struct ieee80211_supported_band *sband;
931         struct ieee80211_channel *chan;
932         bool channel_changed = false;
933         struct ieee80211_channel chan_before;
934
935         assert_cfg80211_lock();
936
937         sband = wiphy->bands[reg_beacon->chan.band];
938         chan = &sband->channels[chan_idx];
939
940         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
941                 return;
942
943         if (chan->beacon_found)
944                 return;
945
946         chan->beacon_found = true;
947
948         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
949                 return;
950
951         chan_before.center_freq = chan->center_freq;
952         chan_before.flags = chan->flags;
953
954         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
955                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
956                 channel_changed = true;
957         }
958
959         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
960                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
961                 channel_changed = true;
962         }
963
964         if (channel_changed)
965                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
966 }
967
968 /*
969  * Called when a scan on a wiphy finds a beacon on
970  * new channel
971  */
972 static void wiphy_update_new_beacon(struct wiphy *wiphy,
973                                     struct reg_beacon *reg_beacon)
974 {
975         unsigned int i;
976         struct ieee80211_supported_band *sband;
977
978         assert_cfg80211_lock();
979
980         if (!wiphy->bands[reg_beacon->chan.band])
981                 return;
982
983         sband = wiphy->bands[reg_beacon->chan.band];
984
985         for (i = 0; i < sband->n_channels; i++)
986                 handle_reg_beacon(wiphy, i, reg_beacon);
987 }
988
989 /*
990  * Called upon reg changes or a new wiphy is added
991  */
992 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
993 {
994         unsigned int i;
995         struct ieee80211_supported_band *sband;
996         struct reg_beacon *reg_beacon;
997
998         assert_cfg80211_lock();
999
1000         if (list_empty(&reg_beacon_list))
1001                 return;
1002
1003         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1004                 if (!wiphy->bands[reg_beacon->chan.band])
1005                         continue;
1006                 sband = wiphy->bands[reg_beacon->chan.band];
1007                 for (i = 0; i < sband->n_channels; i++)
1008                         handle_reg_beacon(wiphy, i, reg_beacon);
1009         }
1010 }
1011
1012 static bool reg_is_world_roaming(struct wiphy *wiphy)
1013 {
1014         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1015             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1016                 return true;
1017         if (last_request &&
1018             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1019             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1020                 return true;
1021         return false;
1022 }
1023
1024 /* Reap the advantages of previously found beacons */
1025 static void reg_process_beacons(struct wiphy *wiphy)
1026 {
1027         /*
1028          * Means we are just firing up cfg80211, so no beacons would
1029          * have been processed yet.
1030          */
1031         if (!last_request)
1032                 return;
1033         if (!reg_is_world_roaming(wiphy))
1034                 return;
1035         wiphy_update_beacon_reg(wiphy);
1036 }
1037
1038 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1039 {
1040         if (!chan)
1041                 return true;
1042         if (chan->flags & IEEE80211_CHAN_DISABLED)
1043                 return true;
1044         /* This would happen when regulatory rules disallow HT40 completely */
1045         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1046                 return true;
1047         return false;
1048 }
1049
1050 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1051                                          enum ieee80211_band band,
1052                                          unsigned int chan_idx)
1053 {
1054         struct ieee80211_supported_band *sband;
1055         struct ieee80211_channel *channel;
1056         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1057         unsigned int i;
1058
1059         assert_cfg80211_lock();
1060
1061         sband = wiphy->bands[band];
1062         BUG_ON(chan_idx >= sband->n_channels);
1063         channel = &sband->channels[chan_idx];
1064
1065         if (is_ht40_not_allowed(channel)) {
1066                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1067                 return;
1068         }
1069
1070         /*
1071          * We need to ensure the extension channels exist to
1072          * be able to use HT40- or HT40+, this finds them (or not)
1073          */
1074         for (i = 0; i < sband->n_channels; i++) {
1075                 struct ieee80211_channel *c = &sband->channels[i];
1076                 if (c->center_freq == (channel->center_freq - 20))
1077                         channel_before = c;
1078                 if (c->center_freq == (channel->center_freq + 20))
1079                         channel_after = c;
1080         }
1081
1082         /*
1083          * Please note that this assumes target bandwidth is 20 MHz,
1084          * if that ever changes we also need to change the below logic
1085          * to include that as well.
1086          */
1087         if (is_ht40_not_allowed(channel_before))
1088                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1089         else
1090                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1091
1092         if (is_ht40_not_allowed(channel_after))
1093                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1094         else
1095                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1096 }
1097
1098 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1099                                       enum ieee80211_band band)
1100 {
1101         unsigned int i;
1102         struct ieee80211_supported_band *sband;
1103
1104         BUG_ON(!wiphy->bands[band]);
1105         sband = wiphy->bands[band];
1106
1107         for (i = 0; i < sband->n_channels; i++)
1108                 reg_process_ht_flags_channel(wiphy, band, i);
1109 }
1110
1111 static void reg_process_ht_flags(struct wiphy *wiphy)
1112 {
1113         enum ieee80211_band band;
1114
1115         if (!wiphy)
1116                 return;
1117
1118         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1119                 if (wiphy->bands[band])
1120                         reg_process_ht_flags_band(wiphy, band);
1121         }
1122
1123 }
1124
1125 void wiphy_update_regulatory(struct wiphy *wiphy,
1126                              enum nl80211_reg_initiator initiator)
1127 {
1128         enum ieee80211_band band;
1129
1130         if (ignore_reg_update(wiphy, initiator))
1131                 goto out;
1132         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1133                 if (wiphy->bands[band])
1134                         handle_band(wiphy, band, initiator);
1135         }
1136 out:
1137         reg_process_beacons(wiphy);
1138         reg_process_ht_flags(wiphy);
1139         if (wiphy->reg_notifier)
1140                 wiphy->reg_notifier(wiphy, last_request);
1141 }
1142
1143 static void handle_channel_custom(struct wiphy *wiphy,
1144                                   enum ieee80211_band band,
1145                                   unsigned int chan_idx,
1146                                   const struct ieee80211_regdomain *regd)
1147 {
1148         int r;
1149         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1150         u32 bw_flags = 0;
1151         const struct ieee80211_reg_rule *reg_rule = NULL;
1152         const struct ieee80211_power_rule *power_rule = NULL;
1153         const struct ieee80211_freq_range *freq_range = NULL;
1154         struct ieee80211_supported_band *sband;
1155         struct ieee80211_channel *chan;
1156
1157         assert_reg_lock();
1158
1159         sband = wiphy->bands[band];
1160         BUG_ON(chan_idx >= sband->n_channels);
1161         chan = &sband->channels[chan_idx];
1162
1163         r = freq_reg_info_regd(wiphy,
1164                                MHZ_TO_KHZ(chan->center_freq),
1165                                desired_bw_khz,
1166                                &reg_rule,
1167                                regd);
1168
1169         if (r) {
1170                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1171                               "regd has no rule that fits a %d MHz "
1172                               "wide channel\n",
1173                               chan->center_freq,
1174                               KHZ_TO_MHZ(desired_bw_khz));
1175                 chan->flags = IEEE80211_CHAN_DISABLED;
1176                 return;
1177         }
1178
1179         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1180
1181         power_rule = &reg_rule->power_rule;
1182         freq_range = &reg_rule->freq_range;
1183
1184         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1185                 bw_flags = IEEE80211_CHAN_NO_HT40;
1186
1187         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1188         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1189         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1190 }
1191
1192 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1193                                const struct ieee80211_regdomain *regd)
1194 {
1195         unsigned int i;
1196         struct ieee80211_supported_band *sband;
1197
1198         BUG_ON(!wiphy->bands[band]);
1199         sband = wiphy->bands[band];
1200
1201         for (i = 0; i < sband->n_channels; i++)
1202                 handle_channel_custom(wiphy, band, i, regd);
1203 }
1204
1205 /* Used by drivers prior to wiphy registration */
1206 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1207                                    const struct ieee80211_regdomain *regd)
1208 {
1209         enum ieee80211_band band;
1210         unsigned int bands_set = 0;
1211
1212         mutex_lock(&reg_mutex);
1213         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1214                 if (!wiphy->bands[band])
1215                         continue;
1216                 handle_band_custom(wiphy, band, regd);
1217                 bands_set++;
1218         }
1219         mutex_unlock(&reg_mutex);
1220
1221         /*
1222          * no point in calling this if it won't have any effect
1223          * on your device's supportd bands.
1224          */
1225         WARN_ON(!bands_set);
1226 }
1227 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1228
1229 /*
1230  * Return value which can be used by ignore_request() to indicate
1231  * it has been determined we should intersect two regulatory domains
1232  */
1233 #define REG_INTERSECT   1
1234
1235 /* This has the logic which determines when a new request
1236  * should be ignored. */
1237 static int ignore_request(struct wiphy *wiphy,
1238                           struct regulatory_request *pending_request)
1239 {
1240         struct wiphy *last_wiphy = NULL;
1241
1242         assert_cfg80211_lock();
1243
1244         /* All initial requests are respected */
1245         if (!last_request)
1246                 return 0;
1247
1248         switch (pending_request->initiator) {
1249         case NL80211_REGDOM_SET_BY_CORE:
1250                 return 0;
1251         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1252
1253                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1254
1255                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1256                         return -EINVAL;
1257                 if (last_request->initiator ==
1258                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1259                         if (last_wiphy != wiphy) {
1260                                 /*
1261                                  * Two cards with two APs claiming different
1262                                  * Country IE alpha2s. We could
1263                                  * intersect them, but that seems unlikely
1264                                  * to be correct. Reject second one for now.
1265                                  */
1266                                 if (regdom_changes(pending_request->alpha2))
1267                                         return -EOPNOTSUPP;
1268                                 return -EALREADY;
1269                         }
1270                         /*
1271                          * Two consecutive Country IE hints on the same wiphy.
1272                          * This should be picked up early by the driver/stack
1273                          */
1274                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1275                                 return 0;
1276                         return -EALREADY;
1277                 }
1278                 return 0;
1279         case NL80211_REGDOM_SET_BY_DRIVER:
1280                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1281                         if (regdom_changes(pending_request->alpha2))
1282                                 return 0;
1283                         return -EALREADY;
1284                 }
1285
1286                 /*
1287                  * This would happen if you unplug and plug your card
1288                  * back in or if you add a new device for which the previously
1289                  * loaded card also agrees on the regulatory domain.
1290                  */
1291                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1292                     !regdom_changes(pending_request->alpha2))
1293                         return -EALREADY;
1294
1295                 return REG_INTERSECT;
1296         case NL80211_REGDOM_SET_BY_USER:
1297                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1298                         return REG_INTERSECT;
1299                 /*
1300                  * If the user knows better the user should set the regdom
1301                  * to their country before the IE is picked up
1302                  */
1303                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1304                           last_request->intersect)
1305                         return -EOPNOTSUPP;
1306                 /*
1307                  * Process user requests only after previous user/driver/core
1308                  * requests have been processed
1309                  */
1310                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1311                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1312                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1313                         if (regdom_changes(last_request->alpha2))
1314                                 return -EAGAIN;
1315                 }
1316
1317                 if (!regdom_changes(pending_request->alpha2))
1318                         return -EALREADY;
1319
1320                 return 0;
1321         }
1322
1323         return -EINVAL;
1324 }
1325
1326 static void reg_set_request_processed(void)
1327 {
1328         bool need_more_processing = false;
1329
1330         last_request->processed = true;
1331
1332         spin_lock(&reg_requests_lock);
1333         if (!list_empty(&reg_requests_list))
1334                 need_more_processing = true;
1335         spin_unlock(&reg_requests_lock);
1336
1337         if (need_more_processing)
1338                 schedule_work(&reg_work);
1339 }
1340
1341 /**
1342  * __regulatory_hint - hint to the wireless core a regulatory domain
1343  * @wiphy: if the hint comes from country information from an AP, this
1344  *      is required to be set to the wiphy that received the information
1345  * @pending_request: the regulatory request currently being processed
1346  *
1347  * The Wireless subsystem can use this function to hint to the wireless core
1348  * what it believes should be the current regulatory domain.
1349  *
1350  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1351  * already been set or other standard error codes.
1352  *
1353  * Caller must hold &cfg80211_mutex and &reg_mutex
1354  */
1355 static int __regulatory_hint(struct wiphy *wiphy,
1356                              struct regulatory_request *pending_request)
1357 {
1358         bool intersect = false;
1359         int r = 0;
1360
1361         assert_cfg80211_lock();
1362
1363         r = ignore_request(wiphy, pending_request);
1364
1365         if (r == REG_INTERSECT) {
1366                 if (pending_request->initiator ==
1367                     NL80211_REGDOM_SET_BY_DRIVER) {
1368                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1369                         if (r) {
1370                                 kfree(pending_request);
1371                                 return r;
1372                         }
1373                 }
1374                 intersect = true;
1375         } else if (r) {
1376                 /*
1377                  * If the regulatory domain being requested by the
1378                  * driver has already been set just copy it to the
1379                  * wiphy
1380                  */
1381                 if (r == -EALREADY &&
1382                     pending_request->initiator ==
1383                     NL80211_REGDOM_SET_BY_DRIVER) {
1384                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1385                         if (r) {
1386                                 kfree(pending_request);
1387                                 return r;
1388                         }
1389                         r = -EALREADY;
1390                         goto new_request;
1391                 }
1392                 kfree(pending_request);
1393                 return r;
1394         }
1395
1396 new_request:
1397         kfree(last_request);
1398
1399         last_request = pending_request;
1400         last_request->intersect = intersect;
1401
1402         pending_request = NULL;
1403
1404         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1405                 user_alpha2[0] = last_request->alpha2[0];
1406                 user_alpha2[1] = last_request->alpha2[1];
1407         }
1408
1409         /* When r == REG_INTERSECT we do need to call CRDA */
1410         if (r < 0) {
1411                 /*
1412                  * Since CRDA will not be called in this case as we already
1413                  * have applied the requested regulatory domain before we just
1414                  * inform userspace we have processed the request
1415                  */
1416                 if (r == -EALREADY) {
1417                         nl80211_send_reg_change_event(last_request);
1418                         reg_set_request_processed();
1419                 }
1420                 return r;
1421         }
1422
1423         return call_crda(last_request->alpha2);
1424 }
1425
1426 /* This processes *all* regulatory hints */
1427 static void reg_process_hint(struct regulatory_request *reg_request)
1428 {
1429         int r = 0;
1430         struct wiphy *wiphy = NULL;
1431         enum nl80211_reg_initiator initiator = reg_request->initiator;
1432
1433         BUG_ON(!reg_request->alpha2);
1434
1435         if (wiphy_idx_valid(reg_request->wiphy_idx))
1436                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1437
1438         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1439             !wiphy) {
1440                 kfree(reg_request);
1441                 return;
1442         }
1443
1444         r = __regulatory_hint(wiphy, reg_request);
1445         /* This is required so that the orig_* parameters are saved */
1446         if (r == -EALREADY && wiphy &&
1447             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1448                 wiphy_update_regulatory(wiphy, initiator);
1449 }
1450
1451 /*
1452  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1453  * Regulatory hints come on a first come first serve basis and we
1454  * must process each one atomically.
1455  */
1456 static void reg_process_pending_hints(void)
1457 {
1458         struct regulatory_request *reg_request;
1459
1460         mutex_lock(&cfg80211_mutex);
1461         mutex_lock(&reg_mutex);
1462
1463         /* When last_request->processed becomes true this will be rescheduled */
1464         if (last_request && !last_request->processed) {
1465                 REG_DBG_PRINT("Pending regulatory request, waiting "
1466                               "for it to be processed...");
1467                 goto out;
1468         }
1469
1470         spin_lock(&reg_requests_lock);
1471
1472         if (list_empty(&reg_requests_list)) {
1473                 spin_unlock(&reg_requests_lock);
1474                 goto out;
1475         }
1476
1477         reg_request = list_first_entry(&reg_requests_list,
1478                                        struct regulatory_request,
1479                                        list);
1480         list_del_init(&reg_request->list);
1481
1482         spin_unlock(&reg_requests_lock);
1483
1484         reg_process_hint(reg_request);
1485
1486 out:
1487         mutex_unlock(&reg_mutex);
1488         mutex_unlock(&cfg80211_mutex);
1489 }
1490
1491 /* Processes beacon hints -- this has nothing to do with country IEs */
1492 static void reg_process_pending_beacon_hints(void)
1493 {
1494         struct cfg80211_registered_device *rdev;
1495         struct reg_beacon *pending_beacon, *tmp;
1496
1497         /*
1498          * No need to hold the reg_mutex here as we just touch wiphys
1499          * and do not read or access regulatory variables.
1500          */
1501         mutex_lock(&cfg80211_mutex);
1502
1503         /* This goes through the _pending_ beacon list */
1504         spin_lock_bh(&reg_pending_beacons_lock);
1505
1506         if (list_empty(&reg_pending_beacons)) {
1507                 spin_unlock_bh(&reg_pending_beacons_lock);
1508                 goto out;
1509         }
1510
1511         list_for_each_entry_safe(pending_beacon, tmp,
1512                                  &reg_pending_beacons, list) {
1513
1514                 list_del_init(&pending_beacon->list);
1515
1516                 /* Applies the beacon hint to current wiphys */
1517                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1518                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1519
1520                 /* Remembers the beacon hint for new wiphys or reg changes */
1521                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1522         }
1523
1524         spin_unlock_bh(&reg_pending_beacons_lock);
1525 out:
1526         mutex_unlock(&cfg80211_mutex);
1527 }
1528
1529 static void reg_todo(struct work_struct *work)
1530 {
1531         reg_process_pending_hints();
1532         reg_process_pending_beacon_hints();
1533 }
1534
1535 static void queue_regulatory_request(struct regulatory_request *request)
1536 {
1537         if (isalpha(request->alpha2[0]))
1538                 request->alpha2[0] = toupper(request->alpha2[0]);
1539         if (isalpha(request->alpha2[1]))
1540                 request->alpha2[1] = toupper(request->alpha2[1]);
1541
1542         spin_lock(&reg_requests_lock);
1543         list_add_tail(&request->list, &reg_requests_list);
1544         spin_unlock(&reg_requests_lock);
1545
1546         schedule_work(&reg_work);
1547 }
1548
1549 /*
1550  * Core regulatory hint -- happens during cfg80211_init()
1551  * and when we restore regulatory settings.
1552  */
1553 static int regulatory_hint_core(const char *alpha2)
1554 {
1555         struct regulatory_request *request;
1556
1557         kfree(last_request);
1558         last_request = NULL;
1559
1560         request = kzalloc(sizeof(struct regulatory_request),
1561                           GFP_KERNEL);
1562         if (!request)
1563                 return -ENOMEM;
1564
1565         request->alpha2[0] = alpha2[0];
1566         request->alpha2[1] = alpha2[1];
1567         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1568
1569         queue_regulatory_request(request);
1570
1571         return 0;
1572 }
1573
1574 /* User hints */
1575 int regulatory_hint_user(const char *alpha2)
1576 {
1577         struct regulatory_request *request;
1578
1579         BUG_ON(!alpha2);
1580
1581         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1582         if (!request)
1583                 return -ENOMEM;
1584
1585         request->wiphy_idx = WIPHY_IDX_STALE;
1586         request->alpha2[0] = alpha2[0];
1587         request->alpha2[1] = alpha2[1];
1588         request->initiator = NL80211_REGDOM_SET_BY_USER;
1589
1590         queue_regulatory_request(request);
1591
1592         return 0;
1593 }
1594
1595 /* Driver hints */
1596 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1597 {
1598         struct regulatory_request *request;
1599
1600         BUG_ON(!alpha2);
1601         BUG_ON(!wiphy);
1602
1603         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1604         if (!request)
1605                 return -ENOMEM;
1606
1607         request->wiphy_idx = get_wiphy_idx(wiphy);
1608
1609         /* Must have registered wiphy first */
1610         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1611
1612         request->alpha2[0] = alpha2[0];
1613         request->alpha2[1] = alpha2[1];
1614         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1615
1616         queue_regulatory_request(request);
1617
1618         return 0;
1619 }
1620 EXPORT_SYMBOL(regulatory_hint);
1621
1622 /*
1623  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1624  * therefore cannot iterate over the rdev list here.
1625  */
1626 void regulatory_hint_11d(struct wiphy *wiphy,
1627                          enum ieee80211_band band,
1628                          u8 *country_ie,
1629                          u8 country_ie_len)
1630 {
1631         char alpha2[2];
1632         enum environment_cap env = ENVIRON_ANY;
1633         struct regulatory_request *request;
1634
1635         mutex_lock(&reg_mutex);
1636
1637         if (unlikely(!last_request))
1638                 goto out;
1639
1640         /* IE len must be evenly divisible by 2 */
1641         if (country_ie_len & 0x01)
1642                 goto out;
1643
1644         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1645                 goto out;
1646
1647         alpha2[0] = country_ie[0];
1648         alpha2[1] = country_ie[1];
1649
1650         if (country_ie[2] == 'I')
1651                 env = ENVIRON_INDOOR;
1652         else if (country_ie[2] == 'O')
1653                 env = ENVIRON_OUTDOOR;
1654
1655         /*
1656          * We will run this only upon a successful connection on cfg80211.
1657          * We leave conflict resolution to the workqueue, where can hold
1658          * cfg80211_mutex.
1659          */
1660         if (likely(last_request->initiator ==
1661             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1662             wiphy_idx_valid(last_request->wiphy_idx)))
1663                 goto out;
1664
1665         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1666         if (!request)
1667                 goto out;
1668
1669         request->wiphy_idx = get_wiphy_idx(wiphy);
1670         request->alpha2[0] = alpha2[0];
1671         request->alpha2[1] = alpha2[1];
1672         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1673         request->country_ie_env = env;
1674
1675         mutex_unlock(&reg_mutex);
1676
1677         queue_regulatory_request(request);
1678
1679         return;
1680
1681 out:
1682         mutex_unlock(&reg_mutex);
1683 }
1684
1685 static void restore_alpha2(char *alpha2, bool reset_user)
1686 {
1687         /* indicates there is no alpha2 to consider for restoration */
1688         alpha2[0] = '9';
1689         alpha2[1] = '7';
1690
1691         /* The user setting has precedence over the module parameter */
1692         if (is_user_regdom_saved()) {
1693                 /* Unless we're asked to ignore it and reset it */
1694                 if (reset_user) {
1695                         REG_DBG_PRINT("Restoring regulatory settings "
1696                                "including user preference\n");
1697                         user_alpha2[0] = '9';
1698                         user_alpha2[1] = '7';
1699
1700                         /*
1701                          * If we're ignoring user settings, we still need to
1702                          * check the module parameter to ensure we put things
1703                          * back as they were for a full restore.
1704                          */
1705                         if (!is_world_regdom(ieee80211_regdom)) {
1706                                 REG_DBG_PRINT("Keeping preference on "
1707                                        "module parameter ieee80211_regdom: %c%c\n",
1708                                        ieee80211_regdom[0],
1709                                        ieee80211_regdom[1]);
1710                                 alpha2[0] = ieee80211_regdom[0];
1711                                 alpha2[1] = ieee80211_regdom[1];
1712                         }
1713                 } else {
1714                         REG_DBG_PRINT("Restoring regulatory settings "
1715                                "while preserving user preference for: %c%c\n",
1716                                user_alpha2[0],
1717                                user_alpha2[1]);
1718                         alpha2[0] = user_alpha2[0];
1719                         alpha2[1] = user_alpha2[1];
1720                 }
1721         } else if (!is_world_regdom(ieee80211_regdom)) {
1722                 REG_DBG_PRINT("Keeping preference on "
1723                        "module parameter ieee80211_regdom: %c%c\n",
1724                        ieee80211_regdom[0],
1725                        ieee80211_regdom[1]);
1726                 alpha2[0] = ieee80211_regdom[0];
1727                 alpha2[1] = ieee80211_regdom[1];
1728         } else
1729                 REG_DBG_PRINT("Restoring regulatory settings\n");
1730 }
1731
1732 /*
1733  * Restoring regulatory settings involves ingoring any
1734  * possibly stale country IE information and user regulatory
1735  * settings if so desired, this includes any beacon hints
1736  * learned as we could have traveled outside to another country
1737  * after disconnection. To restore regulatory settings we do
1738  * exactly what we did at bootup:
1739  *
1740  *   - send a core regulatory hint
1741  *   - send a user regulatory hint if applicable
1742  *
1743  * Device drivers that send a regulatory hint for a specific country
1744  * keep their own regulatory domain on wiphy->regd so that does does
1745  * not need to be remembered.
1746  */
1747 static void restore_regulatory_settings(bool reset_user)
1748 {
1749         char alpha2[2];
1750         struct reg_beacon *reg_beacon, *btmp;
1751
1752         mutex_lock(&cfg80211_mutex);
1753         mutex_lock(&reg_mutex);
1754
1755         reset_regdomains();
1756         restore_alpha2(alpha2, reset_user);
1757
1758         /* Clear beacon hints */
1759         spin_lock_bh(&reg_pending_beacons_lock);
1760         if (!list_empty(&reg_pending_beacons)) {
1761                 list_for_each_entry_safe(reg_beacon, btmp,
1762                                          &reg_pending_beacons, list) {
1763                         list_del(&reg_beacon->list);
1764                         kfree(reg_beacon);
1765                 }
1766         }
1767         spin_unlock_bh(&reg_pending_beacons_lock);
1768
1769         if (!list_empty(&reg_beacon_list)) {
1770                 list_for_each_entry_safe(reg_beacon, btmp,
1771                                          &reg_beacon_list, list) {
1772                         list_del(&reg_beacon->list);
1773                         kfree(reg_beacon);
1774                 }
1775         }
1776
1777         /* First restore to the basic regulatory settings */
1778         cfg80211_regdomain = cfg80211_world_regdom;
1779
1780         mutex_unlock(&reg_mutex);
1781         mutex_unlock(&cfg80211_mutex);
1782
1783         regulatory_hint_core(cfg80211_regdomain->alpha2);
1784
1785         /*
1786          * This restores the ieee80211_regdom module parameter
1787          * preference or the last user requested regulatory
1788          * settings, user regulatory settings takes precedence.
1789          */
1790         if (is_an_alpha2(alpha2))
1791                 regulatory_hint_user(user_alpha2);
1792 }
1793
1794
1795 void regulatory_hint_disconnect(void)
1796 {
1797         REG_DBG_PRINT("All devices are disconnected, going to "
1798                       "restore regulatory settings\n");
1799         restore_regulatory_settings(false);
1800 }
1801
1802 static bool freq_is_chan_12_13_14(u16 freq)
1803 {
1804         if (freq == ieee80211_channel_to_frequency(12) ||
1805             freq == ieee80211_channel_to_frequency(13) ||
1806             freq == ieee80211_channel_to_frequency(14))
1807                 return true;
1808         return false;
1809 }
1810
1811 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1812                                  struct ieee80211_channel *beacon_chan,
1813                                  gfp_t gfp)
1814 {
1815         struct reg_beacon *reg_beacon;
1816
1817         if (likely((beacon_chan->beacon_found ||
1818             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1819             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1820              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1821                 return 0;
1822
1823         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1824         if (!reg_beacon)
1825                 return -ENOMEM;
1826
1827         REG_DBG_PRINT("Found new beacon on "
1828                       "frequency: %d MHz (Ch %d) on %s\n",
1829                       beacon_chan->center_freq,
1830                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1831                       wiphy_name(wiphy));
1832
1833         memcpy(&reg_beacon->chan, beacon_chan,
1834                 sizeof(struct ieee80211_channel));
1835
1836
1837         /*
1838          * Since we can be called from BH or and non-BH context
1839          * we must use spin_lock_bh()
1840          */
1841         spin_lock_bh(&reg_pending_beacons_lock);
1842         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1843         spin_unlock_bh(&reg_pending_beacons_lock);
1844
1845         schedule_work(&reg_work);
1846
1847         return 0;
1848 }
1849
1850 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1851 {
1852         unsigned int i;
1853         const struct ieee80211_reg_rule *reg_rule = NULL;
1854         const struct ieee80211_freq_range *freq_range = NULL;
1855         const struct ieee80211_power_rule *power_rule = NULL;
1856
1857         pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1858
1859         for (i = 0; i < rd->n_reg_rules; i++) {
1860                 reg_rule = &rd->reg_rules[i];
1861                 freq_range = &reg_rule->freq_range;
1862                 power_rule = &reg_rule->power_rule;
1863
1864                 /*
1865                  * There may not be documentation for max antenna gain
1866                  * in certain regions
1867                  */
1868                 if (power_rule->max_antenna_gain)
1869                         pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1870                                 freq_range->start_freq_khz,
1871                                 freq_range->end_freq_khz,
1872                                 freq_range->max_bandwidth_khz,
1873                                 power_rule->max_antenna_gain,
1874                                 power_rule->max_eirp);
1875                 else
1876                         pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1877                                 freq_range->start_freq_khz,
1878                                 freq_range->end_freq_khz,
1879                                 freq_range->max_bandwidth_khz,
1880                                 power_rule->max_eirp);
1881         }
1882 }
1883
1884 static void print_regdomain(const struct ieee80211_regdomain *rd)
1885 {
1886
1887         if (is_intersected_alpha2(rd->alpha2)) {
1888
1889                 if (last_request->initiator ==
1890                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1891                         struct cfg80211_registered_device *rdev;
1892                         rdev = cfg80211_rdev_by_wiphy_idx(
1893                                 last_request->wiphy_idx);
1894                         if (rdev) {
1895                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1896                                         rdev->country_ie_alpha2[0],
1897                                         rdev->country_ie_alpha2[1]);
1898                         } else
1899                                 pr_info("Current regulatory domain intersected:\n");
1900                 } else
1901                         pr_info("Current regulatory domain intersected:\n");
1902         } else if (is_world_regdom(rd->alpha2))
1903                 pr_info("World regulatory domain updated:\n");
1904         else {
1905                 if (is_unknown_alpha2(rd->alpha2))
1906                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1907                 else
1908                         pr_info("Regulatory domain changed to country: %c%c\n",
1909                                 rd->alpha2[0], rd->alpha2[1]);
1910         }
1911         print_rd_rules(rd);
1912 }
1913
1914 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1915 {
1916         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1917         print_rd_rules(rd);
1918 }
1919
1920 /* Takes ownership of rd only if it doesn't fail */
1921 static int __set_regdom(const struct ieee80211_regdomain *rd)
1922 {
1923         const struct ieee80211_regdomain *intersected_rd = NULL;
1924         struct cfg80211_registered_device *rdev = NULL;
1925         struct wiphy *request_wiphy;
1926         /* Some basic sanity checks first */
1927
1928         if (is_world_regdom(rd->alpha2)) {
1929                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1930                         return -EINVAL;
1931                 update_world_regdomain(rd);
1932                 return 0;
1933         }
1934
1935         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1936                         !is_unknown_alpha2(rd->alpha2))
1937                 return -EINVAL;
1938
1939         if (!last_request)
1940                 return -EINVAL;
1941
1942         /*
1943          * Lets only bother proceeding on the same alpha2 if the current
1944          * rd is non static (it means CRDA was present and was used last)
1945          * and the pending request came in from a country IE
1946          */
1947         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1948                 /*
1949                  * If someone else asked us to change the rd lets only bother
1950                  * checking if the alpha2 changes if CRDA was already called
1951                  */
1952                 if (!regdom_changes(rd->alpha2))
1953                         return -EINVAL;
1954         }
1955
1956         /*
1957          * Now lets set the regulatory domain, update all driver channels
1958          * and finally inform them of what we have done, in case they want
1959          * to review or adjust their own settings based on their own
1960          * internal EEPROM data
1961          */
1962
1963         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1964                 return -EINVAL;
1965
1966         if (!is_valid_rd(rd)) {
1967                 pr_err("Invalid regulatory domain detected:\n");
1968                 print_regdomain_info(rd);
1969                 return -EINVAL;
1970         }
1971
1972         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1973
1974         if (!last_request->intersect) {
1975                 int r;
1976
1977                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1978                         reset_regdomains();
1979                         cfg80211_regdomain = rd;
1980                         return 0;
1981                 }
1982
1983                 /*
1984                  * For a driver hint, lets copy the regulatory domain the
1985                  * driver wanted to the wiphy to deal with conflicts
1986                  */
1987
1988                 /*
1989                  * Userspace could have sent two replies with only
1990                  * one kernel request.
1991                  */
1992                 if (request_wiphy->regd)
1993                         return -EALREADY;
1994
1995                 r = reg_copy_regd(&request_wiphy->regd, rd);
1996                 if (r)
1997                         return r;
1998
1999                 reset_regdomains();
2000                 cfg80211_regdomain = rd;
2001                 return 0;
2002         }
2003
2004         /* Intersection requires a bit more work */
2005
2006         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2007
2008                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2009                 if (!intersected_rd)
2010                         return -EINVAL;
2011
2012                 /*
2013                  * We can trash what CRDA provided now.
2014                  * However if a driver requested this specific regulatory
2015                  * domain we keep it for its private use
2016                  */
2017                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2018                         request_wiphy->regd = rd;
2019                 else
2020                         kfree(rd);
2021
2022                 rd = NULL;
2023
2024                 reset_regdomains();
2025                 cfg80211_regdomain = intersected_rd;
2026
2027                 return 0;
2028         }
2029
2030         if (!intersected_rd)
2031                 return -EINVAL;
2032
2033         rdev = wiphy_to_dev(request_wiphy);
2034
2035         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2036         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2037         rdev->env = last_request->country_ie_env;
2038
2039         BUG_ON(intersected_rd == rd);
2040
2041         kfree(rd);
2042         rd = NULL;
2043
2044         reset_regdomains();
2045         cfg80211_regdomain = intersected_rd;
2046
2047         return 0;
2048 }
2049
2050
2051 /*
2052  * Use this call to set the current regulatory domain. Conflicts with
2053  * multiple drivers can be ironed out later. Caller must've already
2054  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2055  */
2056 int set_regdom(const struct ieee80211_regdomain *rd)
2057 {
2058         int r;
2059
2060         assert_cfg80211_lock();
2061
2062         mutex_lock(&reg_mutex);
2063
2064         /* Note that this doesn't update the wiphys, this is done below */
2065         r = __set_regdom(rd);
2066         if (r) {
2067                 kfree(rd);
2068                 mutex_unlock(&reg_mutex);
2069                 return r;
2070         }
2071
2072         /* This would make this whole thing pointless */
2073         if (!last_request->intersect)
2074                 BUG_ON(rd != cfg80211_regdomain);
2075
2076         /* update all wiphys now with the new established regulatory domain */
2077         update_all_wiphy_regulatory(last_request->initiator);
2078
2079         print_regdomain(cfg80211_regdomain);
2080
2081         nl80211_send_reg_change_event(last_request);
2082
2083         reg_set_request_processed();
2084
2085         mutex_unlock(&reg_mutex);
2086
2087         return r;
2088 }
2089
2090 /* Caller must hold cfg80211_mutex */
2091 void reg_device_remove(struct wiphy *wiphy)
2092 {
2093         struct wiphy *request_wiphy = NULL;
2094
2095         assert_cfg80211_lock();
2096
2097         mutex_lock(&reg_mutex);
2098
2099         kfree(wiphy->regd);
2100
2101         if (last_request)
2102                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2103
2104         if (!request_wiphy || request_wiphy != wiphy)
2105                 goto out;
2106
2107         last_request->wiphy_idx = WIPHY_IDX_STALE;
2108         last_request->country_ie_env = ENVIRON_ANY;
2109 out:
2110         mutex_unlock(&reg_mutex);
2111 }
2112
2113 int __init regulatory_init(void)
2114 {
2115         int err = 0;
2116
2117         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2118         if (IS_ERR(reg_pdev))
2119                 return PTR_ERR(reg_pdev);
2120
2121         spin_lock_init(&reg_requests_lock);
2122         spin_lock_init(&reg_pending_beacons_lock);
2123
2124         cfg80211_regdomain = cfg80211_world_regdom;
2125
2126         user_alpha2[0] = '9';
2127         user_alpha2[1] = '7';
2128
2129         /* We always try to get an update for the static regdomain */
2130         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2131         if (err) {
2132                 if (err == -ENOMEM)
2133                         return err;
2134                 /*
2135                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2136                  * memory which is handled and propagated appropriately above
2137                  * but it can also fail during a netlink_broadcast() or during
2138                  * early boot for call_usermodehelper(). For now treat these
2139                  * errors as non-fatal.
2140                  */
2141                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2142 #ifdef CONFIG_CFG80211_REG_DEBUG
2143                 /* We want to find out exactly why when debugging */
2144                 WARN_ON(err);
2145 #endif
2146         }
2147
2148         /*
2149          * Finally, if the user set the module parameter treat it
2150          * as a user hint.
2151          */
2152         if (!is_world_regdom(ieee80211_regdom))
2153                 regulatory_hint_user(ieee80211_regdom);
2154
2155         return 0;
2156 }
2157
2158 void /* __init_or_exit */ regulatory_exit(void)
2159 {
2160         struct regulatory_request *reg_request, *tmp;
2161         struct reg_beacon *reg_beacon, *btmp;
2162
2163         cancel_work_sync(&reg_work);
2164
2165         mutex_lock(&cfg80211_mutex);
2166         mutex_lock(&reg_mutex);
2167
2168         reset_regdomains();
2169
2170         kfree(last_request);
2171
2172         platform_device_unregister(reg_pdev);
2173
2174         spin_lock_bh(&reg_pending_beacons_lock);
2175         if (!list_empty(&reg_pending_beacons)) {
2176                 list_for_each_entry_safe(reg_beacon, btmp,
2177                                          &reg_pending_beacons, list) {
2178                         list_del(&reg_beacon->list);
2179                         kfree(reg_beacon);
2180                 }
2181         }
2182         spin_unlock_bh(&reg_pending_beacons_lock);
2183
2184         if (!list_empty(&reg_beacon_list)) {
2185                 list_for_each_entry_safe(reg_beacon, btmp,
2186                                          &reg_beacon_list, list) {
2187                         list_del(&reg_beacon->list);
2188                         kfree(reg_beacon);
2189                 }
2190         }
2191
2192         spin_lock(&reg_requests_lock);
2193         if (!list_empty(&reg_requests_list)) {
2194                 list_for_each_entry_safe(reg_request, tmp,
2195                                          &reg_requests_list, list) {
2196                         list_del(&reg_request->list);
2197                         kfree(reg_request);
2198                 }
2199         }
2200         spin_unlock(&reg_requests_lock);
2201
2202         mutex_unlock(&reg_mutex);
2203         mutex_unlock(&cfg80211_mutex);
2204 }