Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[pandora-kernel.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #include "sunrpc.h"
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY         RPCDBG_SCHED
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63         if (task->tk_timeout == 0)
64                 return;
65         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66         task->tk_timeout = 0;
67         list_del(&task->u.tk_wait.timer_list);
68         if (list_empty(&queue->timer_list.list))
69                 del_timer(&queue->timer_list.timer);
70 }
71
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75         queue->timer_list.expires = expires;
76         mod_timer(&queue->timer_list.timer, expires);
77 }
78
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85         if (!task->tk_timeout)
86                 return;
87
88         dprintk("RPC: %5u setting alarm for %lu ms\n",
89                         task->tk_pid, task->tk_timeout * 1000 / HZ);
90
91         task->u.tk_wait.expires = jiffies + task->tk_timeout;
92         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
101 {
102         struct list_head *q;
103         struct rpc_task *t;
104
105         INIT_LIST_HEAD(&task->u.tk_wait.links);
106         q = &queue->tasks[task->tk_priority];
107         if (unlikely(task->tk_priority > queue->maxpriority))
108                 q = &queue->tasks[queue->maxpriority];
109         list_for_each_entry(t, q, u.tk_wait.list) {
110                 if (t->tk_owner == task->tk_owner) {
111                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112                         return;
113                 }
114         }
115         list_add_tail(&task->u.tk_wait.list, q);
116 }
117
118 /*
119  * Add new request to wait queue.
120  *
121  * Swapper tasks always get inserted at the head of the queue.
122  * This should avoid many nasty memory deadlocks and hopefully
123  * improve overall performance.
124  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
125  */
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
127 {
128         BUG_ON (RPC_IS_QUEUED(task));
129
130         if (RPC_IS_PRIORITY(queue))
131                 __rpc_add_wait_queue_priority(queue, task);
132         else if (RPC_IS_SWAPPER(task))
133                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134         else
135                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136         task->tk_waitqueue = queue;
137         queue->qlen++;
138         rpc_set_queued(task);
139
140         dprintk("RPC: %5u added to queue %p \"%s\"\n",
141                         task->tk_pid, queue, rpc_qname(queue));
142 }
143
144 /*
145  * Remove request from a priority queue.
146  */
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
148 {
149         struct rpc_task *t;
150
151         if (!list_empty(&task->u.tk_wait.links)) {
152                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
155         }
156 }
157
158 /*
159  * Remove request from queue.
160  * Note: must be called with spin lock held.
161  */
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
163 {
164         __rpc_disable_timer(queue, task);
165         if (RPC_IS_PRIORITY(queue))
166                 __rpc_remove_wait_queue_priority(task);
167         list_del(&task->u.tk_wait.list);
168         queue->qlen--;
169         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170                         task->tk_pid, queue, rpc_qname(queue));
171 }
172
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
174 {
175         queue->priority = priority;
176         queue->count = 1 << (priority * 2);
177 }
178
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
180 {
181         queue->owner = pid;
182         queue->nr = RPC_BATCH_COUNT;
183 }
184
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
186 {
187         rpc_set_waitqueue_priority(queue, queue->maxpriority);
188         rpc_set_waitqueue_owner(queue, 0);
189 }
190
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
192 {
193         int i;
194
195         spin_lock_init(&queue->lock);
196         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197                 INIT_LIST_HEAD(&queue->tasks[i]);
198         queue->maxpriority = nr_queues - 1;
199         rpc_reset_waitqueue_priority(queue);
200         queue->qlen = 0;
201         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202         INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204         queue->name = qname;
205 #endif
206 }
207
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
209 {
210         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
211 }
212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
213
214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216         __rpc_init_priority_wait_queue(queue, qname, 1);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
219
220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
221 {
222         del_timer_sync(&queue->timer_list.timer);
223 }
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
225
226 static int rpc_wait_bit_killable(void *word)
227 {
228         if (fatal_signal_pending(current))
229                 return -ERESTARTSYS;
230         schedule();
231         return 0;
232 }
233
234 #ifdef RPC_DEBUG
235 static void rpc_task_set_debuginfo(struct rpc_task *task)
236 {
237         static atomic_t rpc_pid;
238
239         task->tk_pid = atomic_inc_return(&rpc_pid);
240 }
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
243 {
244 }
245 #endif
246
247 static void rpc_set_active(struct rpc_task *task)
248 {
249         rpc_task_set_debuginfo(task);
250         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
251 }
252
253 /*
254  * Mark an RPC call as having completed by clearing the 'active' bit
255  */
256 static void rpc_mark_complete_task(struct rpc_task *task)
257 {
258         smp_mb__before_clear_bit();
259         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
260         smp_mb__after_clear_bit();
261         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
262 }
263
264 /*
265  * Allow callers to wait for completion of an RPC call
266  */
267 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
268 {
269         if (action == NULL)
270                 action = rpc_wait_bit_killable;
271         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
272                         action, TASK_KILLABLE);
273 }
274 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
275
276 /*
277  * Make an RPC task runnable.
278  *
279  * Note: If the task is ASYNC, this must be called with
280  * the spinlock held to protect the wait queue operation.
281  */
282 static void rpc_make_runnable(struct rpc_task *task)
283 {
284         rpc_clear_queued(task);
285         if (rpc_test_and_set_running(task))
286                 return;
287         if (RPC_IS_ASYNC(task)) {
288                 int status;
289
290                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
291                 status = queue_work(rpciod_workqueue, &task->u.tk_work);
292                 if (status < 0) {
293                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
294                         task->tk_status = status;
295                         return;
296                 }
297         } else
298                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
299 }
300
301 /*
302  * Prepare for sleeping on a wait queue.
303  * By always appending tasks to the list we ensure FIFO behavior.
304  * NB: An RPC task will only receive interrupt-driven events as long
305  * as it's on a wait queue.
306  */
307 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
308                         rpc_action action)
309 {
310         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
311                         task->tk_pid, rpc_qname(q), jiffies);
312
313         __rpc_add_wait_queue(q, task);
314
315         BUG_ON(task->tk_callback != NULL);
316         task->tk_callback = action;
317         __rpc_add_timer(q, task);
318 }
319
320 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
321                                 rpc_action action)
322 {
323         /* We shouldn't ever put an inactive task to sleep */
324         BUG_ON(!RPC_IS_ACTIVATED(task));
325
326         /*
327          * Protect the queue operations.
328          */
329         spin_lock_bh(&q->lock);
330         __rpc_sleep_on(q, task, action);
331         spin_unlock_bh(&q->lock);
332 }
333 EXPORT_SYMBOL_GPL(rpc_sleep_on);
334
335 /**
336  * __rpc_do_wake_up_task - wake up a single rpc_task
337  * @queue: wait queue
338  * @task: task to be woken up
339  *
340  * Caller must hold queue->lock, and have cleared the task queued flag.
341  */
342 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
343 {
344         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
345                         task->tk_pid, jiffies);
346
347         /* Has the task been executed yet? If not, we cannot wake it up! */
348         if (!RPC_IS_ACTIVATED(task)) {
349                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
350                 return;
351         }
352
353         __rpc_remove_wait_queue(queue, task);
354
355         rpc_make_runnable(task);
356
357         dprintk("RPC:       __rpc_wake_up_task done\n");
358 }
359
360 /*
361  * Wake up a queued task while the queue lock is being held
362  */
363 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
364 {
365         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
366                 __rpc_do_wake_up_task(queue, task);
367 }
368
369 /*
370  * Tests whether rpc queue is empty
371  */
372 int rpc_queue_empty(struct rpc_wait_queue *queue)
373 {
374         int res;
375
376         spin_lock_bh(&queue->lock);
377         res = queue->qlen;
378         spin_unlock_bh(&queue->lock);
379         return res == 0;
380 }
381 EXPORT_SYMBOL_GPL(rpc_queue_empty);
382
383 /*
384  * Wake up a task on a specific queue
385  */
386 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
387 {
388         spin_lock_bh(&queue->lock);
389         rpc_wake_up_task_queue_locked(queue, task);
390         spin_unlock_bh(&queue->lock);
391 }
392 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
393
394 /*
395  * Wake up the next task on a priority queue.
396  */
397 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
398 {
399         struct list_head *q;
400         struct rpc_task *task;
401
402         /*
403          * Service a batch of tasks from a single owner.
404          */
405         q = &queue->tasks[queue->priority];
406         if (!list_empty(q)) {
407                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
408                 if (queue->owner == task->tk_owner) {
409                         if (--queue->nr)
410                                 goto out;
411                         list_move_tail(&task->u.tk_wait.list, q);
412                 }
413                 /*
414                  * Check if we need to switch queues.
415                  */
416                 if (--queue->count)
417                         goto new_owner;
418         }
419
420         /*
421          * Service the next queue.
422          */
423         do {
424                 if (q == &queue->tasks[0])
425                         q = &queue->tasks[queue->maxpriority];
426                 else
427                         q = q - 1;
428                 if (!list_empty(q)) {
429                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
430                         goto new_queue;
431                 }
432         } while (q != &queue->tasks[queue->priority]);
433
434         rpc_reset_waitqueue_priority(queue);
435         return NULL;
436
437 new_queue:
438         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
439 new_owner:
440         rpc_set_waitqueue_owner(queue, task->tk_owner);
441 out:
442         rpc_wake_up_task_queue_locked(queue, task);
443         return task;
444 }
445
446 /*
447  * Wake up the next task on the wait queue.
448  */
449 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
450 {
451         struct rpc_task *task = NULL;
452
453         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
454                         queue, rpc_qname(queue));
455         spin_lock_bh(&queue->lock);
456         if (RPC_IS_PRIORITY(queue))
457                 task = __rpc_wake_up_next_priority(queue);
458         else {
459                 task_for_first(task, &queue->tasks[0])
460                         rpc_wake_up_task_queue_locked(queue, task);
461         }
462         spin_unlock_bh(&queue->lock);
463
464         return task;
465 }
466 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
467
468 /**
469  * rpc_wake_up - wake up all rpc_tasks
470  * @queue: rpc_wait_queue on which the tasks are sleeping
471  *
472  * Grabs queue->lock
473  */
474 void rpc_wake_up(struct rpc_wait_queue *queue)
475 {
476         struct rpc_task *task, *next;
477         struct list_head *head;
478
479         spin_lock_bh(&queue->lock);
480         head = &queue->tasks[queue->maxpriority];
481         for (;;) {
482                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
483                         rpc_wake_up_task_queue_locked(queue, task);
484                 if (head == &queue->tasks[0])
485                         break;
486                 head--;
487         }
488         spin_unlock_bh(&queue->lock);
489 }
490 EXPORT_SYMBOL_GPL(rpc_wake_up);
491
492 /**
493  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
494  * @queue: rpc_wait_queue on which the tasks are sleeping
495  * @status: status value to set
496  *
497  * Grabs queue->lock
498  */
499 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
500 {
501         struct rpc_task *task, *next;
502         struct list_head *head;
503
504         spin_lock_bh(&queue->lock);
505         head = &queue->tasks[queue->maxpriority];
506         for (;;) {
507                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
508                         task->tk_status = status;
509                         rpc_wake_up_task_queue_locked(queue, task);
510                 }
511                 if (head == &queue->tasks[0])
512                         break;
513                 head--;
514         }
515         spin_unlock_bh(&queue->lock);
516 }
517 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
518
519 static void __rpc_queue_timer_fn(unsigned long ptr)
520 {
521         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
522         struct rpc_task *task, *n;
523         unsigned long expires, now, timeo;
524
525         spin_lock(&queue->lock);
526         expires = now = jiffies;
527         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
528                 timeo = task->u.tk_wait.expires;
529                 if (time_after_eq(now, timeo)) {
530                         dprintk("RPC: %5u timeout\n", task->tk_pid);
531                         task->tk_status = -ETIMEDOUT;
532                         rpc_wake_up_task_queue_locked(queue, task);
533                         continue;
534                 }
535                 if (expires == now || time_after(expires, timeo))
536                         expires = timeo;
537         }
538         if (!list_empty(&queue->timer_list.list))
539                 rpc_set_queue_timer(queue, expires);
540         spin_unlock(&queue->lock);
541 }
542
543 static void __rpc_atrun(struct rpc_task *task)
544 {
545         task->tk_status = 0;
546 }
547
548 /*
549  * Run a task at a later time
550  */
551 void rpc_delay(struct rpc_task *task, unsigned long delay)
552 {
553         task->tk_timeout = delay;
554         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
555 }
556 EXPORT_SYMBOL_GPL(rpc_delay);
557
558 /*
559  * Helper to call task->tk_ops->rpc_call_prepare
560  */
561 void rpc_prepare_task(struct rpc_task *task)
562 {
563         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
564 }
565
566 /*
567  * Helper that calls task->tk_ops->rpc_call_done if it exists
568  */
569 void rpc_exit_task(struct rpc_task *task)
570 {
571         task->tk_action = NULL;
572         if (task->tk_ops->rpc_call_done != NULL) {
573                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
574                 if (task->tk_action != NULL) {
575                         WARN_ON(RPC_ASSASSINATED(task));
576                         /* Always release the RPC slot and buffer memory */
577                         xprt_release(task);
578                 }
579         }
580 }
581
582 void rpc_exit(struct rpc_task *task, int status)
583 {
584         task->tk_status = status;
585         task->tk_action = rpc_exit_task;
586         if (RPC_IS_QUEUED(task))
587                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
588 }
589 EXPORT_SYMBOL_GPL(rpc_exit);
590
591 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
592 {
593         if (ops->rpc_release != NULL)
594                 ops->rpc_release(calldata);
595 }
596
597 /*
598  * This is the RPC `scheduler' (or rather, the finite state machine).
599  */
600 static void __rpc_execute(struct rpc_task *task)
601 {
602         struct rpc_wait_queue *queue;
603         int task_is_async = RPC_IS_ASYNC(task);
604         int status = 0;
605
606         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
607                         task->tk_pid, task->tk_flags);
608
609         BUG_ON(RPC_IS_QUEUED(task));
610
611         for (;;) {
612
613                 /*
614                  * Execute any pending callback.
615                  */
616                 if (task->tk_callback) {
617                         void (*save_callback)(struct rpc_task *);
618
619                         /*
620                          * We set tk_callback to NULL before calling it,
621                          * in case it sets the tk_callback field itself:
622                          */
623                         save_callback = task->tk_callback;
624                         task->tk_callback = NULL;
625                         save_callback(task);
626                 }
627
628                 /*
629                  * Perform the next FSM step.
630                  * tk_action may be NULL when the task has been killed
631                  * by someone else.
632                  */
633                 if (!RPC_IS_QUEUED(task)) {
634                         if (task->tk_action == NULL)
635                                 break;
636                         task->tk_action(task);
637                 }
638
639                 /*
640                  * Lockless check for whether task is sleeping or not.
641                  */
642                 if (!RPC_IS_QUEUED(task))
643                         continue;
644                 /*
645                  * The queue->lock protects against races with
646                  * rpc_make_runnable().
647                  *
648                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
649                  * rpc_task, rpc_make_runnable() can assign it to a
650                  * different workqueue. We therefore cannot assume that the
651                  * rpc_task pointer may still be dereferenced.
652                  */
653                 queue = task->tk_waitqueue;
654                 spin_lock_bh(&queue->lock);
655                 if (!RPC_IS_QUEUED(task)) {
656                         spin_unlock_bh(&queue->lock);
657                         continue;
658                 }
659                 rpc_clear_running(task);
660                 spin_unlock_bh(&queue->lock);
661                 if (task_is_async)
662                         return;
663
664                 /* sync task: sleep here */
665                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
666                 status = out_of_line_wait_on_bit(&task->tk_runstate,
667                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
668                                 TASK_KILLABLE);
669                 if (status == -ERESTARTSYS) {
670                         /*
671                          * When a sync task receives a signal, it exits with
672                          * -ERESTARTSYS. In order to catch any callbacks that
673                          * clean up after sleeping on some queue, we don't
674                          * break the loop here, but go around once more.
675                          */
676                         dprintk("RPC: %5u got signal\n", task->tk_pid);
677                         task->tk_flags |= RPC_TASK_KILLED;
678                         rpc_exit(task, -ERESTARTSYS);
679                 }
680                 rpc_set_running(task);
681                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
682         }
683
684         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
685                         task->tk_status);
686         /* Release all resources associated with the task */
687         rpc_release_task(task);
688 }
689
690 /*
691  * User-visible entry point to the scheduler.
692  *
693  * This may be called recursively if e.g. an async NFS task updates
694  * the attributes and finds that dirty pages must be flushed.
695  * NOTE: Upon exit of this function the task is guaranteed to be
696  *       released. In particular note that tk_release() will have
697  *       been called, so your task memory may have been freed.
698  */
699 void rpc_execute(struct rpc_task *task)
700 {
701         rpc_set_active(task);
702         rpc_make_runnable(task);
703         if (!RPC_IS_ASYNC(task))
704                 __rpc_execute(task);
705 }
706
707 static void rpc_async_schedule(struct work_struct *work)
708 {
709         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
710 }
711
712 /**
713  * rpc_malloc - allocate an RPC buffer
714  * @task: RPC task that will use this buffer
715  * @size: requested byte size
716  *
717  * To prevent rpciod from hanging, this allocator never sleeps,
718  * returning NULL if the request cannot be serviced immediately.
719  * The caller can arrange to sleep in a way that is safe for rpciod.
720  *
721  * Most requests are 'small' (under 2KiB) and can be serviced from a
722  * mempool, ensuring that NFS reads and writes can always proceed,
723  * and that there is good locality of reference for these buffers.
724  *
725  * In order to avoid memory starvation triggering more writebacks of
726  * NFS requests, we avoid using GFP_KERNEL.
727  */
728 void *rpc_malloc(struct rpc_task *task, size_t size)
729 {
730         struct rpc_buffer *buf;
731         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
732
733         size += sizeof(struct rpc_buffer);
734         if (size <= RPC_BUFFER_MAXSIZE)
735                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
736         else
737                 buf = kmalloc(size, gfp);
738
739         if (!buf)
740                 return NULL;
741
742         buf->len = size;
743         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
744                         task->tk_pid, size, buf);
745         return &buf->data;
746 }
747 EXPORT_SYMBOL_GPL(rpc_malloc);
748
749 /**
750  * rpc_free - free buffer allocated via rpc_malloc
751  * @buffer: buffer to free
752  *
753  */
754 void rpc_free(void *buffer)
755 {
756         size_t size;
757         struct rpc_buffer *buf;
758
759         if (!buffer)
760                 return;
761
762         buf = container_of(buffer, struct rpc_buffer, data);
763         size = buf->len;
764
765         dprintk("RPC:       freeing buffer of size %zu at %p\n",
766                         size, buf);
767
768         if (size <= RPC_BUFFER_MAXSIZE)
769                 mempool_free(buf, rpc_buffer_mempool);
770         else
771                 kfree(buf);
772 }
773 EXPORT_SYMBOL_GPL(rpc_free);
774
775 /*
776  * Creation and deletion of RPC task structures
777  */
778 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
779 {
780         memset(task, 0, sizeof(*task));
781         atomic_set(&task->tk_count, 1);
782         task->tk_flags  = task_setup_data->flags;
783         task->tk_ops = task_setup_data->callback_ops;
784         task->tk_calldata = task_setup_data->callback_data;
785         INIT_LIST_HEAD(&task->tk_task);
786
787         /* Initialize retry counters */
788         task->tk_garb_retry = 2;
789         task->tk_cred_retry = 2;
790
791         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
792         task->tk_owner = current->tgid;
793
794         /* Initialize workqueue for async tasks */
795         task->tk_workqueue = task_setup_data->workqueue;
796
797         if (task->tk_ops->rpc_call_prepare != NULL)
798                 task->tk_action = rpc_prepare_task;
799
800         /* starting timestamp */
801         task->tk_start = ktime_get();
802
803         dprintk("RPC:       new task initialized, procpid %u\n",
804                                 task_pid_nr(current));
805 }
806
807 static struct rpc_task *
808 rpc_alloc_task(void)
809 {
810         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
811 }
812
813 /*
814  * Create a new task for the specified client.
815  */
816 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
817 {
818         struct rpc_task *task = setup_data->task;
819         unsigned short flags = 0;
820
821         if (task == NULL) {
822                 task = rpc_alloc_task();
823                 if (task == NULL) {
824                         rpc_release_calldata(setup_data->callback_ops,
825                                         setup_data->callback_data);
826                         return ERR_PTR(-ENOMEM);
827                 }
828                 flags = RPC_TASK_DYNAMIC;
829         }
830
831         rpc_init_task(task, setup_data);
832         if (task->tk_status < 0) {
833                 int err = task->tk_status;
834                 rpc_put_task(task);
835                 return ERR_PTR(err);
836         }
837
838         task->tk_flags |= flags;
839         dprintk("RPC:       allocated task %p\n", task);
840         return task;
841 }
842
843 static void rpc_free_task(struct rpc_task *task)
844 {
845         const struct rpc_call_ops *tk_ops = task->tk_ops;
846         void *calldata = task->tk_calldata;
847
848         if (task->tk_flags & RPC_TASK_DYNAMIC) {
849                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
850                 mempool_free(task, rpc_task_mempool);
851         }
852         rpc_release_calldata(tk_ops, calldata);
853 }
854
855 static void rpc_async_release(struct work_struct *work)
856 {
857         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
858 }
859
860 void rpc_put_task(struct rpc_task *task)
861 {
862         if (!atomic_dec_and_test(&task->tk_count))
863                 return;
864         /* Release resources */
865         if (task->tk_rqstp)
866                 xprt_release(task);
867         if (task->tk_msg.rpc_cred)
868                 put_rpccred(task->tk_msg.rpc_cred);
869         rpc_task_release_client(task);
870         if (task->tk_workqueue != NULL) {
871                 INIT_WORK(&task->u.tk_work, rpc_async_release);
872                 queue_work(task->tk_workqueue, &task->u.tk_work);
873         } else
874                 rpc_free_task(task);
875 }
876 EXPORT_SYMBOL_GPL(rpc_put_task);
877
878 static void rpc_release_task(struct rpc_task *task)
879 {
880         dprintk("RPC: %5u release task\n", task->tk_pid);
881
882         BUG_ON (RPC_IS_QUEUED(task));
883
884         /* Wake up anyone who is waiting for task completion */
885         rpc_mark_complete_task(task);
886
887         rpc_put_task(task);
888 }
889
890 int rpciod_up(void)
891 {
892         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
893 }
894
895 void rpciod_down(void)
896 {
897         module_put(THIS_MODULE);
898 }
899
900 /*
901  * Start up the rpciod workqueue.
902  */
903 static int rpciod_start(void)
904 {
905         struct workqueue_struct *wq;
906
907         /*
908          * Create the rpciod thread and wait for it to start.
909          */
910         dprintk("RPC:       creating workqueue rpciod\n");
911         wq = alloc_workqueue("rpciod", WQ_RESCUER, 0);
912         rpciod_workqueue = wq;
913         return rpciod_workqueue != NULL;
914 }
915
916 static void rpciod_stop(void)
917 {
918         struct workqueue_struct *wq = NULL;
919
920         if (rpciod_workqueue == NULL)
921                 return;
922         dprintk("RPC:       destroying workqueue rpciod\n");
923
924         wq = rpciod_workqueue;
925         rpciod_workqueue = NULL;
926         destroy_workqueue(wq);
927 }
928
929 void
930 rpc_destroy_mempool(void)
931 {
932         rpciod_stop();
933         if (rpc_buffer_mempool)
934                 mempool_destroy(rpc_buffer_mempool);
935         if (rpc_task_mempool)
936                 mempool_destroy(rpc_task_mempool);
937         if (rpc_task_slabp)
938                 kmem_cache_destroy(rpc_task_slabp);
939         if (rpc_buffer_slabp)
940                 kmem_cache_destroy(rpc_buffer_slabp);
941         rpc_destroy_wait_queue(&delay_queue);
942 }
943
944 int
945 rpc_init_mempool(void)
946 {
947         /*
948          * The following is not strictly a mempool initialisation,
949          * but there is no harm in doing it here
950          */
951         rpc_init_wait_queue(&delay_queue, "delayq");
952         if (!rpciod_start())
953                 goto err_nomem;
954
955         rpc_task_slabp = kmem_cache_create("rpc_tasks",
956                                              sizeof(struct rpc_task),
957                                              0, SLAB_HWCACHE_ALIGN,
958                                              NULL);
959         if (!rpc_task_slabp)
960                 goto err_nomem;
961         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
962                                              RPC_BUFFER_MAXSIZE,
963                                              0, SLAB_HWCACHE_ALIGN,
964                                              NULL);
965         if (!rpc_buffer_slabp)
966                 goto err_nomem;
967         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
968                                                     rpc_task_slabp);
969         if (!rpc_task_mempool)
970                 goto err_nomem;
971         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
972                                                       rpc_buffer_slabp);
973         if (!rpc_buffer_mempool)
974                 goto err_nomem;
975         return 0;
976 err_nomem:
977         rpc_destroy_mempool();
978         return -ENOMEM;
979 }