Merge branch 'kconfig' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc...
[pandora-kernel.git] / net / ipv6 / route.c
1 /*
2  *      Linux INET6 implementation
3  *      FIB front-end.
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      $Id: route.c,v 1.56 2001/10/31 21:55:55 davem Exp $
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 /*      Changes:
17  *
18  *      YOSHIFUJI Hideaki @USAGI
19  *              reworked default router selection.
20  *              - respect outgoing interface
21  *              - select from (probably) reachable routers (i.e.
22  *              routers in REACHABLE, STALE, DELAY or PROBE states).
23  *              - always select the same router if it is (probably)
24  *              reachable.  otherwise, round-robin the list.
25  *      Ville Nuorvala
26  *              Fixed routing subtrees.
27  */
28
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/types.h>
32 #include <linux/times.h>
33 #include <linux/socket.h>
34 #include <linux/sockios.h>
35 #include <linux/net.h>
36 #include <linux/route.h>
37 #include <linux/netdevice.h>
38 #include <linux/in6.h>
39 #include <linux/init.h>
40 #include <linux/if_arp.h>
41
42 #ifdef  CONFIG_PROC_FS
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #endif
46
47 #include <net/snmp.h>
48 #include <net/ipv6.h>
49 #include <net/ip6_fib.h>
50 #include <net/ip6_route.h>
51 #include <net/ndisc.h>
52 #include <net/addrconf.h>
53 #include <net/tcp.h>
54 #include <linux/rtnetlink.h>
55 #include <net/dst.h>
56 #include <net/xfrm.h>
57 #include <net/netevent.h>
58 #include <net/netlink.h>
59
60 #include <asm/uaccess.h>
61
62 #ifdef CONFIG_SYSCTL
63 #include <linux/sysctl.h>
64 #endif
65
66 /* Set to 3 to get tracing. */
67 #define RT6_DEBUG 2
68
69 #if RT6_DEBUG >= 3
70 #define RDBG(x) printk x
71 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
72 #else
73 #define RDBG(x)
74 #define RT6_TRACE(x...) do { ; } while (0)
75 #endif
76
77 #define CLONE_OFFLINK_ROUTE 0
78
79 static int ip6_rt_max_size = 4096;
80 static int ip6_rt_gc_min_interval = HZ / 2;
81 static int ip6_rt_gc_timeout = 60*HZ;
82 int ip6_rt_gc_interval = 30*HZ;
83 static int ip6_rt_gc_elasticity = 9;
84 static int ip6_rt_mtu_expires = 10*60*HZ;
85 static int ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
86
87 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort);
88 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie);
89 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
90 static void             ip6_dst_destroy(struct dst_entry *);
91 static void             ip6_dst_ifdown(struct dst_entry *,
92                                        struct net_device *dev, int how);
93 static int               ip6_dst_gc(void);
94
95 static int              ip6_pkt_discard(struct sk_buff *skb);
96 static int              ip6_pkt_discard_out(struct sk_buff *skb);
97 static void             ip6_link_failure(struct sk_buff *skb);
98 static void             ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
99
100 #ifdef CONFIG_IPV6_ROUTE_INFO
101 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
102                                            struct in6_addr *gwaddr, int ifindex,
103                                            unsigned pref);
104 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
105                                            struct in6_addr *gwaddr, int ifindex);
106 #endif
107
108 static struct dst_ops ip6_dst_ops = {
109         .family                 =       AF_INET6,
110         .protocol               =       __constant_htons(ETH_P_IPV6),
111         .gc                     =       ip6_dst_gc,
112         .gc_thresh              =       1024,
113         .check                  =       ip6_dst_check,
114         .destroy                =       ip6_dst_destroy,
115         .ifdown                 =       ip6_dst_ifdown,
116         .negative_advice        =       ip6_negative_advice,
117         .link_failure           =       ip6_link_failure,
118         .update_pmtu            =       ip6_rt_update_pmtu,
119         .entry_size             =       sizeof(struct rt6_info),
120 };
121
122 struct rt6_info ip6_null_entry = {
123         .u = {
124                 .dst = {
125                         .__refcnt       = ATOMIC_INIT(1),
126                         .__use          = 1,
127                         .dev            = &loopback_dev,
128                         .obsolete       = -1,
129                         .error          = -ENETUNREACH,
130                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
131                         .input          = ip6_pkt_discard,
132                         .output         = ip6_pkt_discard_out,
133                         .ops            = &ip6_dst_ops,
134                         .path           = (struct dst_entry*)&ip6_null_entry,
135                 }
136         },
137         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
138         .rt6i_metric    = ~(u32) 0,
139         .rt6i_ref       = ATOMIC_INIT(1),
140 };
141
142 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
143
144 static int ip6_pkt_prohibit(struct sk_buff *skb);
145 static int ip6_pkt_prohibit_out(struct sk_buff *skb);
146 static int ip6_pkt_blk_hole(struct sk_buff *skb);
147
148 struct rt6_info ip6_prohibit_entry = {
149         .u = {
150                 .dst = {
151                         .__refcnt       = ATOMIC_INIT(1),
152                         .__use          = 1,
153                         .dev            = &loopback_dev,
154                         .obsolete       = -1,
155                         .error          = -EACCES,
156                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
157                         .input          = ip6_pkt_prohibit,
158                         .output         = ip6_pkt_prohibit_out,
159                         .ops            = &ip6_dst_ops,
160                         .path           = (struct dst_entry*)&ip6_prohibit_entry,
161                 }
162         },
163         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
164         .rt6i_metric    = ~(u32) 0,
165         .rt6i_ref       = ATOMIC_INIT(1),
166 };
167
168 struct rt6_info ip6_blk_hole_entry = {
169         .u = {
170                 .dst = {
171                         .__refcnt       = ATOMIC_INIT(1),
172                         .__use          = 1,
173                         .dev            = &loopback_dev,
174                         .obsolete       = -1,
175                         .error          = -EINVAL,
176                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
177                         .input          = ip6_pkt_blk_hole,
178                         .output         = ip6_pkt_blk_hole,
179                         .ops            = &ip6_dst_ops,
180                         .path           = (struct dst_entry*)&ip6_blk_hole_entry,
181                 }
182         },
183         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
184         .rt6i_metric    = ~(u32) 0,
185         .rt6i_ref       = ATOMIC_INIT(1),
186 };
187
188 #endif
189
190 /* allocate dst with ip6_dst_ops */
191 static __inline__ struct rt6_info *ip6_dst_alloc(void)
192 {
193         return (struct rt6_info *)dst_alloc(&ip6_dst_ops);
194 }
195
196 static void ip6_dst_destroy(struct dst_entry *dst)
197 {
198         struct rt6_info *rt = (struct rt6_info *)dst;
199         struct inet6_dev *idev = rt->rt6i_idev;
200
201         if (idev != NULL) {
202                 rt->rt6i_idev = NULL;
203                 in6_dev_put(idev);
204         }
205 }
206
207 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
208                            int how)
209 {
210         struct rt6_info *rt = (struct rt6_info *)dst;
211         struct inet6_dev *idev = rt->rt6i_idev;
212
213         if (dev != &loopback_dev && idev != NULL && idev->dev == dev) {
214                 struct inet6_dev *loopback_idev = in6_dev_get(&loopback_dev);
215                 if (loopback_idev != NULL) {
216                         rt->rt6i_idev = loopback_idev;
217                         in6_dev_put(idev);
218                 }
219         }
220 }
221
222 static __inline__ int rt6_check_expired(const struct rt6_info *rt)
223 {
224         return (rt->rt6i_flags & RTF_EXPIRES &&
225                 time_after(jiffies, rt->rt6i_expires));
226 }
227
228 static inline int rt6_need_strict(struct in6_addr *daddr)
229 {
230         return (ipv6_addr_type(daddr) &
231                 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL));
232 }
233
234 /*
235  *      Route lookup. Any table->tb6_lock is implied.
236  */
237
238 static __inline__ struct rt6_info *rt6_device_match(struct rt6_info *rt,
239                                                     int oif,
240                                                     int strict)
241 {
242         struct rt6_info *local = NULL;
243         struct rt6_info *sprt;
244
245         if (oif) {
246                 for (sprt = rt; sprt; sprt = sprt->u.dst.rt6_next) {
247                         struct net_device *dev = sprt->rt6i_dev;
248                         if (dev->ifindex == oif)
249                                 return sprt;
250                         if (dev->flags & IFF_LOOPBACK) {
251                                 if (sprt->rt6i_idev == NULL ||
252                                     sprt->rt6i_idev->dev->ifindex != oif) {
253                                         if (strict && oif)
254                                                 continue;
255                                         if (local && (!oif ||
256                                                       local->rt6i_idev->dev->ifindex == oif))
257                                                 continue;
258                                 }
259                                 local = sprt;
260                         }
261                 }
262
263                 if (local)
264                         return local;
265
266                 if (strict)
267                         return &ip6_null_entry;
268         }
269         return rt;
270 }
271
272 #ifdef CONFIG_IPV6_ROUTER_PREF
273 static void rt6_probe(struct rt6_info *rt)
274 {
275         struct neighbour *neigh = rt ? rt->rt6i_nexthop : NULL;
276         /*
277          * Okay, this does not seem to be appropriate
278          * for now, however, we need to check if it
279          * is really so; aka Router Reachability Probing.
280          *
281          * Router Reachability Probe MUST be rate-limited
282          * to no more than one per minute.
283          */
284         if (!neigh || (neigh->nud_state & NUD_VALID))
285                 return;
286         read_lock_bh(&neigh->lock);
287         if (!(neigh->nud_state & NUD_VALID) &&
288             time_after(jiffies, neigh->updated + rt->rt6i_idev->cnf.rtr_probe_interval)) {
289                 struct in6_addr mcaddr;
290                 struct in6_addr *target;
291
292                 neigh->updated = jiffies;
293                 read_unlock_bh(&neigh->lock);
294
295                 target = (struct in6_addr *)&neigh->primary_key;
296                 addrconf_addr_solict_mult(target, &mcaddr);
297                 ndisc_send_ns(rt->rt6i_dev, NULL, target, &mcaddr, NULL);
298         } else
299                 read_unlock_bh(&neigh->lock);
300 }
301 #else
302 static inline void rt6_probe(struct rt6_info *rt)
303 {
304         return;
305 }
306 #endif
307
308 /*
309  * Default Router Selection (RFC 2461 6.3.6)
310  */
311 static inline int rt6_check_dev(struct rt6_info *rt, int oif)
312 {
313         struct net_device *dev = rt->rt6i_dev;
314         if (!oif || dev->ifindex == oif)
315                 return 2;
316         if ((dev->flags & IFF_LOOPBACK) &&
317             rt->rt6i_idev && rt->rt6i_idev->dev->ifindex == oif)
318                 return 1;
319         return 0;
320 }
321
322 static inline int rt6_check_neigh(struct rt6_info *rt)
323 {
324         struct neighbour *neigh = rt->rt6i_nexthop;
325         int m = 0;
326         if (rt->rt6i_flags & RTF_NONEXTHOP ||
327             !(rt->rt6i_flags & RTF_GATEWAY))
328                 m = 1;
329         else if (neigh) {
330                 read_lock_bh(&neigh->lock);
331                 if (neigh->nud_state & NUD_VALID)
332                         m = 2;
333                 else if (!(neigh->nud_state & NUD_FAILED))
334                         m = 1;
335                 read_unlock_bh(&neigh->lock);
336         }
337         return m;
338 }
339
340 static int rt6_score_route(struct rt6_info *rt, int oif,
341                            int strict)
342 {
343         int m, n;
344
345         m = rt6_check_dev(rt, oif);
346         if (!m && (strict & RT6_LOOKUP_F_IFACE))
347                 return -1;
348 #ifdef CONFIG_IPV6_ROUTER_PREF
349         m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->rt6i_flags)) << 2;
350 #endif
351         n = rt6_check_neigh(rt);
352         if (!n && (strict & RT6_LOOKUP_F_REACHABLE))
353                 return -1;
354         return m;
355 }
356
357 static struct rt6_info *find_match(struct rt6_info *rt, int oif, int strict,
358                                    int *mpri, struct rt6_info *match)
359 {
360         int m;
361
362         if (rt6_check_expired(rt))
363                 goto out;
364
365         m = rt6_score_route(rt, oif, strict);
366         if (m < 0)
367                 goto out;
368
369         if (m > *mpri) {
370                 if (strict & RT6_LOOKUP_F_REACHABLE)
371                         rt6_probe(match);
372                 *mpri = m;
373                 match = rt;
374         } else if (strict & RT6_LOOKUP_F_REACHABLE) {
375                 rt6_probe(rt);
376         }
377
378 out:
379         return match;
380 }
381
382 static struct rt6_info *find_rr_leaf(struct fib6_node *fn,
383                                      struct rt6_info *rr_head,
384                                      u32 metric, int oif, int strict)
385 {
386         struct rt6_info *rt, *match;
387         int mpri = -1;
388
389         match = NULL;
390         for (rt = rr_head; rt && rt->rt6i_metric == metric;
391              rt = rt->u.dst.rt6_next)
392                 match = find_match(rt, oif, strict, &mpri, match);
393         for (rt = fn->leaf; rt && rt != rr_head && rt->rt6i_metric == metric;
394              rt = rt->u.dst.rt6_next)
395                 match = find_match(rt, oif, strict, &mpri, match);
396
397         return match;
398 }
399
400 static struct rt6_info *rt6_select(struct fib6_node *fn, int oif, int strict)
401 {
402         struct rt6_info *match, *rt0;
403
404         RT6_TRACE("%s(fn->leaf=%p, oif=%d)\n",
405                   __FUNCTION__, fn->leaf, oif);
406
407         rt0 = fn->rr_ptr;
408         if (!rt0)
409                 fn->rr_ptr = rt0 = fn->leaf;
410
411         match = find_rr_leaf(fn, rt0, rt0->rt6i_metric, oif, strict);
412
413         if (!match &&
414             (strict & RT6_LOOKUP_F_REACHABLE)) {
415                 struct rt6_info *next = rt0->u.dst.rt6_next;
416
417                 /* no entries matched; do round-robin */
418                 if (!next || next->rt6i_metric != rt0->rt6i_metric)
419                         next = fn->leaf;
420
421                 if (next != rt0)
422                         fn->rr_ptr = next;
423         }
424
425         RT6_TRACE("%s() => %p\n",
426                   __FUNCTION__, match);
427
428         return (match ? match : &ip6_null_entry);
429 }
430
431 #ifdef CONFIG_IPV6_ROUTE_INFO
432 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
433                   struct in6_addr *gwaddr)
434 {
435         struct route_info *rinfo = (struct route_info *) opt;
436         struct in6_addr prefix_buf, *prefix;
437         unsigned int pref;
438         u32 lifetime;
439         struct rt6_info *rt;
440
441         if (len < sizeof(struct route_info)) {
442                 return -EINVAL;
443         }
444
445         /* Sanity check for prefix_len and length */
446         if (rinfo->length > 3) {
447                 return -EINVAL;
448         } else if (rinfo->prefix_len > 128) {
449                 return -EINVAL;
450         } else if (rinfo->prefix_len > 64) {
451                 if (rinfo->length < 2) {
452                         return -EINVAL;
453                 }
454         } else if (rinfo->prefix_len > 0) {
455                 if (rinfo->length < 1) {
456                         return -EINVAL;
457                 }
458         }
459
460         pref = rinfo->route_pref;
461         if (pref == ICMPV6_ROUTER_PREF_INVALID)
462                 pref = ICMPV6_ROUTER_PREF_MEDIUM;
463
464         lifetime = ntohl(rinfo->lifetime);
465         if (lifetime == 0xffffffff) {
466                 /* infinity */
467         } else if (lifetime > 0x7fffffff/HZ) {
468                 /* Avoid arithmetic overflow */
469                 lifetime = 0x7fffffff/HZ - 1;
470         }
471
472         if (rinfo->length == 3)
473                 prefix = (struct in6_addr *)rinfo->prefix;
474         else {
475                 /* this function is safe */
476                 ipv6_addr_prefix(&prefix_buf,
477                                  (struct in6_addr *)rinfo->prefix,
478                                  rinfo->prefix_len);
479                 prefix = &prefix_buf;
480         }
481
482         rt = rt6_get_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex);
483
484         if (rt && !lifetime) {
485                 ip6_del_rt(rt);
486                 rt = NULL;
487         }
488
489         if (!rt && lifetime)
490                 rt = rt6_add_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex,
491                                         pref);
492         else if (rt)
493                 rt->rt6i_flags = RTF_ROUTEINFO |
494                                  (rt->rt6i_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
495
496         if (rt) {
497                 if (lifetime == 0xffffffff) {
498                         rt->rt6i_flags &= ~RTF_EXPIRES;
499                 } else {
500                         rt->rt6i_expires = jiffies + HZ * lifetime;
501                         rt->rt6i_flags |= RTF_EXPIRES;
502                 }
503                 dst_release(&rt->u.dst);
504         }
505         return 0;
506 }
507 #endif
508
509 #define BACKTRACK(saddr) \
510 do { \
511         if (rt == &ip6_null_entry) { \
512                 struct fib6_node *pn; \
513                 while (1) { \
514                         if (fn->fn_flags & RTN_TL_ROOT) \
515                                 goto out; \
516                         pn = fn->parent; \
517                         if (FIB6_SUBTREE(pn) && FIB6_SUBTREE(pn) != fn) \
518                                 fn = fib6_lookup(FIB6_SUBTREE(pn), NULL, saddr); \
519                         else \
520                                 fn = pn; \
521                         if (fn->fn_flags & RTN_RTINFO) \
522                                 goto restart; \
523                 } \
524         } \
525 } while(0)
526
527 static struct rt6_info *ip6_pol_route_lookup(struct fib6_table *table,
528                                              struct flowi *fl, int flags)
529 {
530         struct fib6_node *fn;
531         struct rt6_info *rt;
532
533         read_lock_bh(&table->tb6_lock);
534         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
535 restart:
536         rt = fn->leaf;
537         rt = rt6_device_match(rt, fl->oif, flags);
538         BACKTRACK(&fl->fl6_src);
539 out:
540         dst_hold(&rt->u.dst);
541         read_unlock_bh(&table->tb6_lock);
542
543         rt->u.dst.lastuse = jiffies;
544         rt->u.dst.__use++;
545
546         return rt;
547
548 }
549
550 struct rt6_info *rt6_lookup(struct in6_addr *daddr, struct in6_addr *saddr,
551                             int oif, int strict)
552 {
553         struct flowi fl = {
554                 .oif = oif,
555                 .nl_u = {
556                         .ip6_u = {
557                                 .daddr = *daddr,
558                         },
559                 },
560         };
561         struct dst_entry *dst;
562         int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
563
564         if (saddr) {
565                 memcpy(&fl.fl6_src, saddr, sizeof(*saddr));
566                 flags |= RT6_LOOKUP_F_HAS_SADDR;
567         }
568
569         dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_lookup);
570         if (dst->error == 0)
571                 return (struct rt6_info *) dst;
572
573         dst_release(dst);
574
575         return NULL;
576 }
577
578 /* ip6_ins_rt is called with FREE table->tb6_lock.
579    It takes new route entry, the addition fails by any reason the
580    route is freed. In any case, if caller does not hold it, it may
581    be destroyed.
582  */
583
584 static int __ip6_ins_rt(struct rt6_info *rt, struct nl_info *info)
585 {
586         int err;
587         struct fib6_table *table;
588
589         table = rt->rt6i_table;
590         write_lock_bh(&table->tb6_lock);
591         err = fib6_add(&table->tb6_root, rt, info);
592         write_unlock_bh(&table->tb6_lock);
593
594         return err;
595 }
596
597 int ip6_ins_rt(struct rt6_info *rt)
598 {
599         return __ip6_ins_rt(rt, NULL);
600 }
601
602 static struct rt6_info *rt6_alloc_cow(struct rt6_info *ort, struct in6_addr *daddr,
603                                       struct in6_addr *saddr)
604 {
605         struct rt6_info *rt;
606
607         /*
608          *      Clone the route.
609          */
610
611         rt = ip6_rt_copy(ort);
612
613         if (rt) {
614                 if (!(rt->rt6i_flags&RTF_GATEWAY)) {
615                         if (rt->rt6i_dst.plen != 128 &&
616                             ipv6_addr_equal(&rt->rt6i_dst.addr, daddr))
617                                 rt->rt6i_flags |= RTF_ANYCAST;
618                         ipv6_addr_copy(&rt->rt6i_gateway, daddr);
619                 }
620
621                 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
622                 rt->rt6i_dst.plen = 128;
623                 rt->rt6i_flags |= RTF_CACHE;
624                 rt->u.dst.flags |= DST_HOST;
625
626 #ifdef CONFIG_IPV6_SUBTREES
627                 if (rt->rt6i_src.plen && saddr) {
628                         ipv6_addr_copy(&rt->rt6i_src.addr, saddr);
629                         rt->rt6i_src.plen = 128;
630                 }
631 #endif
632
633                 rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
634
635         }
636
637         return rt;
638 }
639
640 static struct rt6_info *rt6_alloc_clone(struct rt6_info *ort, struct in6_addr *daddr)
641 {
642         struct rt6_info *rt = ip6_rt_copy(ort);
643         if (rt) {
644                 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
645                 rt->rt6i_dst.plen = 128;
646                 rt->rt6i_flags |= RTF_CACHE;
647                 rt->u.dst.flags |= DST_HOST;
648                 rt->rt6i_nexthop = neigh_clone(ort->rt6i_nexthop);
649         }
650         return rt;
651 }
652
653 static struct rt6_info *ip6_pol_route_input(struct fib6_table *table,
654                                             struct flowi *fl, int flags)
655 {
656         struct fib6_node *fn;
657         struct rt6_info *rt, *nrt;
658         int strict = 0;
659         int attempts = 3;
660         int err;
661         int reachable = ipv6_devconf.forwarding ? 0 : RT6_LOOKUP_F_REACHABLE;
662
663         strict |= flags & RT6_LOOKUP_F_IFACE;
664
665 relookup:
666         read_lock_bh(&table->tb6_lock);
667
668 restart_2:
669         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
670
671 restart:
672         rt = rt6_select(fn, fl->iif, strict | reachable);
673         BACKTRACK(&fl->fl6_src);
674         if (rt == &ip6_null_entry ||
675             rt->rt6i_flags & RTF_CACHE)
676                 goto out;
677
678         dst_hold(&rt->u.dst);
679         read_unlock_bh(&table->tb6_lock);
680
681         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
682                 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
683         else {
684 #if CLONE_OFFLINK_ROUTE
685                 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
686 #else
687                 goto out2;
688 #endif
689         }
690
691         dst_release(&rt->u.dst);
692         rt = nrt ? : &ip6_null_entry;
693
694         dst_hold(&rt->u.dst);
695         if (nrt) {
696                 err = ip6_ins_rt(nrt);
697                 if (!err)
698                         goto out2;
699         }
700
701         if (--attempts <= 0)
702                 goto out2;
703
704         /*
705          * Race condition! In the gap, when table->tb6_lock was
706          * released someone could insert this route.  Relookup.
707          */
708         dst_release(&rt->u.dst);
709         goto relookup;
710
711 out:
712         if (reachable) {
713                 reachable = 0;
714                 goto restart_2;
715         }
716         dst_hold(&rt->u.dst);
717         read_unlock_bh(&table->tb6_lock);
718 out2:
719         rt->u.dst.lastuse = jiffies;
720         rt->u.dst.__use++;
721
722         return rt;
723 }
724
725 void ip6_route_input(struct sk_buff *skb)
726 {
727         struct ipv6hdr *iph = skb->nh.ipv6h;
728         int flags = RT6_LOOKUP_F_HAS_SADDR;
729         struct flowi fl = {
730                 .iif = skb->dev->ifindex,
731                 .nl_u = {
732                         .ip6_u = {
733                                 .daddr = iph->daddr,
734                                 .saddr = iph->saddr,
735                                 .flowlabel = (* (__be32 *) iph)&IPV6_FLOWINFO_MASK,
736                         },
737                 },
738                 .mark = skb->mark,
739                 .proto = iph->nexthdr,
740         };
741
742         if (rt6_need_strict(&iph->daddr))
743                 flags |= RT6_LOOKUP_F_IFACE;
744
745         skb->dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_input);
746 }
747
748 static struct rt6_info *ip6_pol_route_output(struct fib6_table *table,
749                                              struct flowi *fl, int flags)
750 {
751         struct fib6_node *fn;
752         struct rt6_info *rt, *nrt;
753         int strict = 0;
754         int attempts = 3;
755         int err;
756         int reachable = ipv6_devconf.forwarding ? 0 : RT6_LOOKUP_F_REACHABLE;
757
758         strict |= flags & RT6_LOOKUP_F_IFACE;
759
760 relookup:
761         read_lock_bh(&table->tb6_lock);
762
763 restart_2:
764         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
765
766 restart:
767         rt = rt6_select(fn, fl->oif, strict | reachable);
768         BACKTRACK(&fl->fl6_src);
769         if (rt == &ip6_null_entry ||
770             rt->rt6i_flags & RTF_CACHE)
771                 goto out;
772
773         dst_hold(&rt->u.dst);
774         read_unlock_bh(&table->tb6_lock);
775
776         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
777                 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
778         else {
779 #if CLONE_OFFLINK_ROUTE
780                 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
781 #else
782                 goto out2;
783 #endif
784         }
785
786         dst_release(&rt->u.dst);
787         rt = nrt ? : &ip6_null_entry;
788
789         dst_hold(&rt->u.dst);
790         if (nrt) {
791                 err = ip6_ins_rt(nrt);
792                 if (!err)
793                         goto out2;
794         }
795
796         if (--attempts <= 0)
797                 goto out2;
798
799         /*
800          * Race condition! In the gap, when table->tb6_lock was
801          * released someone could insert this route.  Relookup.
802          */
803         dst_release(&rt->u.dst);
804         goto relookup;
805
806 out:
807         if (reachable) {
808                 reachable = 0;
809                 goto restart_2;
810         }
811         dst_hold(&rt->u.dst);
812         read_unlock_bh(&table->tb6_lock);
813 out2:
814         rt->u.dst.lastuse = jiffies;
815         rt->u.dst.__use++;
816         return rt;
817 }
818
819 struct dst_entry * ip6_route_output(struct sock *sk, struct flowi *fl)
820 {
821         int flags = 0;
822
823         if (rt6_need_strict(&fl->fl6_dst))
824                 flags |= RT6_LOOKUP_F_IFACE;
825
826         if (!ipv6_addr_any(&fl->fl6_src))
827                 flags |= RT6_LOOKUP_F_HAS_SADDR;
828
829         return fib6_rule_lookup(fl, flags, ip6_pol_route_output);
830 }
831
832
833 /*
834  *      Destination cache support functions
835  */
836
837 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
838 {
839         struct rt6_info *rt;
840
841         rt = (struct rt6_info *) dst;
842
843         if (rt && rt->rt6i_node && (rt->rt6i_node->fn_sernum == cookie))
844                 return dst;
845
846         return NULL;
847 }
848
849 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
850 {
851         struct rt6_info *rt = (struct rt6_info *) dst;
852
853         if (rt) {
854                 if (rt->rt6i_flags & RTF_CACHE)
855                         ip6_del_rt(rt);
856                 else
857                         dst_release(dst);
858         }
859         return NULL;
860 }
861
862 static void ip6_link_failure(struct sk_buff *skb)
863 {
864         struct rt6_info *rt;
865
866         icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0, skb->dev);
867
868         rt = (struct rt6_info *) skb->dst;
869         if (rt) {
870                 if (rt->rt6i_flags&RTF_CACHE) {
871                         dst_set_expires(&rt->u.dst, 0);
872                         rt->rt6i_flags |= RTF_EXPIRES;
873                 } else if (rt->rt6i_node && (rt->rt6i_flags & RTF_DEFAULT))
874                         rt->rt6i_node->fn_sernum = -1;
875         }
876 }
877
878 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
879 {
880         struct rt6_info *rt6 = (struct rt6_info*)dst;
881
882         if (mtu < dst_mtu(dst) && rt6->rt6i_dst.plen == 128) {
883                 rt6->rt6i_flags |= RTF_MODIFIED;
884                 if (mtu < IPV6_MIN_MTU) {
885                         mtu = IPV6_MIN_MTU;
886                         dst->metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
887                 }
888                 dst->metrics[RTAX_MTU-1] = mtu;
889                 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
890         }
891 }
892
893 static int ipv6_get_mtu(struct net_device *dev);
894
895 static inline unsigned int ipv6_advmss(unsigned int mtu)
896 {
897         mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
898
899         if (mtu < ip6_rt_min_advmss)
900                 mtu = ip6_rt_min_advmss;
901
902         /*
903          * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
904          * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
905          * IPV6_MAXPLEN is also valid and means: "any MSS,
906          * rely only on pmtu discovery"
907          */
908         if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
909                 mtu = IPV6_MAXPLEN;
910         return mtu;
911 }
912
913 static struct dst_entry *ndisc_dst_gc_list;
914 static DEFINE_SPINLOCK(ndisc_lock);
915
916 struct dst_entry *ndisc_dst_alloc(struct net_device *dev,
917                                   struct neighbour *neigh,
918                                   struct in6_addr *addr,
919                                   int (*output)(struct sk_buff *))
920 {
921         struct rt6_info *rt;
922         struct inet6_dev *idev = in6_dev_get(dev);
923
924         if (unlikely(idev == NULL))
925                 return NULL;
926
927         rt = ip6_dst_alloc();
928         if (unlikely(rt == NULL)) {
929                 in6_dev_put(idev);
930                 goto out;
931         }
932
933         dev_hold(dev);
934         if (neigh)
935                 neigh_hold(neigh);
936         else
937                 neigh = ndisc_get_neigh(dev, addr);
938
939         rt->rt6i_dev      = dev;
940         rt->rt6i_idev     = idev;
941         rt->rt6i_nexthop  = neigh;
942         atomic_set(&rt->u.dst.__refcnt, 1);
943         rt->u.dst.metrics[RTAX_HOPLIMIT-1] = 255;
944         rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
945         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
946         rt->u.dst.output  = output;
947
948 #if 0   /* there's no chance to use these for ndisc */
949         rt->u.dst.flags   = ipv6_addr_type(addr) & IPV6_ADDR_UNICAST
950                                 ? DST_HOST
951                                 : 0;
952         ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
953         rt->rt6i_dst.plen = 128;
954 #endif
955
956         spin_lock_bh(&ndisc_lock);
957         rt->u.dst.next = ndisc_dst_gc_list;
958         ndisc_dst_gc_list = &rt->u.dst;
959         spin_unlock_bh(&ndisc_lock);
960
961         fib6_force_start_gc();
962
963 out:
964         return &rt->u.dst;
965 }
966
967 int ndisc_dst_gc(int *more)
968 {
969         struct dst_entry *dst, *next, **pprev;
970         int freed;
971
972         next = NULL;
973         freed = 0;
974
975         spin_lock_bh(&ndisc_lock);
976         pprev = &ndisc_dst_gc_list;
977
978         while ((dst = *pprev) != NULL) {
979                 if (!atomic_read(&dst->__refcnt)) {
980                         *pprev = dst->next;
981                         dst_free(dst);
982                         freed++;
983                 } else {
984                         pprev = &dst->next;
985                         (*more)++;
986                 }
987         }
988
989         spin_unlock_bh(&ndisc_lock);
990
991         return freed;
992 }
993
994 static int ip6_dst_gc(void)
995 {
996         static unsigned expire = 30*HZ;
997         static unsigned long last_gc;
998         unsigned long now = jiffies;
999
1000         if (time_after(last_gc + ip6_rt_gc_min_interval, now) &&
1001             atomic_read(&ip6_dst_ops.entries) <= ip6_rt_max_size)
1002                 goto out;
1003
1004         expire++;
1005         fib6_run_gc(expire);
1006         last_gc = now;
1007         if (atomic_read(&ip6_dst_ops.entries) < ip6_dst_ops.gc_thresh)
1008                 expire = ip6_rt_gc_timeout>>1;
1009
1010 out:
1011         expire -= expire>>ip6_rt_gc_elasticity;
1012         return (atomic_read(&ip6_dst_ops.entries) > ip6_rt_max_size);
1013 }
1014
1015 /* Clean host part of a prefix. Not necessary in radix tree,
1016    but results in cleaner routing tables.
1017
1018    Remove it only when all the things will work!
1019  */
1020
1021 static int ipv6_get_mtu(struct net_device *dev)
1022 {
1023         int mtu = IPV6_MIN_MTU;
1024         struct inet6_dev *idev;
1025
1026         idev = in6_dev_get(dev);
1027         if (idev) {
1028                 mtu = idev->cnf.mtu6;
1029                 in6_dev_put(idev);
1030         }
1031         return mtu;
1032 }
1033
1034 int ipv6_get_hoplimit(struct net_device *dev)
1035 {
1036         int hoplimit = ipv6_devconf.hop_limit;
1037         struct inet6_dev *idev;
1038
1039         idev = in6_dev_get(dev);
1040         if (idev) {
1041                 hoplimit = idev->cnf.hop_limit;
1042                 in6_dev_put(idev);
1043         }
1044         return hoplimit;
1045 }
1046
1047 /*
1048  *
1049  */
1050
1051 int ip6_route_add(struct fib6_config *cfg)
1052 {
1053         int err;
1054         struct rt6_info *rt = NULL;
1055         struct net_device *dev = NULL;
1056         struct inet6_dev *idev = NULL;
1057         struct fib6_table *table;
1058         int addr_type;
1059
1060         if (cfg->fc_dst_len > 128 || cfg->fc_src_len > 128)
1061                 return -EINVAL;
1062 #ifndef CONFIG_IPV6_SUBTREES
1063         if (cfg->fc_src_len)
1064                 return -EINVAL;
1065 #endif
1066         if (cfg->fc_ifindex) {
1067                 err = -ENODEV;
1068                 dev = dev_get_by_index(cfg->fc_ifindex);
1069                 if (!dev)
1070                         goto out;
1071                 idev = in6_dev_get(dev);
1072                 if (!idev)
1073                         goto out;
1074         }
1075
1076         if (cfg->fc_metric == 0)
1077                 cfg->fc_metric = IP6_RT_PRIO_USER;
1078
1079         table = fib6_new_table(cfg->fc_table);
1080         if (table == NULL) {
1081                 err = -ENOBUFS;
1082                 goto out;
1083         }
1084
1085         rt = ip6_dst_alloc();
1086
1087         if (rt == NULL) {
1088                 err = -ENOMEM;
1089                 goto out;
1090         }
1091
1092         rt->u.dst.obsolete = -1;
1093         rt->rt6i_expires = jiffies + clock_t_to_jiffies(cfg->fc_expires);
1094
1095         if (cfg->fc_protocol == RTPROT_UNSPEC)
1096                 cfg->fc_protocol = RTPROT_BOOT;
1097         rt->rt6i_protocol = cfg->fc_protocol;
1098
1099         addr_type = ipv6_addr_type(&cfg->fc_dst);
1100
1101         if (addr_type & IPV6_ADDR_MULTICAST)
1102                 rt->u.dst.input = ip6_mc_input;
1103         else
1104                 rt->u.dst.input = ip6_forward;
1105
1106         rt->u.dst.output = ip6_output;
1107
1108         ipv6_addr_prefix(&rt->rt6i_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
1109         rt->rt6i_dst.plen = cfg->fc_dst_len;
1110         if (rt->rt6i_dst.plen == 128)
1111                rt->u.dst.flags = DST_HOST;
1112
1113 #ifdef CONFIG_IPV6_SUBTREES
1114         ipv6_addr_prefix(&rt->rt6i_src.addr, &cfg->fc_src, cfg->fc_src_len);
1115         rt->rt6i_src.plen = cfg->fc_src_len;
1116 #endif
1117
1118         rt->rt6i_metric = cfg->fc_metric;
1119
1120         /* We cannot add true routes via loopback here,
1121            they would result in kernel looping; promote them to reject routes
1122          */
1123         if ((cfg->fc_flags & RTF_REJECT) ||
1124             (dev && (dev->flags&IFF_LOOPBACK) && !(addr_type&IPV6_ADDR_LOOPBACK))) {
1125                 /* hold loopback dev/idev if we haven't done so. */
1126                 if (dev != &loopback_dev) {
1127                         if (dev) {
1128                                 dev_put(dev);
1129                                 in6_dev_put(idev);
1130                         }
1131                         dev = &loopback_dev;
1132                         dev_hold(dev);
1133                         idev = in6_dev_get(dev);
1134                         if (!idev) {
1135                                 err = -ENODEV;
1136                                 goto out;
1137                         }
1138                 }
1139                 rt->u.dst.output = ip6_pkt_discard_out;
1140                 rt->u.dst.input = ip6_pkt_discard;
1141                 rt->u.dst.error = -ENETUNREACH;
1142                 rt->rt6i_flags = RTF_REJECT|RTF_NONEXTHOP;
1143                 goto install_route;
1144         }
1145
1146         if (cfg->fc_flags & RTF_GATEWAY) {
1147                 struct in6_addr *gw_addr;
1148                 int gwa_type;
1149
1150                 gw_addr = &cfg->fc_gateway;
1151                 ipv6_addr_copy(&rt->rt6i_gateway, gw_addr);
1152                 gwa_type = ipv6_addr_type(gw_addr);
1153
1154                 if (gwa_type != (IPV6_ADDR_LINKLOCAL|IPV6_ADDR_UNICAST)) {
1155                         struct rt6_info *grt;
1156
1157                         /* IPv6 strictly inhibits using not link-local
1158                            addresses as nexthop address.
1159                            Otherwise, router will not able to send redirects.
1160                            It is very good, but in some (rare!) circumstances
1161                            (SIT, PtP, NBMA NOARP links) it is handy to allow
1162                            some exceptions. --ANK
1163                          */
1164                         err = -EINVAL;
1165                         if (!(gwa_type&IPV6_ADDR_UNICAST))
1166                                 goto out;
1167
1168                         grt = rt6_lookup(gw_addr, NULL, cfg->fc_ifindex, 1);
1169
1170                         err = -EHOSTUNREACH;
1171                         if (grt == NULL)
1172                                 goto out;
1173                         if (dev) {
1174                                 if (dev != grt->rt6i_dev) {
1175                                         dst_release(&grt->u.dst);
1176                                         goto out;
1177                                 }
1178                         } else {
1179                                 dev = grt->rt6i_dev;
1180                                 idev = grt->rt6i_idev;
1181                                 dev_hold(dev);
1182                                 in6_dev_hold(grt->rt6i_idev);
1183                         }
1184                         if (!(grt->rt6i_flags&RTF_GATEWAY))
1185                                 err = 0;
1186                         dst_release(&grt->u.dst);
1187
1188                         if (err)
1189                                 goto out;
1190                 }
1191                 err = -EINVAL;
1192                 if (dev == NULL || (dev->flags&IFF_LOOPBACK))
1193                         goto out;
1194         }
1195
1196         err = -ENODEV;
1197         if (dev == NULL)
1198                 goto out;
1199
1200         if (cfg->fc_flags & (RTF_GATEWAY | RTF_NONEXTHOP)) {
1201                 rt->rt6i_nexthop = __neigh_lookup_errno(&nd_tbl, &rt->rt6i_gateway, dev);
1202                 if (IS_ERR(rt->rt6i_nexthop)) {
1203                         err = PTR_ERR(rt->rt6i_nexthop);
1204                         rt->rt6i_nexthop = NULL;
1205                         goto out;
1206                 }
1207         }
1208
1209         rt->rt6i_flags = cfg->fc_flags;
1210
1211 install_route:
1212         if (cfg->fc_mx) {
1213                 struct nlattr *nla;
1214                 int remaining;
1215
1216                 nla_for_each_attr(nla, cfg->fc_mx, cfg->fc_mx_len, remaining) {
1217                         int type = nla->nla_type;
1218
1219                         if (type) {
1220                                 if (type > RTAX_MAX) {
1221                                         err = -EINVAL;
1222                                         goto out;
1223                                 }
1224
1225                                 rt->u.dst.metrics[type - 1] = nla_get_u32(nla);
1226                         }
1227                 }
1228         }
1229
1230         if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1231                 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1232         if (!rt->u.dst.metrics[RTAX_MTU-1])
1233                 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(dev);
1234         if (!rt->u.dst.metrics[RTAX_ADVMSS-1])
1235                 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1236         rt->u.dst.dev = dev;
1237         rt->rt6i_idev = idev;
1238         rt->rt6i_table = table;
1239         return __ip6_ins_rt(rt, &cfg->fc_nlinfo);
1240
1241 out:
1242         if (dev)
1243                 dev_put(dev);
1244         if (idev)
1245                 in6_dev_put(idev);
1246         if (rt)
1247                 dst_free(&rt->u.dst);
1248         return err;
1249 }
1250
1251 static int __ip6_del_rt(struct rt6_info *rt, struct nl_info *info)
1252 {
1253         int err;
1254         struct fib6_table *table;
1255
1256         if (rt == &ip6_null_entry)
1257                 return -ENOENT;
1258
1259         table = rt->rt6i_table;
1260         write_lock_bh(&table->tb6_lock);
1261
1262         err = fib6_del(rt, info);
1263         dst_release(&rt->u.dst);
1264
1265         write_unlock_bh(&table->tb6_lock);
1266
1267         return err;
1268 }
1269
1270 int ip6_del_rt(struct rt6_info *rt)
1271 {
1272         return __ip6_del_rt(rt, NULL);
1273 }
1274
1275 static int ip6_route_del(struct fib6_config *cfg)
1276 {
1277         struct fib6_table *table;
1278         struct fib6_node *fn;
1279         struct rt6_info *rt;
1280         int err = -ESRCH;
1281
1282         table = fib6_get_table(cfg->fc_table);
1283         if (table == NULL)
1284                 return err;
1285
1286         read_lock_bh(&table->tb6_lock);
1287
1288         fn = fib6_locate(&table->tb6_root,
1289                          &cfg->fc_dst, cfg->fc_dst_len,
1290                          &cfg->fc_src, cfg->fc_src_len);
1291
1292         if (fn) {
1293                 for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1294                         if (cfg->fc_ifindex &&
1295                             (rt->rt6i_dev == NULL ||
1296                              rt->rt6i_dev->ifindex != cfg->fc_ifindex))
1297                                 continue;
1298                         if (cfg->fc_flags & RTF_GATEWAY &&
1299                             !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
1300                                 continue;
1301                         if (cfg->fc_metric && cfg->fc_metric != rt->rt6i_metric)
1302                                 continue;
1303                         dst_hold(&rt->u.dst);
1304                         read_unlock_bh(&table->tb6_lock);
1305
1306                         return __ip6_del_rt(rt, &cfg->fc_nlinfo);
1307                 }
1308         }
1309         read_unlock_bh(&table->tb6_lock);
1310
1311         return err;
1312 }
1313
1314 /*
1315  *      Handle redirects
1316  */
1317 struct ip6rd_flowi {
1318         struct flowi fl;
1319         struct in6_addr gateway;
1320 };
1321
1322 static struct rt6_info *__ip6_route_redirect(struct fib6_table *table,
1323                                              struct flowi *fl,
1324                                              int flags)
1325 {
1326         struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl;
1327         struct rt6_info *rt;
1328         struct fib6_node *fn;
1329
1330         /*
1331          * Get the "current" route for this destination and
1332          * check if the redirect has come from approriate router.
1333          *
1334          * RFC 2461 specifies that redirects should only be
1335          * accepted if they come from the nexthop to the target.
1336          * Due to the way the routes are chosen, this notion
1337          * is a bit fuzzy and one might need to check all possible
1338          * routes.
1339          */
1340
1341         read_lock_bh(&table->tb6_lock);
1342         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
1343 restart:
1344         for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1345                 /*
1346                  * Current route is on-link; redirect is always invalid.
1347                  *
1348                  * Seems, previous statement is not true. It could
1349                  * be node, which looks for us as on-link (f.e. proxy ndisc)
1350                  * But then router serving it might decide, that we should
1351                  * know truth 8)8) --ANK (980726).
1352                  */
1353                 if (rt6_check_expired(rt))
1354                         continue;
1355                 if (!(rt->rt6i_flags & RTF_GATEWAY))
1356                         continue;
1357                 if (fl->oif != rt->rt6i_dev->ifindex)
1358                         continue;
1359                 if (!ipv6_addr_equal(&rdfl->gateway, &rt->rt6i_gateway))
1360                         continue;
1361                 break;
1362         }
1363
1364         if (!rt)
1365                 rt = &ip6_null_entry;
1366         BACKTRACK(&fl->fl6_src);
1367 out:
1368         dst_hold(&rt->u.dst);
1369
1370         read_unlock_bh(&table->tb6_lock);
1371
1372         return rt;
1373 };
1374
1375 static struct rt6_info *ip6_route_redirect(struct in6_addr *dest,
1376                                            struct in6_addr *src,
1377                                            struct in6_addr *gateway,
1378                                            struct net_device *dev)
1379 {
1380         int flags = RT6_LOOKUP_F_HAS_SADDR;
1381         struct ip6rd_flowi rdfl = {
1382                 .fl = {
1383                         .oif = dev->ifindex,
1384                         .nl_u = {
1385                                 .ip6_u = {
1386                                         .daddr = *dest,
1387                                         .saddr = *src,
1388                                 },
1389                         },
1390                 },
1391                 .gateway = *gateway,
1392         };
1393
1394         if (rt6_need_strict(dest))
1395                 flags |= RT6_LOOKUP_F_IFACE;
1396
1397         return (struct rt6_info *)fib6_rule_lookup((struct flowi *)&rdfl, flags, __ip6_route_redirect);
1398 }
1399
1400 void rt6_redirect(struct in6_addr *dest, struct in6_addr *src,
1401                   struct in6_addr *saddr,
1402                   struct neighbour *neigh, u8 *lladdr, int on_link)
1403 {
1404         struct rt6_info *rt, *nrt = NULL;
1405         struct netevent_redirect netevent;
1406
1407         rt = ip6_route_redirect(dest, src, saddr, neigh->dev);
1408
1409         if (rt == &ip6_null_entry) {
1410                 if (net_ratelimit())
1411                         printk(KERN_DEBUG "rt6_redirect: source isn't a valid nexthop "
1412                                "for redirect target\n");
1413                 goto out;
1414         }
1415
1416         /*
1417          *      We have finally decided to accept it.
1418          */
1419
1420         neigh_update(neigh, lladdr, NUD_STALE,
1421                      NEIGH_UPDATE_F_WEAK_OVERRIDE|
1422                      NEIGH_UPDATE_F_OVERRIDE|
1423                      (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
1424                                      NEIGH_UPDATE_F_ISROUTER))
1425                      );
1426
1427         /*
1428          * Redirect received -> path was valid.
1429          * Look, redirects are sent only in response to data packets,
1430          * so that this nexthop apparently is reachable. --ANK
1431          */
1432         dst_confirm(&rt->u.dst);
1433
1434         /* Duplicate redirect: silently ignore. */
1435         if (neigh == rt->u.dst.neighbour)
1436                 goto out;
1437
1438         nrt = ip6_rt_copy(rt);
1439         if (nrt == NULL)
1440                 goto out;
1441
1442         nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
1443         if (on_link)
1444                 nrt->rt6i_flags &= ~RTF_GATEWAY;
1445
1446         ipv6_addr_copy(&nrt->rt6i_dst.addr, dest);
1447         nrt->rt6i_dst.plen = 128;
1448         nrt->u.dst.flags |= DST_HOST;
1449
1450         ipv6_addr_copy(&nrt->rt6i_gateway, (struct in6_addr*)neigh->primary_key);
1451         nrt->rt6i_nexthop = neigh_clone(neigh);
1452         /* Reset pmtu, it may be better */
1453         nrt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(neigh->dev);
1454         nrt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&nrt->u.dst));
1455
1456         if (ip6_ins_rt(nrt))
1457                 goto out;
1458
1459         netevent.old = &rt->u.dst;
1460         netevent.new = &nrt->u.dst;
1461         call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
1462
1463         if (rt->rt6i_flags&RTF_CACHE) {
1464                 ip6_del_rt(rt);
1465                 return;
1466         }
1467
1468 out:
1469         dst_release(&rt->u.dst);
1470         return;
1471 }
1472
1473 /*
1474  *      Handle ICMP "packet too big" messages
1475  *      i.e. Path MTU discovery
1476  */
1477
1478 void rt6_pmtu_discovery(struct in6_addr *daddr, struct in6_addr *saddr,
1479                         struct net_device *dev, u32 pmtu)
1480 {
1481         struct rt6_info *rt, *nrt;
1482         int allfrag = 0;
1483
1484         rt = rt6_lookup(daddr, saddr, dev->ifindex, 0);
1485         if (rt == NULL)
1486                 return;
1487
1488         if (pmtu >= dst_mtu(&rt->u.dst))
1489                 goto out;
1490
1491         if (pmtu < IPV6_MIN_MTU) {
1492                 /*
1493                  * According to RFC2460, PMTU is set to the IPv6 Minimum Link
1494                  * MTU (1280) and a fragment header should always be included
1495                  * after a node receiving Too Big message reporting PMTU is
1496                  * less than the IPv6 Minimum Link MTU.
1497                  */
1498                 pmtu = IPV6_MIN_MTU;
1499                 allfrag = 1;
1500         }
1501
1502         /* New mtu received -> path was valid.
1503            They are sent only in response to data packets,
1504            so that this nexthop apparently is reachable. --ANK
1505          */
1506         dst_confirm(&rt->u.dst);
1507
1508         /* Host route. If it is static, it would be better
1509            not to override it, but add new one, so that
1510            when cache entry will expire old pmtu
1511            would return automatically.
1512          */
1513         if (rt->rt6i_flags & RTF_CACHE) {
1514                 rt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1515                 if (allfrag)
1516                         rt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1517                 dst_set_expires(&rt->u.dst, ip6_rt_mtu_expires);
1518                 rt->rt6i_flags |= RTF_MODIFIED|RTF_EXPIRES;
1519                 goto out;
1520         }
1521
1522         /* Network route.
1523            Two cases are possible:
1524            1. It is connected route. Action: COW
1525            2. It is gatewayed route or NONEXTHOP route. Action: clone it.
1526          */
1527         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
1528                 nrt = rt6_alloc_cow(rt, daddr, saddr);
1529         else
1530                 nrt = rt6_alloc_clone(rt, daddr);
1531
1532         if (nrt) {
1533                 nrt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1534                 if (allfrag)
1535                         nrt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1536
1537                 /* According to RFC 1981, detecting PMTU increase shouldn't be
1538                  * happened within 5 mins, the recommended timer is 10 mins.
1539                  * Here this route expiration time is set to ip6_rt_mtu_expires
1540                  * which is 10 mins. After 10 mins the decreased pmtu is expired
1541                  * and detecting PMTU increase will be automatically happened.
1542                  */
1543                 dst_set_expires(&nrt->u.dst, ip6_rt_mtu_expires);
1544                 nrt->rt6i_flags |= RTF_DYNAMIC|RTF_EXPIRES;
1545
1546                 ip6_ins_rt(nrt);
1547         }
1548 out:
1549         dst_release(&rt->u.dst);
1550 }
1551
1552 /*
1553  *      Misc support functions
1554  */
1555
1556 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort)
1557 {
1558         struct rt6_info *rt = ip6_dst_alloc();
1559
1560         if (rt) {
1561                 rt->u.dst.input = ort->u.dst.input;
1562                 rt->u.dst.output = ort->u.dst.output;
1563
1564                 memcpy(rt->u.dst.metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
1565                 rt->u.dst.error = ort->u.dst.error;
1566                 rt->u.dst.dev = ort->u.dst.dev;
1567                 if (rt->u.dst.dev)
1568                         dev_hold(rt->u.dst.dev);
1569                 rt->rt6i_idev = ort->rt6i_idev;
1570                 if (rt->rt6i_idev)
1571                         in6_dev_hold(rt->rt6i_idev);
1572                 rt->u.dst.lastuse = jiffies;
1573                 rt->rt6i_expires = 0;
1574
1575                 ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
1576                 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
1577                 rt->rt6i_metric = 0;
1578
1579                 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
1580 #ifdef CONFIG_IPV6_SUBTREES
1581                 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
1582 #endif
1583                 rt->rt6i_table = ort->rt6i_table;
1584         }
1585         return rt;
1586 }
1587
1588 #ifdef CONFIG_IPV6_ROUTE_INFO
1589 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
1590                                            struct in6_addr *gwaddr, int ifindex)
1591 {
1592         struct fib6_node *fn;
1593         struct rt6_info *rt = NULL;
1594         struct fib6_table *table;
1595
1596         table = fib6_get_table(RT6_TABLE_INFO);
1597         if (table == NULL)
1598                 return NULL;
1599
1600         write_lock_bh(&table->tb6_lock);
1601         fn = fib6_locate(&table->tb6_root, prefix ,prefixlen, NULL, 0);
1602         if (!fn)
1603                 goto out;
1604
1605         for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1606                 if (rt->rt6i_dev->ifindex != ifindex)
1607                         continue;
1608                 if ((rt->rt6i_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
1609                         continue;
1610                 if (!ipv6_addr_equal(&rt->rt6i_gateway, gwaddr))
1611                         continue;
1612                 dst_hold(&rt->u.dst);
1613                 break;
1614         }
1615 out:
1616         write_unlock_bh(&table->tb6_lock);
1617         return rt;
1618 }
1619
1620 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
1621                                            struct in6_addr *gwaddr, int ifindex,
1622                                            unsigned pref)
1623 {
1624         struct fib6_config cfg = {
1625                 .fc_table       = RT6_TABLE_INFO,
1626                 .fc_metric      = 1024,
1627                 .fc_ifindex     = ifindex,
1628                 .fc_dst_len     = prefixlen,
1629                 .fc_flags       = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
1630                                   RTF_UP | RTF_PREF(pref),
1631         };
1632
1633         ipv6_addr_copy(&cfg.fc_dst, prefix);
1634         ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1635
1636         /* We should treat it as a default route if prefix length is 0. */
1637         if (!prefixlen)
1638                 cfg.fc_flags |= RTF_DEFAULT;
1639
1640         ip6_route_add(&cfg);
1641
1642         return rt6_get_route_info(prefix, prefixlen, gwaddr, ifindex);
1643 }
1644 #endif
1645
1646 struct rt6_info *rt6_get_dflt_router(struct in6_addr *addr, struct net_device *dev)
1647 {
1648         struct rt6_info *rt;
1649         struct fib6_table *table;
1650
1651         table = fib6_get_table(RT6_TABLE_DFLT);
1652         if (table == NULL)
1653                 return NULL;
1654
1655         write_lock_bh(&table->tb6_lock);
1656         for (rt = table->tb6_root.leaf; rt; rt=rt->u.dst.rt6_next) {
1657                 if (dev == rt->rt6i_dev &&
1658                     ((rt->rt6i_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
1659                     ipv6_addr_equal(&rt->rt6i_gateway, addr))
1660                         break;
1661         }
1662         if (rt)
1663                 dst_hold(&rt->u.dst);
1664         write_unlock_bh(&table->tb6_lock);
1665         return rt;
1666 }
1667
1668 struct rt6_info *rt6_add_dflt_router(struct in6_addr *gwaddr,
1669                                      struct net_device *dev,
1670                                      unsigned int pref)
1671 {
1672         struct fib6_config cfg = {
1673                 .fc_table       = RT6_TABLE_DFLT,
1674                 .fc_metric      = 1024,
1675                 .fc_ifindex     = dev->ifindex,
1676                 .fc_flags       = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
1677                                   RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
1678         };
1679
1680         ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1681
1682         ip6_route_add(&cfg);
1683
1684         return rt6_get_dflt_router(gwaddr, dev);
1685 }
1686
1687 void rt6_purge_dflt_routers(void)
1688 {
1689         struct rt6_info *rt;
1690         struct fib6_table *table;
1691
1692         /* NOTE: Keep consistent with rt6_get_dflt_router */
1693         table = fib6_get_table(RT6_TABLE_DFLT);
1694         if (table == NULL)
1695                 return;
1696
1697 restart:
1698         read_lock_bh(&table->tb6_lock);
1699         for (rt = table->tb6_root.leaf; rt; rt = rt->u.dst.rt6_next) {
1700                 if (rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) {
1701                         dst_hold(&rt->u.dst);
1702                         read_unlock_bh(&table->tb6_lock);
1703                         ip6_del_rt(rt);
1704                         goto restart;
1705                 }
1706         }
1707         read_unlock_bh(&table->tb6_lock);
1708 }
1709
1710 static void rtmsg_to_fib6_config(struct in6_rtmsg *rtmsg,
1711                                  struct fib6_config *cfg)
1712 {
1713         memset(cfg, 0, sizeof(*cfg));
1714
1715         cfg->fc_table = RT6_TABLE_MAIN;
1716         cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
1717         cfg->fc_metric = rtmsg->rtmsg_metric;
1718         cfg->fc_expires = rtmsg->rtmsg_info;
1719         cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
1720         cfg->fc_src_len = rtmsg->rtmsg_src_len;
1721         cfg->fc_flags = rtmsg->rtmsg_flags;
1722
1723         ipv6_addr_copy(&cfg->fc_dst, &rtmsg->rtmsg_dst);
1724         ipv6_addr_copy(&cfg->fc_src, &rtmsg->rtmsg_src);
1725         ipv6_addr_copy(&cfg->fc_gateway, &rtmsg->rtmsg_gateway);
1726 }
1727
1728 int ipv6_route_ioctl(unsigned int cmd, void __user *arg)
1729 {
1730         struct fib6_config cfg;
1731         struct in6_rtmsg rtmsg;
1732         int err;
1733
1734         switch(cmd) {
1735         case SIOCADDRT:         /* Add a route */
1736         case SIOCDELRT:         /* Delete a route */
1737                 if (!capable(CAP_NET_ADMIN))
1738                         return -EPERM;
1739                 err = copy_from_user(&rtmsg, arg,
1740                                      sizeof(struct in6_rtmsg));
1741                 if (err)
1742                         return -EFAULT;
1743
1744                 rtmsg_to_fib6_config(&rtmsg, &cfg);
1745
1746                 rtnl_lock();
1747                 switch (cmd) {
1748                 case SIOCADDRT:
1749                         err = ip6_route_add(&cfg);
1750                         break;
1751                 case SIOCDELRT:
1752                         err = ip6_route_del(&cfg);
1753                         break;
1754                 default:
1755                         err = -EINVAL;
1756                 }
1757                 rtnl_unlock();
1758
1759                 return err;
1760         };
1761
1762         return -EINVAL;
1763 }
1764
1765 /*
1766  *      Drop the packet on the floor
1767  */
1768
1769 static inline int ip6_pkt_drop(struct sk_buff *skb, int code)
1770 {
1771         int type = ipv6_addr_type(&skb->nh.ipv6h->daddr);
1772         if (type == IPV6_ADDR_ANY || type == IPV6_ADDR_RESERVED)
1773                 IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_INADDRERRORS);
1774
1775         IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_OUTNOROUTES);
1776         icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0, skb->dev);
1777         kfree_skb(skb);
1778         return 0;
1779 }
1780
1781 static int ip6_pkt_discard(struct sk_buff *skb)
1782 {
1783         return ip6_pkt_drop(skb, ICMPV6_NOROUTE);
1784 }
1785
1786 static int ip6_pkt_discard_out(struct sk_buff *skb)
1787 {
1788         skb->dev = skb->dst->dev;
1789         return ip6_pkt_discard(skb);
1790 }
1791
1792 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1793
1794 static int ip6_pkt_prohibit(struct sk_buff *skb)
1795 {
1796         return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED);
1797 }
1798
1799 static int ip6_pkt_prohibit_out(struct sk_buff *skb)
1800 {
1801         skb->dev = skb->dst->dev;
1802         return ip6_pkt_prohibit(skb);
1803 }
1804
1805 static int ip6_pkt_blk_hole(struct sk_buff *skb)
1806 {
1807         kfree_skb(skb);
1808         return 0;
1809 }
1810
1811 #endif
1812
1813 /*
1814  *      Allocate a dst for local (unicast / anycast) address.
1815  */
1816
1817 struct rt6_info *addrconf_dst_alloc(struct inet6_dev *idev,
1818                                     const struct in6_addr *addr,
1819                                     int anycast)
1820 {
1821         struct rt6_info *rt = ip6_dst_alloc();
1822
1823         if (rt == NULL)
1824                 return ERR_PTR(-ENOMEM);
1825
1826         dev_hold(&loopback_dev);
1827         in6_dev_hold(idev);
1828
1829         rt->u.dst.flags = DST_HOST;
1830         rt->u.dst.input = ip6_input;
1831         rt->u.dst.output = ip6_output;
1832         rt->rt6i_dev = &loopback_dev;
1833         rt->rt6i_idev = idev;
1834         rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
1835         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1836         rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1837         rt->u.dst.obsolete = -1;
1838
1839         rt->rt6i_flags = RTF_UP | RTF_NONEXTHOP;
1840         if (anycast)
1841                 rt->rt6i_flags |= RTF_ANYCAST;
1842         else
1843                 rt->rt6i_flags |= RTF_LOCAL;
1844         rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
1845         if (rt->rt6i_nexthop == NULL) {
1846                 dst_free(&rt->u.dst);
1847                 return ERR_PTR(-ENOMEM);
1848         }
1849
1850         ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
1851         rt->rt6i_dst.plen = 128;
1852         rt->rt6i_table = fib6_get_table(RT6_TABLE_LOCAL);
1853
1854         atomic_set(&rt->u.dst.__refcnt, 1);
1855
1856         return rt;
1857 }
1858
1859 static int fib6_ifdown(struct rt6_info *rt, void *arg)
1860 {
1861         if (((void*)rt->rt6i_dev == arg || arg == NULL) &&
1862             rt != &ip6_null_entry) {
1863                 RT6_TRACE("deleted by ifdown %p\n", rt);
1864                 return -1;
1865         }
1866         return 0;
1867 }
1868
1869 void rt6_ifdown(struct net_device *dev)
1870 {
1871         fib6_clean_all(fib6_ifdown, 0, dev);
1872 }
1873
1874 struct rt6_mtu_change_arg
1875 {
1876         struct net_device *dev;
1877         unsigned mtu;
1878 };
1879
1880 static int rt6_mtu_change_route(struct rt6_info *rt, void *p_arg)
1881 {
1882         struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
1883         struct inet6_dev *idev;
1884
1885         /* In IPv6 pmtu discovery is not optional,
1886            so that RTAX_MTU lock cannot disable it.
1887            We still use this lock to block changes
1888            caused by addrconf/ndisc.
1889         */
1890
1891         idev = __in6_dev_get(arg->dev);
1892         if (idev == NULL)
1893                 return 0;
1894
1895         /* For administrative MTU increase, there is no way to discover
1896            IPv6 PMTU increase, so PMTU increase should be updated here.
1897            Since RFC 1981 doesn't include administrative MTU increase
1898            update PMTU increase is a MUST. (i.e. jumbo frame)
1899          */
1900         /*
1901            If new MTU is less than route PMTU, this new MTU will be the
1902            lowest MTU in the path, update the route PMTU to reflect PMTU
1903            decreases; if new MTU is greater than route PMTU, and the
1904            old MTU is the lowest MTU in the path, update the route PMTU
1905            to reflect the increase. In this case if the other nodes' MTU
1906            also have the lowest MTU, TOO BIG MESSAGE will be lead to
1907            PMTU discouvery.
1908          */
1909         if (rt->rt6i_dev == arg->dev &&
1910             !dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1911             (dst_mtu(&rt->u.dst) > arg->mtu ||
1912              (dst_mtu(&rt->u.dst) < arg->mtu &&
1913               dst_mtu(&rt->u.dst) == idev->cnf.mtu6)))
1914                 rt->u.dst.metrics[RTAX_MTU-1] = arg->mtu;
1915         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(arg->mtu);
1916         return 0;
1917 }
1918
1919 void rt6_mtu_change(struct net_device *dev, unsigned mtu)
1920 {
1921         struct rt6_mtu_change_arg arg = {
1922                 .dev = dev,
1923                 .mtu = mtu,
1924         };
1925
1926         fib6_clean_all(rt6_mtu_change_route, 0, &arg);
1927 }
1928
1929 static struct nla_policy rtm_ipv6_policy[RTA_MAX+1] __read_mostly = {
1930         [RTA_GATEWAY]           = { .len = sizeof(struct in6_addr) },
1931         [RTA_OIF]               = { .type = NLA_U32 },
1932         [RTA_IIF]               = { .type = NLA_U32 },
1933         [RTA_PRIORITY]          = { .type = NLA_U32 },
1934         [RTA_METRICS]           = { .type = NLA_NESTED },
1935 };
1936
1937 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
1938                               struct fib6_config *cfg)
1939 {
1940         struct rtmsg *rtm;
1941         struct nlattr *tb[RTA_MAX+1];
1942         int err;
1943
1944         err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
1945         if (err < 0)
1946                 goto errout;
1947
1948         err = -EINVAL;
1949         rtm = nlmsg_data(nlh);
1950         memset(cfg, 0, sizeof(*cfg));
1951
1952         cfg->fc_table = rtm->rtm_table;
1953         cfg->fc_dst_len = rtm->rtm_dst_len;
1954         cfg->fc_src_len = rtm->rtm_src_len;
1955         cfg->fc_flags = RTF_UP;
1956         cfg->fc_protocol = rtm->rtm_protocol;
1957
1958         if (rtm->rtm_type == RTN_UNREACHABLE)
1959                 cfg->fc_flags |= RTF_REJECT;
1960
1961         cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
1962         cfg->fc_nlinfo.nlh = nlh;
1963
1964         if (tb[RTA_GATEWAY]) {
1965                 nla_memcpy(&cfg->fc_gateway, tb[RTA_GATEWAY], 16);
1966                 cfg->fc_flags |= RTF_GATEWAY;
1967         }
1968
1969         if (tb[RTA_DST]) {
1970                 int plen = (rtm->rtm_dst_len + 7) >> 3;
1971
1972                 if (nla_len(tb[RTA_DST]) < plen)
1973                         goto errout;
1974
1975                 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
1976         }
1977
1978         if (tb[RTA_SRC]) {
1979                 int plen = (rtm->rtm_src_len + 7) >> 3;
1980
1981                 if (nla_len(tb[RTA_SRC]) < plen)
1982                         goto errout;
1983
1984                 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
1985         }
1986
1987         if (tb[RTA_OIF])
1988                 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
1989
1990         if (tb[RTA_PRIORITY])
1991                 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
1992
1993         if (tb[RTA_METRICS]) {
1994                 cfg->fc_mx = nla_data(tb[RTA_METRICS]);
1995                 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
1996         }
1997
1998         if (tb[RTA_TABLE])
1999                 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
2000
2001         err = 0;
2002 errout:
2003         return err;
2004 }
2005
2006 int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
2007 {
2008         struct fib6_config cfg;
2009         int err;
2010
2011         err = rtm_to_fib6_config(skb, nlh, &cfg);
2012         if (err < 0)
2013                 return err;
2014
2015         return ip6_route_del(&cfg);
2016 }
2017
2018 int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
2019 {
2020         struct fib6_config cfg;
2021         int err;
2022
2023         err = rtm_to_fib6_config(skb, nlh, &cfg);
2024         if (err < 0)
2025                 return err;
2026
2027         return ip6_route_add(&cfg);
2028 }
2029
2030 static inline size_t rt6_nlmsg_size(void)
2031 {
2032         return NLMSG_ALIGN(sizeof(struct rtmsg))
2033                + nla_total_size(16) /* RTA_SRC */
2034                + nla_total_size(16) /* RTA_DST */
2035                + nla_total_size(16) /* RTA_GATEWAY */
2036                + nla_total_size(16) /* RTA_PREFSRC */
2037                + nla_total_size(4) /* RTA_TABLE */
2038                + nla_total_size(4) /* RTA_IIF */
2039                + nla_total_size(4) /* RTA_OIF */
2040                + nla_total_size(4) /* RTA_PRIORITY */
2041                + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
2042                + nla_total_size(sizeof(struct rta_cacheinfo));
2043 }
2044
2045 static int rt6_fill_node(struct sk_buff *skb, struct rt6_info *rt,
2046                          struct in6_addr *dst, struct in6_addr *src,
2047                          int iif, int type, u32 pid, u32 seq,
2048                          int prefix, unsigned int flags)
2049 {
2050         struct rtmsg *rtm;
2051         struct nlmsghdr *nlh;
2052         long expires;
2053         u32 table;
2054
2055         if (prefix) {   /* user wants prefix routes only */
2056                 if (!(rt->rt6i_flags & RTF_PREFIX_RT)) {
2057                         /* success since this is not a prefix route */
2058                         return 1;
2059                 }
2060         }
2061
2062         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*rtm), flags);
2063         if (nlh == NULL)
2064                 return -EMSGSIZE;
2065
2066         rtm = nlmsg_data(nlh);
2067         rtm->rtm_family = AF_INET6;
2068         rtm->rtm_dst_len = rt->rt6i_dst.plen;
2069         rtm->rtm_src_len = rt->rt6i_src.plen;
2070         rtm->rtm_tos = 0;
2071         if (rt->rt6i_table)
2072                 table = rt->rt6i_table->tb6_id;
2073         else
2074                 table = RT6_TABLE_UNSPEC;
2075         rtm->rtm_table = table;
2076         NLA_PUT_U32(skb, RTA_TABLE, table);
2077         if (rt->rt6i_flags&RTF_REJECT)
2078                 rtm->rtm_type = RTN_UNREACHABLE;
2079         else if (rt->rt6i_dev && (rt->rt6i_dev->flags&IFF_LOOPBACK))
2080                 rtm->rtm_type = RTN_LOCAL;
2081         else
2082                 rtm->rtm_type = RTN_UNICAST;
2083         rtm->rtm_flags = 0;
2084         rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2085         rtm->rtm_protocol = rt->rt6i_protocol;
2086         if (rt->rt6i_flags&RTF_DYNAMIC)
2087                 rtm->rtm_protocol = RTPROT_REDIRECT;
2088         else if (rt->rt6i_flags & RTF_ADDRCONF)
2089                 rtm->rtm_protocol = RTPROT_KERNEL;
2090         else if (rt->rt6i_flags&RTF_DEFAULT)
2091                 rtm->rtm_protocol = RTPROT_RA;
2092
2093         if (rt->rt6i_flags&RTF_CACHE)
2094                 rtm->rtm_flags |= RTM_F_CLONED;
2095
2096         if (dst) {
2097                 NLA_PUT(skb, RTA_DST, 16, dst);
2098                 rtm->rtm_dst_len = 128;
2099         } else if (rtm->rtm_dst_len)
2100                 NLA_PUT(skb, RTA_DST, 16, &rt->rt6i_dst.addr);
2101 #ifdef CONFIG_IPV6_SUBTREES
2102         if (src) {
2103                 NLA_PUT(skb, RTA_SRC, 16, src);
2104                 rtm->rtm_src_len = 128;
2105         } else if (rtm->rtm_src_len)
2106                 NLA_PUT(skb, RTA_SRC, 16, &rt->rt6i_src.addr);
2107 #endif
2108         if (iif)
2109                 NLA_PUT_U32(skb, RTA_IIF, iif);
2110         else if (dst) {
2111                 struct in6_addr saddr_buf;
2112                 if (ipv6_get_saddr(&rt->u.dst, dst, &saddr_buf) == 0)
2113                         NLA_PUT(skb, RTA_PREFSRC, 16, &saddr_buf);
2114         }
2115
2116         if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2117                 goto nla_put_failure;
2118
2119         if (rt->u.dst.neighbour)
2120                 NLA_PUT(skb, RTA_GATEWAY, 16, &rt->u.dst.neighbour->primary_key);
2121
2122         if (rt->u.dst.dev)
2123                 NLA_PUT_U32(skb, RTA_OIF, rt->rt6i_dev->ifindex);
2124
2125         NLA_PUT_U32(skb, RTA_PRIORITY, rt->rt6i_metric);
2126
2127         expires = rt->rt6i_expires ? rt->rt6i_expires - jiffies : 0;
2128         if (rtnl_put_cacheinfo(skb, &rt->u.dst, 0, 0, 0,
2129                                expires, rt->u.dst.error) < 0)
2130                 goto nla_put_failure;
2131
2132         return nlmsg_end(skb, nlh);
2133
2134 nla_put_failure:
2135         nlmsg_cancel(skb, nlh);
2136         return -EMSGSIZE;
2137 }
2138
2139 int rt6_dump_route(struct rt6_info *rt, void *p_arg)
2140 {
2141         struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
2142         int prefix;
2143
2144         if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
2145                 struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
2146                 prefix = (rtm->rtm_flags & RTM_F_PREFIX) != 0;
2147         } else
2148                 prefix = 0;
2149
2150         return rt6_fill_node(arg->skb, rt, NULL, NULL, 0, RTM_NEWROUTE,
2151                      NETLINK_CB(arg->cb->skb).pid, arg->cb->nlh->nlmsg_seq,
2152                      prefix, NLM_F_MULTI);
2153 }
2154
2155 int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2156 {
2157         struct nlattr *tb[RTA_MAX+1];
2158         struct rt6_info *rt;
2159         struct sk_buff *skb;
2160         struct rtmsg *rtm;
2161         struct flowi fl;
2162         int err, iif = 0;
2163
2164         err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
2165         if (err < 0)
2166                 goto errout;
2167
2168         err = -EINVAL;
2169         memset(&fl, 0, sizeof(fl));
2170
2171         if (tb[RTA_SRC]) {
2172                 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
2173                         goto errout;
2174
2175                 ipv6_addr_copy(&fl.fl6_src, nla_data(tb[RTA_SRC]));
2176         }
2177
2178         if (tb[RTA_DST]) {
2179                 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
2180                         goto errout;
2181
2182                 ipv6_addr_copy(&fl.fl6_dst, nla_data(tb[RTA_DST]));
2183         }
2184
2185         if (tb[RTA_IIF])
2186                 iif = nla_get_u32(tb[RTA_IIF]);
2187
2188         if (tb[RTA_OIF])
2189                 fl.oif = nla_get_u32(tb[RTA_OIF]);
2190
2191         if (iif) {
2192                 struct net_device *dev;
2193                 dev = __dev_get_by_index(iif);
2194                 if (!dev) {
2195                         err = -ENODEV;
2196                         goto errout;
2197                 }
2198         }
2199
2200         skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2201         if (skb == NULL) {
2202                 err = -ENOBUFS;
2203                 goto errout;
2204         }
2205
2206         /* Reserve room for dummy headers, this skb can pass
2207            through good chunk of routing engine.
2208          */
2209         skb->mac.raw = skb->data;
2210         skb_reserve(skb, MAX_HEADER + sizeof(struct ipv6hdr));
2211
2212         rt = (struct rt6_info*) ip6_route_output(NULL, &fl);
2213         skb->dst = &rt->u.dst;
2214
2215         err = rt6_fill_node(skb, rt, &fl.fl6_dst, &fl.fl6_src, iif,
2216                             RTM_NEWROUTE, NETLINK_CB(in_skb).pid,
2217                             nlh->nlmsg_seq, 0, 0);
2218         if (err < 0) {
2219                 kfree_skb(skb);
2220                 goto errout;
2221         }
2222
2223         err = rtnl_unicast(skb, NETLINK_CB(in_skb).pid);
2224 errout:
2225         return err;
2226 }
2227
2228 void inet6_rt_notify(int event, struct rt6_info *rt, struct nl_info *info)
2229 {
2230         struct sk_buff *skb;
2231         u32 pid = 0, seq = 0;
2232         struct nlmsghdr *nlh = NULL;
2233         int err = -ENOBUFS;
2234
2235         if (info) {
2236                 pid = info->pid;
2237                 nlh = info->nlh;
2238                 if (nlh)
2239                         seq = nlh->nlmsg_seq;
2240         }
2241
2242         skb = nlmsg_new(rt6_nlmsg_size(), gfp_any());
2243         if (skb == NULL)
2244                 goto errout;
2245
2246         err = rt6_fill_node(skb, rt, NULL, NULL, 0, event, pid, seq, 0, 0);
2247         if (err < 0) {
2248                 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
2249                 WARN_ON(err == -EMSGSIZE);
2250                 kfree_skb(skb);
2251                 goto errout;
2252         }
2253         err = rtnl_notify(skb, pid, RTNLGRP_IPV6_ROUTE, nlh, gfp_any());
2254 errout:
2255         if (err < 0)
2256                 rtnl_set_sk_err(RTNLGRP_IPV6_ROUTE, err);
2257 }
2258
2259 /*
2260  *      /proc
2261  */
2262
2263 #ifdef CONFIG_PROC_FS
2264
2265 #define RT6_INFO_LEN (32 + 4 + 32 + 4 + 32 + 40 + 5 + 1)
2266
2267 struct rt6_proc_arg
2268 {
2269         char *buffer;
2270         int offset;
2271         int length;
2272         int skip;
2273         int len;
2274 };
2275
2276 static int rt6_info_route(struct rt6_info *rt, void *p_arg)
2277 {
2278         struct rt6_proc_arg *arg = (struct rt6_proc_arg *) p_arg;
2279
2280         if (arg->skip < arg->offset / RT6_INFO_LEN) {
2281                 arg->skip++;
2282                 return 0;
2283         }
2284
2285         if (arg->len >= arg->length)
2286                 return 0;
2287
2288         arg->len += sprintf(arg->buffer + arg->len,
2289                             NIP6_SEQFMT " %02x ",
2290                             NIP6(rt->rt6i_dst.addr),
2291                             rt->rt6i_dst.plen);
2292
2293 #ifdef CONFIG_IPV6_SUBTREES
2294         arg->len += sprintf(arg->buffer + arg->len,
2295                             NIP6_SEQFMT " %02x ",
2296                             NIP6(rt->rt6i_src.addr),
2297                             rt->rt6i_src.plen);
2298 #else
2299         arg->len += sprintf(arg->buffer + arg->len,
2300                             "00000000000000000000000000000000 00 ");
2301 #endif
2302
2303         if (rt->rt6i_nexthop) {
2304                 arg->len += sprintf(arg->buffer + arg->len,
2305                                     NIP6_SEQFMT,
2306                                     NIP6(*((struct in6_addr *)rt->rt6i_nexthop->primary_key)));
2307         } else {
2308                 arg->len += sprintf(arg->buffer + arg->len,
2309                                     "00000000000000000000000000000000");
2310         }
2311         arg->len += sprintf(arg->buffer + arg->len,
2312                             " %08x %08x %08x %08x %8s\n",
2313                             rt->rt6i_metric, atomic_read(&rt->u.dst.__refcnt),
2314                             rt->u.dst.__use, rt->rt6i_flags,
2315                             rt->rt6i_dev ? rt->rt6i_dev->name : "");
2316         return 0;
2317 }
2318
2319 static int rt6_proc_info(char *buffer, char **start, off_t offset, int length)
2320 {
2321         struct rt6_proc_arg arg = {
2322                 .buffer = buffer,
2323                 .offset = offset,
2324                 .length = length,
2325         };
2326
2327         fib6_clean_all(rt6_info_route, 0, &arg);
2328
2329         *start = buffer;
2330         if (offset)
2331                 *start += offset % RT6_INFO_LEN;
2332
2333         arg.len -= offset % RT6_INFO_LEN;
2334
2335         if (arg.len > length)
2336                 arg.len = length;
2337         if (arg.len < 0)
2338                 arg.len = 0;
2339
2340         return arg.len;
2341 }
2342
2343 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
2344 {
2345         seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
2346                       rt6_stats.fib_nodes, rt6_stats.fib_route_nodes,
2347                       rt6_stats.fib_rt_alloc, rt6_stats.fib_rt_entries,
2348                       rt6_stats.fib_rt_cache,
2349                       atomic_read(&ip6_dst_ops.entries),
2350                       rt6_stats.fib_discarded_routes);
2351
2352         return 0;
2353 }
2354
2355 static int rt6_stats_seq_open(struct inode *inode, struct file *file)
2356 {
2357         return single_open(file, rt6_stats_seq_show, NULL);
2358 }
2359
2360 static const struct file_operations rt6_stats_seq_fops = {
2361         .owner   = THIS_MODULE,
2362         .open    = rt6_stats_seq_open,
2363         .read    = seq_read,
2364         .llseek  = seq_lseek,
2365         .release = single_release,
2366 };
2367 #endif  /* CONFIG_PROC_FS */
2368
2369 #ifdef CONFIG_SYSCTL
2370
2371 static int flush_delay;
2372
2373 static
2374 int ipv6_sysctl_rtcache_flush(ctl_table *ctl, int write, struct file * filp,
2375                               void __user *buffer, size_t *lenp, loff_t *ppos)
2376 {
2377         if (write) {
2378                 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2379                 fib6_run_gc(flush_delay <= 0 ? ~0UL : (unsigned long)flush_delay);
2380                 return 0;
2381         } else
2382                 return -EINVAL;
2383 }
2384
2385 ctl_table ipv6_route_table[] = {
2386         {
2387                 .ctl_name       =       NET_IPV6_ROUTE_FLUSH,
2388                 .procname       =       "flush",
2389                 .data           =       &flush_delay,
2390                 .maxlen         =       sizeof(int),
2391                 .mode           =       0200,
2392                 .proc_handler   =       &ipv6_sysctl_rtcache_flush
2393         },
2394         {
2395                 .ctl_name       =       NET_IPV6_ROUTE_GC_THRESH,
2396                 .procname       =       "gc_thresh",
2397                 .data           =       &ip6_dst_ops.gc_thresh,
2398                 .maxlen         =       sizeof(int),
2399                 .mode           =       0644,
2400                 .proc_handler   =       &proc_dointvec,
2401         },
2402         {
2403                 .ctl_name       =       NET_IPV6_ROUTE_MAX_SIZE,
2404                 .procname       =       "max_size",
2405                 .data           =       &ip6_rt_max_size,
2406                 .maxlen         =       sizeof(int),
2407                 .mode           =       0644,
2408                 .proc_handler   =       &proc_dointvec,
2409         },
2410         {
2411                 .ctl_name       =       NET_IPV6_ROUTE_GC_MIN_INTERVAL,
2412                 .procname       =       "gc_min_interval",
2413                 .data           =       &ip6_rt_gc_min_interval,
2414                 .maxlen         =       sizeof(int),
2415                 .mode           =       0644,
2416                 .proc_handler   =       &proc_dointvec_jiffies,
2417                 .strategy       =       &sysctl_jiffies,
2418         },
2419         {
2420                 .ctl_name       =       NET_IPV6_ROUTE_GC_TIMEOUT,
2421                 .procname       =       "gc_timeout",
2422                 .data           =       &ip6_rt_gc_timeout,
2423                 .maxlen         =       sizeof(int),
2424                 .mode           =       0644,
2425                 .proc_handler   =       &proc_dointvec_jiffies,
2426                 .strategy       =       &sysctl_jiffies,
2427         },
2428         {
2429                 .ctl_name       =       NET_IPV6_ROUTE_GC_INTERVAL,
2430                 .procname       =       "gc_interval",
2431                 .data           =       &ip6_rt_gc_interval,
2432                 .maxlen         =       sizeof(int),
2433                 .mode           =       0644,
2434                 .proc_handler   =       &proc_dointvec_jiffies,
2435                 .strategy       =       &sysctl_jiffies,
2436         },
2437         {
2438                 .ctl_name       =       NET_IPV6_ROUTE_GC_ELASTICITY,
2439                 .procname       =       "gc_elasticity",
2440                 .data           =       &ip6_rt_gc_elasticity,
2441                 .maxlen         =       sizeof(int),
2442                 .mode           =       0644,
2443                 .proc_handler   =       &proc_dointvec_jiffies,
2444                 .strategy       =       &sysctl_jiffies,
2445         },
2446         {
2447                 .ctl_name       =       NET_IPV6_ROUTE_MTU_EXPIRES,
2448                 .procname       =       "mtu_expires",
2449                 .data           =       &ip6_rt_mtu_expires,
2450                 .maxlen         =       sizeof(int),
2451                 .mode           =       0644,
2452                 .proc_handler   =       &proc_dointvec_jiffies,
2453                 .strategy       =       &sysctl_jiffies,
2454         },
2455         {
2456                 .ctl_name       =       NET_IPV6_ROUTE_MIN_ADVMSS,
2457                 .procname       =       "min_adv_mss",
2458                 .data           =       &ip6_rt_min_advmss,
2459                 .maxlen         =       sizeof(int),
2460                 .mode           =       0644,
2461                 .proc_handler   =       &proc_dointvec_jiffies,
2462                 .strategy       =       &sysctl_jiffies,
2463         },
2464         {
2465                 .ctl_name       =       NET_IPV6_ROUTE_GC_MIN_INTERVAL_MS,
2466                 .procname       =       "gc_min_interval_ms",
2467                 .data           =       &ip6_rt_gc_min_interval,
2468                 .maxlen         =       sizeof(int),
2469                 .mode           =       0644,
2470                 .proc_handler   =       &proc_dointvec_ms_jiffies,
2471                 .strategy       =       &sysctl_ms_jiffies,
2472         },
2473         { .ctl_name = 0 }
2474 };
2475
2476 #endif
2477
2478 void __init ip6_route_init(void)
2479 {
2480         struct proc_dir_entry *p;
2481
2482         ip6_dst_ops.kmem_cachep =
2483                 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
2484                                   SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
2485         fib6_init();
2486 #ifdef  CONFIG_PROC_FS
2487         p = proc_net_create("ipv6_route", 0, rt6_proc_info);
2488         if (p)
2489                 p->owner = THIS_MODULE;
2490
2491         proc_net_fops_create("rt6_stats", S_IRUGO, &rt6_stats_seq_fops);
2492 #endif
2493 #ifdef CONFIG_XFRM
2494         xfrm6_init();
2495 #endif
2496 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2497         fib6_rules_init();
2498 #endif
2499 }
2500
2501 void ip6_route_cleanup(void)
2502 {
2503 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2504         fib6_rules_cleanup();
2505 #endif
2506 #ifdef CONFIG_PROC_FS
2507         proc_net_remove("ipv6_route");
2508         proc_net_remove("rt6_stats");
2509 #endif
2510 #ifdef CONFIG_XFRM
2511         xfrm6_fini();
2512 #endif
2513         rt6_ifdown(NULL);
2514         fib6_gc_cleanup();
2515         kmem_cache_destroy(ip6_dst_ops.kmem_cachep);
2516 }