Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[pandora-kernel.git] / net / mac80211 / rx.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010  Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "led.h"
26 #include "mesh.h"
27 #include "wep.h"
28 #include "wpa.h"
29 #include "tkip.h"
30 #include "wme.h"
31
32 /*
33  * monitor mode reception
34  *
35  * This function cleans up the SKB, i.e. it removes all the stuff
36  * only useful for monitoring.
37  */
38 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
39                                            struct sk_buff *skb)
40 {
41         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
42                 if (likely(skb->len > FCS_LEN))
43                         __pskb_trim(skb, skb->len - FCS_LEN);
44                 else {
45                         /* driver bug */
46                         WARN_ON(1);
47                         dev_kfree_skb(skb);
48                         skb = NULL;
49                 }
50         }
51
52         return skb;
53 }
54
55 static inline int should_drop_frame(struct sk_buff *skb,
56                                     int present_fcs_len)
57 {
58         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
59         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
60
61         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
62                 return 1;
63         if (unlikely(skb->len < 16 + present_fcs_len))
64                 return 1;
65         if (ieee80211_is_ctl(hdr->frame_control) &&
66             !ieee80211_is_pspoll(hdr->frame_control) &&
67             !ieee80211_is_back_req(hdr->frame_control))
68                 return 1;
69         return 0;
70 }
71
72 static int
73 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
74                           struct ieee80211_rx_status *status)
75 {
76         int len;
77
78         /* always present fields */
79         len = sizeof(struct ieee80211_radiotap_header) + 9;
80
81         if (status->flag & RX_FLAG_MACTIME_MPDU)
82                 len += 8;
83         if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
84                 len += 1;
85
86         if (len & 1) /* padding for RX_FLAGS if necessary */
87                 len++;
88
89         if (status->flag & RX_FLAG_HT) /* HT info */
90                 len += 3;
91
92         return len;
93 }
94
95 /*
96  * ieee80211_add_rx_radiotap_header - add radiotap header
97  *
98  * add a radiotap header containing all the fields which the hardware provided.
99  */
100 static void
101 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
102                                  struct sk_buff *skb,
103                                  struct ieee80211_rate *rate,
104                                  int rtap_len)
105 {
106         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
107         struct ieee80211_radiotap_header *rthdr;
108         unsigned char *pos;
109         u16 rx_flags = 0;
110
111         rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
112         memset(rthdr, 0, rtap_len);
113
114         /* radiotap header, set always present flags */
115         rthdr->it_present =
116                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
117                             (1 << IEEE80211_RADIOTAP_CHANNEL) |
118                             (1 << IEEE80211_RADIOTAP_ANTENNA) |
119                             (1 << IEEE80211_RADIOTAP_RX_FLAGS));
120         rthdr->it_len = cpu_to_le16(rtap_len);
121
122         pos = (unsigned char *)(rthdr+1);
123
124         /* the order of the following fields is important */
125
126         /* IEEE80211_RADIOTAP_TSFT */
127         if (status->flag & RX_FLAG_MACTIME_MPDU) {
128                 put_unaligned_le64(status->mactime, pos);
129                 rthdr->it_present |=
130                         cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
131                 pos += 8;
132         }
133
134         /* IEEE80211_RADIOTAP_FLAGS */
135         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
136                 *pos |= IEEE80211_RADIOTAP_F_FCS;
137         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
138                 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
139         if (status->flag & RX_FLAG_SHORTPRE)
140                 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
141         pos++;
142
143         /* IEEE80211_RADIOTAP_RATE */
144         if (status->flag & RX_FLAG_HT) {
145                 /*
146                  * MCS information is a separate field in radiotap,
147                  * added below. The byte here is needed as padding
148                  * for the channel though, so initialise it to 0.
149                  */
150                 *pos = 0;
151         } else {
152                 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
153                 *pos = rate->bitrate / 5;
154         }
155         pos++;
156
157         /* IEEE80211_RADIOTAP_CHANNEL */
158         put_unaligned_le16(status->freq, pos);
159         pos += 2;
160         if (status->band == IEEE80211_BAND_5GHZ)
161                 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
162                                    pos);
163         else if (status->flag & RX_FLAG_HT)
164                 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
165                                    pos);
166         else if (rate->flags & IEEE80211_RATE_ERP_G)
167                 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
168                                    pos);
169         else
170                 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
171                                    pos);
172         pos += 2;
173
174         /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
175         if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
176                 *pos = status->signal;
177                 rthdr->it_present |=
178                         cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
179                 pos++;
180         }
181
182         /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
183
184         /* IEEE80211_RADIOTAP_ANTENNA */
185         *pos = status->antenna;
186         pos++;
187
188         /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
189
190         /* IEEE80211_RADIOTAP_RX_FLAGS */
191         /* ensure 2 byte alignment for the 2 byte field as required */
192         if ((pos - (u8 *)rthdr) & 1)
193                 pos++;
194         if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
195                 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
196         put_unaligned_le16(rx_flags, pos);
197         pos += 2;
198
199         if (status->flag & RX_FLAG_HT) {
200                 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
201                 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
202                          IEEE80211_RADIOTAP_MCS_HAVE_GI |
203                          IEEE80211_RADIOTAP_MCS_HAVE_BW;
204                 *pos = 0;
205                 if (status->flag & RX_FLAG_SHORT_GI)
206                         *pos |= IEEE80211_RADIOTAP_MCS_SGI;
207                 if (status->flag & RX_FLAG_40MHZ)
208                         *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
209                 pos++;
210                 *pos++ = status->rate_idx;
211         }
212 }
213
214 /*
215  * This function copies a received frame to all monitor interfaces and
216  * returns a cleaned-up SKB that no longer includes the FCS nor the
217  * radiotap header the driver might have added.
218  */
219 static struct sk_buff *
220 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
221                      struct ieee80211_rate *rate)
222 {
223         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
224         struct ieee80211_sub_if_data *sdata;
225         int needed_headroom = 0;
226         struct sk_buff *skb, *skb2;
227         struct net_device *prev_dev = NULL;
228         int present_fcs_len = 0;
229
230         /*
231          * First, we may need to make a copy of the skb because
232          *  (1) we need to modify it for radiotap (if not present), and
233          *  (2) the other RX handlers will modify the skb we got.
234          *
235          * We don't need to, of course, if we aren't going to return
236          * the SKB because it has a bad FCS/PLCP checksum.
237          */
238
239         /* room for the radiotap header based on driver features */
240         needed_headroom = ieee80211_rx_radiotap_len(local, status);
241
242         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
243                 present_fcs_len = FCS_LEN;
244
245         /* make sure hdr->frame_control is on the linear part */
246         if (!pskb_may_pull(origskb, 2)) {
247                 dev_kfree_skb(origskb);
248                 return NULL;
249         }
250
251         if (!local->monitors) {
252                 if (should_drop_frame(origskb, present_fcs_len)) {
253                         dev_kfree_skb(origskb);
254                         return NULL;
255                 }
256
257                 return remove_monitor_info(local, origskb);
258         }
259
260         if (should_drop_frame(origskb, present_fcs_len)) {
261                 /* only need to expand headroom if necessary */
262                 skb = origskb;
263                 origskb = NULL;
264
265                 /*
266                  * This shouldn't trigger often because most devices have an
267                  * RX header they pull before we get here, and that should
268                  * be big enough for our radiotap information. We should
269                  * probably export the length to drivers so that we can have
270                  * them allocate enough headroom to start with.
271                  */
272                 if (skb_headroom(skb) < needed_headroom &&
273                     pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
274                         dev_kfree_skb(skb);
275                         return NULL;
276                 }
277         } else {
278                 /*
279                  * Need to make a copy and possibly remove radiotap header
280                  * and FCS from the original.
281                  */
282                 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
283
284                 origskb = remove_monitor_info(local, origskb);
285
286                 if (!skb)
287                         return origskb;
288         }
289
290         /* prepend radiotap information */
291         ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
292
293         skb_reset_mac_header(skb);
294         skb->ip_summed = CHECKSUM_UNNECESSARY;
295         skb->pkt_type = PACKET_OTHERHOST;
296         skb->protocol = htons(ETH_P_802_2);
297
298         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
299                 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
300                         continue;
301
302                 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
303                         continue;
304
305                 if (!ieee80211_sdata_running(sdata))
306                         continue;
307
308                 if (prev_dev) {
309                         skb2 = skb_clone(skb, GFP_ATOMIC);
310                         if (skb2) {
311                                 skb2->dev = prev_dev;
312                                 netif_receive_skb(skb2);
313                         }
314                 }
315
316                 prev_dev = sdata->dev;
317                 sdata->dev->stats.rx_packets++;
318                 sdata->dev->stats.rx_bytes += skb->len;
319         }
320
321         if (prev_dev) {
322                 skb->dev = prev_dev;
323                 netif_receive_skb(skb);
324         } else
325                 dev_kfree_skb(skb);
326
327         return origskb;
328 }
329
330
331 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
332 {
333         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
334         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
335         int tid, seqno_idx, security_idx;
336
337         /* does the frame have a qos control field? */
338         if (ieee80211_is_data_qos(hdr->frame_control)) {
339                 u8 *qc = ieee80211_get_qos_ctl(hdr);
340                 /* frame has qos control */
341                 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
342                 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
343                         status->rx_flags |= IEEE80211_RX_AMSDU;
344
345                 seqno_idx = tid;
346                 security_idx = tid;
347         } else {
348                 /*
349                  * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
350                  *
351                  *      Sequence numbers for management frames, QoS data
352                  *      frames with a broadcast/multicast address in the
353                  *      Address 1 field, and all non-QoS data frames sent
354                  *      by QoS STAs are assigned using an additional single
355                  *      modulo-4096 counter, [...]
356                  *
357                  * We also use that counter for non-QoS STAs.
358                  */
359                 seqno_idx = NUM_RX_DATA_QUEUES;
360                 security_idx = 0;
361                 if (ieee80211_is_mgmt(hdr->frame_control))
362                         security_idx = NUM_RX_DATA_QUEUES;
363                 tid = 0;
364         }
365
366         rx->seqno_idx = seqno_idx;
367         rx->security_idx = security_idx;
368         /* Set skb->priority to 1d tag if highest order bit of TID is not set.
369          * For now, set skb->priority to 0 for other cases. */
370         rx->skb->priority = (tid > 7) ? 0 : tid;
371 }
372
373 /**
374  * DOC: Packet alignment
375  *
376  * Drivers always need to pass packets that are aligned to two-byte boundaries
377  * to the stack.
378  *
379  * Additionally, should, if possible, align the payload data in a way that
380  * guarantees that the contained IP header is aligned to a four-byte
381  * boundary. In the case of regular frames, this simply means aligning the
382  * payload to a four-byte boundary (because either the IP header is directly
383  * contained, or IV/RFC1042 headers that have a length divisible by four are
384  * in front of it).  If the payload data is not properly aligned and the
385  * architecture doesn't support efficient unaligned operations, mac80211
386  * will align the data.
387  *
388  * With A-MSDU frames, however, the payload data address must yield two modulo
389  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
390  * push the IP header further back to a multiple of four again. Thankfully, the
391  * specs were sane enough this time around to require padding each A-MSDU
392  * subframe to a length that is a multiple of four.
393  *
394  * Padding like Atheros hardware adds which is between the 802.11 header and
395  * the payload is not supported, the driver is required to move the 802.11
396  * header to be directly in front of the payload in that case.
397  */
398 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
399 {
400 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
401         WARN_ONCE((unsigned long)rx->skb->data & 1,
402                   "unaligned packet at 0x%p\n", rx->skb->data);
403 #endif
404 }
405
406
407 /* rx handlers */
408
409 static ieee80211_rx_result debug_noinline
410 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
411 {
412         struct ieee80211_local *local = rx->local;
413         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
414         struct sk_buff *skb = rx->skb;
415
416         if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
417                    !local->sched_scanning))
418                 return RX_CONTINUE;
419
420         if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
421             test_bit(SCAN_SW_SCANNING, &local->scanning) ||
422             local->sched_scanning)
423                 return ieee80211_scan_rx(rx->sdata, skb);
424
425         /* scanning finished during invoking of handlers */
426         I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
427         return RX_DROP_UNUSABLE;
428 }
429
430
431 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
432 {
433         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
434
435         if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
436                 return 0;
437
438         return ieee80211_is_robust_mgmt_frame(hdr);
439 }
440
441
442 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
443 {
444         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
445
446         if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
447                 return 0;
448
449         return ieee80211_is_robust_mgmt_frame(hdr);
450 }
451
452
453 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
454 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
455 {
456         struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
457         struct ieee80211_mmie *mmie;
458
459         if (skb->len < 24 + sizeof(*mmie) ||
460             !is_multicast_ether_addr(hdr->da))
461                 return -1;
462
463         if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
464                 return -1; /* not a robust management frame */
465
466         mmie = (struct ieee80211_mmie *)
467                 (skb->data + skb->len - sizeof(*mmie));
468         if (mmie->element_id != WLAN_EID_MMIE ||
469             mmie->length != sizeof(*mmie) - 2)
470                 return -1;
471
472         return le16_to_cpu(mmie->key_id);
473 }
474
475
476 static ieee80211_rx_result
477 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
478 {
479         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
480         char *dev_addr = rx->sdata->vif.addr;
481
482         if (ieee80211_is_data(hdr->frame_control)) {
483                 if (is_multicast_ether_addr(hdr->addr1)) {
484                         if (ieee80211_has_tods(hdr->frame_control) ||
485                                 !ieee80211_has_fromds(hdr->frame_control))
486                                 return RX_DROP_MONITOR;
487                         if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
488                                 return RX_DROP_MONITOR;
489                 } else {
490                         if (!ieee80211_has_a4(hdr->frame_control))
491                                 return RX_DROP_MONITOR;
492                         if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
493                                 return RX_DROP_MONITOR;
494                 }
495         }
496
497         /* If there is not an established peer link and this is not a peer link
498          * establisment frame, beacon or probe, drop the frame.
499          */
500
501         if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
502                 struct ieee80211_mgmt *mgmt;
503
504                 if (!ieee80211_is_mgmt(hdr->frame_control))
505                         return RX_DROP_MONITOR;
506
507                 if (ieee80211_is_action(hdr->frame_control)) {
508                         u8 category;
509                         mgmt = (struct ieee80211_mgmt *)hdr;
510                         category = mgmt->u.action.category;
511                         if (category != WLAN_CATEGORY_MESH_ACTION &&
512                                 category != WLAN_CATEGORY_SELF_PROTECTED)
513                                 return RX_DROP_MONITOR;
514                         return RX_CONTINUE;
515                 }
516
517                 if (ieee80211_is_probe_req(hdr->frame_control) ||
518                     ieee80211_is_probe_resp(hdr->frame_control) ||
519                     ieee80211_is_beacon(hdr->frame_control) ||
520                     ieee80211_is_auth(hdr->frame_control))
521                         return RX_CONTINUE;
522
523                 return RX_DROP_MONITOR;
524
525         }
526
527         return RX_CONTINUE;
528 }
529
530 #define SEQ_MODULO 0x1000
531 #define SEQ_MASK   0xfff
532
533 static inline int seq_less(u16 sq1, u16 sq2)
534 {
535         return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
536 }
537
538 static inline u16 seq_inc(u16 sq)
539 {
540         return (sq + 1) & SEQ_MASK;
541 }
542
543 static inline u16 seq_sub(u16 sq1, u16 sq2)
544 {
545         return (sq1 - sq2) & SEQ_MASK;
546 }
547
548
549 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
550                                             struct tid_ampdu_rx *tid_agg_rx,
551                                             int index)
552 {
553         struct ieee80211_local *local = hw_to_local(hw);
554         struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
555         struct ieee80211_rx_status *status;
556
557         lockdep_assert_held(&tid_agg_rx->reorder_lock);
558
559         if (!skb)
560                 goto no_frame;
561
562         /* release the frame from the reorder ring buffer */
563         tid_agg_rx->stored_mpdu_num--;
564         tid_agg_rx->reorder_buf[index] = NULL;
565         status = IEEE80211_SKB_RXCB(skb);
566         status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
567         skb_queue_tail(&local->rx_skb_queue, skb);
568
569 no_frame:
570         tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
571 }
572
573 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
574                                              struct tid_ampdu_rx *tid_agg_rx,
575                                              u16 head_seq_num)
576 {
577         int index;
578
579         lockdep_assert_held(&tid_agg_rx->reorder_lock);
580
581         while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
582                 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
583                                                         tid_agg_rx->buf_size;
584                 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
585         }
586 }
587
588 /*
589  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
590  * the skb was added to the buffer longer than this time ago, the earlier
591  * frames that have not yet been received are assumed to be lost and the skb
592  * can be released for processing. This may also release other skb's from the
593  * reorder buffer if there are no additional gaps between the frames.
594  *
595  * Callers must hold tid_agg_rx->reorder_lock.
596  */
597 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
598
599 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
600                                           struct tid_ampdu_rx *tid_agg_rx)
601 {
602         int index, j;
603
604         lockdep_assert_held(&tid_agg_rx->reorder_lock);
605
606         /* release the buffer until next missing frame */
607         index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
608                                                 tid_agg_rx->buf_size;
609         if (!tid_agg_rx->reorder_buf[index] &&
610             tid_agg_rx->stored_mpdu_num > 1) {
611                 /*
612                  * No buffers ready to be released, but check whether any
613                  * frames in the reorder buffer have timed out.
614                  */
615                 int skipped = 1;
616                 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
617                      j = (j + 1) % tid_agg_rx->buf_size) {
618                         if (!tid_agg_rx->reorder_buf[j]) {
619                                 skipped++;
620                                 continue;
621                         }
622                         if (skipped &&
623                             !time_after(jiffies, tid_agg_rx->reorder_time[j] +
624                                         HT_RX_REORDER_BUF_TIMEOUT))
625                                 goto set_release_timer;
626
627 #ifdef CONFIG_MAC80211_HT_DEBUG
628                         if (net_ratelimit())
629                                 wiphy_debug(hw->wiphy,
630                                             "release an RX reorder frame due to timeout on earlier frames\n");
631 #endif
632                         ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
633
634                         /*
635                          * Increment the head seq# also for the skipped slots.
636                          */
637                         tid_agg_rx->head_seq_num =
638                                 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
639                         skipped = 0;
640                 }
641         } else while (tid_agg_rx->reorder_buf[index]) {
642                 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
643                 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
644                                                         tid_agg_rx->buf_size;
645         }
646
647         if (tid_agg_rx->stored_mpdu_num) {
648                 j = index = seq_sub(tid_agg_rx->head_seq_num,
649                                     tid_agg_rx->ssn) % tid_agg_rx->buf_size;
650
651                 for (; j != (index - 1) % tid_agg_rx->buf_size;
652                      j = (j + 1) % tid_agg_rx->buf_size) {
653                         if (tid_agg_rx->reorder_buf[j])
654                                 break;
655                 }
656
657  set_release_timer:
658
659                 mod_timer(&tid_agg_rx->reorder_timer,
660                           tid_agg_rx->reorder_time[j] + 1 +
661                           HT_RX_REORDER_BUF_TIMEOUT);
662         } else {
663                 del_timer(&tid_agg_rx->reorder_timer);
664         }
665 }
666
667 /*
668  * As this function belongs to the RX path it must be under
669  * rcu_read_lock protection. It returns false if the frame
670  * can be processed immediately, true if it was consumed.
671  */
672 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
673                                              struct tid_ampdu_rx *tid_agg_rx,
674                                              struct sk_buff *skb)
675 {
676         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
677         u16 sc = le16_to_cpu(hdr->seq_ctrl);
678         u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
679         u16 head_seq_num, buf_size;
680         int index;
681         bool ret = true;
682
683         spin_lock(&tid_agg_rx->reorder_lock);
684
685         buf_size = tid_agg_rx->buf_size;
686         head_seq_num = tid_agg_rx->head_seq_num;
687
688         /* frame with out of date sequence number */
689         if (seq_less(mpdu_seq_num, head_seq_num)) {
690                 dev_kfree_skb(skb);
691                 goto out;
692         }
693
694         /*
695          * If frame the sequence number exceeds our buffering window
696          * size release some previous frames to make room for this one.
697          */
698         if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
699                 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
700                 /* release stored frames up to new head to stack */
701                 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
702         }
703
704         /* Now the new frame is always in the range of the reordering buffer */
705
706         index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
707
708         /* check if we already stored this frame */
709         if (tid_agg_rx->reorder_buf[index]) {
710                 dev_kfree_skb(skb);
711                 goto out;
712         }
713
714         /*
715          * If the current MPDU is in the right order and nothing else
716          * is stored we can process it directly, no need to buffer it.
717          * If it is first but there's something stored, we may be able
718          * to release frames after this one.
719          */
720         if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
721             tid_agg_rx->stored_mpdu_num == 0) {
722                 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
723                 ret = false;
724                 goto out;
725         }
726
727         /* put the frame in the reordering buffer */
728         tid_agg_rx->reorder_buf[index] = skb;
729         tid_agg_rx->reorder_time[index] = jiffies;
730         tid_agg_rx->stored_mpdu_num++;
731         ieee80211_sta_reorder_release(hw, tid_agg_rx);
732
733  out:
734         spin_unlock(&tid_agg_rx->reorder_lock);
735         return ret;
736 }
737
738 /*
739  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
740  * true if the MPDU was buffered, false if it should be processed.
741  */
742 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
743 {
744         struct sk_buff *skb = rx->skb;
745         struct ieee80211_local *local = rx->local;
746         struct ieee80211_hw *hw = &local->hw;
747         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
748         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
749         struct sta_info *sta = rx->sta;
750         struct tid_ampdu_rx *tid_agg_rx;
751         u16 sc;
752         u8 tid, ack_policy;
753
754         if (!ieee80211_is_data_qos(hdr->frame_control))
755                 goto dont_reorder;
756
757         /*
758          * filter the QoS data rx stream according to
759          * STA/TID and check if this STA/TID is on aggregation
760          */
761
762         if (!sta)
763                 goto dont_reorder;
764
765         ack_policy = *ieee80211_get_qos_ctl(hdr) &
766                      IEEE80211_QOS_CTL_ACK_POLICY_MASK;
767         tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
768
769         tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
770         if (!tid_agg_rx)
771                 goto dont_reorder;
772
773         /* qos null data frames are excluded */
774         if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
775                 goto dont_reorder;
776
777         /* not part of a BA session */
778         if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
779             ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
780                 goto dont_reorder;
781
782         /* not actually part of this BA session */
783         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
784                 goto dont_reorder;
785
786         /* new, potentially un-ordered, ampdu frame - process it */
787
788         /* reset session timer */
789         if (tid_agg_rx->timeout)
790                 mod_timer(&tid_agg_rx->session_timer,
791                           TU_TO_EXP_TIME(tid_agg_rx->timeout));
792
793         /* if this mpdu is fragmented - terminate rx aggregation session */
794         sc = le16_to_cpu(hdr->seq_ctrl);
795         if (sc & IEEE80211_SCTL_FRAG) {
796                 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
797                 skb_queue_tail(&rx->sdata->skb_queue, skb);
798                 ieee80211_queue_work(&local->hw, &rx->sdata->work);
799                 return;
800         }
801
802         /*
803          * No locking needed -- we will only ever process one
804          * RX packet at a time, and thus own tid_agg_rx. All
805          * other code manipulating it needs to (and does) make
806          * sure that we cannot get to it any more before doing
807          * anything with it.
808          */
809         if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
810                 return;
811
812  dont_reorder:
813         skb_queue_tail(&local->rx_skb_queue, skb);
814 }
815
816 static ieee80211_rx_result debug_noinline
817 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
818 {
819         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
820         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
821
822         /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
823         if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
824                 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
825                              rx->sta->last_seq_ctrl[rx->seqno_idx] ==
826                              hdr->seq_ctrl)) {
827                         if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
828                                 rx->local->dot11FrameDuplicateCount++;
829                                 rx->sta->num_duplicates++;
830                         }
831                         return RX_DROP_UNUSABLE;
832                 } else
833                         rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
834         }
835
836         if (unlikely(rx->skb->len < 16)) {
837                 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
838                 return RX_DROP_MONITOR;
839         }
840
841         /* Drop disallowed frame classes based on STA auth/assoc state;
842          * IEEE 802.11, Chap 5.5.
843          *
844          * mac80211 filters only based on association state, i.e. it drops
845          * Class 3 frames from not associated stations. hostapd sends
846          * deauth/disassoc frames when needed. In addition, hostapd is
847          * responsible for filtering on both auth and assoc states.
848          */
849
850         if (ieee80211_vif_is_mesh(&rx->sdata->vif))
851                 return ieee80211_rx_mesh_check(rx);
852
853         if (unlikely((ieee80211_is_data(hdr->frame_control) ||
854                       ieee80211_is_pspoll(hdr->frame_control)) &&
855                      rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
856                      rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
857                      (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
858                 if (rx->sta && rx->sta->dummy &&
859                     ieee80211_is_data_present(hdr->frame_control)) {
860                         u16 ethertype;
861                         u8 *payload;
862
863                         payload = rx->skb->data +
864                                 ieee80211_hdrlen(hdr->frame_control);
865                         ethertype = (payload[6] << 8) | payload[7];
866                         if (cpu_to_be16(ethertype) ==
867                             rx->sdata->control_port_protocol)
868                                 return RX_CONTINUE;
869                 }
870
871                 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
872                     cfg80211_rx_spurious_frame(rx->sdata->dev,
873                                                hdr->addr2,
874                                                GFP_ATOMIC))
875                         return RX_DROP_UNUSABLE;
876
877                 return RX_DROP_MONITOR;
878         }
879
880         return RX_CONTINUE;
881 }
882
883
884 static ieee80211_rx_result debug_noinline
885 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
886 {
887         struct sk_buff *skb = rx->skb;
888         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
889         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
890         int keyidx;
891         int hdrlen;
892         ieee80211_rx_result result = RX_DROP_UNUSABLE;
893         struct ieee80211_key *sta_ptk = NULL;
894         int mmie_keyidx = -1;
895         __le16 fc;
896
897         /*
898          * Key selection 101
899          *
900          * There are four types of keys:
901          *  - GTK (group keys)
902          *  - IGTK (group keys for management frames)
903          *  - PTK (pairwise keys)
904          *  - STK (station-to-station pairwise keys)
905          *
906          * When selecting a key, we have to distinguish between multicast
907          * (including broadcast) and unicast frames, the latter can only
908          * use PTKs and STKs while the former always use GTKs and IGTKs.
909          * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
910          * unicast frames can also use key indices like GTKs. Hence, if we
911          * don't have a PTK/STK we check the key index for a WEP key.
912          *
913          * Note that in a regular BSS, multicast frames are sent by the
914          * AP only, associated stations unicast the frame to the AP first
915          * which then multicasts it on their behalf.
916          *
917          * There is also a slight problem in IBSS mode: GTKs are negotiated
918          * with each station, that is something we don't currently handle.
919          * The spec seems to expect that one negotiates the same key with
920          * every station but there's no such requirement; VLANs could be
921          * possible.
922          */
923
924         /*
925          * No point in finding a key and decrypting if the frame is neither
926          * addressed to us nor a multicast frame.
927          */
928         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
929                 return RX_CONTINUE;
930
931         /* start without a key */
932         rx->key = NULL;
933
934         if (rx->sta)
935                 sta_ptk = rcu_dereference(rx->sta->ptk);
936
937         fc = hdr->frame_control;
938
939         if (!ieee80211_has_protected(fc))
940                 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
941
942         if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
943                 rx->key = sta_ptk;
944                 if ((status->flag & RX_FLAG_DECRYPTED) &&
945                     (status->flag & RX_FLAG_IV_STRIPPED))
946                         return RX_CONTINUE;
947                 /* Skip decryption if the frame is not protected. */
948                 if (!ieee80211_has_protected(fc))
949                         return RX_CONTINUE;
950         } else if (mmie_keyidx >= 0) {
951                 /* Broadcast/multicast robust management frame / BIP */
952                 if ((status->flag & RX_FLAG_DECRYPTED) &&
953                     (status->flag & RX_FLAG_IV_STRIPPED))
954                         return RX_CONTINUE;
955
956                 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
957                     mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
958                         return RX_DROP_MONITOR; /* unexpected BIP keyidx */
959                 if (rx->sta)
960                         rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
961                 if (!rx->key)
962                         rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
963         } else if (!ieee80211_has_protected(fc)) {
964                 /*
965                  * The frame was not protected, so skip decryption. However, we
966                  * need to set rx->key if there is a key that could have been
967                  * used so that the frame may be dropped if encryption would
968                  * have been expected.
969                  */
970                 struct ieee80211_key *key = NULL;
971                 struct ieee80211_sub_if_data *sdata = rx->sdata;
972                 int i;
973
974                 if (ieee80211_is_mgmt(fc) &&
975                     is_multicast_ether_addr(hdr->addr1) &&
976                     (key = rcu_dereference(rx->sdata->default_mgmt_key)))
977                         rx->key = key;
978                 else {
979                         if (rx->sta) {
980                                 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
981                                         key = rcu_dereference(rx->sta->gtk[i]);
982                                         if (key)
983                                                 break;
984                                 }
985                         }
986                         if (!key) {
987                                 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
988                                         key = rcu_dereference(sdata->keys[i]);
989                                         if (key)
990                                                 break;
991                                 }
992                         }
993                         if (key)
994                                 rx->key = key;
995                 }
996                 return RX_CONTINUE;
997         } else {
998                 u8 keyid;
999                 /*
1000                  * The device doesn't give us the IV so we won't be
1001                  * able to look up the key. That's ok though, we
1002                  * don't need to decrypt the frame, we just won't
1003                  * be able to keep statistics accurate.
1004                  * Except for key threshold notifications, should
1005                  * we somehow allow the driver to tell us which key
1006                  * the hardware used if this flag is set?
1007                  */
1008                 if ((status->flag & RX_FLAG_DECRYPTED) &&
1009                     (status->flag & RX_FLAG_IV_STRIPPED))
1010                         return RX_CONTINUE;
1011
1012                 hdrlen = ieee80211_hdrlen(fc);
1013
1014                 if (rx->skb->len < 8 + hdrlen)
1015                         return RX_DROP_UNUSABLE; /* TODO: count this? */
1016
1017                 /*
1018                  * no need to call ieee80211_wep_get_keyidx,
1019                  * it verifies a bunch of things we've done already
1020                  */
1021                 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1022                 keyidx = keyid >> 6;
1023
1024                 /* check per-station GTK first, if multicast packet */
1025                 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1026                         rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1027
1028                 /* if not found, try default key */
1029                 if (!rx->key) {
1030                         rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1031
1032                         /*
1033                          * RSNA-protected unicast frames should always be
1034                          * sent with pairwise or station-to-station keys,
1035                          * but for WEP we allow using a key index as well.
1036                          */
1037                         if (rx->key &&
1038                             rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1039                             rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1040                             !is_multicast_ether_addr(hdr->addr1))
1041                                 rx->key = NULL;
1042                 }
1043         }
1044
1045         if (rx->key) {
1046                 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1047                         return RX_DROP_MONITOR;
1048
1049                 rx->key->tx_rx_count++;
1050                 /* TODO: add threshold stuff again */
1051         } else {
1052                 return RX_DROP_MONITOR;
1053         }
1054
1055         if (skb_linearize(rx->skb))
1056                 return RX_DROP_UNUSABLE;
1057         /* the hdr variable is invalid now! */
1058
1059         switch (rx->key->conf.cipher) {
1060         case WLAN_CIPHER_SUITE_WEP40:
1061         case WLAN_CIPHER_SUITE_WEP104:
1062                 /* Check for weak IVs if possible */
1063                 if (rx->sta && ieee80211_is_data(fc) &&
1064                     (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1065                      !(status->flag & RX_FLAG_DECRYPTED)) &&
1066                     ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1067                         rx->sta->wep_weak_iv_count++;
1068
1069                 result = ieee80211_crypto_wep_decrypt(rx);
1070                 break;
1071         case WLAN_CIPHER_SUITE_TKIP:
1072                 result = ieee80211_crypto_tkip_decrypt(rx);
1073                 break;
1074         case WLAN_CIPHER_SUITE_CCMP:
1075                 result = ieee80211_crypto_ccmp_decrypt(rx);
1076                 break;
1077         case WLAN_CIPHER_SUITE_AES_CMAC:
1078                 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1079                 break;
1080         default:
1081                 /*
1082                  * We can reach here only with HW-only algorithms
1083                  * but why didn't it decrypt the frame?!
1084                  */
1085                 return RX_DROP_UNUSABLE;
1086         }
1087
1088         /* either the frame has been decrypted or will be dropped */
1089         status->flag |= RX_FLAG_DECRYPTED;
1090
1091         return result;
1092 }
1093
1094 static ieee80211_rx_result debug_noinline
1095 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1096 {
1097         struct ieee80211_local *local;
1098         struct ieee80211_hdr *hdr;
1099         struct sk_buff *skb;
1100
1101         local = rx->local;
1102         skb = rx->skb;
1103         hdr = (struct ieee80211_hdr *) skb->data;
1104
1105         if (!local->pspolling)
1106                 return RX_CONTINUE;
1107
1108         if (!ieee80211_has_fromds(hdr->frame_control))
1109                 /* this is not from AP */
1110                 return RX_CONTINUE;
1111
1112         if (!ieee80211_is_data(hdr->frame_control))
1113                 return RX_CONTINUE;
1114
1115         if (!ieee80211_has_moredata(hdr->frame_control)) {
1116                 /* AP has no more frames buffered for us */
1117                 local->pspolling = false;
1118                 return RX_CONTINUE;
1119         }
1120
1121         /* more data bit is set, let's request a new frame from the AP */
1122         ieee80211_send_pspoll(local, rx->sdata);
1123
1124         return RX_CONTINUE;
1125 }
1126
1127 static void ap_sta_ps_start(struct sta_info *sta)
1128 {
1129         struct ieee80211_sub_if_data *sdata = sta->sdata;
1130         struct ieee80211_local *local = sdata->local;
1131
1132         atomic_inc(&sdata->bss->num_sta_ps);
1133         set_sta_flag(sta, WLAN_STA_PS_STA);
1134         if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1135                 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1136 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1137         printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1138                sdata->name, sta->sta.addr, sta->sta.aid);
1139 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1140 }
1141
1142 static void ap_sta_ps_end(struct sta_info *sta)
1143 {
1144         struct ieee80211_sub_if_data *sdata = sta->sdata;
1145
1146         atomic_dec(&sdata->bss->num_sta_ps);
1147
1148 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1149         printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1150                sdata->name, sta->sta.addr, sta->sta.aid);
1151 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1152
1153         if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1154 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1155                 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1156                        sdata->name, sta->sta.addr, sta->sta.aid);
1157 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1158                 return;
1159         }
1160
1161         ieee80211_sta_ps_deliver_wakeup(sta);
1162 }
1163
1164 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1165 {
1166         struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1167         bool in_ps;
1168
1169         WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1170
1171         /* Don't let the same PS state be set twice */
1172         in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1173         if ((start && in_ps) || (!start && !in_ps))
1174                 return -EINVAL;
1175
1176         if (start)
1177                 ap_sta_ps_start(sta_inf);
1178         else
1179                 ap_sta_ps_end(sta_inf);
1180
1181         return 0;
1182 }
1183 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1184
1185 static ieee80211_rx_result debug_noinline
1186 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1187 {
1188         struct ieee80211_sub_if_data *sdata = rx->sdata;
1189         struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1190         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1191         int tid, ac;
1192
1193         if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1194                 return RX_CONTINUE;
1195
1196         if (sdata->vif.type != NL80211_IFTYPE_AP &&
1197             sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1198                 return RX_CONTINUE;
1199
1200         /*
1201          * The device handles station powersave, so don't do anything about
1202          * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1203          * it to mac80211 since they're handled.)
1204          */
1205         if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1206                 return RX_CONTINUE;
1207
1208         /*
1209          * Don't do anything if the station isn't already asleep. In
1210          * the uAPSD case, the station will probably be marked asleep,
1211          * in the PS-Poll case the station must be confused ...
1212          */
1213         if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1214                 return RX_CONTINUE;
1215
1216         if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1217                 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1218                         if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1219                                 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1220                         else
1221                                 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1222                 }
1223
1224                 /* Free PS Poll skb here instead of returning RX_DROP that would
1225                  * count as an dropped frame. */
1226                 dev_kfree_skb(rx->skb);
1227
1228                 return RX_QUEUED;
1229         } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1230                    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1231                    ieee80211_has_pm(hdr->frame_control) &&
1232                    (ieee80211_is_data_qos(hdr->frame_control) ||
1233                     ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1234                 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1235                 ac = ieee802_1d_to_ac[tid & 7];
1236
1237                 /*
1238                  * If this AC is not trigger-enabled do nothing.
1239                  *
1240                  * NB: This could/should check a separate bitmap of trigger-
1241                  * enabled queues, but for now we only implement uAPSD w/o
1242                  * TSPEC changes to the ACs, so they're always the same.
1243                  */
1244                 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1245                         return RX_CONTINUE;
1246
1247                 /* if we are in a service period, do nothing */
1248                 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1249                         return RX_CONTINUE;
1250
1251                 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1252                         ieee80211_sta_ps_deliver_uapsd(rx->sta);
1253                 else
1254                         set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1255         }
1256
1257         return RX_CONTINUE;
1258 }
1259
1260 static ieee80211_rx_result debug_noinline
1261 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1262 {
1263         struct sta_info *sta = rx->sta;
1264         struct sk_buff *skb = rx->skb;
1265         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1266         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1267
1268         if (!sta)
1269                 return RX_CONTINUE;
1270
1271         /*
1272          * Update last_rx only for IBSS packets which are for the current
1273          * BSSID to avoid keeping the current IBSS network alive in cases
1274          * where other STAs start using different BSSID.
1275          */
1276         if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1277                 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1278                                                 NL80211_IFTYPE_ADHOC);
1279                 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1280                         sta->last_rx = jiffies;
1281                         if (ieee80211_is_data(hdr->frame_control)) {
1282                                 sta->last_rx_rate_idx = status->rate_idx;
1283                                 sta->last_rx_rate_flag = status->flag;
1284                         }
1285                 }
1286         } else if (!is_multicast_ether_addr(hdr->addr1)) {
1287                 /*
1288                  * Mesh beacons will update last_rx when if they are found to
1289                  * match the current local configuration when processed.
1290                  */
1291                 sta->last_rx = jiffies;
1292                 if (ieee80211_is_data(hdr->frame_control)) {
1293                         sta->last_rx_rate_idx = status->rate_idx;
1294                         sta->last_rx_rate_flag = status->flag;
1295                 }
1296         }
1297
1298         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1299                 return RX_CONTINUE;
1300
1301         if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1302                 ieee80211_sta_rx_notify(rx->sdata, hdr);
1303
1304         sta->rx_fragments++;
1305         sta->rx_bytes += rx->skb->len;
1306         sta->last_signal = status->signal;
1307         ewma_add(&sta->avg_signal, -status->signal);
1308
1309         /*
1310          * Change STA power saving mode only at the end of a frame
1311          * exchange sequence.
1312          */
1313         if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1314             !ieee80211_has_morefrags(hdr->frame_control) &&
1315             !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1316             (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1317              rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1318                 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1319                         /*
1320                          * Ignore doze->wake transitions that are
1321                          * indicated by non-data frames, the standard
1322                          * is unclear here, but for example going to
1323                          * PS mode and then scanning would cause a
1324                          * doze->wake transition for the probe request,
1325                          * and that is clearly undesirable.
1326                          */
1327                         if (ieee80211_is_data(hdr->frame_control) &&
1328                             !ieee80211_has_pm(hdr->frame_control))
1329                                 ap_sta_ps_end(sta);
1330                 } else {
1331                         if (ieee80211_has_pm(hdr->frame_control))
1332                                 ap_sta_ps_start(sta);
1333                 }
1334         }
1335
1336         /*
1337          * Drop (qos-)data::nullfunc frames silently, since they
1338          * are used only to control station power saving mode.
1339          */
1340         if (ieee80211_is_nullfunc(hdr->frame_control) ||
1341             ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1342                 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1343
1344                 /*
1345                  * If we receive a 4-addr nullfunc frame from a STA
1346                  * that was not moved to a 4-addr STA vlan yet send
1347                  * the event to userspace and for older hostapd drop
1348                  * the frame to the monitor interface.
1349                  */
1350                 if (ieee80211_has_a4(hdr->frame_control) &&
1351                     (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1352                      (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1353                       !rx->sdata->u.vlan.sta))) {
1354                         if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1355                                 cfg80211_rx_unexpected_4addr_frame(
1356                                         rx->sdata->dev, sta->sta.addr,
1357                                         GFP_ATOMIC);
1358                         return RX_DROP_MONITOR;
1359                 }
1360                 /*
1361                  * Update counter and free packet here to avoid
1362                  * counting this as a dropped packed.
1363                  */
1364                 sta->rx_packets++;
1365                 dev_kfree_skb(rx->skb);
1366                 return RX_QUEUED;
1367         }
1368
1369         return RX_CONTINUE;
1370 } /* ieee80211_rx_h_sta_process */
1371
1372 static inline struct ieee80211_fragment_entry *
1373 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1374                          unsigned int frag, unsigned int seq, int rx_queue,
1375                          struct sk_buff **skb)
1376 {
1377         struct ieee80211_fragment_entry *entry;
1378         int idx;
1379
1380         idx = sdata->fragment_next;
1381         entry = &sdata->fragments[sdata->fragment_next++];
1382         if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1383                 sdata->fragment_next = 0;
1384
1385         if (!skb_queue_empty(&entry->skb_list)) {
1386 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1387                 struct ieee80211_hdr *hdr =
1388                         (struct ieee80211_hdr *) entry->skb_list.next->data;
1389                 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1390                        "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1391                        "addr1=%pM addr2=%pM\n",
1392                        sdata->name, idx,
1393                        jiffies - entry->first_frag_time, entry->seq,
1394                        entry->last_frag, hdr->addr1, hdr->addr2);
1395 #endif
1396                 __skb_queue_purge(&entry->skb_list);
1397         }
1398
1399         __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1400         *skb = NULL;
1401         entry->first_frag_time = jiffies;
1402         entry->seq = seq;
1403         entry->rx_queue = rx_queue;
1404         entry->last_frag = frag;
1405         entry->ccmp = 0;
1406         entry->extra_len = 0;
1407
1408         return entry;
1409 }
1410
1411 static inline struct ieee80211_fragment_entry *
1412 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1413                           unsigned int frag, unsigned int seq,
1414                           int rx_queue, struct ieee80211_hdr *hdr)
1415 {
1416         struct ieee80211_fragment_entry *entry;
1417         int i, idx;
1418
1419         idx = sdata->fragment_next;
1420         for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1421                 struct ieee80211_hdr *f_hdr;
1422
1423                 idx--;
1424                 if (idx < 0)
1425                         idx = IEEE80211_FRAGMENT_MAX - 1;
1426
1427                 entry = &sdata->fragments[idx];
1428                 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1429                     entry->rx_queue != rx_queue ||
1430                     entry->last_frag + 1 != frag)
1431                         continue;
1432
1433                 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1434
1435                 /*
1436                  * Check ftype and addresses are equal, else check next fragment
1437                  */
1438                 if (((hdr->frame_control ^ f_hdr->frame_control) &
1439                      cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1440                     compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1441                     compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1442                         continue;
1443
1444                 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1445                         __skb_queue_purge(&entry->skb_list);
1446                         continue;
1447                 }
1448                 return entry;
1449         }
1450
1451         return NULL;
1452 }
1453
1454 static ieee80211_rx_result debug_noinline
1455 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1456 {
1457         struct ieee80211_hdr *hdr;
1458         u16 sc;
1459         __le16 fc;
1460         unsigned int frag, seq;
1461         struct ieee80211_fragment_entry *entry;
1462         struct sk_buff *skb;
1463         struct ieee80211_rx_status *status;
1464
1465         hdr = (struct ieee80211_hdr *)rx->skb->data;
1466         fc = hdr->frame_control;
1467         sc = le16_to_cpu(hdr->seq_ctrl);
1468         frag = sc & IEEE80211_SCTL_FRAG;
1469
1470         if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1471                    (rx->skb)->len < 24 ||
1472                    is_multicast_ether_addr(hdr->addr1))) {
1473                 /* not fragmented */
1474                 goto out;
1475         }
1476         I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1477
1478         if (skb_linearize(rx->skb))
1479                 return RX_DROP_UNUSABLE;
1480
1481         /*
1482          *  skb_linearize() might change the skb->data and
1483          *  previously cached variables (in this case, hdr) need to
1484          *  be refreshed with the new data.
1485          */
1486         hdr = (struct ieee80211_hdr *)rx->skb->data;
1487         seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1488
1489         if (frag == 0) {
1490                 /* This is the first fragment of a new frame. */
1491                 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1492                                                  rx->seqno_idx, &(rx->skb));
1493                 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1494                     ieee80211_has_protected(fc)) {
1495                         int queue = rx->security_idx;
1496                         /* Store CCMP PN so that we can verify that the next
1497                          * fragment has a sequential PN value. */
1498                         entry->ccmp = 1;
1499                         memcpy(entry->last_pn,
1500                                rx->key->u.ccmp.rx_pn[queue],
1501                                CCMP_PN_LEN);
1502                 }
1503                 return RX_QUEUED;
1504         }
1505
1506         /* This is a fragment for a frame that should already be pending in
1507          * fragment cache. Add this fragment to the end of the pending entry.
1508          */
1509         entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1510                                           rx->seqno_idx, hdr);
1511         if (!entry) {
1512                 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1513                 return RX_DROP_MONITOR;
1514         }
1515
1516         /* Verify that MPDUs within one MSDU have sequential PN values.
1517          * (IEEE 802.11i, 8.3.3.4.5) */
1518         if (entry->ccmp) {
1519                 int i;
1520                 u8 pn[CCMP_PN_LEN], *rpn;
1521                 int queue;
1522                 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1523                         return RX_DROP_UNUSABLE;
1524                 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1525                 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1526                         pn[i]++;
1527                         if (pn[i])
1528                                 break;
1529                 }
1530                 queue = rx->security_idx;
1531                 rpn = rx->key->u.ccmp.rx_pn[queue];
1532                 if (memcmp(pn, rpn, CCMP_PN_LEN))
1533                         return RX_DROP_UNUSABLE;
1534                 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1535         }
1536
1537         skb_pull(rx->skb, ieee80211_hdrlen(fc));
1538         __skb_queue_tail(&entry->skb_list, rx->skb);
1539         entry->last_frag = frag;
1540         entry->extra_len += rx->skb->len;
1541         if (ieee80211_has_morefrags(fc)) {
1542                 rx->skb = NULL;
1543                 return RX_QUEUED;
1544         }
1545
1546         rx->skb = __skb_dequeue(&entry->skb_list);
1547         if (skb_tailroom(rx->skb) < entry->extra_len) {
1548                 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1549                 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1550                                               GFP_ATOMIC))) {
1551                         I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1552                         __skb_queue_purge(&entry->skb_list);
1553                         return RX_DROP_UNUSABLE;
1554                 }
1555         }
1556         while ((skb = __skb_dequeue(&entry->skb_list))) {
1557                 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1558                 dev_kfree_skb(skb);
1559         }
1560
1561         /* Complete frame has been reassembled - process it now */
1562         status = IEEE80211_SKB_RXCB(rx->skb);
1563         status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1564
1565  out:
1566         if (rx->sta)
1567                 rx->sta->rx_packets++;
1568         if (is_multicast_ether_addr(hdr->addr1))
1569                 rx->local->dot11MulticastReceivedFrameCount++;
1570         else
1571                 ieee80211_led_rx(rx->local);
1572         return RX_CONTINUE;
1573 }
1574
1575 static ieee80211_rx_result debug_noinline
1576 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1577 {
1578         u8 *data = rx->skb->data;
1579         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1580
1581         if (!ieee80211_is_data_qos(hdr->frame_control))
1582                 return RX_CONTINUE;
1583
1584         /* remove the qos control field, update frame type and meta-data */
1585         memmove(data + IEEE80211_QOS_CTL_LEN, data,
1586                 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1587         hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1588         /* change frame type to non QOS */
1589         hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1590
1591         return RX_CONTINUE;
1592 }
1593
1594 static int
1595 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1596 {
1597         if (unlikely(!rx->sta ||
1598             !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1599                 return -EACCES;
1600
1601         return 0;
1602 }
1603
1604 static int
1605 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1606 {
1607         struct sk_buff *skb = rx->skb;
1608         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1609
1610         /*
1611          * Pass through unencrypted frames if the hardware has
1612          * decrypted them already.
1613          */
1614         if (status->flag & RX_FLAG_DECRYPTED)
1615                 return 0;
1616
1617         /* Drop unencrypted frames if key is set. */
1618         if (unlikely(!ieee80211_has_protected(fc) &&
1619                      !ieee80211_is_nullfunc(fc) &&
1620                      ieee80211_is_data(fc) &&
1621                      (rx->key || rx->sdata->drop_unencrypted)))
1622                 return -EACCES;
1623
1624         return 0;
1625 }
1626
1627 static int
1628 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1629 {
1630         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1631         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1632         __le16 fc = hdr->frame_control;
1633
1634         /*
1635          * Pass through unencrypted frames if the hardware has
1636          * decrypted them already.
1637          */
1638         if (status->flag & RX_FLAG_DECRYPTED)
1639                 return 0;
1640
1641         if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1642                 if (unlikely(!ieee80211_has_protected(fc) &&
1643                              ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1644                              rx->key)) {
1645                         if (ieee80211_is_deauth(fc))
1646                                 cfg80211_send_unprot_deauth(rx->sdata->dev,
1647                                                             rx->skb->data,
1648                                                             rx->skb->len);
1649                         else if (ieee80211_is_disassoc(fc))
1650                                 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1651                                                               rx->skb->data,
1652                                                               rx->skb->len);
1653                         return -EACCES;
1654                 }
1655                 /* BIP does not use Protected field, so need to check MMIE */
1656                 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1657                              ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1658                         if (ieee80211_is_deauth(fc))
1659                                 cfg80211_send_unprot_deauth(rx->sdata->dev,
1660                                                             rx->skb->data,
1661                                                             rx->skb->len);
1662                         else if (ieee80211_is_disassoc(fc))
1663                                 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1664                                                               rx->skb->data,
1665                                                               rx->skb->len);
1666                         return -EACCES;
1667                 }
1668                 /*
1669                  * When using MFP, Action frames are not allowed prior to
1670                  * having configured keys.
1671                  */
1672                 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1673                              ieee80211_is_robust_mgmt_frame(
1674                                      (struct ieee80211_hdr *) rx->skb->data)))
1675                         return -EACCES;
1676         }
1677
1678         return 0;
1679 }
1680
1681 static int
1682 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1683 {
1684         struct ieee80211_sub_if_data *sdata = rx->sdata;
1685         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1686         bool check_port_control = false;
1687         struct ethhdr *ehdr;
1688         int ret;
1689
1690         *port_control = false;
1691         if (ieee80211_has_a4(hdr->frame_control) &&
1692             sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1693                 return -1;
1694
1695         if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1696             !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1697
1698                 if (!sdata->u.mgd.use_4addr)
1699                         return -1;
1700                 else
1701                         check_port_control = true;
1702         }
1703
1704         if (is_multicast_ether_addr(hdr->addr1) &&
1705             sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1706                 return -1;
1707
1708         ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1709         if (ret < 0)
1710                 return ret;
1711
1712         ehdr = (struct ethhdr *) rx->skb->data;
1713         if (ehdr->h_proto == rx->sdata->control_port_protocol)
1714                 *port_control = true;
1715         else if (check_port_control)
1716                 return -1;
1717
1718         return 0;
1719 }
1720
1721 /*
1722  * requires that rx->skb is a frame with ethernet header
1723  */
1724 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1725 {
1726         static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1727                 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1728         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1729
1730         /*
1731          * Allow EAPOL frames to us/the PAE group address regardless
1732          * of whether the frame was encrypted or not.
1733          */
1734         if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1735             (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1736              compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1737                 return true;
1738
1739         if (ieee80211_802_1x_port_control(rx) ||
1740             ieee80211_drop_unencrypted(rx, fc))
1741                 return false;
1742
1743         return true;
1744 }
1745
1746 /*
1747  * requires that rx->skb is a frame with ethernet header
1748  */
1749 static void
1750 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1751 {
1752         struct ieee80211_sub_if_data *sdata = rx->sdata;
1753         struct net_device *dev = sdata->dev;
1754         struct sk_buff *skb, *xmit_skb;
1755         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1756         struct sta_info *dsta;
1757         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1758
1759         skb = rx->skb;
1760         xmit_skb = NULL;
1761
1762         if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1763              sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1764             !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1765             (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1766             (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1767                 if (is_multicast_ether_addr(ehdr->h_dest)) {
1768                         /*
1769                          * send multicast frames both to higher layers in
1770                          * local net stack and back to the wireless medium
1771                          */
1772                         xmit_skb = skb_copy(skb, GFP_ATOMIC);
1773                         if (!xmit_skb && net_ratelimit())
1774                                 printk(KERN_DEBUG "%s: failed to clone "
1775                                        "multicast frame\n", dev->name);
1776                 } else {
1777                         dsta = sta_info_get(sdata, skb->data);
1778                         if (dsta) {
1779                                 /*
1780                                  * The destination station is associated to
1781                                  * this AP (in this VLAN), so send the frame
1782                                  * directly to it and do not pass it to local
1783                                  * net stack.
1784                                  */
1785                                 xmit_skb = skb;
1786                                 skb = NULL;
1787                         }
1788                 }
1789         }
1790
1791         if (skb) {
1792                 int align __maybe_unused;
1793
1794 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1795                 /*
1796                  * 'align' will only take the values 0 or 2 here
1797                  * since all frames are required to be aligned
1798                  * to 2-byte boundaries when being passed to
1799                  * mac80211. That also explains the __skb_push()
1800                  * below.
1801                  */
1802                 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1803                 if (align) {
1804                         if (WARN_ON(skb_headroom(skb) < 3)) {
1805                                 dev_kfree_skb(skb);
1806                                 skb = NULL;
1807                         } else {
1808                                 u8 *data = skb->data;
1809                                 size_t len = skb_headlen(skb);
1810                                 skb->data -= align;
1811                                 memmove(skb->data, data, len);
1812                                 skb_set_tail_pointer(skb, len);
1813                         }
1814                 }
1815 #endif
1816
1817                 if (skb) {
1818                         /* deliver to local stack */
1819                         skb->protocol = eth_type_trans(skb, dev);
1820                         memset(skb->cb, 0, sizeof(skb->cb));
1821                         netif_receive_skb(skb);
1822                 }
1823         }
1824
1825         if (xmit_skb) {
1826                 /* send to wireless media */
1827                 xmit_skb->protocol = htons(ETH_P_802_3);
1828                 skb_reset_network_header(xmit_skb);
1829                 skb_reset_mac_header(xmit_skb);
1830                 dev_queue_xmit(xmit_skb);
1831         }
1832 }
1833
1834 static ieee80211_rx_result debug_noinline
1835 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1836 {
1837         struct net_device *dev = rx->sdata->dev;
1838         struct sk_buff *skb = rx->skb;
1839         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1840         __le16 fc = hdr->frame_control;
1841         struct sk_buff_head frame_list;
1842         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1843
1844         if (unlikely(!ieee80211_is_data(fc)))
1845                 return RX_CONTINUE;
1846
1847         if (unlikely(!ieee80211_is_data_present(fc)))
1848                 return RX_DROP_MONITOR;
1849
1850         if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1851                 return RX_CONTINUE;
1852
1853         if (ieee80211_has_a4(hdr->frame_control) &&
1854             rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1855             !rx->sdata->u.vlan.sta)
1856                 return RX_DROP_UNUSABLE;
1857
1858         if (is_multicast_ether_addr(hdr->addr1) &&
1859             ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1860               rx->sdata->u.vlan.sta) ||
1861              (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1862               rx->sdata->u.mgd.use_4addr)))
1863                 return RX_DROP_UNUSABLE;
1864
1865         skb->dev = dev;
1866         __skb_queue_head_init(&frame_list);
1867
1868         if (skb_linearize(skb))
1869                 return RX_DROP_UNUSABLE;
1870
1871         ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1872                                  rx->sdata->vif.type,
1873                                  rx->local->hw.extra_tx_headroom, true);
1874
1875         while (!skb_queue_empty(&frame_list)) {
1876                 rx->skb = __skb_dequeue(&frame_list);
1877
1878                 if (!ieee80211_frame_allowed(rx, fc)) {
1879                         dev_kfree_skb(rx->skb);
1880                         continue;
1881                 }
1882                 dev->stats.rx_packets++;
1883                 dev->stats.rx_bytes += rx->skb->len;
1884
1885                 ieee80211_deliver_skb(rx);
1886         }
1887
1888         return RX_QUEUED;
1889 }
1890
1891 #ifdef CONFIG_MAC80211_MESH
1892 static ieee80211_rx_result
1893 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1894 {
1895         struct ieee80211_hdr *hdr;
1896         struct ieee80211s_hdr *mesh_hdr;
1897         unsigned int hdrlen;
1898         struct sk_buff *skb = rx->skb, *fwd_skb;
1899         struct ieee80211_local *local = rx->local;
1900         struct ieee80211_sub_if_data *sdata = rx->sdata;
1901         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1902
1903         hdr = (struct ieee80211_hdr *) skb->data;
1904         hdrlen = ieee80211_hdrlen(hdr->frame_control);
1905         mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1906
1907         /* frame is in RMC, don't forward */
1908         if (ieee80211_is_data(hdr->frame_control) &&
1909             is_multicast_ether_addr(hdr->addr1) &&
1910             mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1911                 return RX_DROP_MONITOR;
1912
1913         if (!ieee80211_is_data(hdr->frame_control))
1914                 return RX_CONTINUE;
1915
1916         if (!mesh_hdr->ttl)
1917                 /* illegal frame */
1918                 return RX_DROP_MONITOR;
1919
1920         if (ieee80211_queue_stopped(&local->hw, skb_get_queue_mapping(skb))) {
1921                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1922                                                 dropped_frames_congestion);
1923                 return RX_DROP_MONITOR;
1924         }
1925
1926         if (mesh_hdr->flags & MESH_FLAGS_AE) {
1927                 struct mesh_path *mppath;
1928                 char *proxied_addr;
1929                 char *mpp_addr;
1930
1931                 if (is_multicast_ether_addr(hdr->addr1)) {
1932                         mpp_addr = hdr->addr3;
1933                         proxied_addr = mesh_hdr->eaddr1;
1934                 } else {
1935                         mpp_addr = hdr->addr4;
1936                         proxied_addr = mesh_hdr->eaddr2;
1937                 }
1938
1939                 rcu_read_lock();
1940                 mppath = mpp_path_lookup(proxied_addr, sdata);
1941                 if (!mppath) {
1942                         mpp_path_add(proxied_addr, mpp_addr, sdata);
1943                 } else {
1944                         spin_lock_bh(&mppath->state_lock);
1945                         if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1946                                 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1947                         spin_unlock_bh(&mppath->state_lock);
1948                 }
1949                 rcu_read_unlock();
1950         }
1951
1952         /* Frame has reached destination.  Don't forward */
1953         if (!is_multicast_ether_addr(hdr->addr1) &&
1954             compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1955                 return RX_CONTINUE;
1956
1957         skb_set_queue_mapping(skb, ieee80211_select_queue(sdata, skb));
1958         mesh_hdr->ttl--;
1959
1960         if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1961                 if (!mesh_hdr->ttl)
1962                         IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1963                                                      dropped_frames_ttl);
1964                 else {
1965                         struct ieee80211_hdr *fwd_hdr;
1966                         struct ieee80211_tx_info *info;
1967
1968                         fwd_skb = skb_copy(skb, GFP_ATOMIC);
1969
1970                         if (!fwd_skb && net_ratelimit())
1971                                 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1972                                                    sdata->name);
1973                         if (!fwd_skb)
1974                                 goto out;
1975
1976                         fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
1977                         memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1978                         info = IEEE80211_SKB_CB(fwd_skb);
1979                         memset(info, 0, sizeof(*info));
1980                         info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1981                         info->control.vif = &rx->sdata->vif;
1982                         info->control.jiffies = jiffies;
1983                         if (is_multicast_ether_addr(fwd_hdr->addr1)) {
1984                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1985                                                                 fwded_mcast);
1986                         } else {
1987                                 int err;
1988                                 /*
1989                                  * Save TA to addr1 to send TA a path error if a
1990                                  * suitable next hop is not found
1991                                  */
1992                                 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1993                                                 ETH_ALEN);
1994                                 err = mesh_nexthop_lookup(fwd_skb, sdata);
1995                                 /* Failed to immediately resolve next hop:
1996                                  * fwded frame was dropped or will be added
1997                                  * later to the pending skb queue.  */
1998                                 if (err)
1999                                         return RX_DROP_MONITOR;
2000
2001                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
2002                                                                 fwded_unicast);
2003                         }
2004                         IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
2005                                                      fwded_frames);
2006                         ieee80211_add_pending_skb(local, fwd_skb);
2007                 }
2008         }
2009
2010  out:
2011         if (is_multicast_ether_addr(hdr->addr1) ||
2012             sdata->dev->flags & IFF_PROMISC)
2013                 return RX_CONTINUE;
2014         else
2015                 return RX_DROP_MONITOR;
2016 }
2017 #endif
2018
2019 static ieee80211_rx_result debug_noinline
2020 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2021 {
2022         struct ieee80211_sub_if_data *sdata = rx->sdata;
2023         struct ieee80211_local *local = rx->local;
2024         struct net_device *dev = sdata->dev;
2025         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2026         __le16 fc = hdr->frame_control;
2027         bool port_control;
2028         int err;
2029
2030         if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2031                 return RX_CONTINUE;
2032
2033         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2034                 return RX_DROP_MONITOR;
2035
2036         /*
2037          * Send unexpected-4addr-frame event to hostapd. For older versions,
2038          * also drop the frame to cooked monitor interfaces.
2039          */
2040         if (ieee80211_has_a4(hdr->frame_control) &&
2041             sdata->vif.type == NL80211_IFTYPE_AP) {
2042                 if (rx->sta &&
2043                     !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2044                         cfg80211_rx_unexpected_4addr_frame(
2045                                 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2046                 return RX_DROP_MONITOR;
2047         }
2048
2049         err = __ieee80211_data_to_8023(rx, &port_control);
2050         if (unlikely(err))
2051                 return RX_DROP_UNUSABLE;
2052
2053         if (!ieee80211_frame_allowed(rx, fc))
2054                 return RX_DROP_MONITOR;
2055
2056         if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2057             unlikely(port_control) && sdata->bss) {
2058                 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2059                                      u.ap);
2060                 dev = sdata->dev;
2061                 rx->sdata = sdata;
2062         }
2063
2064         rx->skb->dev = dev;
2065
2066         dev->stats.rx_packets++;
2067         dev->stats.rx_bytes += rx->skb->len;
2068
2069         if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2070             !is_multicast_ether_addr(
2071                     ((struct ethhdr *)rx->skb->data)->h_dest) &&
2072             (!local->scanning &&
2073              !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2074                         mod_timer(&local->dynamic_ps_timer, jiffies +
2075                          msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2076         }
2077
2078         ieee80211_deliver_skb(rx);
2079
2080         return RX_QUEUED;
2081 }
2082
2083 static ieee80211_rx_result debug_noinline
2084 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2085 {
2086         struct ieee80211_local *local = rx->local;
2087         struct ieee80211_hw *hw = &local->hw;
2088         struct sk_buff *skb = rx->skb;
2089         struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2090         struct tid_ampdu_rx *tid_agg_rx;
2091         u16 start_seq_num;
2092         u16 tid;
2093
2094         if (likely(!ieee80211_is_ctl(bar->frame_control)))
2095                 return RX_CONTINUE;
2096
2097         if (ieee80211_is_back_req(bar->frame_control)) {
2098                 struct {
2099                         __le16 control, start_seq_num;
2100                 } __packed bar_data;
2101
2102                 if (!rx->sta)
2103                         return RX_DROP_MONITOR;
2104
2105                 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2106                                   &bar_data, sizeof(bar_data)))
2107                         return RX_DROP_MONITOR;
2108
2109                 tid = le16_to_cpu(bar_data.control) >> 12;
2110
2111                 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2112                 if (!tid_agg_rx)
2113                         return RX_DROP_MONITOR;
2114
2115                 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2116
2117                 /* reset session timer */
2118                 if (tid_agg_rx->timeout)
2119                         mod_timer(&tid_agg_rx->session_timer,
2120                                   TU_TO_EXP_TIME(tid_agg_rx->timeout));
2121
2122                 spin_lock(&tid_agg_rx->reorder_lock);
2123                 /* release stored frames up to start of BAR */
2124                 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2125                 spin_unlock(&tid_agg_rx->reorder_lock);
2126
2127                 kfree_skb(skb);
2128                 return RX_QUEUED;
2129         }
2130
2131         /*
2132          * After this point, we only want management frames,
2133          * so we can drop all remaining control frames to
2134          * cooked monitor interfaces.
2135          */
2136         return RX_DROP_MONITOR;
2137 }
2138
2139 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2140                                            struct ieee80211_mgmt *mgmt,
2141                                            size_t len)
2142 {
2143         struct ieee80211_local *local = sdata->local;
2144         struct sk_buff *skb;
2145         struct ieee80211_mgmt *resp;
2146
2147         if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2148                 /* Not to own unicast address */
2149                 return;
2150         }
2151
2152         if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2153             compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2154                 /* Not from the current AP or not associated yet. */
2155                 return;
2156         }
2157
2158         if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2159                 /* Too short SA Query request frame */
2160                 return;
2161         }
2162
2163         skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2164         if (skb == NULL)
2165                 return;
2166
2167         skb_reserve(skb, local->hw.extra_tx_headroom);
2168         resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2169         memset(resp, 0, 24);
2170         memcpy(resp->da, mgmt->sa, ETH_ALEN);
2171         memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2172         memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2173         resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2174                                           IEEE80211_STYPE_ACTION);
2175         skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2176         resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2177         resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2178         memcpy(resp->u.action.u.sa_query.trans_id,
2179                mgmt->u.action.u.sa_query.trans_id,
2180                WLAN_SA_QUERY_TR_ID_LEN);
2181
2182         ieee80211_tx_skb(sdata, skb);
2183 }
2184
2185 static ieee80211_rx_result debug_noinline
2186 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2187 {
2188         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2189         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2190
2191         /*
2192          * From here on, look only at management frames.
2193          * Data and control frames are already handled,
2194          * and unknown (reserved) frames are useless.
2195          */
2196         if (rx->skb->len < 24)
2197                 return RX_DROP_MONITOR;
2198
2199         if (!ieee80211_is_mgmt(mgmt->frame_control))
2200                 return RX_DROP_MONITOR;
2201
2202         if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2203             ieee80211_is_beacon(mgmt->frame_control) &&
2204             !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2205                 struct ieee80211_rx_status *status;
2206
2207                 status = IEEE80211_SKB_RXCB(rx->skb);
2208                 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2209                                             rx->skb->data, rx->skb->len,
2210                                             status->freq, GFP_ATOMIC);
2211                 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2212         }
2213
2214         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2215                 return RX_DROP_MONITOR;
2216
2217         if (ieee80211_drop_unencrypted_mgmt(rx))
2218                 return RX_DROP_UNUSABLE;
2219
2220         return RX_CONTINUE;
2221 }
2222
2223 static ieee80211_rx_result debug_noinline
2224 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2225 {
2226         struct ieee80211_local *local = rx->local;
2227         struct ieee80211_sub_if_data *sdata = rx->sdata;
2228         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2229         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2230         int len = rx->skb->len;
2231
2232         if (!ieee80211_is_action(mgmt->frame_control))
2233                 return RX_CONTINUE;
2234
2235         /* drop too small frames */
2236         if (len < IEEE80211_MIN_ACTION_SIZE)
2237                 return RX_DROP_UNUSABLE;
2238
2239         if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2240                 return RX_DROP_UNUSABLE;
2241
2242         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2243                 return RX_DROP_UNUSABLE;
2244
2245         switch (mgmt->u.action.category) {
2246         case WLAN_CATEGORY_BACK:
2247                 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2248                     sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2249                     sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2250                     sdata->vif.type != NL80211_IFTYPE_AP)
2251                         break;
2252
2253                 /* verify action_code is present */
2254                 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2255                         break;
2256
2257                 switch (mgmt->u.action.u.addba_req.action_code) {
2258                 case WLAN_ACTION_ADDBA_REQ:
2259                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2260                                    sizeof(mgmt->u.action.u.addba_req)))
2261                                 goto invalid;
2262                         break;
2263                 case WLAN_ACTION_ADDBA_RESP:
2264                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2265                                    sizeof(mgmt->u.action.u.addba_resp)))
2266                                 goto invalid;
2267                         break;
2268                 case WLAN_ACTION_DELBA:
2269                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2270                                    sizeof(mgmt->u.action.u.delba)))
2271                                 goto invalid;
2272                         break;
2273                 default:
2274                         goto invalid;
2275                 }
2276
2277                 goto queue;
2278         case WLAN_CATEGORY_SPECTRUM_MGMT:
2279                 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2280                         break;
2281
2282                 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2283                         break;
2284
2285                 /* verify action_code is present */
2286                 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2287                         break;
2288
2289                 switch (mgmt->u.action.u.measurement.action_code) {
2290                 case WLAN_ACTION_SPCT_MSR_REQ:
2291                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2292                                    sizeof(mgmt->u.action.u.measurement)))
2293                                 break;
2294                         ieee80211_process_measurement_req(sdata, mgmt, len);
2295                         goto handled;
2296                 case WLAN_ACTION_SPCT_CHL_SWITCH:
2297                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2298                                    sizeof(mgmt->u.action.u.chan_switch)))
2299                                 break;
2300
2301                         if (sdata->vif.type != NL80211_IFTYPE_STATION)
2302                                 break;
2303
2304                         if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2305                                 break;
2306
2307                         goto queue;
2308                 }
2309                 break;
2310         case WLAN_CATEGORY_SA_QUERY:
2311                 if (len < (IEEE80211_MIN_ACTION_SIZE +
2312                            sizeof(mgmt->u.action.u.sa_query)))
2313                         break;
2314
2315                 switch (mgmt->u.action.u.sa_query.action) {
2316                 case WLAN_ACTION_SA_QUERY_REQUEST:
2317                         if (sdata->vif.type != NL80211_IFTYPE_STATION)
2318                                 break;
2319                         ieee80211_process_sa_query_req(sdata, mgmt, len);
2320                         goto handled;
2321                 }
2322                 break;
2323         case WLAN_CATEGORY_SELF_PROTECTED:
2324                 switch (mgmt->u.action.u.self_prot.action_code) {
2325                 case WLAN_SP_MESH_PEERING_OPEN:
2326                 case WLAN_SP_MESH_PEERING_CLOSE:
2327                 case WLAN_SP_MESH_PEERING_CONFIRM:
2328                         if (!ieee80211_vif_is_mesh(&sdata->vif))
2329                                 goto invalid;
2330                         if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2331                                 /* userspace handles this frame */
2332                                 break;
2333                         goto queue;
2334                 case WLAN_SP_MGK_INFORM:
2335                 case WLAN_SP_MGK_ACK:
2336                         if (!ieee80211_vif_is_mesh(&sdata->vif))
2337                                 goto invalid;
2338                         break;
2339                 }
2340                 break;
2341         case WLAN_CATEGORY_MESH_ACTION:
2342                 if (!ieee80211_vif_is_mesh(&sdata->vif))
2343                         break;
2344                 if (mesh_action_is_path_sel(mgmt) &&
2345                   (!mesh_path_sel_is_hwmp(sdata)))
2346                         break;
2347                 goto queue;
2348         }
2349
2350         return RX_CONTINUE;
2351
2352  invalid:
2353         status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2354         /* will return in the next handlers */
2355         return RX_CONTINUE;
2356
2357  handled:
2358         if (rx->sta)
2359                 rx->sta->rx_packets++;
2360         dev_kfree_skb(rx->skb);
2361         return RX_QUEUED;
2362
2363  queue:
2364         rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2365         skb_queue_tail(&sdata->skb_queue, rx->skb);
2366         ieee80211_queue_work(&local->hw, &sdata->work);
2367         if (rx->sta)
2368                 rx->sta->rx_packets++;
2369         return RX_QUEUED;
2370 }
2371
2372 static ieee80211_rx_result debug_noinline
2373 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2374 {
2375         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2376
2377         /* skip known-bad action frames and return them in the next handler */
2378         if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2379                 return RX_CONTINUE;
2380
2381         /*
2382          * Getting here means the kernel doesn't know how to handle
2383          * it, but maybe userspace does ... include returned frames
2384          * so userspace can register for those to know whether ones
2385          * it transmitted were processed or returned.
2386          */
2387
2388         if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2389                              rx->skb->data, rx->skb->len,
2390                              GFP_ATOMIC)) {
2391                 if (rx->sta)
2392                         rx->sta->rx_packets++;
2393                 dev_kfree_skb(rx->skb);
2394                 return RX_QUEUED;
2395         }
2396
2397
2398         return RX_CONTINUE;
2399 }
2400
2401 static ieee80211_rx_result debug_noinline
2402 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2403 {
2404         struct ieee80211_local *local = rx->local;
2405         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2406         struct sk_buff *nskb;
2407         struct ieee80211_sub_if_data *sdata = rx->sdata;
2408         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2409
2410         if (!ieee80211_is_action(mgmt->frame_control))
2411                 return RX_CONTINUE;
2412
2413         /*
2414          * For AP mode, hostapd is responsible for handling any action
2415          * frames that we didn't handle, including returning unknown
2416          * ones. For all other modes we will return them to the sender,
2417          * setting the 0x80 bit in the action category, as required by
2418          * 802.11-2007 7.3.1.11.
2419          * Newer versions of hostapd shall also use the management frame
2420          * registration mechanisms, but older ones still use cooked
2421          * monitor interfaces so push all frames there.
2422          */
2423         if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2424             (sdata->vif.type == NL80211_IFTYPE_AP ||
2425              sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2426                 return RX_DROP_MONITOR;
2427
2428         /* do not return rejected action frames */
2429         if (mgmt->u.action.category & 0x80)
2430                 return RX_DROP_UNUSABLE;
2431
2432         nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2433                                GFP_ATOMIC);
2434         if (nskb) {
2435                 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2436
2437                 nmgmt->u.action.category |= 0x80;
2438                 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2439                 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2440
2441                 memset(nskb->cb, 0, sizeof(nskb->cb));
2442
2443                 ieee80211_tx_skb(rx->sdata, nskb);
2444         }
2445         dev_kfree_skb(rx->skb);
2446         return RX_QUEUED;
2447 }
2448
2449 static ieee80211_rx_result debug_noinline
2450 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2451 {
2452         struct ieee80211_sub_if_data *sdata = rx->sdata;
2453         ieee80211_rx_result rxs;
2454         struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2455         __le16 stype;
2456
2457         rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2458         if (rxs != RX_CONTINUE)
2459                 return rxs;
2460
2461         stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2462
2463         if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2464             sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2465             sdata->vif.type != NL80211_IFTYPE_STATION)
2466                 return RX_DROP_MONITOR;
2467
2468         switch (stype) {
2469         case cpu_to_le16(IEEE80211_STYPE_BEACON):
2470         case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2471                 /* process for all: mesh, mlme, ibss */
2472                 break;
2473         case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2474         case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2475                 if (is_multicast_ether_addr(mgmt->da) &&
2476                     !is_broadcast_ether_addr(mgmt->da))
2477                         return RX_DROP_MONITOR;
2478
2479                 /* process only for station */
2480                 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2481                         return RX_DROP_MONITOR;
2482                 break;
2483         case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2484         case cpu_to_le16(IEEE80211_STYPE_AUTH):
2485                 /* process only for ibss */
2486                 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2487                         return RX_DROP_MONITOR;
2488                 break;
2489         default:
2490                 return RX_DROP_MONITOR;
2491         }
2492
2493         /* queue up frame and kick off work to process it */
2494         rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2495         skb_queue_tail(&sdata->skb_queue, rx->skb);
2496         ieee80211_queue_work(&rx->local->hw, &sdata->work);
2497         if (rx->sta)
2498                 rx->sta->rx_packets++;
2499
2500         return RX_QUEUED;
2501 }
2502
2503 /* TODO: use IEEE80211_RX_FRAGMENTED */
2504 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2505                                         struct ieee80211_rate *rate)
2506 {
2507         struct ieee80211_sub_if_data *sdata;
2508         struct ieee80211_local *local = rx->local;
2509         struct ieee80211_rtap_hdr {
2510                 struct ieee80211_radiotap_header hdr;
2511                 u8 flags;
2512                 u8 rate_or_pad;
2513                 __le16 chan_freq;
2514                 __le16 chan_flags;
2515         } __packed *rthdr;
2516         struct sk_buff *skb = rx->skb, *skb2;
2517         struct net_device *prev_dev = NULL;
2518         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2519
2520         /*
2521          * If cooked monitor has been processed already, then
2522          * don't do it again. If not, set the flag.
2523          */
2524         if (rx->flags & IEEE80211_RX_CMNTR)
2525                 goto out_free_skb;
2526         rx->flags |= IEEE80211_RX_CMNTR;
2527
2528         /* If there are no cooked monitor interfaces, just free the SKB */
2529         if (!local->cooked_mntrs)
2530                 goto out_free_skb;
2531
2532         if (skb_headroom(skb) < sizeof(*rthdr) &&
2533             pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2534                 goto out_free_skb;
2535
2536         rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2537         memset(rthdr, 0, sizeof(*rthdr));
2538         rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2539         rthdr->hdr.it_present =
2540                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2541                             (1 << IEEE80211_RADIOTAP_CHANNEL));
2542
2543         if (rate) {
2544                 rthdr->rate_or_pad = rate->bitrate / 5;
2545                 rthdr->hdr.it_present |=
2546                         cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2547         }
2548         rthdr->chan_freq = cpu_to_le16(status->freq);
2549
2550         if (status->band == IEEE80211_BAND_5GHZ)
2551                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2552                                                 IEEE80211_CHAN_5GHZ);
2553         else
2554                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2555                                                 IEEE80211_CHAN_2GHZ);
2556
2557         skb_set_mac_header(skb, 0);
2558         skb->ip_summed = CHECKSUM_UNNECESSARY;
2559         skb->pkt_type = PACKET_OTHERHOST;
2560         skb->protocol = htons(ETH_P_802_2);
2561
2562         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2563                 if (!ieee80211_sdata_running(sdata))
2564                         continue;
2565
2566                 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2567                     !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2568                         continue;
2569
2570                 if (prev_dev) {
2571                         skb2 = skb_clone(skb, GFP_ATOMIC);
2572                         if (skb2) {
2573                                 skb2->dev = prev_dev;
2574                                 netif_receive_skb(skb2);
2575                         }
2576                 }
2577
2578                 prev_dev = sdata->dev;
2579                 sdata->dev->stats.rx_packets++;
2580                 sdata->dev->stats.rx_bytes += skb->len;
2581         }
2582
2583         if (prev_dev) {
2584                 skb->dev = prev_dev;
2585                 netif_receive_skb(skb);
2586                 return;
2587         }
2588
2589  out_free_skb:
2590         dev_kfree_skb(skb);
2591 }
2592
2593 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2594                                          ieee80211_rx_result res)
2595 {
2596         switch (res) {
2597         case RX_DROP_MONITOR:
2598                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2599                 if (rx->sta)
2600                         rx->sta->rx_dropped++;
2601                 /* fall through */
2602         case RX_CONTINUE: {
2603                 struct ieee80211_rate *rate = NULL;
2604                 struct ieee80211_supported_band *sband;
2605                 struct ieee80211_rx_status *status;
2606
2607                 status = IEEE80211_SKB_RXCB((rx->skb));
2608
2609                 sband = rx->local->hw.wiphy->bands[status->band];
2610                 if (!(status->flag & RX_FLAG_HT))
2611                         rate = &sband->bitrates[status->rate_idx];
2612
2613                 ieee80211_rx_cooked_monitor(rx, rate);
2614                 break;
2615                 }
2616         case RX_DROP_UNUSABLE:
2617                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2618                 if (rx->sta)
2619                         rx->sta->rx_dropped++;
2620                 dev_kfree_skb(rx->skb);
2621                 break;
2622         case RX_QUEUED:
2623                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2624                 break;
2625         }
2626 }
2627
2628 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2629 {
2630         ieee80211_rx_result res = RX_DROP_MONITOR;
2631         struct sk_buff *skb;
2632
2633 #define CALL_RXH(rxh)                   \
2634         do {                            \
2635                 res = rxh(rx);          \
2636                 if (res != RX_CONTINUE) \
2637                         goto rxh_next;  \
2638         } while (0);
2639
2640         spin_lock(&rx->local->rx_skb_queue.lock);
2641         if (rx->local->running_rx_handler)
2642                 goto unlock;
2643
2644         rx->local->running_rx_handler = true;
2645
2646         while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2647                 spin_unlock(&rx->local->rx_skb_queue.lock);
2648
2649                 /*
2650                  * all the other fields are valid across frames
2651                  * that belong to an aMPDU since they are on the
2652                  * same TID from the same station
2653                  */
2654                 rx->skb = skb;
2655
2656                 CALL_RXH(ieee80211_rx_h_decrypt)
2657                 CALL_RXH(ieee80211_rx_h_check_more_data)
2658                 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2659                 CALL_RXH(ieee80211_rx_h_sta_process)
2660                 CALL_RXH(ieee80211_rx_h_defragment)
2661                 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2662                 /* must be after MMIC verify so header is counted in MPDU mic */
2663 #ifdef CONFIG_MAC80211_MESH
2664                 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2665                         CALL_RXH(ieee80211_rx_h_mesh_fwding);
2666 #endif
2667                 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2668                 CALL_RXH(ieee80211_rx_h_amsdu)
2669                 CALL_RXH(ieee80211_rx_h_data)
2670                 CALL_RXH(ieee80211_rx_h_ctrl);
2671                 CALL_RXH(ieee80211_rx_h_mgmt_check)
2672                 CALL_RXH(ieee80211_rx_h_action)
2673                 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2674                 CALL_RXH(ieee80211_rx_h_action_return)
2675                 CALL_RXH(ieee80211_rx_h_mgmt)
2676
2677  rxh_next:
2678                 ieee80211_rx_handlers_result(rx, res);
2679                 spin_lock(&rx->local->rx_skb_queue.lock);
2680 #undef CALL_RXH
2681         }
2682
2683         rx->local->running_rx_handler = false;
2684
2685  unlock:
2686         spin_unlock(&rx->local->rx_skb_queue.lock);
2687 }
2688
2689 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2690 {
2691         ieee80211_rx_result res = RX_DROP_MONITOR;
2692
2693 #define CALL_RXH(rxh)                   \
2694         do {                            \
2695                 res = rxh(rx);          \
2696                 if (res != RX_CONTINUE) \
2697                         goto rxh_next;  \
2698         } while (0);
2699
2700         CALL_RXH(ieee80211_rx_h_passive_scan)
2701         CALL_RXH(ieee80211_rx_h_check)
2702
2703         ieee80211_rx_reorder_ampdu(rx);
2704
2705         ieee80211_rx_handlers(rx);
2706         return;
2707
2708  rxh_next:
2709         ieee80211_rx_handlers_result(rx, res);
2710
2711 #undef CALL_RXH
2712 }
2713
2714 /*
2715  * This function makes calls into the RX path, therefore
2716  * it has to be invoked under RCU read lock.
2717  */
2718 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2719 {
2720         struct ieee80211_rx_data rx = {
2721                 .sta = sta,
2722                 .sdata = sta->sdata,
2723                 .local = sta->local,
2724                 /* This is OK -- must be QoS data frame */
2725                 .security_idx = tid,
2726                 .seqno_idx = tid,
2727                 .flags = 0,
2728         };
2729         struct tid_ampdu_rx *tid_agg_rx;
2730
2731         tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2732         if (!tid_agg_rx)
2733                 return;
2734
2735         spin_lock(&tid_agg_rx->reorder_lock);
2736         ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2737         spin_unlock(&tid_agg_rx->reorder_lock);
2738
2739         ieee80211_rx_handlers(&rx);
2740 }
2741
2742 /* main receive path */
2743
2744 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2745                                 struct ieee80211_hdr *hdr)
2746 {
2747         struct ieee80211_sub_if_data *sdata = rx->sdata;
2748         struct sk_buff *skb = rx->skb;
2749         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2750         u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2751         int multicast = is_multicast_ether_addr(hdr->addr1);
2752
2753         switch (sdata->vif.type) {
2754         case NL80211_IFTYPE_STATION:
2755                 if (!bssid && !sdata->u.mgd.use_4addr)
2756                         return 0;
2757                 if (!multicast &&
2758                     compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2759                         if (!(sdata->dev->flags & IFF_PROMISC) ||
2760                             sdata->u.mgd.use_4addr)
2761                                 return 0;
2762                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2763                 }
2764                 break;
2765         case NL80211_IFTYPE_ADHOC:
2766                 if (!bssid)
2767                         return 0;
2768                 if (ieee80211_is_beacon(hdr->frame_control)) {
2769                         return 1;
2770                 }
2771                 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2772                         if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2773                                 return 0;
2774                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2775                 } else if (!multicast &&
2776                            compare_ether_addr(sdata->vif.addr,
2777                                               hdr->addr1) != 0) {
2778                         if (!(sdata->dev->flags & IFF_PROMISC))
2779                                 return 0;
2780                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2781                 } else if (!rx->sta) {
2782                         int rate_idx;
2783                         if (status->flag & RX_FLAG_HT)
2784                                 rate_idx = 0; /* TODO: HT rates */
2785                         else
2786                                 rate_idx = status->rate_idx;
2787                         rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2788                                         hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2789                 }
2790                 break;
2791         case NL80211_IFTYPE_MESH_POINT:
2792                 if (!multicast &&
2793                     compare_ether_addr(sdata->vif.addr,
2794                                        hdr->addr1) != 0) {
2795                         if (!(sdata->dev->flags & IFF_PROMISC))
2796                                 return 0;
2797
2798                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2799                 }
2800                 break;
2801         case NL80211_IFTYPE_AP_VLAN:
2802         case NL80211_IFTYPE_AP:
2803                 if (!bssid) {
2804                         if (compare_ether_addr(sdata->vif.addr,
2805                                                hdr->addr1))
2806                                 return 0;
2807                 } else if (!ieee80211_bssid_match(bssid,
2808                                         sdata->vif.addr)) {
2809                         if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2810                             !ieee80211_is_beacon(hdr->frame_control) &&
2811                             !(ieee80211_is_action(hdr->frame_control) &&
2812                               sdata->vif.p2p))
2813                                 return 0;
2814                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2815                 }
2816                 break;
2817         case NL80211_IFTYPE_WDS:
2818                 if (bssid || !ieee80211_is_data(hdr->frame_control))
2819                         return 0;
2820                 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2821                         return 0;
2822                 break;
2823         default:
2824                 /* should never get here */
2825                 WARN_ON(1);
2826                 break;
2827         }
2828
2829         return 1;
2830 }
2831
2832 /*
2833  * This function returns whether or not the SKB
2834  * was destined for RX processing or not, which,
2835  * if consume is true, is equivalent to whether
2836  * or not the skb was consumed.
2837  */
2838 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2839                                             struct sk_buff *skb, bool consume)
2840 {
2841         struct ieee80211_local *local = rx->local;
2842         struct ieee80211_sub_if_data *sdata = rx->sdata;
2843         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2844         struct ieee80211_hdr *hdr = (void *)skb->data;
2845         int prepares;
2846
2847         rx->skb = skb;
2848         status->rx_flags |= IEEE80211_RX_RA_MATCH;
2849         prepares = prepare_for_handlers(rx, hdr);
2850
2851         if (!prepares)
2852                 return false;
2853
2854         if (!consume) {
2855                 skb = skb_copy(skb, GFP_ATOMIC);
2856                 if (!skb) {
2857                         if (net_ratelimit())
2858                                 wiphy_debug(local->hw.wiphy,
2859                                         "failed to copy skb for %s\n",
2860                                         sdata->name);
2861                         return true;
2862                 }
2863
2864                 rx->skb = skb;
2865         }
2866
2867         ieee80211_invoke_rx_handlers(rx);
2868         return true;
2869 }
2870
2871 /*
2872  * This is the actual Rx frames handler. as it blongs to Rx path it must
2873  * be called with rcu_read_lock protection.
2874  */
2875 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2876                                          struct sk_buff *skb)
2877 {
2878         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2879         struct ieee80211_local *local = hw_to_local(hw);
2880         struct ieee80211_sub_if_data *sdata;
2881         struct ieee80211_hdr *hdr;
2882         __le16 fc;
2883         struct ieee80211_rx_data rx;
2884         struct ieee80211_sub_if_data *prev;
2885         struct sta_info *sta, *tmp, *prev_sta;
2886         int err = 0;
2887
2888         fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2889         memset(&rx, 0, sizeof(rx));
2890         rx.skb = skb;
2891         rx.local = local;
2892
2893         if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2894                 local->dot11ReceivedFragmentCount++;
2895
2896         if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2897                      test_bit(SCAN_SW_SCANNING, &local->scanning)))
2898                 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2899
2900         if (ieee80211_is_mgmt(fc))
2901                 err = skb_linearize(skb);
2902         else
2903                 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2904
2905         if (err) {
2906                 dev_kfree_skb(skb);
2907                 return;
2908         }
2909
2910         hdr = (struct ieee80211_hdr *)skb->data;
2911         ieee80211_parse_qos(&rx);
2912         ieee80211_verify_alignment(&rx);
2913
2914         if (ieee80211_is_data(fc)) {
2915                 prev_sta = NULL;
2916
2917                 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) {
2918                         if (!prev_sta) {
2919                                 prev_sta = sta;
2920                                 continue;
2921                         }
2922
2923                         rx.sta = prev_sta;
2924                         rx.sdata = prev_sta->sdata;
2925                         ieee80211_prepare_and_rx_handle(&rx, skb, false);
2926
2927                         prev_sta = sta;
2928                 }
2929
2930                 if (prev_sta) {
2931                         rx.sta = prev_sta;
2932                         rx.sdata = prev_sta->sdata;
2933
2934                         if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2935                                 return;
2936                         goto out;
2937                 }
2938         }
2939
2940         prev = NULL;
2941
2942         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2943                 if (!ieee80211_sdata_running(sdata))
2944                         continue;
2945
2946                 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2947                     sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2948                         continue;
2949
2950                 /*
2951                  * frame is destined for this interface, but if it's
2952                  * not also for the previous one we handle that after
2953                  * the loop to avoid copying the SKB once too much
2954                  */
2955
2956                 if (!prev) {
2957                         prev = sdata;
2958                         continue;
2959                 }
2960
2961                 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2962                 rx.sdata = prev;
2963                 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2964
2965                 prev = sdata;
2966         }
2967
2968         if (prev) {
2969                 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2970                 rx.sdata = prev;
2971
2972                 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2973                         return;
2974         }
2975
2976  out:
2977         dev_kfree_skb(skb);
2978 }
2979
2980 /*
2981  * This is the receive path handler. It is called by a low level driver when an
2982  * 802.11 MPDU is received from the hardware.
2983  */
2984 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2985 {
2986         struct ieee80211_local *local = hw_to_local(hw);
2987         struct ieee80211_rate *rate = NULL;
2988         struct ieee80211_supported_band *sband;
2989         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2990
2991         WARN_ON_ONCE(softirq_count() == 0);
2992
2993         if (WARN_ON(status->band < 0 ||
2994                     status->band >= IEEE80211_NUM_BANDS))
2995                 goto drop;
2996
2997         sband = local->hw.wiphy->bands[status->band];
2998         if (WARN_ON(!sband))
2999                 goto drop;
3000
3001         /*
3002          * If we're suspending, it is possible although not too likely
3003          * that we'd be receiving frames after having already partially
3004          * quiesced the stack. We can't process such frames then since
3005          * that might, for example, cause stations to be added or other
3006          * driver callbacks be invoked.
3007          */
3008         if (unlikely(local->quiescing || local->suspended))
3009                 goto drop;
3010
3011         /*
3012          * The same happens when we're not even started,
3013          * but that's worth a warning.
3014          */
3015         if (WARN_ON(!local->started))
3016                 goto drop;
3017
3018         if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3019                 /*
3020                  * Validate the rate, unless a PLCP error means that
3021                  * we probably can't have a valid rate here anyway.
3022                  */
3023
3024                 if (status->flag & RX_FLAG_HT) {
3025                         /*
3026                          * rate_idx is MCS index, which can be [0-76]
3027                          * as documented on:
3028                          *
3029                          * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3030                          *
3031                          * Anything else would be some sort of driver or
3032                          * hardware error. The driver should catch hardware
3033                          * errors.
3034                          */
3035                         if (WARN((status->rate_idx < 0 ||
3036                                  status->rate_idx > 76),
3037                                  "Rate marked as an HT rate but passed "
3038                                  "status->rate_idx is not "
3039                                  "an MCS index [0-76]: %d (0x%02x)\n",
3040                                  status->rate_idx,
3041                                  status->rate_idx))
3042                                 goto drop;
3043                 } else {
3044                         if (WARN_ON(status->rate_idx < 0 ||
3045                                     status->rate_idx >= sband->n_bitrates))
3046                                 goto drop;
3047                         rate = &sband->bitrates[status->rate_idx];
3048                 }
3049         }
3050
3051         status->rx_flags = 0;
3052
3053         /*
3054          * key references and virtual interfaces are protected using RCU
3055          * and this requires that we are in a read-side RCU section during
3056          * receive processing
3057          */
3058         rcu_read_lock();
3059
3060         /*
3061          * Frames with failed FCS/PLCP checksum are not returned,
3062          * all other frames are returned without radiotap header
3063          * if it was previously present.
3064          * Also, frames with less than 16 bytes are dropped.
3065          */
3066         skb = ieee80211_rx_monitor(local, skb, rate);
3067         if (!skb) {
3068                 rcu_read_unlock();
3069                 return;
3070         }
3071
3072         ieee80211_tpt_led_trig_rx(local,
3073                         ((struct ieee80211_hdr *)skb->data)->frame_control,
3074                         skb->len);
3075         __ieee80211_rx_handle_packet(hw, skb);
3076
3077         rcu_read_unlock();
3078
3079         return;
3080  drop:
3081         kfree_skb(skb);
3082 }
3083 EXPORT_SYMBOL(ieee80211_rx);
3084
3085 /* This is a version of the rx handler that can be called from hard irq
3086  * context. Post the skb on the queue and schedule the tasklet */
3087 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3088 {
3089         struct ieee80211_local *local = hw_to_local(hw);
3090
3091         BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3092
3093         skb->pkt_type = IEEE80211_RX_MSG;
3094         skb_queue_tail(&local->skb_queue, skb);
3095         tasklet_schedule(&local->tasklet);
3096 }
3097 EXPORT_SYMBOL(ieee80211_rx_irqsafe);