Merge remote branch 'alsa/devel' into topic/misc
[pandora-kernel.git] / net / sunrpc / xprtrdma / rpc_rdma.c
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47
48 #include "xprt_rdma.h"
49
50 #include <linux/highmem.h>
51
52 #ifdef RPC_DEBUG
53 # define RPCDBG_FACILITY        RPCDBG_TRANS
54 #endif
55
56 enum rpcrdma_chunktype {
57         rpcrdma_noch = 0,
58         rpcrdma_readch,
59         rpcrdma_areadch,
60         rpcrdma_writech,
61         rpcrdma_replych
62 };
63
64 #ifdef RPC_DEBUG
65 static const char transfertypes[][12] = {
66         "pure inline",  /* no chunks */
67         " read chunk",  /* some argument via rdma read */
68         "*read chunk",  /* entire request via rdma read */
69         "write chunk",  /* some result via rdma write */
70         "reply chunk"   /* entire reply via rdma write */
71 };
72 #endif
73
74 /*
75  * Chunk assembly from upper layer xdr_buf.
76  *
77  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
78  * elements. Segments are then coalesced when registered, if possible
79  * within the selected memreg mode.
80  *
81  * Note, this routine is never called if the connection's memory
82  * registration strategy is 0 (bounce buffers).
83  */
84
85 static int
86 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
87         enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
88 {
89         int len, n = 0, p;
90
91         if (pos == 0 && xdrbuf->head[0].iov_len) {
92                 seg[n].mr_page = NULL;
93                 seg[n].mr_offset = xdrbuf->head[0].iov_base;
94                 seg[n].mr_len = xdrbuf->head[0].iov_len;
95                 ++n;
96         }
97
98         if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) {
99                 if (n == nsegs)
100                         return 0;
101                 seg[n].mr_page = xdrbuf->pages[0];
102                 seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base;
103                 seg[n].mr_len = min_t(u32,
104                         PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len);
105                 len = xdrbuf->page_len - seg[n].mr_len;
106                 ++n;
107                 p = 1;
108                 while (len > 0) {
109                         if (n == nsegs)
110                                 return 0;
111                         seg[n].mr_page = xdrbuf->pages[p];
112                         seg[n].mr_offset = NULL;
113                         seg[n].mr_len = min_t(u32, PAGE_SIZE, len);
114                         len -= seg[n].mr_len;
115                         ++n;
116                         ++p;
117                 }
118         }
119
120         if (xdrbuf->tail[0].iov_len) {
121                 /* the rpcrdma protocol allows us to omit any trailing
122                  * xdr pad bytes, saving the server an RDMA operation. */
123                 if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
124                         return n;
125                 if (n == nsegs)
126                         return 0;
127                 seg[n].mr_page = NULL;
128                 seg[n].mr_offset = xdrbuf->tail[0].iov_base;
129                 seg[n].mr_len = xdrbuf->tail[0].iov_len;
130                 ++n;
131         }
132
133         return n;
134 }
135
136 /*
137  * Create read/write chunk lists, and reply chunks, for RDMA
138  *
139  *   Assume check against THRESHOLD has been done, and chunks are required.
140  *   Assume only encoding one list entry for read|write chunks. The NFSv3
141  *     protocol is simple enough to allow this as it only has a single "bulk
142  *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
143  *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
144  *
145  * When used for a single reply chunk (which is a special write
146  * chunk used for the entire reply, rather than just the data), it
147  * is used primarily for READDIR and READLINK which would otherwise
148  * be severely size-limited by a small rdma inline read max. The server
149  * response will come back as an RDMA Write, followed by a message
150  * of type RDMA_NOMSG carrying the xid and length. As a result, reply
151  * chunks do not provide data alignment, however they do not require
152  * "fixup" (moving the response to the upper layer buffer) either.
153  *
154  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
155  *
156  *  Read chunklist (a linked list):
157  *   N elements, position P (same P for all chunks of same arg!):
158  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
159  *
160  *  Write chunklist (a list of (one) counted array):
161  *   N elements:
162  *    1 - N - HLOO - HLOO - ... - HLOO - 0
163  *
164  *  Reply chunk (a counted array):
165  *   N elements:
166  *    1 - N - HLOO - HLOO - ... - HLOO
167  */
168
169 static unsigned int
170 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171                 struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
172 {
173         struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt);
175         int nsegs, nchunks = 0;
176         unsigned int pos;
177         struct rpcrdma_mr_seg *seg = req->rl_segments;
178         struct rpcrdma_read_chunk *cur_rchunk = NULL;
179         struct rpcrdma_write_array *warray = NULL;
180         struct rpcrdma_write_chunk *cur_wchunk = NULL;
181         __be32 *iptr = headerp->rm_body.rm_chunks;
182
183         if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184                 /* a read chunk - server will RDMA Read our memory */
185                 cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
186         } else {
187                 /* a write or reply chunk - server will RDMA Write our memory */
188                 *iptr++ = xdr_zero;     /* encode a NULL read chunk list */
189                 if (type == rpcrdma_replych)
190                         *iptr++ = xdr_zero;     /* a NULL write chunk list */
191                 warray = (struct rpcrdma_write_array *) iptr;
192                 cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
193         }
194
195         if (type == rpcrdma_replych || type == rpcrdma_areadch)
196                 pos = 0;
197         else
198                 pos = target->head[0].iov_len;
199
200         nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
201         if (nsegs == 0)
202                 return 0;
203
204         do {
205                 /* bind/register the memory, then build chunk from result. */
206                 int n = rpcrdma_register_external(seg, nsegs,
207                                                 cur_wchunk != NULL, r_xprt);
208                 if (n <= 0)
209                         goto out;
210                 if (cur_rchunk) {       /* read */
211                         cur_rchunk->rc_discrim = xdr_one;
212                         /* all read chunks have the same "position" */
213                         cur_rchunk->rc_position = htonl(pos);
214                         cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
215                         cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
216                         xdr_encode_hyper(
217                                         (__be32 *)&cur_rchunk->rc_target.rs_offset,
218                                         seg->mr_base);
219                         dprintk("RPC:       %s: read chunk "
220                                 "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
221                                 seg->mr_len, (unsigned long long)seg->mr_base,
222                                 seg->mr_rkey, pos, n < nsegs ? "more" : "last");
223                         cur_rchunk++;
224                         r_xprt->rx_stats.read_chunk_count++;
225                 } else {                /* write/reply */
226                         cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
227                         cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
228                         xdr_encode_hyper(
229                                         (__be32 *)&cur_wchunk->wc_target.rs_offset,
230                                         seg->mr_base);
231                         dprintk("RPC:       %s: %s chunk "
232                                 "elem %d@0x%llx:0x%x (%s)\n", __func__,
233                                 (type == rpcrdma_replych) ? "reply" : "write",
234                                 seg->mr_len, (unsigned long long)seg->mr_base,
235                                 seg->mr_rkey, n < nsegs ? "more" : "last");
236                         cur_wchunk++;
237                         if (type == rpcrdma_replych)
238                                 r_xprt->rx_stats.reply_chunk_count++;
239                         else
240                                 r_xprt->rx_stats.write_chunk_count++;
241                         r_xprt->rx_stats.total_rdma_request += seg->mr_len;
242                 }
243                 nchunks++;
244                 seg   += n;
245                 nsegs -= n;
246         } while (nsegs);
247
248         /* success. all failures return above */
249         req->rl_nchunks = nchunks;
250
251         BUG_ON(nchunks == 0);
252         BUG_ON((r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_FRMR)
253                && (nchunks > 3));
254
255         /*
256          * finish off header. If write, marshal discrim and nchunks.
257          */
258         if (cur_rchunk) {
259                 iptr = (__be32 *) cur_rchunk;
260                 *iptr++ = xdr_zero;     /* finish the read chunk list */
261                 *iptr++ = xdr_zero;     /* encode a NULL write chunk list */
262                 *iptr++ = xdr_zero;     /* encode a NULL reply chunk */
263         } else {
264                 warray->wc_discrim = xdr_one;
265                 warray->wc_nchunks = htonl(nchunks);
266                 iptr = (__be32 *) cur_wchunk;
267                 if (type == rpcrdma_writech) {
268                         *iptr++ = xdr_zero; /* finish the write chunk list */
269                         *iptr++ = xdr_zero; /* encode a NULL reply chunk */
270                 }
271         }
272
273         /*
274          * Return header size.
275          */
276         return (unsigned char *)iptr - (unsigned char *)headerp;
277
278 out:
279         for (pos = 0; nchunks--;)
280                 pos += rpcrdma_deregister_external(
281                                 &req->rl_segments[pos], r_xprt, NULL);
282         return 0;
283 }
284
285 /*
286  * Copy write data inline.
287  * This function is used for "small" requests. Data which is passed
288  * to RPC via iovecs (or page list) is copied directly into the
289  * pre-registered memory buffer for this request. For small amounts
290  * of data, this is efficient. The cutoff value is tunable.
291  */
292 static int
293 rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
294 {
295         int i, npages, curlen;
296         int copy_len;
297         unsigned char *srcp, *destp;
298         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
299
300         destp = rqst->rq_svec[0].iov_base;
301         curlen = rqst->rq_svec[0].iov_len;
302         destp += curlen;
303         /*
304          * Do optional padding where it makes sense. Alignment of write
305          * payload can help the server, if our setting is accurate.
306          */
307         pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
308         if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
309                 pad = 0;        /* don't pad this request */
310
311         dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
312                 __func__, pad, destp, rqst->rq_slen, curlen);
313
314         copy_len = rqst->rq_snd_buf.page_len;
315
316         if (rqst->rq_snd_buf.tail[0].iov_len) {
317                 curlen = rqst->rq_snd_buf.tail[0].iov_len;
318                 if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
319                         memmove(destp + copy_len,
320                                 rqst->rq_snd_buf.tail[0].iov_base, curlen);
321                         r_xprt->rx_stats.pullup_copy_count += curlen;
322                 }
323                 dprintk("RPC:       %s: tail destp 0x%p len %d\n",
324                         __func__, destp + copy_len, curlen);
325                 rqst->rq_svec[0].iov_len += curlen;
326         }
327
328         r_xprt->rx_stats.pullup_copy_count += copy_len;
329         npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT;
330         for (i = 0; copy_len && i < npages; i++) {
331                 if (i == 0)
332                         curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base;
333                 else
334                         curlen = PAGE_SIZE;
335                 if (curlen > copy_len)
336                         curlen = copy_len;
337                 dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
338                         __func__, i, destp, copy_len, curlen);
339                 srcp = kmap_atomic(rqst->rq_snd_buf.pages[i],
340                                         KM_SKB_SUNRPC_DATA);
341                 if (i == 0)
342                         memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen);
343                 else
344                         memcpy(destp, srcp, curlen);
345                 kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA);
346                 rqst->rq_svec[0].iov_len += curlen;
347                 destp += curlen;
348                 copy_len -= curlen;
349         }
350         /* header now contains entire send message */
351         return pad;
352 }
353
354 /*
355  * Marshal a request: the primary job of this routine is to choose
356  * the transfer modes. See comments below.
357  *
358  * Uses multiple RDMA IOVs for a request:
359  *  [0] -- RPC RDMA header, which uses memory from the *start* of the
360  *         preregistered buffer that already holds the RPC data in
361  *         its middle.
362  *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
363  *  [2] -- optional padding.
364  *  [3] -- if padded, header only in [1] and data here.
365  */
366
367 int
368 rpcrdma_marshal_req(struct rpc_rqst *rqst)
369 {
370         struct rpc_xprt *xprt = rqst->rq_task->tk_xprt;
371         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
372         struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
373         char *base;
374         size_t hdrlen, rpclen, padlen;
375         enum rpcrdma_chunktype rtype, wtype;
376         struct rpcrdma_msg *headerp;
377
378         /*
379          * rpclen gets amount of data in first buffer, which is the
380          * pre-registered buffer.
381          */
382         base = rqst->rq_svec[0].iov_base;
383         rpclen = rqst->rq_svec[0].iov_len;
384
385         /* build RDMA header in private area at front */
386         headerp = (struct rpcrdma_msg *) req->rl_base;
387         /* don't htonl XID, it's already done in request */
388         headerp->rm_xid = rqst->rq_xid;
389         headerp->rm_vers = xdr_one;
390         headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
391         headerp->rm_type = htonl(RDMA_MSG);
392
393         /*
394          * Chunks needed for results?
395          *
396          * o If the expected result is under the inline threshold, all ops
397          *   return as inline (but see later).
398          * o Large non-read ops return as a single reply chunk.
399          * o Large read ops return data as write chunk(s), header as inline.
400          *
401          * Note: the NFS code sending down multiple result segments implies
402          * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
403          */
404
405         /*
406          * This code can handle read chunks, write chunks OR reply
407          * chunks -- only one type. If the request is too big to fit
408          * inline, then we will choose read chunks. If the request is
409          * a READ, then use write chunks to separate the file data
410          * into pages; otherwise use reply chunks.
411          */
412         if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
413                 wtype = rpcrdma_noch;
414         else if (rqst->rq_rcv_buf.page_len == 0)
415                 wtype = rpcrdma_replych;
416         else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
417                 wtype = rpcrdma_writech;
418         else
419                 wtype = rpcrdma_replych;
420
421         /*
422          * Chunks needed for arguments?
423          *
424          * o If the total request is under the inline threshold, all ops
425          *   are sent as inline.
426          * o Large non-write ops are sent with the entire message as a
427          *   single read chunk (protocol 0-position special case).
428          * o Large write ops transmit data as read chunk(s), header as
429          *   inline.
430          *
431          * Note: the NFS code sending down multiple argument segments
432          * implies the op is a write.
433          * TBD check NFSv4 setacl
434          */
435         if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
436                 rtype = rpcrdma_noch;
437         else if (rqst->rq_snd_buf.page_len == 0)
438                 rtype = rpcrdma_areadch;
439         else
440                 rtype = rpcrdma_readch;
441
442         /* The following simplification is not true forever */
443         if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
444                 wtype = rpcrdma_noch;
445         BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);
446
447         if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
448             (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
449                 /* forced to "pure inline"? */
450                 dprintk("RPC:       %s: too much data (%d/%d) for inline\n",
451                         __func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
452                 return -1;
453         }
454
455         hdrlen = 28; /*sizeof *headerp;*/
456         padlen = 0;
457
458         /*
459          * Pull up any extra send data into the preregistered buffer.
460          * When padding is in use and applies to the transfer, insert
461          * it and change the message type.
462          */
463         if (rtype == rpcrdma_noch) {
464
465                 padlen = rpcrdma_inline_pullup(rqst,
466                                                 RPCRDMA_INLINE_PAD_VALUE(rqst));
467
468                 if (padlen) {
469                         headerp->rm_type = htonl(RDMA_MSGP);
470                         headerp->rm_body.rm_padded.rm_align =
471                                 htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
472                         headerp->rm_body.rm_padded.rm_thresh =
473                                 htonl(RPCRDMA_INLINE_PAD_THRESH);
474                         headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
475                         headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
476                         headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
477                         hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
478                         BUG_ON(wtype != rpcrdma_noch);
479
480                 } else {
481                         headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
482                         headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
483                         headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
484                         /* new length after pullup */
485                         rpclen = rqst->rq_svec[0].iov_len;
486                         /*
487                          * Currently we try to not actually use read inline.
488                          * Reply chunks have the desirable property that
489                          * they land, packed, directly in the target buffers
490                          * without headers, so they require no fixup. The
491                          * additional RDMA Write op sends the same amount
492                          * of data, streams on-the-wire and adds no overhead
493                          * on receive. Therefore, we request a reply chunk
494                          * for non-writes wherever feasible and efficient.
495                          */
496                         if (wtype == rpcrdma_noch &&
497                             r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
498                                 wtype = rpcrdma_replych;
499                 }
500         }
501
502         /*
503          * Marshal chunks. This routine will return the header length
504          * consumed by marshaling.
505          */
506         if (rtype != rpcrdma_noch) {
507                 hdrlen = rpcrdma_create_chunks(rqst,
508                                         &rqst->rq_snd_buf, headerp, rtype);
509                 wtype = rtype;  /* simplify dprintk */
510
511         } else if (wtype != rpcrdma_noch) {
512                 hdrlen = rpcrdma_create_chunks(rqst,
513                                         &rqst->rq_rcv_buf, headerp, wtype);
514         }
515
516         if (hdrlen == 0)
517                 return -1;
518
519         dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
520                 " headerp 0x%p base 0x%p lkey 0x%x\n",
521                 __func__, transfertypes[wtype], hdrlen, rpclen, padlen,
522                 headerp, base, req->rl_iov.lkey);
523
524         /*
525          * initialize send_iov's - normally only two: rdma chunk header and
526          * single preregistered RPC header buffer, but if padding is present,
527          * then use a preregistered (and zeroed) pad buffer between the RPC
528          * header and any write data. In all non-rdma cases, any following
529          * data has been copied into the RPC header buffer.
530          */
531         req->rl_send_iov[0].addr = req->rl_iov.addr;
532         req->rl_send_iov[0].length = hdrlen;
533         req->rl_send_iov[0].lkey = req->rl_iov.lkey;
534
535         req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
536         req->rl_send_iov[1].length = rpclen;
537         req->rl_send_iov[1].lkey = req->rl_iov.lkey;
538
539         req->rl_niovs = 2;
540
541         if (padlen) {
542                 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
543
544                 req->rl_send_iov[2].addr = ep->rep_pad.addr;
545                 req->rl_send_iov[2].length = padlen;
546                 req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
547
548                 req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
549                 req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
550                 req->rl_send_iov[3].lkey = req->rl_iov.lkey;
551
552                 req->rl_niovs = 4;
553         }
554
555         return 0;
556 }
557
558 /*
559  * Chase down a received write or reply chunklist to get length
560  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
561  */
562 static int
563 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
564 {
565         unsigned int i, total_len;
566         struct rpcrdma_write_chunk *cur_wchunk;
567
568         i = ntohl(**iptrp);     /* get array count */
569         if (i > max)
570                 return -1;
571         cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
572         total_len = 0;
573         while (i--) {
574                 struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
575                 ifdebug(FACILITY) {
576                         u64 off;
577                         xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
578                         dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
579                                 __func__,
580                                 ntohl(seg->rs_length),
581                                 (unsigned long long)off,
582                                 ntohl(seg->rs_handle));
583                 }
584                 total_len += ntohl(seg->rs_length);
585                 ++cur_wchunk;
586         }
587         /* check and adjust for properly terminated write chunk */
588         if (wrchunk) {
589                 __be32 *w = (__be32 *) cur_wchunk;
590                 if (*w++ != xdr_zero)
591                         return -1;
592                 cur_wchunk = (struct rpcrdma_write_chunk *) w;
593         }
594         if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
595                 return -1;
596
597         *iptrp = (__be32 *) cur_wchunk;
598         return total_len;
599 }
600
601 /*
602  * Scatter inline received data back into provided iov's.
603  */
604 static void
605 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
606 {
607         int i, npages, curlen, olen;
608         char *destp;
609
610         curlen = rqst->rq_rcv_buf.head[0].iov_len;
611         if (curlen > copy_len) {        /* write chunk header fixup */
612                 curlen = copy_len;
613                 rqst->rq_rcv_buf.head[0].iov_len = curlen;
614         }
615
616         dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
617                 __func__, srcp, copy_len, curlen);
618
619         /* Shift pointer for first receive segment only */
620         rqst->rq_rcv_buf.head[0].iov_base = srcp;
621         srcp += curlen;
622         copy_len -= curlen;
623
624         olen = copy_len;
625         i = 0;
626         rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
627         if (copy_len && rqst->rq_rcv_buf.page_len) {
628                 npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base +
629                         rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
630                 for (; i < npages; i++) {
631                         if (i == 0)
632                                 curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base;
633                         else
634                                 curlen = PAGE_SIZE;
635                         if (curlen > copy_len)
636                                 curlen = copy_len;
637                         dprintk("RPC:       %s: page %d"
638                                 " srcp 0x%p len %d curlen %d\n",
639                                 __func__, i, srcp, copy_len, curlen);
640                         destp = kmap_atomic(rqst->rq_rcv_buf.pages[i],
641                                                 KM_SKB_SUNRPC_DATA);
642                         if (i == 0)
643                                 memcpy(destp + rqst->rq_rcv_buf.page_base,
644                                                 srcp, curlen);
645                         else
646                                 memcpy(destp, srcp, curlen);
647                         flush_dcache_page(rqst->rq_rcv_buf.pages[i]);
648                         kunmap_atomic(destp, KM_SKB_SUNRPC_DATA);
649                         srcp += curlen;
650                         copy_len -= curlen;
651                         if (copy_len == 0)
652                                 break;
653                 }
654                 rqst->rq_rcv_buf.page_len = olen - copy_len;
655         } else
656                 rqst->rq_rcv_buf.page_len = 0;
657
658         if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
659                 curlen = copy_len;
660                 if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
661                         curlen = rqst->rq_rcv_buf.tail[0].iov_len;
662                 if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
663                         memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
664                 dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
665                         __func__, srcp, copy_len, curlen);
666                 rqst->rq_rcv_buf.tail[0].iov_len = curlen;
667                 copy_len -= curlen; ++i;
668         } else
669                 rqst->rq_rcv_buf.tail[0].iov_len = 0;
670
671         if (pad) {
672                 /* implicit padding on terminal chunk */
673                 unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
674                 while (pad--)
675                         p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
676         }
677
678         if (copy_len)
679                 dprintk("RPC:       %s: %d bytes in"
680                         " %d extra segments (%d lost)\n",
681                         __func__, olen, i, copy_len);
682
683         /* TBD avoid a warning from call_decode() */
684         rqst->rq_private_buf = rqst->rq_rcv_buf;
685 }
686
687 /*
688  * This function is called when an async event is posted to
689  * the connection which changes the connection state. All it
690  * does at this point is mark the connection up/down, the rpc
691  * timers do the rest.
692  */
693 void
694 rpcrdma_conn_func(struct rpcrdma_ep *ep)
695 {
696         struct rpc_xprt *xprt = ep->rep_xprt;
697
698         spin_lock_bh(&xprt->transport_lock);
699         if (++xprt->connect_cookie == 0)        /* maintain a reserved value */
700                 ++xprt->connect_cookie;
701         if (ep->rep_connected > 0) {
702                 if (!xprt_test_and_set_connected(xprt))
703                         xprt_wake_pending_tasks(xprt, 0);
704         } else {
705                 if (xprt_test_and_clear_connected(xprt))
706                         xprt_wake_pending_tasks(xprt, -ENOTCONN);
707         }
708         spin_unlock_bh(&xprt->transport_lock);
709 }
710
711 /*
712  * This function is called when memory window unbind which we are waiting
713  * for completes. Just use rr_func (zeroed by upcall) to signal completion.
714  */
715 static void
716 rpcrdma_unbind_func(struct rpcrdma_rep *rep)
717 {
718         wake_up(&rep->rr_unbind);
719 }
720
721 /*
722  * Called as a tasklet to do req/reply match and complete a request
723  * Errors must result in the RPC task either being awakened, or
724  * allowed to timeout, to discover the errors at that time.
725  */
726 void
727 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
728 {
729         struct rpcrdma_msg *headerp;
730         struct rpcrdma_req *req;
731         struct rpc_rqst *rqst;
732         struct rpc_xprt *xprt = rep->rr_xprt;
733         struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
734         __be32 *iptr;
735         int i, rdmalen, status;
736
737         /* Check status. If bad, signal disconnect and return rep to pool */
738         if (rep->rr_len == ~0U) {
739                 rpcrdma_recv_buffer_put(rep);
740                 if (r_xprt->rx_ep.rep_connected == 1) {
741                         r_xprt->rx_ep.rep_connected = -EIO;
742                         rpcrdma_conn_func(&r_xprt->rx_ep);
743                 }
744                 return;
745         }
746         if (rep->rr_len < 28) {
747                 dprintk("RPC:       %s: short/invalid reply\n", __func__);
748                 goto repost;
749         }
750         headerp = (struct rpcrdma_msg *) rep->rr_base;
751         if (headerp->rm_vers != xdr_one) {
752                 dprintk("RPC:       %s: invalid version %d\n",
753                         __func__, ntohl(headerp->rm_vers));
754                 goto repost;
755         }
756
757         /* Get XID and try for a match. */
758         spin_lock(&xprt->transport_lock);
759         rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
760         if (rqst == NULL) {
761                 spin_unlock(&xprt->transport_lock);
762                 dprintk("RPC:       %s: reply 0x%p failed "
763                         "to match any request xid 0x%08x len %d\n",
764                         __func__, rep, headerp->rm_xid, rep->rr_len);
765 repost:
766                 r_xprt->rx_stats.bad_reply_count++;
767                 rep->rr_func = rpcrdma_reply_handler;
768                 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
769                         rpcrdma_recv_buffer_put(rep);
770
771                 return;
772         }
773
774         /* get request object */
775         req = rpcr_to_rdmar(rqst);
776
777         dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
778                 "                   RPC request 0x%p xid 0x%08x\n",
779                         __func__, rep, req, rqst, headerp->rm_xid);
780
781         BUG_ON(!req || req->rl_reply);
782
783         /* from here on, the reply is no longer an orphan */
784         req->rl_reply = rep;
785
786         /* check for expected message types */
787         /* The order of some of these tests is important. */
788         switch (headerp->rm_type) {
789         case htonl(RDMA_MSG):
790                 /* never expect read chunks */
791                 /* never expect reply chunks (two ways to check) */
792                 /* never expect write chunks without having offered RDMA */
793                 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
794                     (headerp->rm_body.rm_chunks[1] == xdr_zero &&
795                      headerp->rm_body.rm_chunks[2] != xdr_zero) ||
796                     (headerp->rm_body.rm_chunks[1] != xdr_zero &&
797                      req->rl_nchunks == 0))
798                         goto badheader;
799                 if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
800                         /* count any expected write chunks in read reply */
801                         /* start at write chunk array count */
802                         iptr = &headerp->rm_body.rm_chunks[2];
803                         rdmalen = rpcrdma_count_chunks(rep,
804                                                 req->rl_nchunks, 1, &iptr);
805                         /* check for validity, and no reply chunk after */
806                         if (rdmalen < 0 || *iptr++ != xdr_zero)
807                                 goto badheader;
808                         rep->rr_len -=
809                             ((unsigned char *)iptr - (unsigned char *)headerp);
810                         status = rep->rr_len + rdmalen;
811                         r_xprt->rx_stats.total_rdma_reply += rdmalen;
812                         /* special case - last chunk may omit padding */
813                         if (rdmalen &= 3) {
814                                 rdmalen = 4 - rdmalen;
815                                 status += rdmalen;
816                         }
817                 } else {
818                         /* else ordinary inline */
819                         rdmalen = 0;
820                         iptr = (__be32 *)((unsigned char *)headerp + 28);
821                         rep->rr_len -= 28; /*sizeof *headerp;*/
822                         status = rep->rr_len;
823                 }
824                 /* Fix up the rpc results for upper layer */
825                 rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
826                 break;
827
828         case htonl(RDMA_NOMSG):
829                 /* never expect read or write chunks, always reply chunks */
830                 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
831                     headerp->rm_body.rm_chunks[1] != xdr_zero ||
832                     headerp->rm_body.rm_chunks[2] != xdr_one ||
833                     req->rl_nchunks == 0)
834                         goto badheader;
835                 iptr = (__be32 *)((unsigned char *)headerp + 28);
836                 rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
837                 if (rdmalen < 0)
838                         goto badheader;
839                 r_xprt->rx_stats.total_rdma_reply += rdmalen;
840                 /* Reply chunk buffer already is the reply vector - no fixup. */
841                 status = rdmalen;
842                 break;
843
844 badheader:
845         default:
846                 dprintk("%s: invalid rpcrdma reply header (type %d):"
847                                 " chunks[012] == %d %d %d"
848                                 " expected chunks <= %d\n",
849                                 __func__, ntohl(headerp->rm_type),
850                                 headerp->rm_body.rm_chunks[0],
851                                 headerp->rm_body.rm_chunks[1],
852                                 headerp->rm_body.rm_chunks[2],
853                                 req->rl_nchunks);
854                 status = -EIO;
855                 r_xprt->rx_stats.bad_reply_count++;
856                 break;
857         }
858
859         /* If using mw bind, start the deregister process now. */
860         /* (Note: if mr_free(), cannot perform it here, in tasklet context) */
861         if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
862         case RPCRDMA_MEMWINDOWS:
863                 for (i = 0; req->rl_nchunks-- > 1;)
864                         i += rpcrdma_deregister_external(
865                                 &req->rl_segments[i], r_xprt, NULL);
866                 /* Optionally wait (not here) for unbinds to complete */
867                 rep->rr_func = rpcrdma_unbind_func;
868                 (void) rpcrdma_deregister_external(&req->rl_segments[i],
869                                                    r_xprt, rep);
870                 break;
871         case RPCRDMA_MEMWINDOWS_ASYNC:
872                 for (i = 0; req->rl_nchunks--;)
873                         i += rpcrdma_deregister_external(&req->rl_segments[i],
874                                                          r_xprt, NULL);
875                 break;
876         default:
877                 break;
878         }
879
880         dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
881                         __func__, xprt, rqst, status);
882         xprt_complete_rqst(rqst->rq_task, status);
883         spin_unlock(&xprt->transport_lock);
884 }