mac80211: remove useless NULL checks
[pandora-kernel.git] / net / mac80211 / key.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2008  Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/if_ether.h>
13 #include <linux/etherdevice.h>
14 #include <linux/list.h>
15 #include <linux/rcupdate.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <net/mac80211.h>
20 #include <asm/unaligned.h>
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "debugfs_key.h"
24 #include "aes_ccm.h"
25 #include "aes_cmac.h"
26
27
28 /**
29  * DOC: Key handling basics
30  *
31  * Key handling in mac80211 is done based on per-interface (sub_if_data)
32  * keys and per-station keys. Since each station belongs to an interface,
33  * each station key also belongs to that interface.
34  *
35  * Hardware acceleration is done on a best-effort basis for algorithms
36  * that are implemented in software,  for each key the hardware is asked
37  * to enable that key for offloading but if it cannot do that the key is
38  * simply kept for software encryption (unless it is for an algorithm
39  * that isn't implemented in software).
40  * There is currently no way of knowing whether a key is handled in SW
41  * or HW except by looking into debugfs.
42  *
43  * All key management is internally protected by a mutex. Within all
44  * other parts of mac80211, key references are, just as STA structure
45  * references, protected by RCU. Note, however, that some things are
46  * unprotected, namely the key->sta dereferences within the hardware
47  * acceleration functions. This means that sta_info_destroy() must
48  * remove the key which waits for an RCU grace period.
49  */
50
51 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
52
53 static void assert_key_lock(struct ieee80211_local *local)
54 {
55         lockdep_assert_held(&local->key_mtx);
56 }
57
58 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
59 {
60         /*
61          * When this count is zero, SKB resizing for allocating tailroom
62          * for IV or MMIC is skipped. But, this check has created two race
63          * cases in xmit path while transiting from zero count to one:
64          *
65          * 1. SKB resize was skipped because no key was added but just before
66          * the xmit key is added and SW encryption kicks off.
67          *
68          * 2. SKB resize was skipped because all the keys were hw planted but
69          * just before xmit one of the key is deleted and SW encryption kicks
70          * off.
71          *
72          * In both the above case SW encryption will find not enough space for
73          * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
74          *
75          * Solution has been explained at
76          * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
77          */
78
79         if (!sdata->crypto_tx_tailroom_needed_cnt++) {
80                 /*
81                  * Flush all XMIT packets currently using HW encryption or no
82                  * encryption at all if the count transition is from 0 -> 1.
83                  */
84                 synchronize_net();
85         }
86 }
87
88 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
89 {
90         struct ieee80211_sub_if_data *sdata;
91         struct sta_info *sta;
92         int ret;
93
94         might_sleep();
95
96         if (key->flags & KEY_FLAG_TAINTED)
97                 return -EINVAL;
98
99         if (!key->local->ops->set_key)
100                 goto out_unsupported;
101
102         assert_key_lock(key->local);
103
104         sta = key->sta;
105
106         /*
107          * If this is a per-STA GTK, check if it
108          * is supported; if not, return.
109          */
110         if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
111             !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
112                 goto out_unsupported;
113
114         if (sta && !sta->uploaded)
115                 goto out_unsupported;
116
117         sdata = key->sdata;
118         if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
119                 /*
120                  * The driver doesn't know anything about VLAN interfaces.
121                  * Hence, don't send GTKs for VLAN interfaces to the driver.
122                  */
123                 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
124                         goto out_unsupported;
125         }
126
127         ret = drv_set_key(key->local, SET_KEY, sdata,
128                           sta ? &sta->sta : NULL, &key->conf);
129
130         if (!ret) {
131                 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
132
133                 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
134                       (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
135                       (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
136                         sdata->crypto_tx_tailroom_needed_cnt--;
137
138                 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
139                         (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
140
141                 return 0;
142         }
143
144         if (ret != -ENOSPC && ret != -EOPNOTSUPP)
145                 sdata_err(sdata,
146                           "failed to set key (%d, %pM) to hardware (%d)\n",
147                           key->conf.keyidx,
148                           sta ? sta->sta.addr : bcast_addr, ret);
149
150  out_unsupported:
151         switch (key->conf.cipher) {
152         case WLAN_CIPHER_SUITE_WEP40:
153         case WLAN_CIPHER_SUITE_WEP104:
154         case WLAN_CIPHER_SUITE_TKIP:
155         case WLAN_CIPHER_SUITE_CCMP:
156         case WLAN_CIPHER_SUITE_AES_CMAC:
157                 /* all of these we can do in software */
158                 return 0;
159         default:
160                 return -EINVAL;
161         }
162 }
163
164 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
165 {
166         struct ieee80211_sub_if_data *sdata;
167         struct sta_info *sta;
168         int ret;
169
170         might_sleep();
171
172         if (!key || !key->local->ops->set_key)
173                 return;
174
175         assert_key_lock(key->local);
176
177         if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
178                 return;
179
180         sta = key->sta;
181         sdata = key->sdata;
182
183         if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
184               (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
185               (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
186                 increment_tailroom_need_count(sdata);
187
188         ret = drv_set_key(key->local, DISABLE_KEY, sdata,
189                           sta ? &sta->sta : NULL, &key->conf);
190
191         if (ret)
192                 sdata_err(sdata,
193                           "failed to remove key (%d, %pM) from hardware (%d)\n",
194                           key->conf.keyidx,
195                           sta ? sta->sta.addr : bcast_addr, ret);
196
197         key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
198 }
199
200 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
201                                         int idx, bool uni, bool multi)
202 {
203         struct ieee80211_key *key = NULL;
204
205         assert_key_lock(sdata->local);
206
207         if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
208                 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
209
210         if (uni) {
211                 rcu_assign_pointer(sdata->default_unicast_key, key);
212                 drv_set_default_unicast_key(sdata->local, sdata, idx);
213         }
214
215         if (multi)
216                 rcu_assign_pointer(sdata->default_multicast_key, key);
217
218         ieee80211_debugfs_key_update_default(sdata);
219 }
220
221 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
222                                bool uni, bool multi)
223 {
224         mutex_lock(&sdata->local->key_mtx);
225         __ieee80211_set_default_key(sdata, idx, uni, multi);
226         mutex_unlock(&sdata->local->key_mtx);
227 }
228
229 static void
230 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
231 {
232         struct ieee80211_key *key = NULL;
233
234         assert_key_lock(sdata->local);
235
236         if (idx >= NUM_DEFAULT_KEYS &&
237             idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
238                 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
239
240         rcu_assign_pointer(sdata->default_mgmt_key, key);
241
242         ieee80211_debugfs_key_update_default(sdata);
243 }
244
245 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
246                                     int idx)
247 {
248         mutex_lock(&sdata->local->key_mtx);
249         __ieee80211_set_default_mgmt_key(sdata, idx);
250         mutex_unlock(&sdata->local->key_mtx);
251 }
252
253
254 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
255                                   struct sta_info *sta,
256                                   bool pairwise,
257                                   struct ieee80211_key *old,
258                                   struct ieee80211_key *new)
259 {
260         int idx;
261         bool defunikey, defmultikey, defmgmtkey;
262
263         /* caller must provide at least one old/new */
264         if (WARN_ON(!new && !old))
265                 return;
266
267         if (new)
268                 list_add_tail(&new->list, &sdata->key_list);
269
270         WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
271
272         if (old)
273                 idx = old->conf.keyidx;
274         else
275                 idx = new->conf.keyidx;
276
277         if (sta) {
278                 if (pairwise) {
279                         rcu_assign_pointer(sta->ptk[idx], new);
280                         sta->ptk_idx = idx;
281                 } else {
282                         rcu_assign_pointer(sta->gtk[idx], new);
283                         sta->gtk_idx = idx;
284                 }
285         } else {
286                 defunikey = old &&
287                         old == key_mtx_dereference(sdata->local,
288                                                 sdata->default_unicast_key);
289                 defmultikey = old &&
290                         old == key_mtx_dereference(sdata->local,
291                                                 sdata->default_multicast_key);
292                 defmgmtkey = old &&
293                         old == key_mtx_dereference(sdata->local,
294                                                 sdata->default_mgmt_key);
295
296                 if (defunikey && !new)
297                         __ieee80211_set_default_key(sdata, -1, true, false);
298                 if (defmultikey && !new)
299                         __ieee80211_set_default_key(sdata, -1, false, true);
300                 if (defmgmtkey && !new)
301                         __ieee80211_set_default_mgmt_key(sdata, -1);
302
303                 rcu_assign_pointer(sdata->keys[idx], new);
304                 if (defunikey && new)
305                         __ieee80211_set_default_key(sdata, new->conf.keyidx,
306                                                     true, false);
307                 if (defmultikey && new)
308                         __ieee80211_set_default_key(sdata, new->conf.keyidx,
309                                                     false, true);
310                 if (defmgmtkey && new)
311                         __ieee80211_set_default_mgmt_key(sdata,
312                                                          new->conf.keyidx);
313         }
314
315         if (old)
316                 list_del(&old->list);
317 }
318
319 struct ieee80211_key *
320 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
321                     const u8 *key_data,
322                     size_t seq_len, const u8 *seq,
323                     const struct ieee80211_cipher_scheme *cs)
324 {
325         struct ieee80211_key *key;
326         int i, j, err;
327
328         if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
329                 return ERR_PTR(-EINVAL);
330
331         key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
332         if (!key)
333                 return ERR_PTR(-ENOMEM);
334
335         /*
336          * Default to software encryption; we'll later upload the
337          * key to the hardware if possible.
338          */
339         key->conf.flags = 0;
340         key->flags = 0;
341
342         key->conf.cipher = cipher;
343         key->conf.keyidx = idx;
344         key->conf.keylen = key_len;
345         switch (cipher) {
346         case WLAN_CIPHER_SUITE_WEP40:
347         case WLAN_CIPHER_SUITE_WEP104:
348                 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
349                 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
350                 break;
351         case WLAN_CIPHER_SUITE_TKIP:
352                 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
353                 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
354                 if (seq) {
355                         for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
356                                 key->u.tkip.rx[i].iv32 =
357                                         get_unaligned_le32(&seq[2]);
358                                 key->u.tkip.rx[i].iv16 =
359                                         get_unaligned_le16(seq);
360                         }
361                 }
362                 spin_lock_init(&key->u.tkip.txlock);
363                 break;
364         case WLAN_CIPHER_SUITE_CCMP:
365                 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
366                 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
367                 if (seq) {
368                         for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
369                                 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
370                                         key->u.ccmp.rx_pn[i][j] =
371                                                 seq[IEEE80211_CCMP_PN_LEN - j - 1];
372                 }
373                 /*
374                  * Initialize AES key state here as an optimization so that
375                  * it does not need to be initialized for every packet.
376                  */
377                 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
378                 if (IS_ERR(key->u.ccmp.tfm)) {
379                         err = PTR_ERR(key->u.ccmp.tfm);
380                         kfree(key);
381                         return ERR_PTR(err);
382                 }
383                 break;
384         case WLAN_CIPHER_SUITE_AES_CMAC:
385                 key->conf.iv_len = 0;
386                 key->conf.icv_len = sizeof(struct ieee80211_mmie);
387                 if (seq)
388                         for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
389                                 key->u.aes_cmac.rx_pn[j] =
390                                         seq[IEEE80211_CMAC_PN_LEN - j - 1];
391                 /*
392                  * Initialize AES key state here as an optimization so that
393                  * it does not need to be initialized for every packet.
394                  */
395                 key->u.aes_cmac.tfm =
396                         ieee80211_aes_cmac_key_setup(key_data);
397                 if (IS_ERR(key->u.aes_cmac.tfm)) {
398                         err = PTR_ERR(key->u.aes_cmac.tfm);
399                         kfree(key);
400                         return ERR_PTR(err);
401                 }
402                 break;
403         default:
404                 if (cs) {
405                         size_t len = (seq_len > MAX_PN_LEN) ?
406                                                 MAX_PN_LEN : seq_len;
407
408                         key->conf.iv_len = cs->hdr_len;
409                         key->conf.icv_len = cs->mic_len;
410                         for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
411                                 for (j = 0; j < len; j++)
412                                         key->u.gen.rx_pn[i][j] =
413                                                         seq[len - j - 1];
414                 }
415         }
416         memcpy(key->conf.key, key_data, key_len);
417         INIT_LIST_HEAD(&key->list);
418
419         return key;
420 }
421
422 static void ieee80211_key_free_common(struct ieee80211_key *key)
423 {
424         if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
425                 ieee80211_aes_key_free(key->u.ccmp.tfm);
426         if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
427                 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
428         kfree(key);
429 }
430
431 static void __ieee80211_key_destroy(struct ieee80211_key *key,
432                                     bool delay_tailroom)
433 {
434         if (key->local)
435                 ieee80211_key_disable_hw_accel(key);
436
437         if (key->local) {
438                 struct ieee80211_sub_if_data *sdata = key->sdata;
439
440                 ieee80211_debugfs_key_remove(key);
441
442                 if (delay_tailroom) {
443                         /* see ieee80211_delayed_tailroom_dec */
444                         sdata->crypto_tx_tailroom_pending_dec++;
445                         schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
446                                               HZ/2);
447                 } else {
448                         sdata->crypto_tx_tailroom_needed_cnt--;
449                 }
450         }
451
452         ieee80211_key_free_common(key);
453 }
454
455 static void ieee80211_key_destroy(struct ieee80211_key *key,
456                                   bool delay_tailroom)
457 {
458         if (!key)
459                 return;
460
461         /*
462          * Synchronize so the TX path can no longer be using
463          * this key before we free/remove it.
464          */
465         synchronize_net();
466
467         __ieee80211_key_destroy(key, delay_tailroom);
468 }
469
470 void ieee80211_key_free_unused(struct ieee80211_key *key)
471 {
472         WARN_ON(key->sdata || key->local);
473         ieee80211_key_free_common(key);
474 }
475
476 int ieee80211_key_link(struct ieee80211_key *key,
477                        struct ieee80211_sub_if_data *sdata,
478                        struct sta_info *sta)
479 {
480         struct ieee80211_local *local = sdata->local;
481         struct ieee80211_key *old_key;
482         int idx, ret;
483         bool pairwise;
484
485         pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
486         idx = key->conf.keyidx;
487         key->local = sdata->local;
488         key->sdata = sdata;
489         key->sta = sta;
490
491         mutex_lock(&sdata->local->key_mtx);
492
493         if (sta && pairwise)
494                 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
495         else if (sta)
496                 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
497         else
498                 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
499
500         increment_tailroom_need_count(sdata);
501
502         ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
503         ieee80211_key_destroy(old_key, true);
504
505         ieee80211_debugfs_key_add(key);
506
507         if (!local->wowlan) {
508                 ret = ieee80211_key_enable_hw_accel(key);
509                 if (ret)
510                         ieee80211_key_free(key, true);
511         } else {
512                 ret = 0;
513         }
514
515         mutex_unlock(&sdata->local->key_mtx);
516
517         return ret;
518 }
519
520 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
521 {
522         if (!key)
523                 return;
524
525         /*
526          * Replace key with nothingness if it was ever used.
527          */
528         if (key->sdata)
529                 ieee80211_key_replace(key->sdata, key->sta,
530                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
531                                 key, NULL);
532         ieee80211_key_destroy(key, delay_tailroom);
533 }
534
535 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
536 {
537         struct ieee80211_key *key;
538
539         ASSERT_RTNL();
540
541         if (WARN_ON(!ieee80211_sdata_running(sdata)))
542                 return;
543
544         mutex_lock(&sdata->local->key_mtx);
545
546         sdata->crypto_tx_tailroom_needed_cnt = 0;
547
548         list_for_each_entry(key, &sdata->key_list, list) {
549                 increment_tailroom_need_count(sdata);
550                 ieee80211_key_enable_hw_accel(key);
551         }
552
553         mutex_unlock(&sdata->local->key_mtx);
554 }
555
556 void ieee80211_iter_keys(struct ieee80211_hw *hw,
557                          struct ieee80211_vif *vif,
558                          void (*iter)(struct ieee80211_hw *hw,
559                                       struct ieee80211_vif *vif,
560                                       struct ieee80211_sta *sta,
561                                       struct ieee80211_key_conf *key,
562                                       void *data),
563                          void *iter_data)
564 {
565         struct ieee80211_local *local = hw_to_local(hw);
566         struct ieee80211_key *key, *tmp;
567         struct ieee80211_sub_if_data *sdata;
568
569         ASSERT_RTNL();
570
571         mutex_lock(&local->key_mtx);
572         if (vif) {
573                 sdata = vif_to_sdata(vif);
574                 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
575                         iter(hw, &sdata->vif,
576                              key->sta ? &key->sta->sta : NULL,
577                              &key->conf, iter_data);
578         } else {
579                 list_for_each_entry(sdata, &local->interfaces, list)
580                         list_for_each_entry_safe(key, tmp,
581                                                  &sdata->key_list, list)
582                                 iter(hw, &sdata->vif,
583                                      key->sta ? &key->sta->sta : NULL,
584                                      &key->conf, iter_data);
585         }
586         mutex_unlock(&local->key_mtx);
587 }
588 EXPORT_SYMBOL(ieee80211_iter_keys);
589
590 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
591                                       struct list_head *keys)
592 {
593         struct ieee80211_key *key, *tmp;
594
595         sdata->crypto_tx_tailroom_needed_cnt -=
596                 sdata->crypto_tx_tailroom_pending_dec;
597         sdata->crypto_tx_tailroom_pending_dec = 0;
598
599         ieee80211_debugfs_key_remove_mgmt_default(sdata);
600
601         list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
602                 ieee80211_key_replace(key->sdata, key->sta,
603                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
604                                 key, NULL);
605                 list_add_tail(&key->list, keys);
606         }
607
608         ieee80211_debugfs_key_update_default(sdata);
609 }
610
611 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
612                          bool force_synchronize)
613 {
614         struct ieee80211_local *local = sdata->local;
615         struct ieee80211_sub_if_data *vlan;
616         struct ieee80211_key *key, *tmp;
617         LIST_HEAD(keys);
618
619         cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
620
621         mutex_lock(&local->key_mtx);
622
623         ieee80211_free_keys_iface(sdata, &keys);
624
625         if (sdata->vif.type == NL80211_IFTYPE_AP) {
626                 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
627                         ieee80211_free_keys_iface(vlan, &keys);
628         }
629
630         if (!list_empty(&keys) || force_synchronize)
631                 synchronize_net();
632         list_for_each_entry_safe(key, tmp, &keys, list)
633                 __ieee80211_key_destroy(key, false);
634
635         WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
636                      sdata->crypto_tx_tailroom_pending_dec);
637         if (sdata->vif.type == NL80211_IFTYPE_AP) {
638                 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
639                         WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
640                                      vlan->crypto_tx_tailroom_pending_dec);
641         }
642
643         mutex_unlock(&local->key_mtx);
644 }
645
646 void ieee80211_free_sta_keys(struct ieee80211_local *local,
647                              struct sta_info *sta)
648 {
649         struct ieee80211_key *key;
650         int i;
651
652         mutex_lock(&local->key_mtx);
653         for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
654                 key = key_mtx_dereference(local, sta->gtk[i]);
655                 if (!key)
656                         continue;
657                 ieee80211_key_replace(key->sdata, key->sta,
658                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
659                                 key, NULL);
660                 __ieee80211_key_destroy(key, true);
661         }
662
663         for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
664                 key = key_mtx_dereference(local, sta->ptk[i]);
665                 if (!key)
666                         continue;
667                 ieee80211_key_replace(key->sdata, key->sta,
668                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
669                                 key, NULL);
670                 __ieee80211_key_destroy(key, true);
671         }
672
673         mutex_unlock(&local->key_mtx);
674 }
675
676 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
677 {
678         struct ieee80211_sub_if_data *sdata;
679
680         sdata = container_of(wk, struct ieee80211_sub_if_data,
681                              dec_tailroom_needed_wk.work);
682
683         /*
684          * The reason for the delayed tailroom needed decrementing is to
685          * make roaming faster: during roaming, all keys are first deleted
686          * and then new keys are installed. The first new key causes the
687          * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
688          * the cost of synchronize_net() (which can be slow). Avoid this
689          * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
690          * key removal for a while, so if we roam the value is larger than
691          * zero and no 0->1 transition happens.
692          *
693          * The cost is that if the AP switching was from an AP with keys
694          * to one without, we still allocate tailroom while it would no
695          * longer be needed. However, in the typical (fast) roaming case
696          * within an ESS this usually won't happen.
697          */
698
699         mutex_lock(&sdata->local->key_mtx);
700         sdata->crypto_tx_tailroom_needed_cnt -=
701                 sdata->crypto_tx_tailroom_pending_dec;
702         sdata->crypto_tx_tailroom_pending_dec = 0;
703         mutex_unlock(&sdata->local->key_mtx);
704 }
705
706 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
707                                 const u8 *replay_ctr, gfp_t gfp)
708 {
709         struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
710
711         trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
712
713         cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
714 }
715 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
716
717 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
718                               struct ieee80211_key_seq *seq)
719 {
720         struct ieee80211_key *key;
721         u64 pn64;
722
723         if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
724                 return;
725
726         key = container_of(keyconf, struct ieee80211_key, conf);
727
728         switch (key->conf.cipher) {
729         case WLAN_CIPHER_SUITE_TKIP:
730                 seq->tkip.iv32 = key->u.tkip.tx.iv32;
731                 seq->tkip.iv16 = key->u.tkip.tx.iv16;
732                 break;
733         case WLAN_CIPHER_SUITE_CCMP:
734                 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
735                 seq->ccmp.pn[5] = pn64;
736                 seq->ccmp.pn[4] = pn64 >> 8;
737                 seq->ccmp.pn[3] = pn64 >> 16;
738                 seq->ccmp.pn[2] = pn64 >> 24;
739                 seq->ccmp.pn[1] = pn64 >> 32;
740                 seq->ccmp.pn[0] = pn64 >> 40;
741                 break;
742         case WLAN_CIPHER_SUITE_AES_CMAC:
743                 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
744                 seq->ccmp.pn[5] = pn64;
745                 seq->ccmp.pn[4] = pn64 >> 8;
746                 seq->ccmp.pn[3] = pn64 >> 16;
747                 seq->ccmp.pn[2] = pn64 >> 24;
748                 seq->ccmp.pn[1] = pn64 >> 32;
749                 seq->ccmp.pn[0] = pn64 >> 40;
750                 break;
751         default:
752                 WARN_ON(1);
753         }
754 }
755 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
756
757 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
758                               int tid, struct ieee80211_key_seq *seq)
759 {
760         struct ieee80211_key *key;
761         const u8 *pn;
762
763         key = container_of(keyconf, struct ieee80211_key, conf);
764
765         switch (key->conf.cipher) {
766         case WLAN_CIPHER_SUITE_TKIP:
767                 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
768                         return;
769                 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
770                 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
771                 break;
772         case WLAN_CIPHER_SUITE_CCMP:
773                 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
774                         return;
775                 if (tid < 0)
776                         pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
777                 else
778                         pn = key->u.ccmp.rx_pn[tid];
779                 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
780                 break;
781         case WLAN_CIPHER_SUITE_AES_CMAC:
782                 if (WARN_ON(tid != 0))
783                         return;
784                 pn = key->u.aes_cmac.rx_pn;
785                 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
786                 break;
787         }
788 }
789 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
790
791 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
792                               struct ieee80211_key_seq *seq)
793 {
794         struct ieee80211_key *key;
795         u64 pn64;
796
797         key = container_of(keyconf, struct ieee80211_key, conf);
798
799         switch (key->conf.cipher) {
800         case WLAN_CIPHER_SUITE_TKIP:
801                 key->u.tkip.tx.iv32 = seq->tkip.iv32;
802                 key->u.tkip.tx.iv16 = seq->tkip.iv16;
803                 break;
804         case WLAN_CIPHER_SUITE_CCMP:
805                 pn64 = (u64)seq->ccmp.pn[5] |
806                        ((u64)seq->ccmp.pn[4] << 8) |
807                        ((u64)seq->ccmp.pn[3] << 16) |
808                        ((u64)seq->ccmp.pn[2] << 24) |
809                        ((u64)seq->ccmp.pn[1] << 32) |
810                        ((u64)seq->ccmp.pn[0] << 40);
811                 atomic64_set(&key->u.ccmp.tx_pn, pn64);
812                 break;
813         case WLAN_CIPHER_SUITE_AES_CMAC:
814                 pn64 = (u64)seq->aes_cmac.pn[5] |
815                        ((u64)seq->aes_cmac.pn[4] << 8) |
816                        ((u64)seq->aes_cmac.pn[3] << 16) |
817                        ((u64)seq->aes_cmac.pn[2] << 24) |
818                        ((u64)seq->aes_cmac.pn[1] << 32) |
819                        ((u64)seq->aes_cmac.pn[0] << 40);
820                 atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
821                 break;
822         default:
823                 WARN_ON(1);
824                 break;
825         }
826 }
827 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
828
829 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
830                               int tid, struct ieee80211_key_seq *seq)
831 {
832         struct ieee80211_key *key;
833         u8 *pn;
834
835         key = container_of(keyconf, struct ieee80211_key, conf);
836
837         switch (key->conf.cipher) {
838         case WLAN_CIPHER_SUITE_TKIP:
839                 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
840                         return;
841                 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
842                 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
843                 break;
844         case WLAN_CIPHER_SUITE_CCMP:
845                 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
846                         return;
847                 if (tid < 0)
848                         pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
849                 else
850                         pn = key->u.ccmp.rx_pn[tid];
851                 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
852                 break;
853         case WLAN_CIPHER_SUITE_AES_CMAC:
854                 if (WARN_ON(tid != 0))
855                         return;
856                 pn = key->u.aes_cmac.rx_pn;
857                 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
858                 break;
859         default:
860                 WARN_ON(1);
861                 break;
862         }
863 }
864 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
865
866 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
867 {
868         struct ieee80211_key *key;
869
870         key = container_of(keyconf, struct ieee80211_key, conf);
871
872         assert_key_lock(key->local);
873
874         /*
875          * if key was uploaded, we assume the driver will/has remove(d)
876          * it, so adjust bookkeeping accordingly
877          */
878         if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
879                 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
880
881                 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
882                       (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
883                       (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
884                         increment_tailroom_need_count(key->sdata);
885         }
886
887         ieee80211_key_free(key, false);
888 }
889 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
890
891 struct ieee80211_key_conf *
892 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
893                         struct ieee80211_key_conf *keyconf)
894 {
895         struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
896         struct ieee80211_local *local = sdata->local;
897         struct ieee80211_key *key;
898         int err;
899
900         if (WARN_ON(!local->wowlan))
901                 return ERR_PTR(-EINVAL);
902
903         if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
904                 return ERR_PTR(-EINVAL);
905
906         key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
907                                   keyconf->keylen, keyconf->key,
908                                   0, NULL, NULL);
909         if (IS_ERR(key))
910                 return ERR_CAST(key);
911
912         if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
913                 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
914
915         err = ieee80211_key_link(key, sdata, NULL);
916         if (err)
917                 return ERR_PTR(err);
918
919         return &key->conf;
920 }
921 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);