Merge branch 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci
[pandora-kernel.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE      (2048)
35 #define RPC_BUFFER_POOLSIZE     (8)
36 #define RPC_TASK_POOLSIZE       (8)
37 static struct kmem_cache        *rpc_task_slabp __read_mostly;
38 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
39 static mempool_t        *rpc_task_mempool __read_mostly;
40 static mempool_t        *rpc_buffer_mempool __read_mostly;
41
42 static void                     rpc_async_schedule(struct work_struct *);
43 static void                      rpc_release_task(struct rpc_task *task);
44 static void __rpc_queue_timer_fn(unsigned long ptr);
45
46 /*
47  * RPC tasks sit here while waiting for conditions to improve.
48  */
49 static struct rpc_wait_queue delay_queue;
50
51 /*
52  * rpciod-related stuff
53  */
54 struct workqueue_struct *rpciod_workqueue;
55
56 /*
57  * Disable the timer for a given RPC task. Should be called with
58  * queue->lock and bh_disabled in order to avoid races within
59  * rpc_run_timer().
60  */
61 static void
62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
63 {
64         if (task->tk_timeout == 0)
65                 return;
66         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
67         task->tk_timeout = 0;
68         list_del(&task->u.tk_wait.timer_list);
69         if (list_empty(&queue->timer_list.list))
70                 del_timer(&queue->timer_list.timer);
71 }
72
73 static void
74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
75 {
76         queue->timer_list.expires = expires;
77         mod_timer(&queue->timer_list.timer, expires);
78 }
79
80 /*
81  * Set up a timer for the current task.
82  */
83 static void
84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86         if (!task->tk_timeout)
87                 return;
88
89         dprintk("RPC: %5u setting alarm for %lu ms\n",
90                         task->tk_pid, task->tk_timeout * 1000 / HZ);
91
92         task->u.tk_wait.expires = jiffies + task->tk_timeout;
93         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
94                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
95         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
96 }
97
98 /*
99  * Add new request to a priority queue.
100  */
101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
102                 struct rpc_task *task,
103                 unsigned char queue_priority)
104 {
105         struct list_head *q;
106         struct rpc_task *t;
107
108         INIT_LIST_HEAD(&task->u.tk_wait.links);
109         q = &queue->tasks[queue_priority];
110         if (unlikely(queue_priority > queue->maxpriority))
111                 q = &queue->tasks[queue->maxpriority];
112         list_for_each_entry(t, q, u.tk_wait.list) {
113                 if (t->tk_owner == task->tk_owner) {
114                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
115                         return;
116                 }
117         }
118         list_add_tail(&task->u.tk_wait.list, q);
119 }
120
121 /*
122  * Add new request to wait queue.
123  *
124  * Swapper tasks always get inserted at the head of the queue.
125  * This should avoid many nasty memory deadlocks and hopefully
126  * improve overall performance.
127  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
128  */
129 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
130                 struct rpc_task *task,
131                 unsigned char queue_priority)
132 {
133         BUG_ON (RPC_IS_QUEUED(task));
134
135         if (RPC_IS_PRIORITY(queue))
136                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
137         else if (RPC_IS_SWAPPER(task))
138                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
139         else
140                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
141         task->tk_waitqueue = queue;
142         queue->qlen++;
143         rpc_set_queued(task);
144
145         dprintk("RPC: %5u added to queue %p \"%s\"\n",
146                         task->tk_pid, queue, rpc_qname(queue));
147 }
148
149 /*
150  * Remove request from a priority queue.
151  */
152 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
153 {
154         struct rpc_task *t;
155
156         if (!list_empty(&task->u.tk_wait.links)) {
157                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
158                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
159                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
160         }
161 }
162
163 /*
164  * Remove request from queue.
165  * Note: must be called with spin lock held.
166  */
167 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
168 {
169         __rpc_disable_timer(queue, task);
170         if (RPC_IS_PRIORITY(queue))
171                 __rpc_remove_wait_queue_priority(task);
172         list_del(&task->u.tk_wait.list);
173         queue->qlen--;
174         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
175                         task->tk_pid, queue, rpc_qname(queue));
176 }
177
178 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
179 {
180         queue->priority = priority;
181         queue->count = 1 << (priority * 2);
182 }
183
184 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
185 {
186         queue->owner = pid;
187         queue->nr = RPC_BATCH_COUNT;
188 }
189
190 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
191 {
192         rpc_set_waitqueue_priority(queue, queue->maxpriority);
193         rpc_set_waitqueue_owner(queue, 0);
194 }
195
196 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
197 {
198         int i;
199
200         spin_lock_init(&queue->lock);
201         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
202                 INIT_LIST_HEAD(&queue->tasks[i]);
203         queue->maxpriority = nr_queues - 1;
204         rpc_reset_waitqueue_priority(queue);
205         queue->qlen = 0;
206         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
207         INIT_LIST_HEAD(&queue->timer_list.list);
208 #ifdef RPC_DEBUG
209         queue->name = qname;
210 #endif
211 }
212
213 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
214 {
215         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
216 }
217 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
218
219 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
220 {
221         __rpc_init_priority_wait_queue(queue, qname, 1);
222 }
223 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
224
225 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
226 {
227         del_timer_sync(&queue->timer_list.timer);
228 }
229 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
230
231 static int rpc_wait_bit_killable(void *word)
232 {
233         if (fatal_signal_pending(current))
234                 return -ERESTARTSYS;
235         freezable_schedule();
236         return 0;
237 }
238
239 #ifdef RPC_DEBUG
240 static void rpc_task_set_debuginfo(struct rpc_task *task)
241 {
242         static atomic_t rpc_pid;
243
244         task->tk_pid = atomic_inc_return(&rpc_pid);
245 }
246 #else
247 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
248 {
249 }
250 #endif
251
252 static void rpc_set_active(struct rpc_task *task)
253 {
254         rpc_task_set_debuginfo(task);
255         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
256 }
257
258 /*
259  * Mark an RPC call as having completed by clearing the 'active' bit
260  * and then waking up all tasks that were sleeping.
261  */
262 static int rpc_complete_task(struct rpc_task *task)
263 {
264         void *m = &task->tk_runstate;
265         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
266         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
267         unsigned long flags;
268         int ret;
269
270         spin_lock_irqsave(&wq->lock, flags);
271         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
272         ret = atomic_dec_and_test(&task->tk_count);
273         if (waitqueue_active(wq))
274                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
275         spin_unlock_irqrestore(&wq->lock, flags);
276         return ret;
277 }
278
279 /*
280  * Allow callers to wait for completion of an RPC call
281  *
282  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
283  * to enforce taking of the wq->lock and hence avoid races with
284  * rpc_complete_task().
285  */
286 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
287 {
288         if (action == NULL)
289                 action = rpc_wait_bit_killable;
290         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
291                         action, TASK_KILLABLE);
292 }
293 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
294
295 /*
296  * Make an RPC task runnable.
297  *
298  * Note: If the task is ASYNC, this must be called with
299  * the spinlock held to protect the wait queue operation.
300  */
301 static void rpc_make_runnable(struct rpc_task *task)
302 {
303         rpc_clear_queued(task);
304         if (rpc_test_and_set_running(task))
305                 return;
306         if (RPC_IS_ASYNC(task)) {
307                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
308                 queue_work(rpciod_workqueue, &task->u.tk_work);
309         } else
310                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
311 }
312
313 /*
314  * Prepare for sleeping on a wait queue.
315  * By always appending tasks to the list we ensure FIFO behavior.
316  * NB: An RPC task will only receive interrupt-driven events as long
317  * as it's on a wait queue.
318  */
319 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
320                 struct rpc_task *task,
321                 rpc_action action,
322                 unsigned char queue_priority)
323 {
324         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
325                         task->tk_pid, rpc_qname(q), jiffies);
326
327         __rpc_add_wait_queue(q, task, queue_priority);
328
329         BUG_ON(task->tk_callback != NULL);
330         task->tk_callback = action;
331         __rpc_add_timer(q, task);
332 }
333
334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
335                                 rpc_action action)
336 {
337         /* We shouldn't ever put an inactive task to sleep */
338         BUG_ON(!RPC_IS_ACTIVATED(task));
339
340         /*
341          * Protect the queue operations.
342          */
343         spin_lock_bh(&q->lock);
344         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
345         spin_unlock_bh(&q->lock);
346 }
347 EXPORT_SYMBOL_GPL(rpc_sleep_on);
348
349 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
350                 rpc_action action, int priority)
351 {
352         /* We shouldn't ever put an inactive task to sleep */
353         BUG_ON(!RPC_IS_ACTIVATED(task));
354
355         /*
356          * Protect the queue operations.
357          */
358         spin_lock_bh(&q->lock);
359         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
360         spin_unlock_bh(&q->lock);
361 }
362
363 /**
364  * __rpc_do_wake_up_task - wake up a single rpc_task
365  * @queue: wait queue
366  * @task: task to be woken up
367  *
368  * Caller must hold queue->lock, and have cleared the task queued flag.
369  */
370 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
371 {
372         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
373                         task->tk_pid, jiffies);
374
375         /* Has the task been executed yet? If not, we cannot wake it up! */
376         if (!RPC_IS_ACTIVATED(task)) {
377                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
378                 return;
379         }
380
381         __rpc_remove_wait_queue(queue, task);
382
383         rpc_make_runnable(task);
384
385         dprintk("RPC:       __rpc_wake_up_task done\n");
386 }
387
388 /*
389  * Wake up a queued task while the queue lock is being held
390  */
391 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
392 {
393         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
394                 __rpc_do_wake_up_task(queue, task);
395 }
396
397 /*
398  * Tests whether rpc queue is empty
399  */
400 int rpc_queue_empty(struct rpc_wait_queue *queue)
401 {
402         int res;
403
404         spin_lock_bh(&queue->lock);
405         res = queue->qlen;
406         spin_unlock_bh(&queue->lock);
407         return res == 0;
408 }
409 EXPORT_SYMBOL_GPL(rpc_queue_empty);
410
411 /*
412  * Wake up a task on a specific queue
413  */
414 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
415 {
416         spin_lock_bh(&queue->lock);
417         rpc_wake_up_task_queue_locked(queue, task);
418         spin_unlock_bh(&queue->lock);
419 }
420 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
421
422 /*
423  * Wake up the next task on a priority queue.
424  */
425 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
426 {
427         struct list_head *q;
428         struct rpc_task *task;
429
430         /*
431          * Service a batch of tasks from a single owner.
432          */
433         q = &queue->tasks[queue->priority];
434         if (!list_empty(q)) {
435                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
436                 if (queue->owner == task->tk_owner) {
437                         if (--queue->nr)
438                                 goto out;
439                         list_move_tail(&task->u.tk_wait.list, q);
440                 }
441                 /*
442                  * Check if we need to switch queues.
443                  */
444                 if (--queue->count)
445                         goto new_owner;
446         }
447
448         /*
449          * Service the next queue.
450          */
451         do {
452                 if (q == &queue->tasks[0])
453                         q = &queue->tasks[queue->maxpriority];
454                 else
455                         q = q - 1;
456                 if (!list_empty(q)) {
457                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
458                         goto new_queue;
459                 }
460         } while (q != &queue->tasks[queue->priority]);
461
462         rpc_reset_waitqueue_priority(queue);
463         return NULL;
464
465 new_queue:
466         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
467 new_owner:
468         rpc_set_waitqueue_owner(queue, task->tk_owner);
469 out:
470         rpc_wake_up_task_queue_locked(queue, task);
471         return task;
472 }
473
474 /*
475  * Wake up the next task on the wait queue.
476  */
477 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
478 {
479         struct rpc_task *task = NULL;
480
481         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
482                         queue, rpc_qname(queue));
483         spin_lock_bh(&queue->lock);
484         if (RPC_IS_PRIORITY(queue))
485                 task = __rpc_wake_up_next_priority(queue);
486         else {
487                 task_for_first(task, &queue->tasks[0])
488                         rpc_wake_up_task_queue_locked(queue, task);
489         }
490         spin_unlock_bh(&queue->lock);
491
492         return task;
493 }
494 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
495
496 /**
497  * rpc_wake_up - wake up all rpc_tasks
498  * @queue: rpc_wait_queue on which the tasks are sleeping
499  *
500  * Grabs queue->lock
501  */
502 void rpc_wake_up(struct rpc_wait_queue *queue)
503 {
504         struct rpc_task *task, *next;
505         struct list_head *head;
506
507         spin_lock_bh(&queue->lock);
508         head = &queue->tasks[queue->maxpriority];
509         for (;;) {
510                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
511                         rpc_wake_up_task_queue_locked(queue, task);
512                 if (head == &queue->tasks[0])
513                         break;
514                 head--;
515         }
516         spin_unlock_bh(&queue->lock);
517 }
518 EXPORT_SYMBOL_GPL(rpc_wake_up);
519
520 /**
521  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
522  * @queue: rpc_wait_queue on which the tasks are sleeping
523  * @status: status value to set
524  *
525  * Grabs queue->lock
526  */
527 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
528 {
529         struct rpc_task *task, *next;
530         struct list_head *head;
531
532         spin_lock_bh(&queue->lock);
533         head = &queue->tasks[queue->maxpriority];
534         for (;;) {
535                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
536                         task->tk_status = status;
537                         rpc_wake_up_task_queue_locked(queue, task);
538                 }
539                 if (head == &queue->tasks[0])
540                         break;
541                 head--;
542         }
543         spin_unlock_bh(&queue->lock);
544 }
545 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
546
547 static void __rpc_queue_timer_fn(unsigned long ptr)
548 {
549         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
550         struct rpc_task *task, *n;
551         unsigned long expires, now, timeo;
552
553         spin_lock(&queue->lock);
554         expires = now = jiffies;
555         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
556                 timeo = task->u.tk_wait.expires;
557                 if (time_after_eq(now, timeo)) {
558                         dprintk("RPC: %5u timeout\n", task->tk_pid);
559                         task->tk_status = -ETIMEDOUT;
560                         rpc_wake_up_task_queue_locked(queue, task);
561                         continue;
562                 }
563                 if (expires == now || time_after(expires, timeo))
564                         expires = timeo;
565         }
566         if (!list_empty(&queue->timer_list.list))
567                 rpc_set_queue_timer(queue, expires);
568         spin_unlock(&queue->lock);
569 }
570
571 static void __rpc_atrun(struct rpc_task *task)
572 {
573         task->tk_status = 0;
574 }
575
576 /*
577  * Run a task at a later time
578  */
579 void rpc_delay(struct rpc_task *task, unsigned long delay)
580 {
581         task->tk_timeout = delay;
582         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
583 }
584 EXPORT_SYMBOL_GPL(rpc_delay);
585
586 /*
587  * Helper to call task->tk_ops->rpc_call_prepare
588  */
589 void rpc_prepare_task(struct rpc_task *task)
590 {
591         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
592 }
593
594 static void
595 rpc_init_task_statistics(struct rpc_task *task)
596 {
597         /* Initialize retry counters */
598         task->tk_garb_retry = 2;
599         task->tk_cred_retry = 2;
600         task->tk_rebind_retry = 2;
601
602         /* starting timestamp */
603         task->tk_start = ktime_get();
604 }
605
606 static void
607 rpc_reset_task_statistics(struct rpc_task *task)
608 {
609         task->tk_timeouts = 0;
610         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
611
612         rpc_init_task_statistics(task);
613 }
614
615 /*
616  * Helper that calls task->tk_ops->rpc_call_done if it exists
617  */
618 void rpc_exit_task(struct rpc_task *task)
619 {
620         task->tk_action = NULL;
621         if (task->tk_ops->rpc_call_done != NULL) {
622                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
623                 if (task->tk_action != NULL) {
624                         WARN_ON(RPC_ASSASSINATED(task));
625                         /* Always release the RPC slot and buffer memory */
626                         xprt_release(task);
627                         rpc_reset_task_statistics(task);
628                 }
629         }
630 }
631
632 void rpc_exit(struct rpc_task *task, int status)
633 {
634         task->tk_status = status;
635         task->tk_action = rpc_exit_task;
636         if (RPC_IS_QUEUED(task))
637                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
638 }
639 EXPORT_SYMBOL_GPL(rpc_exit);
640
641 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
642 {
643         if (ops->rpc_release != NULL)
644                 ops->rpc_release(calldata);
645 }
646
647 /*
648  * This is the RPC `scheduler' (or rather, the finite state machine).
649  */
650 static void __rpc_execute(struct rpc_task *task)
651 {
652         struct rpc_wait_queue *queue;
653         int task_is_async = RPC_IS_ASYNC(task);
654         int status = 0;
655
656         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
657                         task->tk_pid, task->tk_flags);
658
659         BUG_ON(RPC_IS_QUEUED(task));
660
661         for (;;) {
662                 void (*do_action)(struct rpc_task *);
663
664                 /*
665                  * Execute any pending callback first.
666                  */
667                 do_action = task->tk_callback;
668                 task->tk_callback = NULL;
669                 if (do_action == NULL) {
670                         /*
671                          * Perform the next FSM step.
672                          * tk_action may be NULL if the task has been killed.
673                          * In particular, note that rpc_killall_tasks may
674                          * do this at any time, so beware when dereferencing.
675                          */
676                         do_action = task->tk_action;
677                         if (do_action == NULL)
678                                 break;
679                 }
680                 do_action(task);
681
682                 /*
683                  * Lockless check for whether task is sleeping or not.
684                  */
685                 if (!RPC_IS_QUEUED(task))
686                         continue;
687                 /*
688                  * The queue->lock protects against races with
689                  * rpc_make_runnable().
690                  *
691                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
692                  * rpc_task, rpc_make_runnable() can assign it to a
693                  * different workqueue. We therefore cannot assume that the
694                  * rpc_task pointer may still be dereferenced.
695                  */
696                 queue = task->tk_waitqueue;
697                 spin_lock_bh(&queue->lock);
698                 if (!RPC_IS_QUEUED(task)) {
699                         spin_unlock_bh(&queue->lock);
700                         continue;
701                 }
702                 rpc_clear_running(task);
703                 spin_unlock_bh(&queue->lock);
704                 if (task_is_async)
705                         return;
706
707                 /* sync task: sleep here */
708                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
709                 status = out_of_line_wait_on_bit(&task->tk_runstate,
710                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
711                                 TASK_KILLABLE);
712                 if (status == -ERESTARTSYS) {
713                         /*
714                          * When a sync task receives a signal, it exits with
715                          * -ERESTARTSYS. In order to catch any callbacks that
716                          * clean up after sleeping on some queue, we don't
717                          * break the loop here, but go around once more.
718                          */
719                         dprintk("RPC: %5u got signal\n", task->tk_pid);
720                         task->tk_flags |= RPC_TASK_KILLED;
721                         rpc_exit(task, -ERESTARTSYS);
722                 }
723                 rpc_set_running(task);
724                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
725         }
726
727         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
728                         task->tk_status);
729         /* Release all resources associated with the task */
730         rpc_release_task(task);
731 }
732
733 /*
734  * User-visible entry point to the scheduler.
735  *
736  * This may be called recursively if e.g. an async NFS task updates
737  * the attributes and finds that dirty pages must be flushed.
738  * NOTE: Upon exit of this function the task is guaranteed to be
739  *       released. In particular note that tk_release() will have
740  *       been called, so your task memory may have been freed.
741  */
742 void rpc_execute(struct rpc_task *task)
743 {
744         rpc_set_active(task);
745         rpc_make_runnable(task);
746         if (!RPC_IS_ASYNC(task))
747                 __rpc_execute(task);
748 }
749
750 static void rpc_async_schedule(struct work_struct *work)
751 {
752         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
753 }
754
755 /**
756  * rpc_malloc - allocate an RPC buffer
757  * @task: RPC task that will use this buffer
758  * @size: requested byte size
759  *
760  * To prevent rpciod from hanging, this allocator never sleeps,
761  * returning NULL if the request cannot be serviced immediately.
762  * The caller can arrange to sleep in a way that is safe for rpciod.
763  *
764  * Most requests are 'small' (under 2KiB) and can be serviced from a
765  * mempool, ensuring that NFS reads and writes can always proceed,
766  * and that there is good locality of reference for these buffers.
767  *
768  * In order to avoid memory starvation triggering more writebacks of
769  * NFS requests, we avoid using GFP_KERNEL.
770  */
771 void *rpc_malloc(struct rpc_task *task, size_t size)
772 {
773         struct rpc_buffer *buf;
774         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
775
776         size += sizeof(struct rpc_buffer);
777         if (size <= RPC_BUFFER_MAXSIZE)
778                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
779         else
780                 buf = kmalloc(size, gfp);
781
782         if (!buf)
783                 return NULL;
784
785         buf->len = size;
786         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
787                         task->tk_pid, size, buf);
788         return &buf->data;
789 }
790 EXPORT_SYMBOL_GPL(rpc_malloc);
791
792 /**
793  * rpc_free - free buffer allocated via rpc_malloc
794  * @buffer: buffer to free
795  *
796  */
797 void rpc_free(void *buffer)
798 {
799         size_t size;
800         struct rpc_buffer *buf;
801
802         if (!buffer)
803                 return;
804
805         buf = container_of(buffer, struct rpc_buffer, data);
806         size = buf->len;
807
808         dprintk("RPC:       freeing buffer of size %zu at %p\n",
809                         size, buf);
810
811         if (size <= RPC_BUFFER_MAXSIZE)
812                 mempool_free(buf, rpc_buffer_mempool);
813         else
814                 kfree(buf);
815 }
816 EXPORT_SYMBOL_GPL(rpc_free);
817
818 /*
819  * Creation and deletion of RPC task structures
820  */
821 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
822 {
823         memset(task, 0, sizeof(*task));
824         atomic_set(&task->tk_count, 1);
825         task->tk_flags  = task_setup_data->flags;
826         task->tk_ops = task_setup_data->callback_ops;
827         task->tk_calldata = task_setup_data->callback_data;
828         INIT_LIST_HEAD(&task->tk_task);
829
830         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
831         task->tk_owner = current->tgid;
832
833         /* Initialize workqueue for async tasks */
834         task->tk_workqueue = task_setup_data->workqueue;
835
836         if (task->tk_ops->rpc_call_prepare != NULL)
837                 task->tk_action = rpc_prepare_task;
838
839         rpc_init_task_statistics(task);
840
841         dprintk("RPC:       new task initialized, procpid %u\n",
842                                 task_pid_nr(current));
843 }
844
845 static struct rpc_task *
846 rpc_alloc_task(void)
847 {
848         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
849 }
850
851 /*
852  * Create a new task for the specified client.
853  */
854 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
855 {
856         struct rpc_task *task = setup_data->task;
857         unsigned short flags = 0;
858
859         if (task == NULL) {
860                 task = rpc_alloc_task();
861                 if (task == NULL) {
862                         rpc_release_calldata(setup_data->callback_ops,
863                                         setup_data->callback_data);
864                         return ERR_PTR(-ENOMEM);
865                 }
866                 flags = RPC_TASK_DYNAMIC;
867         }
868
869         rpc_init_task(task, setup_data);
870         task->tk_flags |= flags;
871         dprintk("RPC:       allocated task %p\n", task);
872         return task;
873 }
874
875 static void rpc_free_task(struct rpc_task *task)
876 {
877         const struct rpc_call_ops *tk_ops = task->tk_ops;
878         void *calldata = task->tk_calldata;
879
880         if (task->tk_flags & RPC_TASK_DYNAMIC) {
881                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
882                 mempool_free(task, rpc_task_mempool);
883         }
884         rpc_release_calldata(tk_ops, calldata);
885 }
886
887 static void rpc_async_release(struct work_struct *work)
888 {
889         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
890 }
891
892 static void rpc_release_resources_task(struct rpc_task *task)
893 {
894         if (task->tk_rqstp)
895                 xprt_release(task);
896         if (task->tk_msg.rpc_cred) {
897                 put_rpccred(task->tk_msg.rpc_cred);
898                 task->tk_msg.rpc_cred = NULL;
899         }
900         rpc_task_release_client(task);
901 }
902
903 static void rpc_final_put_task(struct rpc_task *task,
904                 struct workqueue_struct *q)
905 {
906         if (q != NULL) {
907                 INIT_WORK(&task->u.tk_work, rpc_async_release);
908                 queue_work(q, &task->u.tk_work);
909         } else
910                 rpc_free_task(task);
911 }
912
913 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
914 {
915         if (atomic_dec_and_test(&task->tk_count)) {
916                 rpc_release_resources_task(task);
917                 rpc_final_put_task(task, q);
918         }
919 }
920
921 void rpc_put_task(struct rpc_task *task)
922 {
923         rpc_do_put_task(task, NULL);
924 }
925 EXPORT_SYMBOL_GPL(rpc_put_task);
926
927 void rpc_put_task_async(struct rpc_task *task)
928 {
929         rpc_do_put_task(task, task->tk_workqueue);
930 }
931 EXPORT_SYMBOL_GPL(rpc_put_task_async);
932
933 static void rpc_release_task(struct rpc_task *task)
934 {
935         dprintk("RPC: %5u release task\n", task->tk_pid);
936
937         BUG_ON (RPC_IS_QUEUED(task));
938
939         rpc_release_resources_task(task);
940
941         /*
942          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
943          * so it should be safe to use task->tk_count as a test for whether
944          * or not any other processes still hold references to our rpc_task.
945          */
946         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
947                 /* Wake up anyone who may be waiting for task completion */
948                 if (!rpc_complete_task(task))
949                         return;
950         } else {
951                 if (!atomic_dec_and_test(&task->tk_count))
952                         return;
953         }
954         rpc_final_put_task(task, task->tk_workqueue);
955 }
956
957 int rpciod_up(void)
958 {
959         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
960 }
961
962 void rpciod_down(void)
963 {
964         module_put(THIS_MODULE);
965 }
966
967 /*
968  * Start up the rpciod workqueue.
969  */
970 static int rpciod_start(void)
971 {
972         struct workqueue_struct *wq;
973
974         /*
975          * Create the rpciod thread and wait for it to start.
976          */
977         dprintk("RPC:       creating workqueue rpciod\n");
978         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
979         rpciod_workqueue = wq;
980         return rpciod_workqueue != NULL;
981 }
982
983 static void rpciod_stop(void)
984 {
985         struct workqueue_struct *wq = NULL;
986
987         if (rpciod_workqueue == NULL)
988                 return;
989         dprintk("RPC:       destroying workqueue rpciod\n");
990
991         wq = rpciod_workqueue;
992         rpciod_workqueue = NULL;
993         destroy_workqueue(wq);
994 }
995
996 void
997 rpc_destroy_mempool(void)
998 {
999         rpciod_stop();
1000         if (rpc_buffer_mempool)
1001                 mempool_destroy(rpc_buffer_mempool);
1002         if (rpc_task_mempool)
1003                 mempool_destroy(rpc_task_mempool);
1004         if (rpc_task_slabp)
1005                 kmem_cache_destroy(rpc_task_slabp);
1006         if (rpc_buffer_slabp)
1007                 kmem_cache_destroy(rpc_buffer_slabp);
1008         rpc_destroy_wait_queue(&delay_queue);
1009 }
1010
1011 int
1012 rpc_init_mempool(void)
1013 {
1014         /*
1015          * The following is not strictly a mempool initialisation,
1016          * but there is no harm in doing it here
1017          */
1018         rpc_init_wait_queue(&delay_queue, "delayq");
1019         if (!rpciod_start())
1020                 goto err_nomem;
1021
1022         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1023                                              sizeof(struct rpc_task),
1024                                              0, SLAB_HWCACHE_ALIGN,
1025                                              NULL);
1026         if (!rpc_task_slabp)
1027                 goto err_nomem;
1028         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1029                                              RPC_BUFFER_MAXSIZE,
1030                                              0, SLAB_HWCACHE_ALIGN,
1031                                              NULL);
1032         if (!rpc_buffer_slabp)
1033                 goto err_nomem;
1034         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1035                                                     rpc_task_slabp);
1036         if (!rpc_task_mempool)
1037                 goto err_nomem;
1038         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1039                                                       rpc_buffer_slabp);
1040         if (!rpc_buffer_mempool)
1041                 goto err_nomem;
1042         return 0;
1043 err_nomem:
1044         rpc_destroy_mempool();
1045         return -ENOMEM;
1046 }