Merge branch 'driver-core-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #include "sunrpc.h"
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY         RPCDBG_SCHED
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63         if (task->tk_timeout == 0)
64                 return;
65         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66         task->tk_timeout = 0;
67         list_del(&task->u.tk_wait.timer_list);
68         if (list_empty(&queue->timer_list.list))
69                 del_timer(&queue->timer_list.timer);
70 }
71
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75         queue->timer_list.expires = expires;
76         mod_timer(&queue->timer_list.timer, expires);
77 }
78
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85         if (!task->tk_timeout)
86                 return;
87
88         dprintk("RPC: %5u setting alarm for %lu ms\n",
89                         task->tk_pid, task->tk_timeout * 1000 / HZ);
90
91         task->u.tk_wait.expires = jiffies + task->tk_timeout;
92         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
101 {
102         struct list_head *q;
103         struct rpc_task *t;
104
105         INIT_LIST_HEAD(&task->u.tk_wait.links);
106         q = &queue->tasks[task->tk_priority];
107         if (unlikely(task->tk_priority > queue->maxpriority))
108                 q = &queue->tasks[queue->maxpriority];
109         list_for_each_entry(t, q, u.tk_wait.list) {
110                 if (t->tk_owner == task->tk_owner) {
111                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112                         return;
113                 }
114         }
115         list_add_tail(&task->u.tk_wait.list, q);
116 }
117
118 /*
119  * Add new request to wait queue.
120  *
121  * Swapper tasks always get inserted at the head of the queue.
122  * This should avoid many nasty memory deadlocks and hopefully
123  * improve overall performance.
124  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
125  */
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
127 {
128         BUG_ON (RPC_IS_QUEUED(task));
129
130         if (RPC_IS_PRIORITY(queue))
131                 __rpc_add_wait_queue_priority(queue, task);
132         else if (RPC_IS_SWAPPER(task))
133                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134         else
135                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136         task->tk_waitqueue = queue;
137         queue->qlen++;
138         rpc_set_queued(task);
139
140         dprintk("RPC: %5u added to queue %p \"%s\"\n",
141                         task->tk_pid, queue, rpc_qname(queue));
142 }
143
144 /*
145  * Remove request from a priority queue.
146  */
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
148 {
149         struct rpc_task *t;
150
151         if (!list_empty(&task->u.tk_wait.links)) {
152                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
155         }
156 }
157
158 /*
159  * Remove request from queue.
160  * Note: must be called with spin lock held.
161  */
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
163 {
164         __rpc_disable_timer(queue, task);
165         if (RPC_IS_PRIORITY(queue))
166                 __rpc_remove_wait_queue_priority(task);
167         list_del(&task->u.tk_wait.list);
168         queue->qlen--;
169         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170                         task->tk_pid, queue, rpc_qname(queue));
171 }
172
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
174 {
175         queue->priority = priority;
176         queue->count = 1 << (priority * 2);
177 }
178
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
180 {
181         queue->owner = pid;
182         queue->nr = RPC_BATCH_COUNT;
183 }
184
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
186 {
187         rpc_set_waitqueue_priority(queue, queue->maxpriority);
188         rpc_set_waitqueue_owner(queue, 0);
189 }
190
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
192 {
193         int i;
194
195         spin_lock_init(&queue->lock);
196         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197                 INIT_LIST_HEAD(&queue->tasks[i]);
198         queue->maxpriority = nr_queues - 1;
199         rpc_reset_waitqueue_priority(queue);
200         queue->qlen = 0;
201         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202         INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204         queue->name = qname;
205 #endif
206 }
207
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
209 {
210         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
211 }
212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
213
214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216         __rpc_init_priority_wait_queue(queue, qname, 1);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
219
220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
221 {
222         del_timer_sync(&queue->timer_list.timer);
223 }
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
225
226 static int rpc_wait_bit_killable(void *word)
227 {
228         if (fatal_signal_pending(current))
229                 return -ERESTARTSYS;
230         schedule();
231         return 0;
232 }
233
234 #ifdef RPC_DEBUG
235 static void rpc_task_set_debuginfo(struct rpc_task *task)
236 {
237         static atomic_t rpc_pid;
238
239         task->tk_pid = atomic_inc_return(&rpc_pid);
240 }
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
243 {
244 }
245 #endif
246
247 static void rpc_set_active(struct rpc_task *task)
248 {
249         rpc_task_set_debuginfo(task);
250         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
251 }
252
253 /*
254  * Mark an RPC call as having completed by clearing the 'active' bit
255  * and then waking up all tasks that were sleeping.
256  */
257 static int rpc_complete_task(struct rpc_task *task)
258 {
259         void *m = &task->tk_runstate;
260         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
261         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
262         unsigned long flags;
263         int ret;
264
265         spin_lock_irqsave(&wq->lock, flags);
266         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
267         ret = atomic_dec_and_test(&task->tk_count);
268         if (waitqueue_active(wq))
269                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
270         spin_unlock_irqrestore(&wq->lock, flags);
271         return ret;
272 }
273
274 /*
275  * Allow callers to wait for completion of an RPC call
276  *
277  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
278  * to enforce taking of the wq->lock and hence avoid races with
279  * rpc_complete_task().
280  */
281 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
282 {
283         if (action == NULL)
284                 action = rpc_wait_bit_killable;
285         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
286                         action, TASK_KILLABLE);
287 }
288 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
289
290 /*
291  * Make an RPC task runnable.
292  *
293  * Note: If the task is ASYNC, this must be called with
294  * the spinlock held to protect the wait queue operation.
295  */
296 static void rpc_make_runnable(struct rpc_task *task)
297 {
298         rpc_clear_queued(task);
299         if (rpc_test_and_set_running(task))
300                 return;
301         if (RPC_IS_ASYNC(task)) {
302                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
303                 queue_work(rpciod_workqueue, &task->u.tk_work);
304         } else
305                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
306 }
307
308 /*
309  * Prepare for sleeping on a wait queue.
310  * By always appending tasks to the list we ensure FIFO behavior.
311  * NB: An RPC task will only receive interrupt-driven events as long
312  * as it's on a wait queue.
313  */
314 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
315                         rpc_action action)
316 {
317         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
318                         task->tk_pid, rpc_qname(q), jiffies);
319
320         __rpc_add_wait_queue(q, task);
321
322         BUG_ON(task->tk_callback != NULL);
323         task->tk_callback = action;
324         __rpc_add_timer(q, task);
325 }
326
327 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
328                                 rpc_action action)
329 {
330         /* We shouldn't ever put an inactive task to sleep */
331         BUG_ON(!RPC_IS_ACTIVATED(task));
332
333         /*
334          * Protect the queue operations.
335          */
336         spin_lock_bh(&q->lock);
337         __rpc_sleep_on(q, task, action);
338         spin_unlock_bh(&q->lock);
339 }
340 EXPORT_SYMBOL_GPL(rpc_sleep_on);
341
342 /**
343  * __rpc_do_wake_up_task - wake up a single rpc_task
344  * @queue: wait queue
345  * @task: task to be woken up
346  *
347  * Caller must hold queue->lock, and have cleared the task queued flag.
348  */
349 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
350 {
351         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
352                         task->tk_pid, jiffies);
353
354         /* Has the task been executed yet? If not, we cannot wake it up! */
355         if (!RPC_IS_ACTIVATED(task)) {
356                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
357                 return;
358         }
359
360         __rpc_remove_wait_queue(queue, task);
361
362         rpc_make_runnable(task);
363
364         dprintk("RPC:       __rpc_wake_up_task done\n");
365 }
366
367 /*
368  * Wake up a queued task while the queue lock is being held
369  */
370 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
371 {
372         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
373                 __rpc_do_wake_up_task(queue, task);
374 }
375
376 /*
377  * Tests whether rpc queue is empty
378  */
379 int rpc_queue_empty(struct rpc_wait_queue *queue)
380 {
381         int res;
382
383         spin_lock_bh(&queue->lock);
384         res = queue->qlen;
385         spin_unlock_bh(&queue->lock);
386         return res == 0;
387 }
388 EXPORT_SYMBOL_GPL(rpc_queue_empty);
389
390 /*
391  * Wake up a task on a specific queue
392  */
393 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
394 {
395         spin_lock_bh(&queue->lock);
396         rpc_wake_up_task_queue_locked(queue, task);
397         spin_unlock_bh(&queue->lock);
398 }
399 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
400
401 /*
402  * Wake up the next task on a priority queue.
403  */
404 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
405 {
406         struct list_head *q;
407         struct rpc_task *task;
408
409         /*
410          * Service a batch of tasks from a single owner.
411          */
412         q = &queue->tasks[queue->priority];
413         if (!list_empty(q)) {
414                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
415                 if (queue->owner == task->tk_owner) {
416                         if (--queue->nr)
417                                 goto out;
418                         list_move_tail(&task->u.tk_wait.list, q);
419                 }
420                 /*
421                  * Check if we need to switch queues.
422                  */
423                 if (--queue->count)
424                         goto new_owner;
425         }
426
427         /*
428          * Service the next queue.
429          */
430         do {
431                 if (q == &queue->tasks[0])
432                         q = &queue->tasks[queue->maxpriority];
433                 else
434                         q = q - 1;
435                 if (!list_empty(q)) {
436                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
437                         goto new_queue;
438                 }
439         } while (q != &queue->tasks[queue->priority]);
440
441         rpc_reset_waitqueue_priority(queue);
442         return NULL;
443
444 new_queue:
445         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
446 new_owner:
447         rpc_set_waitqueue_owner(queue, task->tk_owner);
448 out:
449         rpc_wake_up_task_queue_locked(queue, task);
450         return task;
451 }
452
453 /*
454  * Wake up the next task on the wait queue.
455  */
456 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
457 {
458         struct rpc_task *task = NULL;
459
460         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
461                         queue, rpc_qname(queue));
462         spin_lock_bh(&queue->lock);
463         if (RPC_IS_PRIORITY(queue))
464                 task = __rpc_wake_up_next_priority(queue);
465         else {
466                 task_for_first(task, &queue->tasks[0])
467                         rpc_wake_up_task_queue_locked(queue, task);
468         }
469         spin_unlock_bh(&queue->lock);
470
471         return task;
472 }
473 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
474
475 /**
476  * rpc_wake_up - wake up all rpc_tasks
477  * @queue: rpc_wait_queue on which the tasks are sleeping
478  *
479  * Grabs queue->lock
480  */
481 void rpc_wake_up(struct rpc_wait_queue *queue)
482 {
483         struct rpc_task *task, *next;
484         struct list_head *head;
485
486         spin_lock_bh(&queue->lock);
487         head = &queue->tasks[queue->maxpriority];
488         for (;;) {
489                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
490                         rpc_wake_up_task_queue_locked(queue, task);
491                 if (head == &queue->tasks[0])
492                         break;
493                 head--;
494         }
495         spin_unlock_bh(&queue->lock);
496 }
497 EXPORT_SYMBOL_GPL(rpc_wake_up);
498
499 /**
500  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
501  * @queue: rpc_wait_queue on which the tasks are sleeping
502  * @status: status value to set
503  *
504  * Grabs queue->lock
505  */
506 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
507 {
508         struct rpc_task *task, *next;
509         struct list_head *head;
510
511         spin_lock_bh(&queue->lock);
512         head = &queue->tasks[queue->maxpriority];
513         for (;;) {
514                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
515                         task->tk_status = status;
516                         rpc_wake_up_task_queue_locked(queue, task);
517                 }
518                 if (head == &queue->tasks[0])
519                         break;
520                 head--;
521         }
522         spin_unlock_bh(&queue->lock);
523 }
524 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
525
526 static void __rpc_queue_timer_fn(unsigned long ptr)
527 {
528         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
529         struct rpc_task *task, *n;
530         unsigned long expires, now, timeo;
531
532         spin_lock(&queue->lock);
533         expires = now = jiffies;
534         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
535                 timeo = task->u.tk_wait.expires;
536                 if (time_after_eq(now, timeo)) {
537                         dprintk("RPC: %5u timeout\n", task->tk_pid);
538                         task->tk_status = -ETIMEDOUT;
539                         rpc_wake_up_task_queue_locked(queue, task);
540                         continue;
541                 }
542                 if (expires == now || time_after(expires, timeo))
543                         expires = timeo;
544         }
545         if (!list_empty(&queue->timer_list.list))
546                 rpc_set_queue_timer(queue, expires);
547         spin_unlock(&queue->lock);
548 }
549
550 static void __rpc_atrun(struct rpc_task *task)
551 {
552         task->tk_status = 0;
553 }
554
555 /*
556  * Run a task at a later time
557  */
558 void rpc_delay(struct rpc_task *task, unsigned long delay)
559 {
560         task->tk_timeout = delay;
561         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
562 }
563 EXPORT_SYMBOL_GPL(rpc_delay);
564
565 /*
566  * Helper to call task->tk_ops->rpc_call_prepare
567  */
568 void rpc_prepare_task(struct rpc_task *task)
569 {
570         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
571 }
572
573 /*
574  * Helper that calls task->tk_ops->rpc_call_done if it exists
575  */
576 void rpc_exit_task(struct rpc_task *task)
577 {
578         task->tk_action = NULL;
579         if (task->tk_ops->rpc_call_done != NULL) {
580                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
581                 if (task->tk_action != NULL) {
582                         WARN_ON(RPC_ASSASSINATED(task));
583                         /* Always release the RPC slot and buffer memory */
584                         xprt_release(task);
585                 }
586         }
587 }
588
589 void rpc_exit(struct rpc_task *task, int status)
590 {
591         task->tk_status = status;
592         task->tk_action = rpc_exit_task;
593         if (RPC_IS_QUEUED(task))
594                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
595 }
596 EXPORT_SYMBOL_GPL(rpc_exit);
597
598 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
599 {
600         if (ops->rpc_release != NULL)
601                 ops->rpc_release(calldata);
602 }
603
604 /*
605  * This is the RPC `scheduler' (or rather, the finite state machine).
606  */
607 static void __rpc_execute(struct rpc_task *task)
608 {
609         struct rpc_wait_queue *queue;
610         int task_is_async = RPC_IS_ASYNC(task);
611         int status = 0;
612
613         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
614                         task->tk_pid, task->tk_flags);
615
616         BUG_ON(RPC_IS_QUEUED(task));
617
618         for (;;) {
619
620                 /*
621                  * Execute any pending callback.
622                  */
623                 if (task->tk_callback) {
624                         void (*save_callback)(struct rpc_task *);
625
626                         /*
627                          * We set tk_callback to NULL before calling it,
628                          * in case it sets the tk_callback field itself:
629                          */
630                         save_callback = task->tk_callback;
631                         task->tk_callback = NULL;
632                         save_callback(task);
633                 } else {
634                         /*
635                          * Perform the next FSM step.
636                          * tk_action may be NULL when the task has been killed
637                          * by someone else.
638                          */
639                         if (task->tk_action == NULL)
640                                 break;
641                         task->tk_action(task);
642                 }
643
644                 /*
645                  * Lockless check for whether task is sleeping or not.
646                  */
647                 if (!RPC_IS_QUEUED(task))
648                         continue;
649                 /*
650                  * The queue->lock protects against races with
651                  * rpc_make_runnable().
652                  *
653                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
654                  * rpc_task, rpc_make_runnable() can assign it to a
655                  * different workqueue. We therefore cannot assume that the
656                  * rpc_task pointer may still be dereferenced.
657                  */
658                 queue = task->tk_waitqueue;
659                 spin_lock_bh(&queue->lock);
660                 if (!RPC_IS_QUEUED(task)) {
661                         spin_unlock_bh(&queue->lock);
662                         continue;
663                 }
664                 rpc_clear_running(task);
665                 spin_unlock_bh(&queue->lock);
666                 if (task_is_async)
667                         return;
668
669                 /* sync task: sleep here */
670                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
671                 status = out_of_line_wait_on_bit(&task->tk_runstate,
672                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
673                                 TASK_KILLABLE);
674                 if (status == -ERESTARTSYS) {
675                         /*
676                          * When a sync task receives a signal, it exits with
677                          * -ERESTARTSYS. In order to catch any callbacks that
678                          * clean up after sleeping on some queue, we don't
679                          * break the loop here, but go around once more.
680                          */
681                         dprintk("RPC: %5u got signal\n", task->tk_pid);
682                         task->tk_flags |= RPC_TASK_KILLED;
683                         rpc_exit(task, -ERESTARTSYS);
684                 }
685                 rpc_set_running(task);
686                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
687         }
688
689         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
690                         task->tk_status);
691         /* Release all resources associated with the task */
692         rpc_release_task(task);
693 }
694
695 /*
696  * User-visible entry point to the scheduler.
697  *
698  * This may be called recursively if e.g. an async NFS task updates
699  * the attributes and finds that dirty pages must be flushed.
700  * NOTE: Upon exit of this function the task is guaranteed to be
701  *       released. In particular note that tk_release() will have
702  *       been called, so your task memory may have been freed.
703  */
704 void rpc_execute(struct rpc_task *task)
705 {
706         rpc_set_active(task);
707         rpc_make_runnable(task);
708         if (!RPC_IS_ASYNC(task))
709                 __rpc_execute(task);
710 }
711
712 static void rpc_async_schedule(struct work_struct *work)
713 {
714         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
715 }
716
717 /**
718  * rpc_malloc - allocate an RPC buffer
719  * @task: RPC task that will use this buffer
720  * @size: requested byte size
721  *
722  * To prevent rpciod from hanging, this allocator never sleeps,
723  * returning NULL if the request cannot be serviced immediately.
724  * The caller can arrange to sleep in a way that is safe for rpciod.
725  *
726  * Most requests are 'small' (under 2KiB) and can be serviced from a
727  * mempool, ensuring that NFS reads and writes can always proceed,
728  * and that there is good locality of reference for these buffers.
729  *
730  * In order to avoid memory starvation triggering more writebacks of
731  * NFS requests, we avoid using GFP_KERNEL.
732  */
733 void *rpc_malloc(struct rpc_task *task, size_t size)
734 {
735         struct rpc_buffer *buf;
736         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
737
738         size += sizeof(struct rpc_buffer);
739         if (size <= RPC_BUFFER_MAXSIZE)
740                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
741         else
742                 buf = kmalloc(size, gfp);
743
744         if (!buf)
745                 return NULL;
746
747         buf->len = size;
748         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
749                         task->tk_pid, size, buf);
750         return &buf->data;
751 }
752 EXPORT_SYMBOL_GPL(rpc_malloc);
753
754 /**
755  * rpc_free - free buffer allocated via rpc_malloc
756  * @buffer: buffer to free
757  *
758  */
759 void rpc_free(void *buffer)
760 {
761         size_t size;
762         struct rpc_buffer *buf;
763
764         if (!buffer)
765                 return;
766
767         buf = container_of(buffer, struct rpc_buffer, data);
768         size = buf->len;
769
770         dprintk("RPC:       freeing buffer of size %zu at %p\n",
771                         size, buf);
772
773         if (size <= RPC_BUFFER_MAXSIZE)
774                 mempool_free(buf, rpc_buffer_mempool);
775         else
776                 kfree(buf);
777 }
778 EXPORT_SYMBOL_GPL(rpc_free);
779
780 /*
781  * Creation and deletion of RPC task structures
782  */
783 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
784 {
785         memset(task, 0, sizeof(*task));
786         atomic_set(&task->tk_count, 1);
787         task->tk_flags  = task_setup_data->flags;
788         task->tk_ops = task_setup_data->callback_ops;
789         task->tk_calldata = task_setup_data->callback_data;
790         INIT_LIST_HEAD(&task->tk_task);
791
792         /* Initialize retry counters */
793         task->tk_garb_retry = 2;
794         task->tk_cred_retry = 2;
795         task->tk_rebind_retry = 2;
796
797         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
798         task->tk_owner = current->tgid;
799
800         /* Initialize workqueue for async tasks */
801         task->tk_workqueue = task_setup_data->workqueue;
802
803         if (task->tk_ops->rpc_call_prepare != NULL)
804                 task->tk_action = rpc_prepare_task;
805
806         /* starting timestamp */
807         task->tk_start = ktime_get();
808
809         dprintk("RPC:       new task initialized, procpid %u\n",
810                                 task_pid_nr(current));
811 }
812
813 static struct rpc_task *
814 rpc_alloc_task(void)
815 {
816         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
817 }
818
819 /*
820  * Create a new task for the specified client.
821  */
822 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
823 {
824         struct rpc_task *task = setup_data->task;
825         unsigned short flags = 0;
826
827         if (task == NULL) {
828                 task = rpc_alloc_task();
829                 if (task == NULL) {
830                         rpc_release_calldata(setup_data->callback_ops,
831                                         setup_data->callback_data);
832                         return ERR_PTR(-ENOMEM);
833                 }
834                 flags = RPC_TASK_DYNAMIC;
835         }
836
837         rpc_init_task(task, setup_data);
838         task->tk_flags |= flags;
839         dprintk("RPC:       allocated task %p\n", task);
840         return task;
841 }
842
843 static void rpc_free_task(struct rpc_task *task)
844 {
845         const struct rpc_call_ops *tk_ops = task->tk_ops;
846         void *calldata = task->tk_calldata;
847
848         if (task->tk_flags & RPC_TASK_DYNAMIC) {
849                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
850                 mempool_free(task, rpc_task_mempool);
851         }
852         rpc_release_calldata(tk_ops, calldata);
853 }
854
855 static void rpc_async_release(struct work_struct *work)
856 {
857         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
858 }
859
860 static void rpc_release_resources_task(struct rpc_task *task)
861 {
862         if (task->tk_rqstp)
863                 xprt_release(task);
864         if (task->tk_msg.rpc_cred) {
865                 put_rpccred(task->tk_msg.rpc_cred);
866                 task->tk_msg.rpc_cred = NULL;
867         }
868         rpc_task_release_client(task);
869 }
870
871 static void rpc_final_put_task(struct rpc_task *task,
872                 struct workqueue_struct *q)
873 {
874         if (q != NULL) {
875                 INIT_WORK(&task->u.tk_work, rpc_async_release);
876                 queue_work(q, &task->u.tk_work);
877         } else
878                 rpc_free_task(task);
879 }
880
881 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
882 {
883         if (atomic_dec_and_test(&task->tk_count)) {
884                 rpc_release_resources_task(task);
885                 rpc_final_put_task(task, q);
886         }
887 }
888
889 void rpc_put_task(struct rpc_task *task)
890 {
891         rpc_do_put_task(task, NULL);
892 }
893 EXPORT_SYMBOL_GPL(rpc_put_task);
894
895 void rpc_put_task_async(struct rpc_task *task)
896 {
897         rpc_do_put_task(task, task->tk_workqueue);
898 }
899 EXPORT_SYMBOL_GPL(rpc_put_task_async);
900
901 static void rpc_release_task(struct rpc_task *task)
902 {
903         dprintk("RPC: %5u release task\n", task->tk_pid);
904
905         BUG_ON (RPC_IS_QUEUED(task));
906
907         rpc_release_resources_task(task);
908
909         /*
910          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
911          * so it should be safe to use task->tk_count as a test for whether
912          * or not any other processes still hold references to our rpc_task.
913          */
914         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
915                 /* Wake up anyone who may be waiting for task completion */
916                 if (!rpc_complete_task(task))
917                         return;
918         } else {
919                 if (!atomic_dec_and_test(&task->tk_count))
920                         return;
921         }
922         rpc_final_put_task(task, task->tk_workqueue);
923 }
924
925 int rpciod_up(void)
926 {
927         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
928 }
929
930 void rpciod_down(void)
931 {
932         module_put(THIS_MODULE);
933 }
934
935 /*
936  * Start up the rpciod workqueue.
937  */
938 static int rpciod_start(void)
939 {
940         struct workqueue_struct *wq;
941
942         /*
943          * Create the rpciod thread and wait for it to start.
944          */
945         dprintk("RPC:       creating workqueue rpciod\n");
946         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
947         rpciod_workqueue = wq;
948         return rpciod_workqueue != NULL;
949 }
950
951 static void rpciod_stop(void)
952 {
953         struct workqueue_struct *wq = NULL;
954
955         if (rpciod_workqueue == NULL)
956                 return;
957         dprintk("RPC:       destroying workqueue rpciod\n");
958
959         wq = rpciod_workqueue;
960         rpciod_workqueue = NULL;
961         destroy_workqueue(wq);
962 }
963
964 void
965 rpc_destroy_mempool(void)
966 {
967         rpciod_stop();
968         if (rpc_buffer_mempool)
969                 mempool_destroy(rpc_buffer_mempool);
970         if (rpc_task_mempool)
971                 mempool_destroy(rpc_task_mempool);
972         if (rpc_task_slabp)
973                 kmem_cache_destroy(rpc_task_slabp);
974         if (rpc_buffer_slabp)
975                 kmem_cache_destroy(rpc_buffer_slabp);
976         rpc_destroy_wait_queue(&delay_queue);
977 }
978
979 int
980 rpc_init_mempool(void)
981 {
982         /*
983          * The following is not strictly a mempool initialisation,
984          * but there is no harm in doing it here
985          */
986         rpc_init_wait_queue(&delay_queue, "delayq");
987         if (!rpciod_start())
988                 goto err_nomem;
989
990         rpc_task_slabp = kmem_cache_create("rpc_tasks",
991                                              sizeof(struct rpc_task),
992                                              0, SLAB_HWCACHE_ALIGN,
993                                              NULL);
994         if (!rpc_task_slabp)
995                 goto err_nomem;
996         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
997                                              RPC_BUFFER_MAXSIZE,
998                                              0, SLAB_HWCACHE_ALIGN,
999                                              NULL);
1000         if (!rpc_buffer_slabp)
1001                 goto err_nomem;
1002         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1003                                                     rpc_task_slabp);
1004         if (!rpc_task_mempool)
1005                 goto err_nomem;
1006         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1007                                                       rpc_buffer_slabp);
1008         if (!rpc_buffer_mempool)
1009                 goto err_nomem;
1010         return 0;
1011 err_nomem:
1012         rpc_destroy_mempool();
1013         return -ENOMEM;
1014 }