Linux 3.2.82
[pandora-kernel.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #include "sunrpc.h"
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY         RPCDBG_SCHED
28 #endif
29
30 /*
31  * RPC slabs and memory pools
32  */
33 #define RPC_BUFFER_MAXSIZE      (2048)
34 #define RPC_BUFFER_POOLSIZE     (8)
35 #define RPC_TASK_POOLSIZE       (8)
36 static struct kmem_cache        *rpc_task_slabp __read_mostly;
37 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
38 static mempool_t        *rpc_task_mempool __read_mostly;
39 static mempool_t        *rpc_buffer_mempool __read_mostly;
40
41 static void                     rpc_async_schedule(struct work_struct *);
42 static void                      rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44
45 /*
46  * RPC tasks sit here while waiting for conditions to improve.
47  */
48 static struct rpc_wait_queue delay_queue;
49
50 /*
51  * rpciod-related stuff
52  */
53 struct workqueue_struct *rpciod_workqueue;
54
55 /*
56  * Disable the timer for a given RPC task. Should be called with
57  * queue->lock and bh_disabled in order to avoid races within
58  * rpc_run_timer().
59  */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63         if (task->tk_timeout == 0)
64                 return;
65         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66         task->tk_timeout = 0;
67         list_del(&task->u.tk_wait.timer_list);
68         if (list_empty(&queue->timer_list.list))
69                 del_timer(&queue->timer_list.timer);
70 }
71
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75         queue->timer_list.expires = expires;
76         mod_timer(&queue->timer_list.timer, expires);
77 }
78
79 /*
80  * Set up a timer for the current task.
81  */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85         if (!task->tk_timeout)
86                 return;
87
88         dprintk("RPC: %5u setting alarm for %lu ms\n",
89                         task->tk_pid, task->tk_timeout * 1000 / HZ);
90
91         task->u.tk_wait.expires = jiffies + task->tk_timeout;
92         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96
97 /*
98  * Add new request to a priority queue.
99  */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
101                 struct rpc_task *task,
102                 unsigned char queue_priority)
103 {
104         struct list_head *q;
105         struct rpc_task *t;
106
107         INIT_LIST_HEAD(&task->u.tk_wait.links);
108         q = &queue->tasks[queue_priority];
109         if (unlikely(queue_priority > queue->maxpriority))
110                 q = &queue->tasks[queue->maxpriority];
111         list_for_each_entry(t, q, u.tk_wait.list) {
112                 if (t->tk_owner == task->tk_owner) {
113                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
114                         return;
115                 }
116         }
117         list_add_tail(&task->u.tk_wait.list, q);
118 }
119
120 /*
121  * Add new request to wait queue.
122  *
123  * Swapper tasks always get inserted at the head of the queue.
124  * This should avoid many nasty memory deadlocks and hopefully
125  * improve overall performance.
126  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
127  */
128 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
129                 struct rpc_task *task,
130                 unsigned char queue_priority)
131 {
132         BUG_ON (RPC_IS_QUEUED(task));
133
134         if (RPC_IS_PRIORITY(queue))
135                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
136         else if (RPC_IS_SWAPPER(task))
137                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
138         else
139                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
140         task->tk_waitqueue = queue;
141         queue->qlen++;
142         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
143         smp_wmb();
144         rpc_set_queued(task);
145
146         dprintk("RPC: %5u added to queue %p \"%s\"\n",
147                         task->tk_pid, queue, rpc_qname(queue));
148 }
149
150 /*
151  * Remove request from a priority queue.
152  */
153 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
154 {
155         struct rpc_task *t;
156
157         if (!list_empty(&task->u.tk_wait.links)) {
158                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
159                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
160                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
161         }
162 }
163
164 /*
165  * Remove request from queue.
166  * Note: must be called with spin lock held.
167  */
168 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
169 {
170         __rpc_disable_timer(queue, task);
171         if (RPC_IS_PRIORITY(queue))
172                 __rpc_remove_wait_queue_priority(task);
173         list_del(&task->u.tk_wait.list);
174         queue->qlen--;
175         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
176                         task->tk_pid, queue, rpc_qname(queue));
177 }
178
179 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
180 {
181         queue->priority = priority;
182         queue->count = 1 << (priority * 2);
183 }
184
185 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
186 {
187         queue->owner = pid;
188         queue->nr = RPC_BATCH_COUNT;
189 }
190
191 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
192 {
193         rpc_set_waitqueue_priority(queue, queue->maxpriority);
194         rpc_set_waitqueue_owner(queue, 0);
195 }
196
197 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
198 {
199         int i;
200
201         spin_lock_init(&queue->lock);
202         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
203                 INIT_LIST_HEAD(&queue->tasks[i]);
204         queue->maxpriority = nr_queues - 1;
205         rpc_reset_waitqueue_priority(queue);
206         queue->qlen = 0;
207         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
208         INIT_LIST_HEAD(&queue->timer_list.list);
209 #ifdef RPC_DEBUG
210         queue->name = qname;
211 #endif
212 }
213
214 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
219
220 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
221 {
222         __rpc_init_priority_wait_queue(queue, qname, 1);
223 }
224 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
225
226 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
227 {
228         del_timer_sync(&queue->timer_list.timer);
229 }
230 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
231
232 static int rpc_wait_bit_killable(void *word)
233 {
234         if (fatal_signal_pending(current))
235                 return -ERESTARTSYS;
236         schedule();
237         return 0;
238 }
239
240 #ifdef RPC_DEBUG
241 static void rpc_task_set_debuginfo(struct rpc_task *task)
242 {
243         static atomic_t rpc_pid;
244
245         task->tk_pid = atomic_inc_return(&rpc_pid);
246 }
247 #else
248 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
249 {
250 }
251 #endif
252
253 static void rpc_set_active(struct rpc_task *task)
254 {
255         rpc_task_set_debuginfo(task);
256         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
257 }
258
259 /*
260  * Mark an RPC call as having completed by clearing the 'active' bit
261  * and then waking up all tasks that were sleeping.
262  */
263 static int rpc_complete_task(struct rpc_task *task)
264 {
265         void *m = &task->tk_runstate;
266         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
267         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
268         unsigned long flags;
269         int ret;
270
271         spin_lock_irqsave(&wq->lock, flags);
272         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
273         ret = atomic_dec_and_test(&task->tk_count);
274         if (waitqueue_active(wq))
275                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
276         spin_unlock_irqrestore(&wq->lock, flags);
277         return ret;
278 }
279
280 /*
281  * Allow callers to wait for completion of an RPC call
282  *
283  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
284  * to enforce taking of the wq->lock and hence avoid races with
285  * rpc_complete_task().
286  */
287 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
288 {
289         if (action == NULL)
290                 action = rpc_wait_bit_killable;
291         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
292                         action, TASK_KILLABLE);
293 }
294 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
295
296 /*
297  * Make an RPC task runnable.
298  *
299  * Note: If the task is ASYNC, and is being made runnable after sitting on an
300  * rpc_wait_queue, this must be called with the queue spinlock held to protect
301  * the wait queue operation.
302  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
303  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
304  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
305  * the RPC_TASK_RUNNING flag.
306  */
307 static void rpc_make_runnable(struct rpc_task *task)
308 {
309         bool need_wakeup = !rpc_test_and_set_running(task);
310
311         rpc_clear_queued(task);
312         if (!need_wakeup)
313                 return;
314         if (RPC_IS_ASYNC(task)) {
315                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
316                 queue_work(rpciod_workqueue, &task->u.tk_work);
317         } else
318                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
319 }
320
321 /*
322  * Prepare for sleeping on a wait queue.
323  * By always appending tasks to the list we ensure FIFO behavior.
324  * NB: An RPC task will only receive interrupt-driven events as long
325  * as it's on a wait queue.
326  */
327 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
328                 struct rpc_task *task,
329                 rpc_action action,
330                 unsigned char queue_priority)
331 {
332         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
333                         task->tk_pid, rpc_qname(q), jiffies);
334
335         __rpc_add_wait_queue(q, task, queue_priority);
336
337         BUG_ON(task->tk_callback != NULL);
338         task->tk_callback = action;
339         __rpc_add_timer(q, task);
340 }
341
342 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
343                                 rpc_action action)
344 {
345         /* We shouldn't ever put an inactive task to sleep */
346         BUG_ON(!RPC_IS_ACTIVATED(task));
347
348         /*
349          * Protect the queue operations.
350          */
351         spin_lock_bh(&q->lock);
352         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
353         spin_unlock_bh(&q->lock);
354 }
355 EXPORT_SYMBOL_GPL(rpc_sleep_on);
356
357 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
358                 rpc_action action, int priority)
359 {
360         /* We shouldn't ever put an inactive task to sleep */
361         BUG_ON(!RPC_IS_ACTIVATED(task));
362
363         /*
364          * Protect the queue operations.
365          */
366         spin_lock_bh(&q->lock);
367         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
368         spin_unlock_bh(&q->lock);
369 }
370
371 /**
372  * __rpc_do_wake_up_task - wake up a single rpc_task
373  * @queue: wait queue
374  * @task: task to be woken up
375  *
376  * Caller must hold queue->lock, and have cleared the task queued flag.
377  */
378 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
379 {
380         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
381                         task->tk_pid, jiffies);
382
383         /* Has the task been executed yet? If not, we cannot wake it up! */
384         if (!RPC_IS_ACTIVATED(task)) {
385                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
386                 return;
387         }
388
389         __rpc_remove_wait_queue(queue, task);
390
391         rpc_make_runnable(task);
392
393         dprintk("RPC:       __rpc_wake_up_task done\n");
394 }
395
396 /*
397  * Wake up a queued task while the queue lock is being held
398  */
399 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
400 {
401         if (RPC_IS_QUEUED(task)) {
402                 smp_rmb();
403                 if (task->tk_waitqueue == queue)
404                         __rpc_do_wake_up_task(queue, task);
405         }
406 }
407
408 /*
409  * Tests whether rpc queue is empty
410  */
411 int rpc_queue_empty(struct rpc_wait_queue *queue)
412 {
413         int res;
414
415         spin_lock_bh(&queue->lock);
416         res = queue->qlen;
417         spin_unlock_bh(&queue->lock);
418         return res == 0;
419 }
420 EXPORT_SYMBOL_GPL(rpc_queue_empty);
421
422 /*
423  * Wake up a task on a specific queue
424  */
425 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
426 {
427         spin_lock_bh(&queue->lock);
428         rpc_wake_up_task_queue_locked(queue, task);
429         spin_unlock_bh(&queue->lock);
430 }
431 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
432
433 /*
434  * Wake up the next task on a priority queue.
435  */
436 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
437 {
438         struct list_head *q;
439         struct rpc_task *task;
440
441         /*
442          * Service a batch of tasks from a single owner.
443          */
444         q = &queue->tasks[queue->priority];
445         if (!list_empty(q)) {
446                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
447                 if (queue->owner == task->tk_owner) {
448                         if (--queue->nr)
449                                 goto out;
450                         list_move_tail(&task->u.tk_wait.list, q);
451                 }
452                 /*
453                  * Check if we need to switch queues.
454                  */
455                 if (--queue->count)
456                         goto new_owner;
457         }
458
459         /*
460          * Service the next queue.
461          */
462         do {
463                 if (q == &queue->tasks[0])
464                         q = &queue->tasks[queue->maxpriority];
465                 else
466                         q = q - 1;
467                 if (!list_empty(q)) {
468                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
469                         goto new_queue;
470                 }
471         } while (q != &queue->tasks[queue->priority]);
472
473         rpc_reset_waitqueue_priority(queue);
474         return NULL;
475
476 new_queue:
477         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
478 new_owner:
479         rpc_set_waitqueue_owner(queue, task->tk_owner);
480 out:
481         rpc_wake_up_task_queue_locked(queue, task);
482         return task;
483 }
484
485 /*
486  * Wake up the next task on the wait queue.
487  */
488 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
489 {
490         struct rpc_task *task = NULL;
491
492         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
493                         queue, rpc_qname(queue));
494         spin_lock_bh(&queue->lock);
495         if (RPC_IS_PRIORITY(queue))
496                 task = __rpc_wake_up_next_priority(queue);
497         else {
498                 task_for_first(task, &queue->tasks[0])
499                         rpc_wake_up_task_queue_locked(queue, task);
500         }
501         spin_unlock_bh(&queue->lock);
502
503         return task;
504 }
505 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
506
507 /**
508  * rpc_wake_up - wake up all rpc_tasks
509  * @queue: rpc_wait_queue on which the tasks are sleeping
510  *
511  * Grabs queue->lock
512  */
513 void rpc_wake_up(struct rpc_wait_queue *queue)
514 {
515         struct list_head *head;
516
517         spin_lock_bh(&queue->lock);
518         head = &queue->tasks[queue->maxpriority];
519         for (;;) {
520                 while (!list_empty(head)) {
521                         struct rpc_task *task;
522                         task = list_first_entry(head,
523                                         struct rpc_task,
524                                         u.tk_wait.list);
525                         rpc_wake_up_task_queue_locked(queue, task);
526                 }
527                 if (head == &queue->tasks[0])
528                         break;
529                 head--;
530         }
531         spin_unlock_bh(&queue->lock);
532 }
533 EXPORT_SYMBOL_GPL(rpc_wake_up);
534
535 /**
536  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
537  * @queue: rpc_wait_queue on which the tasks are sleeping
538  * @status: status value to set
539  *
540  * Grabs queue->lock
541  */
542 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
543 {
544         struct list_head *head;
545
546         spin_lock_bh(&queue->lock);
547         head = &queue->tasks[queue->maxpriority];
548         for (;;) {
549                 while (!list_empty(head)) {
550                         struct rpc_task *task;
551                         task = list_first_entry(head,
552                                         struct rpc_task,
553                                         u.tk_wait.list);
554                         task->tk_status = status;
555                         rpc_wake_up_task_queue_locked(queue, task);
556                 }
557                 if (head == &queue->tasks[0])
558                         break;
559                 head--;
560         }
561         spin_unlock_bh(&queue->lock);
562 }
563 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
564
565 static void __rpc_queue_timer_fn(unsigned long ptr)
566 {
567         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
568         struct rpc_task *task, *n;
569         unsigned long expires, now, timeo;
570
571         spin_lock(&queue->lock);
572         expires = now = jiffies;
573         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
574                 timeo = task->u.tk_wait.expires;
575                 if (time_after_eq(now, timeo)) {
576                         dprintk("RPC: %5u timeout\n", task->tk_pid);
577                         task->tk_status = -ETIMEDOUT;
578                         rpc_wake_up_task_queue_locked(queue, task);
579                         continue;
580                 }
581                 if (expires == now || time_after(expires, timeo))
582                         expires = timeo;
583         }
584         if (!list_empty(&queue->timer_list.list))
585                 rpc_set_queue_timer(queue, expires);
586         spin_unlock(&queue->lock);
587 }
588
589 static void __rpc_atrun(struct rpc_task *task)
590 {
591         task->tk_status = 0;
592 }
593
594 /*
595  * Run a task at a later time
596  */
597 void rpc_delay(struct rpc_task *task, unsigned long delay)
598 {
599         task->tk_timeout = delay;
600         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
601 }
602 EXPORT_SYMBOL_GPL(rpc_delay);
603
604 /*
605  * Helper to call task->tk_ops->rpc_call_prepare
606  */
607 void rpc_prepare_task(struct rpc_task *task)
608 {
609         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
610 }
611
612 static void
613 rpc_init_task_statistics(struct rpc_task *task)
614 {
615         /* Initialize retry counters */
616         task->tk_garb_retry = 2;
617         task->tk_cred_retry = 2;
618         task->tk_rebind_retry = 2;
619
620         /* starting timestamp */
621         task->tk_start = ktime_get();
622 }
623
624 static void
625 rpc_reset_task_statistics(struct rpc_task *task)
626 {
627         task->tk_timeouts = 0;
628         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
629
630         rpc_init_task_statistics(task);
631 }
632
633 /*
634  * Helper that calls task->tk_ops->rpc_call_done if it exists
635  */
636 void rpc_exit_task(struct rpc_task *task)
637 {
638         task->tk_action = NULL;
639         if (task->tk_ops->rpc_call_done != NULL) {
640                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
641                 if (task->tk_action != NULL) {
642                         WARN_ON(RPC_ASSASSINATED(task));
643                         /* Always release the RPC slot and buffer memory */
644                         xprt_release(task);
645                         rpc_reset_task_statistics(task);
646                 }
647         }
648 }
649
650 void rpc_exit(struct rpc_task *task, int status)
651 {
652         task->tk_status = status;
653         task->tk_action = rpc_exit_task;
654         if (RPC_IS_QUEUED(task))
655                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
656 }
657 EXPORT_SYMBOL_GPL(rpc_exit);
658
659 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
660 {
661         if (ops->rpc_release != NULL)
662                 ops->rpc_release(calldata);
663 }
664
665 /*
666  * This is the RPC `scheduler' (or rather, the finite state machine).
667  */
668 static void __rpc_execute(struct rpc_task *task)
669 {
670         struct rpc_wait_queue *queue;
671         int task_is_async = RPC_IS_ASYNC(task);
672         int status = 0;
673
674         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
675                         task->tk_pid, task->tk_flags);
676
677         BUG_ON(RPC_IS_QUEUED(task));
678
679         for (;;) {
680                 void (*do_action)(struct rpc_task *);
681
682                 /*
683                  * Execute any pending callback first.
684                  */
685                 do_action = task->tk_callback;
686                 task->tk_callback = NULL;
687                 if (do_action == NULL) {
688                         /*
689                          * Perform the next FSM step.
690                          * tk_action may be NULL if the task has been killed.
691                          * In particular, note that rpc_killall_tasks may
692                          * do this at any time, so beware when dereferencing.
693                          */
694                         do_action = task->tk_action;
695                         if (do_action == NULL)
696                                 break;
697                 }
698                 do_action(task);
699
700                 /*
701                  * Lockless check for whether task is sleeping or not.
702                  */
703                 if (!RPC_IS_QUEUED(task))
704                         continue;
705                 /*
706                  * The queue->lock protects against races with
707                  * rpc_make_runnable().
708                  *
709                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
710                  * rpc_task, rpc_make_runnable() can assign it to a
711                  * different workqueue. We therefore cannot assume that the
712                  * rpc_task pointer may still be dereferenced.
713                  */
714                 queue = task->tk_waitqueue;
715                 spin_lock_bh(&queue->lock);
716                 if (!RPC_IS_QUEUED(task)) {
717                         spin_unlock_bh(&queue->lock);
718                         continue;
719                 }
720                 rpc_clear_running(task);
721                 spin_unlock_bh(&queue->lock);
722                 if (task_is_async)
723                         return;
724
725                 /* sync task: sleep here */
726                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
727                 status = out_of_line_wait_on_bit(&task->tk_runstate,
728                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
729                                 TASK_KILLABLE);
730                 if (status == -ERESTARTSYS) {
731                         /*
732                          * When a sync task receives a signal, it exits with
733                          * -ERESTARTSYS. In order to catch any callbacks that
734                          * clean up after sleeping on some queue, we don't
735                          * break the loop here, but go around once more.
736                          */
737                         dprintk("RPC: %5u got signal\n", task->tk_pid);
738                         task->tk_flags |= RPC_TASK_KILLED;
739                         rpc_exit(task, -ERESTARTSYS);
740                 }
741                 rpc_set_running(task);
742                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
743         }
744
745         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
746                         task->tk_status);
747         /* Release all resources associated with the task */
748         rpc_release_task(task);
749 }
750
751 /*
752  * User-visible entry point to the scheduler.
753  *
754  * This may be called recursively if e.g. an async NFS task updates
755  * the attributes and finds that dirty pages must be flushed.
756  * NOTE: Upon exit of this function the task is guaranteed to be
757  *       released. In particular note that tk_release() will have
758  *       been called, so your task memory may have been freed.
759  */
760 void rpc_execute(struct rpc_task *task)
761 {
762         rpc_set_active(task);
763         rpc_make_runnable(task);
764         if (!RPC_IS_ASYNC(task))
765                 __rpc_execute(task);
766 }
767
768 static void rpc_async_schedule(struct work_struct *work)
769 {
770         current->flags |= PF_FSTRANS;
771         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
772         current->flags &= ~PF_FSTRANS;
773 }
774
775 /**
776  * rpc_malloc - allocate an RPC buffer
777  * @task: RPC task that will use this buffer
778  * @size: requested byte size
779  *
780  * To prevent rpciod from hanging, this allocator never sleeps,
781  * returning NULL if the request cannot be serviced immediately.
782  * The caller can arrange to sleep in a way that is safe for rpciod.
783  *
784  * Most requests are 'small' (under 2KiB) and can be serviced from a
785  * mempool, ensuring that NFS reads and writes can always proceed,
786  * and that there is good locality of reference for these buffers.
787  *
788  * In order to avoid memory starvation triggering more writebacks of
789  * NFS requests, we avoid using GFP_KERNEL.
790  */
791 void *rpc_malloc(struct rpc_task *task, size_t size)
792 {
793         struct rpc_buffer *buf;
794         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
795
796         size += sizeof(struct rpc_buffer);
797         if (size <= RPC_BUFFER_MAXSIZE)
798                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
799         else
800                 buf = kmalloc(size, gfp);
801
802         if (!buf)
803                 return NULL;
804
805         buf->len = size;
806         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
807                         task->tk_pid, size, buf);
808         return &buf->data;
809 }
810 EXPORT_SYMBOL_GPL(rpc_malloc);
811
812 /**
813  * rpc_free - free buffer allocated via rpc_malloc
814  * @buffer: buffer to free
815  *
816  */
817 void rpc_free(void *buffer)
818 {
819         size_t size;
820         struct rpc_buffer *buf;
821
822         if (!buffer)
823                 return;
824
825         buf = container_of(buffer, struct rpc_buffer, data);
826         size = buf->len;
827
828         dprintk("RPC:       freeing buffer of size %zu at %p\n",
829                         size, buf);
830
831         if (size <= RPC_BUFFER_MAXSIZE)
832                 mempool_free(buf, rpc_buffer_mempool);
833         else
834                 kfree(buf);
835 }
836 EXPORT_SYMBOL_GPL(rpc_free);
837
838 /*
839  * Creation and deletion of RPC task structures
840  */
841 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
842 {
843         memset(task, 0, sizeof(*task));
844         atomic_set(&task->tk_count, 1);
845         task->tk_flags  = task_setup_data->flags;
846         task->tk_ops = task_setup_data->callback_ops;
847         task->tk_calldata = task_setup_data->callback_data;
848         INIT_LIST_HEAD(&task->tk_task);
849
850         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
851         task->tk_owner = current->tgid;
852
853         /* Initialize workqueue for async tasks */
854         task->tk_workqueue = task_setup_data->workqueue;
855
856         if (task->tk_ops->rpc_call_prepare != NULL)
857                 task->tk_action = rpc_prepare_task;
858
859         rpc_init_task_statistics(task);
860
861         dprintk("RPC:       new task initialized, procpid %u\n",
862                                 task_pid_nr(current));
863 }
864
865 static struct rpc_task *
866 rpc_alloc_task(void)
867 {
868         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
869 }
870
871 /*
872  * Create a new task for the specified client.
873  */
874 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
875 {
876         struct rpc_task *task = setup_data->task;
877         unsigned short flags = 0;
878
879         if (task == NULL) {
880                 task = rpc_alloc_task();
881                 if (task == NULL) {
882                         rpc_release_calldata(setup_data->callback_ops,
883                                         setup_data->callback_data);
884                         return ERR_PTR(-ENOMEM);
885                 }
886                 flags = RPC_TASK_DYNAMIC;
887         }
888
889         rpc_init_task(task, setup_data);
890         task->tk_flags |= flags;
891         dprintk("RPC:       allocated task %p\n", task);
892         return task;
893 }
894
895 /*
896  * rpc_free_task - release rpc task and perform cleanups
897  *
898  * Note that we free up the rpc_task _after_ rpc_release_calldata()
899  * in order to work around a workqueue dependency issue.
900  *
901  * Tejun Heo states:
902  * "Workqueue currently considers two work items to be the same if they're
903  * on the same address and won't execute them concurrently - ie. it
904  * makes a work item which is queued again while being executed wait
905  * for the previous execution to complete.
906  *
907  * If a work function frees the work item, and then waits for an event
908  * which should be performed by another work item and *that* work item
909  * recycles the freed work item, it can create a false dependency loop.
910  * There really is no reliable way to detect this short of verifying
911  * every memory free."
912  *
913  */
914 static void rpc_free_task(struct rpc_task *task)
915 {
916         unsigned short tk_flags = task->tk_flags;
917
918         rpc_release_calldata(task->tk_ops, task->tk_calldata);
919
920         if (tk_flags & RPC_TASK_DYNAMIC) {
921                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
922                 mempool_free(task, rpc_task_mempool);
923         }
924 }
925
926 static void rpc_async_release(struct work_struct *work)
927 {
928         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
929 }
930
931 static void rpc_release_resources_task(struct rpc_task *task)
932 {
933         xprt_release(task);
934         if (task->tk_msg.rpc_cred) {
935                 put_rpccred(task->tk_msg.rpc_cred);
936                 task->tk_msg.rpc_cred = NULL;
937         }
938         rpc_task_release_client(task);
939 }
940
941 static void rpc_final_put_task(struct rpc_task *task,
942                 struct workqueue_struct *q)
943 {
944         if (q != NULL) {
945                 INIT_WORK(&task->u.tk_work, rpc_async_release);
946                 queue_work(q, &task->u.tk_work);
947         } else
948                 rpc_free_task(task);
949 }
950
951 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
952 {
953         if (atomic_dec_and_test(&task->tk_count)) {
954                 rpc_release_resources_task(task);
955                 rpc_final_put_task(task, q);
956         }
957 }
958
959 void rpc_put_task(struct rpc_task *task)
960 {
961         rpc_do_put_task(task, NULL);
962 }
963 EXPORT_SYMBOL_GPL(rpc_put_task);
964
965 void rpc_put_task_async(struct rpc_task *task)
966 {
967         rpc_do_put_task(task, task->tk_workqueue);
968 }
969 EXPORT_SYMBOL_GPL(rpc_put_task_async);
970
971 static void rpc_release_task(struct rpc_task *task)
972 {
973         dprintk("RPC: %5u release task\n", task->tk_pid);
974
975         BUG_ON (RPC_IS_QUEUED(task));
976
977         rpc_release_resources_task(task);
978
979         /*
980          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
981          * so it should be safe to use task->tk_count as a test for whether
982          * or not any other processes still hold references to our rpc_task.
983          */
984         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
985                 /* Wake up anyone who may be waiting for task completion */
986                 if (!rpc_complete_task(task))
987                         return;
988         } else {
989                 if (!atomic_dec_and_test(&task->tk_count))
990                         return;
991         }
992         rpc_final_put_task(task, task->tk_workqueue);
993 }
994
995 int rpciod_up(void)
996 {
997         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
998 }
999
1000 void rpciod_down(void)
1001 {
1002         module_put(THIS_MODULE);
1003 }
1004
1005 /*
1006  * Start up the rpciod workqueue.
1007  */
1008 static int rpciod_start(void)
1009 {
1010         struct workqueue_struct *wq;
1011
1012         /*
1013          * Create the rpciod thread and wait for it to start.
1014          */
1015         dprintk("RPC:       creating workqueue rpciod\n");
1016         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1017         rpciod_workqueue = wq;
1018         return rpciod_workqueue != NULL;
1019 }
1020
1021 static void rpciod_stop(void)
1022 {
1023         struct workqueue_struct *wq = NULL;
1024
1025         if (rpciod_workqueue == NULL)
1026                 return;
1027         dprintk("RPC:       destroying workqueue rpciod\n");
1028
1029         wq = rpciod_workqueue;
1030         rpciod_workqueue = NULL;
1031         destroy_workqueue(wq);
1032 }
1033
1034 void
1035 rpc_destroy_mempool(void)
1036 {
1037         rpciod_stop();
1038         if (rpc_buffer_mempool)
1039                 mempool_destroy(rpc_buffer_mempool);
1040         if (rpc_task_mempool)
1041                 mempool_destroy(rpc_task_mempool);
1042         if (rpc_task_slabp)
1043                 kmem_cache_destroy(rpc_task_slabp);
1044         if (rpc_buffer_slabp)
1045                 kmem_cache_destroy(rpc_buffer_slabp);
1046         rpc_destroy_wait_queue(&delay_queue);
1047 }
1048
1049 int
1050 rpc_init_mempool(void)
1051 {
1052         /*
1053          * The following is not strictly a mempool initialisation,
1054          * but there is no harm in doing it here
1055          */
1056         rpc_init_wait_queue(&delay_queue, "delayq");
1057         if (!rpciod_start())
1058                 goto err_nomem;
1059
1060         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1061                                              sizeof(struct rpc_task),
1062                                              0, SLAB_HWCACHE_ALIGN,
1063                                              NULL);
1064         if (!rpc_task_slabp)
1065                 goto err_nomem;
1066         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1067                                              RPC_BUFFER_MAXSIZE,
1068                                              0, SLAB_HWCACHE_ALIGN,
1069                                              NULL);
1070         if (!rpc_buffer_slabp)
1071                 goto err_nomem;
1072         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1073                                                     rpc_task_slabp);
1074         if (!rpc_task_mempool)
1075                 goto err_nomem;
1076         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1077                                                       rpc_buffer_slabp);
1078         if (!rpc_buffer_mempool)
1079                 goto err_nomem;
1080         return 0;
1081 err_nomem:
1082         rpc_destroy_mempool();
1083         return -ENOMEM;
1084 }