Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[pandora-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104                                           ip_hdr(skb)->saddr,
105                                           tcp_hdr(skb)->dest,
106                                           tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112         struct tcp_sock *tp = tcp_sk(sk);
113
114         /* With PAWS, it is safe from the viewpoint
115            of data integrity. Even without PAWS it is safe provided sequence
116            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118            Actually, the idea is close to VJ's one, only timestamp cache is
119            held not per host, but per port pair and TW bucket is used as state
120            holder.
121
122            If TW bucket has been already destroyed we fall back to VJ's scheme
123            and use initial timestamp retrieved from peer table.
124          */
125         if (tcptw->tw_ts_recent_stamp &&
126             (twp == NULL || (sysctl_tcp_tw_reuse &&
127                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129                 if (tp->write_seq == 0)
130                         tp->write_seq = 1;
131                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
132                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133                 sock_hold(sktw);
134                 return 1;
135         }
136
137         return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145         struct inet_sock *inet = inet_sk(sk);
146         struct tcp_sock *tp = tcp_sk(sk);
147         __be16 orig_sport, orig_dport;
148         __be32 daddr, nexthop;
149         struct flowi4 *fl4;
150         struct rtable *rt;
151         int err;
152         struct ip_options_rcu *inet_opt;
153
154         if (addr_len < sizeof(struct sockaddr_in))
155                 return -EINVAL;
156
157         if (usin->sin_family != AF_INET)
158                 return -EAFNOSUPPORT;
159
160         nexthop = daddr = usin->sin_addr.s_addr;
161         inet_opt = rcu_dereference_protected(inet->inet_opt,
162                                              sock_owned_by_user(sk));
163         if (inet_opt && inet_opt->opt.srr) {
164                 if (!daddr)
165                         return -EINVAL;
166                 nexthop = inet_opt->opt.faddr;
167         }
168
169         orig_sport = inet->inet_sport;
170         orig_dport = usin->sin_port;
171         fl4 = &inet->cork.fl.u.ip4;
172         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174                               IPPROTO_TCP,
175                               orig_sport, orig_dport, sk, true);
176         if (IS_ERR(rt)) {
177                 err = PTR_ERR(rt);
178                 if (err == -ENETUNREACH)
179                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180                 return err;
181         }
182
183         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184                 ip_rt_put(rt);
185                 return -ENETUNREACH;
186         }
187
188         if (!inet_opt || !inet_opt->opt.srr)
189                 daddr = fl4->daddr;
190
191         if (!inet->inet_saddr)
192                 inet->inet_saddr = fl4->saddr;
193         inet->inet_rcv_saddr = inet->inet_saddr;
194
195         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196                 /* Reset inherited state */
197                 tp->rx_opt.ts_recent       = 0;
198                 tp->rx_opt.ts_recent_stamp = 0;
199                 if (likely(!tp->repair))
200                         tp->write_seq      = 0;
201         }
202
203         if (tcp_death_row.sysctl_tw_recycle &&
204             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205                 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207         inet->inet_dport = usin->sin_port;
208         inet->inet_daddr = daddr;
209
210         inet_csk(sk)->icsk_ext_hdr_len = 0;
211         if (inet_opt)
212                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216         /* Socket identity is still unknown (sport may be zero).
217          * However we set state to SYN-SENT and not releasing socket
218          * lock select source port, enter ourselves into the hash tables and
219          * complete initialization after this.
220          */
221         tcp_set_state(sk, TCP_SYN_SENT);
222         err = inet_hash_connect(&tcp_death_row, sk);
223         if (err)
224                 goto failure;
225
226         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227                                inet->inet_sport, inet->inet_dport, sk);
228         if (IS_ERR(rt)) {
229                 err = PTR_ERR(rt);
230                 rt = NULL;
231                 goto failure;
232         }
233         /* OK, now commit destination to socket.  */
234         sk->sk_gso_type = SKB_GSO_TCPV4;
235         sk_setup_caps(sk, &rt->dst);
236
237         if (!tp->write_seq && likely(!tp->repair))
238                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239                                                            inet->inet_daddr,
240                                                            inet->inet_sport,
241                                                            usin->sin_port);
242
243         inet->inet_id = tp->write_seq ^ jiffies;
244
245         err = tcp_connect(sk);
246
247         rt = NULL;
248         if (err)
249                 goto failure;
250
251         return 0;
252
253 failure:
254         /*
255          * This unhashes the socket and releases the local port,
256          * if necessary.
257          */
258         tcp_set_state(sk, TCP_CLOSE);
259         ip_rt_put(rt);
260         sk->sk_route_caps = 0;
261         inet->inet_dport = 0;
262         return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268  * It can be called through tcp_release_cb() if socket was owned by user
269  * at the time tcp_v4_err() was called to handle ICMP message.
270  */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273         struct dst_entry *dst;
274         struct inet_sock *inet = inet_sk(sk);
275         u32 mtu = tcp_sk(sk)->mtu_info;
276
277         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278          * send out by Linux are always <576bytes so they should go through
279          * unfragmented).
280          */
281         if (sk->sk_state == TCP_LISTEN)
282                 return;
283
284         dst = inet_csk_update_pmtu(sk, mtu);
285         if (!dst)
286                 return;
287
288         /* Something is about to be wrong... Remember soft error
289          * for the case, if this connection will not able to recover.
290          */
291         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292                 sk->sk_err_soft = EMSGSIZE;
293
294         mtu = dst_mtu(dst);
295
296         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298                 tcp_sync_mss(sk, mtu);
299
300                 /* Resend the TCP packet because it's
301                  * clear that the old packet has been
302                  * dropped. This is the new "fast" path mtu
303                  * discovery.
304                  */
305                 tcp_simple_retransmit(sk);
306         } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311         struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313         if (dst)
314                 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337         struct inet_connection_sock *icsk;
338         struct tcp_sock *tp;
339         struct inet_sock *inet;
340         const int type = icmp_hdr(icmp_skb)->type;
341         const int code = icmp_hdr(icmp_skb)->code;
342         struct sock *sk;
343         struct sk_buff *skb;
344         struct request_sock *req;
345         __u32 seq;
346         __u32 remaining;
347         int err;
348         struct net *net = dev_net(icmp_skb->dev);
349
350         if (icmp_skb->len < (iph->ihl << 2) + 8) {
351                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352                 return;
353         }
354
355         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356                         iph->saddr, th->source, inet_iif(icmp_skb));
357         if (!sk) {
358                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359                 return;
360         }
361         if (sk->sk_state == TCP_TIME_WAIT) {
362                 inet_twsk_put(inet_twsk(sk));
363                 return;
364         }
365
366         bh_lock_sock(sk);
367         /* If too many ICMPs get dropped on busy
368          * servers this needs to be solved differently.
369          * We do take care of PMTU discovery (RFC1191) special case :
370          * we can receive locally generated ICMP messages while socket is held.
371          */
372         if (sock_owned_by_user(sk)) {
373                 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
374                         NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
375         }
376         if (sk->sk_state == TCP_CLOSE)
377                 goto out;
378
379         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
380                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
381                 goto out;
382         }
383
384         icsk = inet_csk(sk);
385         tp = tcp_sk(sk);
386         req = tp->fastopen_rsk;
387         seq = ntohl(th->seq);
388         if (sk->sk_state != TCP_LISTEN &&
389             !between(seq, tp->snd_una, tp->snd_nxt) &&
390             (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
391                 /* For a Fast Open socket, allow seq to be snt_isn. */
392                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
393                 goto out;
394         }
395
396         switch (type) {
397         case ICMP_REDIRECT:
398                 do_redirect(icmp_skb, sk);
399                 goto out;
400         case ICMP_SOURCE_QUENCH:
401                 /* Just silently ignore these. */
402                 goto out;
403         case ICMP_PARAMETERPROB:
404                 err = EPROTO;
405                 break;
406         case ICMP_DEST_UNREACH:
407                 if (code > NR_ICMP_UNREACH)
408                         goto out;
409
410                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
411                         tp->mtu_info = info;
412                         if (!sock_owned_by_user(sk)) {
413                                 tcp_v4_mtu_reduced(sk);
414                         } else {
415                                 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
416                                         sock_hold(sk);
417                         }
418                         goto out;
419                 }
420
421                 err = icmp_err_convert[code].errno;
422                 /* check if icmp_skb allows revert of backoff
423                  * (see draft-zimmermann-tcp-lcd) */
424                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425                         break;
426                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
427                     !icsk->icsk_backoff)
428                         break;
429
430                 /* XXX (TFO) - revisit the following logic for TFO */
431
432                 if (sock_owned_by_user(sk))
433                         break;
434
435                 icsk->icsk_backoff--;
436                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
437                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
438                 tcp_bound_rto(sk);
439
440                 skb = tcp_write_queue_head(sk);
441                 BUG_ON(!skb);
442
443                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
444                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
445
446                 if (remaining) {
447                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
448                                                   remaining, TCP_RTO_MAX);
449                 } else {
450                         /* RTO revert clocked out retransmission.
451                          * Will retransmit now */
452                         tcp_retransmit_timer(sk);
453                 }
454
455                 break;
456         case ICMP_TIME_EXCEEDED:
457                 err = EHOSTUNREACH;
458                 break;
459         default:
460                 goto out;
461         }
462
463         /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
464          * than following the TCP_SYN_RECV case and closing the socket,
465          * we ignore the ICMP error and keep trying like a fully established
466          * socket. Is this the right thing to do?
467          */
468         if (req && req->sk == NULL)
469                 goto out;
470
471         switch (sk->sk_state) {
472                 struct request_sock *req, **prev;
473         case TCP_LISTEN:
474                 if (sock_owned_by_user(sk))
475                         goto out;
476
477                 req = inet_csk_search_req(sk, &prev, th->dest,
478                                           iph->daddr, iph->saddr);
479                 if (!req)
480                         goto out;
481
482                 /* ICMPs are not backlogged, hence we cannot get
483                    an established socket here.
484                  */
485                 WARN_ON(req->sk);
486
487                 if (seq != tcp_rsk(req)->snt_isn) {
488                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
489                         goto out;
490                 }
491
492                 /*
493                  * Still in SYN_RECV, just remove it silently.
494                  * There is no good way to pass the error to the newly
495                  * created socket, and POSIX does not want network
496                  * errors returned from accept().
497                  */
498                 inet_csk_reqsk_queue_drop(sk, req, prev);
499                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
500                 goto out;
501
502         case TCP_SYN_SENT:
503         case TCP_SYN_RECV:  /* Cannot happen.
504                                It can f.e. if SYNs crossed,
505                                or Fast Open.
506                              */
507                 if (!sock_owned_by_user(sk)) {
508                         sk->sk_err = err;
509
510                         sk->sk_error_report(sk);
511
512                         tcp_done(sk);
513                 } else {
514                         sk->sk_err_soft = err;
515                 }
516                 goto out;
517         }
518
519         /* If we've already connected we will keep trying
520          * until we time out, or the user gives up.
521          *
522          * rfc1122 4.2.3.9 allows to consider as hard errors
523          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524          * but it is obsoleted by pmtu discovery).
525          *
526          * Note, that in modern internet, where routing is unreliable
527          * and in each dark corner broken firewalls sit, sending random
528          * errors ordered by their masters even this two messages finally lose
529          * their original sense (even Linux sends invalid PORT_UNREACHs)
530          *
531          * Now we are in compliance with RFCs.
532          *                                                      --ANK (980905)
533          */
534
535         inet = inet_sk(sk);
536         if (!sock_owned_by_user(sk) && inet->recverr) {
537                 sk->sk_err = err;
538                 sk->sk_error_report(sk);
539         } else  { /* Only an error on timeout */
540                 sk->sk_err_soft = err;
541         }
542
543 out:
544         bh_unlock_sock(sk);
545         sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549                                 __be32 saddr, __be32 daddr)
550 {
551         struct tcphdr *th = tcp_hdr(skb);
552
553         if (skb->ip_summed == CHECKSUM_PARTIAL) {
554                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555                 skb->csum_start = skb_transport_header(skb) - skb->head;
556                 skb->csum_offset = offsetof(struct tcphdr, check);
557         } else {
558                 th->check = tcp_v4_check(skb->len, saddr, daddr,
559                                          csum_partial(th,
560                                                       th->doff << 2,
561                                                       skb->csum));
562         }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568         const struct inet_sock *inet = inet_sk(sk);
569
570         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576         const struct iphdr *iph;
577         struct tcphdr *th;
578
579         if (!pskb_may_pull(skb, sizeof(*th)))
580                 return -EINVAL;
581
582         iph = ip_hdr(skb);
583         th = tcp_hdr(skb);
584
585         th->check = 0;
586         skb->ip_summed = CHECKSUM_PARTIAL;
587         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588         return 0;
589 }
590
591 /*
592  *      This routine will send an RST to the other tcp.
593  *
594  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595  *                    for reset.
596  *      Answer: if a packet caused RST, it is not for a socket
597  *              existing in our system, if it is matched to a socket,
598  *              it is just duplicate segment or bug in other side's TCP.
599  *              So that we build reply only basing on parameters
600  *              arrived with segment.
601  *      Exception: precedence violation. We do not implement it in any case.
602  */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606         const struct tcphdr *th = tcp_hdr(skb);
607         struct {
608                 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612         } rep;
613         struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615         struct tcp_md5sig_key *key;
616         const __u8 *hash_location = NULL;
617         unsigned char newhash[16];
618         int genhash;
619         struct sock *sk1 = NULL;
620 #endif
621         struct net *net;
622
623         /* Never send a reset in response to a reset. */
624         if (th->rst)
625                 return;
626
627         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628                 return;
629
630         /* Swap the send and the receive. */
631         memset(&rep, 0, sizeof(rep));
632         rep.th.dest   = th->source;
633         rep.th.source = th->dest;
634         rep.th.doff   = sizeof(struct tcphdr) / 4;
635         rep.th.rst    = 1;
636
637         if (th->ack) {
638                 rep.th.seq = th->ack_seq;
639         } else {
640                 rep.th.ack = 1;
641                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642                                        skb->len - (th->doff << 2));
643         }
644
645         memset(&arg, 0, sizeof(arg));
646         arg.iov[0].iov_base = (unsigned char *)&rep;
647         arg.iov[0].iov_len  = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650         hash_location = tcp_parse_md5sig_option(th);
651         if (!sk && hash_location) {
652                 /*
653                  * active side is lost. Try to find listening socket through
654                  * source port, and then find md5 key through listening socket.
655                  * we are not loose security here:
656                  * Incoming packet is checked with md5 hash with finding key,
657                  * no RST generated if md5 hash doesn't match.
658                  */
659                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660                                              &tcp_hashinfo, ip_hdr(skb)->saddr,
661                                              th->source, ip_hdr(skb)->daddr,
662                                              ntohs(th->source), inet_iif(skb));
663                 /* don't send rst if it can't find key */
664                 if (!sk1)
665                         return;
666                 rcu_read_lock();
667                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
668                                         &ip_hdr(skb)->saddr, AF_INET);
669                 if (!key)
670                         goto release_sk1;
671
672                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
673                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
674                         goto release_sk1;
675         } else {
676                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
677                                              &ip_hdr(skb)->saddr,
678                                              AF_INET) : NULL;
679         }
680
681         if (key) {
682                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
683                                    (TCPOPT_NOP << 16) |
684                                    (TCPOPT_MD5SIG << 8) |
685                                    TCPOLEN_MD5SIG);
686                 /* Update length and the length the header thinks exists */
687                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
688                 rep.th.doff = arg.iov[0].iov_len / 4;
689
690                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
691                                      key, ip_hdr(skb)->saddr,
692                                      ip_hdr(skb)->daddr, &rep.th);
693         }
694 #endif
695         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
696                                       ip_hdr(skb)->saddr, /* XXX */
697                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
698         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
699         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
700         /* When socket is gone, all binding information is lost.
701          * routing might fail in this case. No choice here, if we choose to force
702          * input interface, we will misroute in case of asymmetric route.
703          */
704         if (sk)
705                 arg.bound_dev_if = sk->sk_bound_dev_if;
706
707         net = dev_net(skb_dst(skb)->dev);
708         arg.tos = ip_hdr(skb)->tos;
709         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
710                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
711
712         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
714
715 #ifdef CONFIG_TCP_MD5SIG
716 release_sk1:
717         if (sk1) {
718                 rcu_read_unlock();
719                 sock_put(sk1);
720         }
721 #endif
722 }
723
724 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
725    outside socket context is ugly, certainly. What can I do?
726  */
727
728 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
729                             u32 win, u32 tsval, u32 tsecr, int oif,
730                             struct tcp_md5sig_key *key,
731                             int reply_flags, u8 tos)
732 {
733         const struct tcphdr *th = tcp_hdr(skb);
734         struct {
735                 struct tcphdr th;
736                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
737 #ifdef CONFIG_TCP_MD5SIG
738                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
739 #endif
740                         ];
741         } rep;
742         struct ip_reply_arg arg;
743         struct net *net = dev_net(skb_dst(skb)->dev);
744
745         memset(&rep.th, 0, sizeof(struct tcphdr));
746         memset(&arg, 0, sizeof(arg));
747
748         arg.iov[0].iov_base = (unsigned char *)&rep;
749         arg.iov[0].iov_len  = sizeof(rep.th);
750         if (tsecr) {
751                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
752                                    (TCPOPT_TIMESTAMP << 8) |
753                                    TCPOLEN_TIMESTAMP);
754                 rep.opt[1] = htonl(tsval);
755                 rep.opt[2] = htonl(tsecr);
756                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
757         }
758
759         /* Swap the send and the receive. */
760         rep.th.dest    = th->source;
761         rep.th.source  = th->dest;
762         rep.th.doff    = arg.iov[0].iov_len / 4;
763         rep.th.seq     = htonl(seq);
764         rep.th.ack_seq = htonl(ack);
765         rep.th.ack     = 1;
766         rep.th.window  = htons(win);
767
768 #ifdef CONFIG_TCP_MD5SIG
769         if (key) {
770                 int offset = (tsecr) ? 3 : 0;
771
772                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
773                                           (TCPOPT_NOP << 16) |
774                                           (TCPOPT_MD5SIG << 8) |
775                                           TCPOLEN_MD5SIG);
776                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
777                 rep.th.doff = arg.iov[0].iov_len/4;
778
779                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
780                                     key, ip_hdr(skb)->saddr,
781                                     ip_hdr(skb)->daddr, &rep.th);
782         }
783 #endif
784         arg.flags = reply_flags;
785         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
786                                       ip_hdr(skb)->saddr, /* XXX */
787                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
788         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
789         if (oif)
790                 arg.bound_dev_if = oif;
791         arg.tos = tos;
792         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
793                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
794
795         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
796 }
797
798 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
799 {
800         struct inet_timewait_sock *tw = inet_twsk(sk);
801         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
802
803         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
804                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
805                         tcp_time_stamp + tcptw->tw_ts_offset,
806                         tcptw->tw_ts_recent,
807                         tw->tw_bound_dev_if,
808                         tcp_twsk_md5_key(tcptw),
809                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
810                         tw->tw_tos
811                         );
812
813         inet_twsk_put(tw);
814 }
815
816 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
817                                   struct request_sock *req)
818 {
819         /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
820          * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
821          */
822         tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
823                         tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
824                         tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
825                         tcp_time_stamp,
826                         req->ts_recent,
827                         0,
828                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
829                                           AF_INET),
830                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
831                         ip_hdr(skb)->tos);
832 }
833
834 /*
835  *      Send a SYN-ACK after having received a SYN.
836  *      This still operates on a request_sock only, not on a big
837  *      socket.
838  */
839 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
840                               struct request_sock *req,
841                               struct request_values *rvp,
842                               u16 queue_mapping,
843                               bool nocache)
844 {
845         const struct inet_request_sock *ireq = inet_rsk(req);
846         struct flowi4 fl4;
847         int err = -1;
848         struct sk_buff * skb;
849
850         /* First, grab a route. */
851         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
852                 return -1;
853
854         skb = tcp_make_synack(sk, dst, req, rvp, NULL);
855
856         if (skb) {
857                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
858
859                 skb_set_queue_mapping(skb, queue_mapping);
860                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
861                                             ireq->rmt_addr,
862                                             ireq->opt);
863                 err = net_xmit_eval(err);
864                 if (!tcp_rsk(req)->snt_synack && !err)
865                         tcp_rsk(req)->snt_synack = tcp_time_stamp;
866         }
867
868         return err;
869 }
870
871 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
872                              struct request_values *rvp)
873 {
874         int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
875
876         if (!res)
877                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
878         return res;
879 }
880
881 /*
882  *      IPv4 request_sock destructor.
883  */
884 static void tcp_v4_reqsk_destructor(struct request_sock *req)
885 {
886         kfree(inet_rsk(req)->opt);
887 }
888
889 /*
890  * Return true if a syncookie should be sent
891  */
892 bool tcp_syn_flood_action(struct sock *sk,
893                          const struct sk_buff *skb,
894                          const char *proto)
895 {
896         const char *msg = "Dropping request";
897         bool want_cookie = false;
898         struct listen_sock *lopt;
899
900
901
902 #ifdef CONFIG_SYN_COOKIES
903         if (sysctl_tcp_syncookies) {
904                 msg = "Sending cookies";
905                 want_cookie = true;
906                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
907         } else
908 #endif
909                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
910
911         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
912         if (!lopt->synflood_warned) {
913                 lopt->synflood_warned = 1;
914                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
915                         proto, ntohs(tcp_hdr(skb)->dest), msg);
916         }
917         return want_cookie;
918 }
919 EXPORT_SYMBOL(tcp_syn_flood_action);
920
921 /*
922  * Save and compile IPv4 options into the request_sock if needed.
923  */
924 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
925 {
926         const struct ip_options *opt = &(IPCB(skb)->opt);
927         struct ip_options_rcu *dopt = NULL;
928
929         if (opt && opt->optlen) {
930                 int opt_size = sizeof(*dopt) + opt->optlen;
931
932                 dopt = kmalloc(opt_size, GFP_ATOMIC);
933                 if (dopt) {
934                         if (ip_options_echo(&dopt->opt, skb)) {
935                                 kfree(dopt);
936                                 dopt = NULL;
937                         }
938                 }
939         }
940         return dopt;
941 }
942
943 #ifdef CONFIG_TCP_MD5SIG
944 /*
945  * RFC2385 MD5 checksumming requires a mapping of
946  * IP address->MD5 Key.
947  * We need to maintain these in the sk structure.
948  */
949
950 /* Find the Key structure for an address.  */
951 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
952                                          const union tcp_md5_addr *addr,
953                                          int family)
954 {
955         struct tcp_sock *tp = tcp_sk(sk);
956         struct tcp_md5sig_key *key;
957         struct hlist_node *pos;
958         unsigned int size = sizeof(struct in_addr);
959         struct tcp_md5sig_info *md5sig;
960
961         /* caller either holds rcu_read_lock() or socket lock */
962         md5sig = rcu_dereference_check(tp->md5sig_info,
963                                        sock_owned_by_user(sk) ||
964                                        lockdep_is_held(&sk->sk_lock.slock));
965         if (!md5sig)
966                 return NULL;
967 #if IS_ENABLED(CONFIG_IPV6)
968         if (family == AF_INET6)
969                 size = sizeof(struct in6_addr);
970 #endif
971         hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
972                 if (key->family != family)
973                         continue;
974                 if (!memcmp(&key->addr, addr, size))
975                         return key;
976         }
977         return NULL;
978 }
979 EXPORT_SYMBOL(tcp_md5_do_lookup);
980
981 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
982                                          struct sock *addr_sk)
983 {
984         union tcp_md5_addr *addr;
985
986         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
987         return tcp_md5_do_lookup(sk, addr, AF_INET);
988 }
989 EXPORT_SYMBOL(tcp_v4_md5_lookup);
990
991 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
992                                                       struct request_sock *req)
993 {
994         union tcp_md5_addr *addr;
995
996         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
997         return tcp_md5_do_lookup(sk, addr, AF_INET);
998 }
999
1000 /* This can be called on a newly created socket, from other files */
1001 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1002                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1003 {
1004         /* Add Key to the list */
1005         struct tcp_md5sig_key *key;
1006         struct tcp_sock *tp = tcp_sk(sk);
1007         struct tcp_md5sig_info *md5sig;
1008
1009         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1010         if (key) {
1011                 /* Pre-existing entry - just update that one. */
1012                 memcpy(key->key, newkey, newkeylen);
1013                 key->keylen = newkeylen;
1014                 return 0;
1015         }
1016
1017         md5sig = rcu_dereference_protected(tp->md5sig_info,
1018                                            sock_owned_by_user(sk));
1019         if (!md5sig) {
1020                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1021                 if (!md5sig)
1022                         return -ENOMEM;
1023
1024                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1025                 INIT_HLIST_HEAD(&md5sig->head);
1026                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1027         }
1028
1029         key = sock_kmalloc(sk, sizeof(*key), gfp);
1030         if (!key)
1031                 return -ENOMEM;
1032         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1033                 sock_kfree_s(sk, key, sizeof(*key));
1034                 return -ENOMEM;
1035         }
1036
1037         memcpy(key->key, newkey, newkeylen);
1038         key->keylen = newkeylen;
1039         key->family = family;
1040         memcpy(&key->addr, addr,
1041                (family == AF_INET6) ? sizeof(struct in6_addr) :
1042                                       sizeof(struct in_addr));
1043         hlist_add_head_rcu(&key->node, &md5sig->head);
1044         return 0;
1045 }
1046 EXPORT_SYMBOL(tcp_md5_do_add);
1047
1048 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1049 {
1050         struct tcp_sock *tp = tcp_sk(sk);
1051         struct tcp_md5sig_key *key;
1052         struct tcp_md5sig_info *md5sig;
1053
1054         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1055         if (!key)
1056                 return -ENOENT;
1057         hlist_del_rcu(&key->node);
1058         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1059         kfree_rcu(key, rcu);
1060         md5sig = rcu_dereference_protected(tp->md5sig_info,
1061                                            sock_owned_by_user(sk));
1062         if (hlist_empty(&md5sig->head))
1063                 tcp_free_md5sig_pool();
1064         return 0;
1065 }
1066 EXPORT_SYMBOL(tcp_md5_do_del);
1067
1068 static void tcp_clear_md5_list(struct sock *sk)
1069 {
1070         struct tcp_sock *tp = tcp_sk(sk);
1071         struct tcp_md5sig_key *key;
1072         struct hlist_node *pos, *n;
1073         struct tcp_md5sig_info *md5sig;
1074
1075         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1076
1077         if (!hlist_empty(&md5sig->head))
1078                 tcp_free_md5sig_pool();
1079         hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1080                 hlist_del_rcu(&key->node);
1081                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1082                 kfree_rcu(key, rcu);
1083         }
1084 }
1085
1086 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1087                                  int optlen)
1088 {
1089         struct tcp_md5sig cmd;
1090         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1091
1092         if (optlen < sizeof(cmd))
1093                 return -EINVAL;
1094
1095         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1096                 return -EFAULT;
1097
1098         if (sin->sin_family != AF_INET)
1099                 return -EINVAL;
1100
1101         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1102                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1103                                       AF_INET);
1104
1105         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1106                 return -EINVAL;
1107
1108         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1109                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1110                               GFP_KERNEL);
1111 }
1112
1113 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1114                                         __be32 daddr, __be32 saddr, int nbytes)
1115 {
1116         struct tcp4_pseudohdr *bp;
1117         struct scatterlist sg;
1118
1119         bp = &hp->md5_blk.ip4;
1120
1121         /*
1122          * 1. the TCP pseudo-header (in the order: source IP address,
1123          * destination IP address, zero-padded protocol number, and
1124          * segment length)
1125          */
1126         bp->saddr = saddr;
1127         bp->daddr = daddr;
1128         bp->pad = 0;
1129         bp->protocol = IPPROTO_TCP;
1130         bp->len = cpu_to_be16(nbytes);
1131
1132         sg_init_one(&sg, bp, sizeof(*bp));
1133         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1134 }
1135
1136 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1137                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1138 {
1139         struct tcp_md5sig_pool *hp;
1140         struct hash_desc *desc;
1141
1142         hp = tcp_get_md5sig_pool();
1143         if (!hp)
1144                 goto clear_hash_noput;
1145         desc = &hp->md5_desc;
1146
1147         if (crypto_hash_init(desc))
1148                 goto clear_hash;
1149         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1150                 goto clear_hash;
1151         if (tcp_md5_hash_header(hp, th))
1152                 goto clear_hash;
1153         if (tcp_md5_hash_key(hp, key))
1154                 goto clear_hash;
1155         if (crypto_hash_final(desc, md5_hash))
1156                 goto clear_hash;
1157
1158         tcp_put_md5sig_pool();
1159         return 0;
1160
1161 clear_hash:
1162         tcp_put_md5sig_pool();
1163 clear_hash_noput:
1164         memset(md5_hash, 0, 16);
1165         return 1;
1166 }
1167
1168 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1169                         const struct sock *sk, const struct request_sock *req,
1170                         const struct sk_buff *skb)
1171 {
1172         struct tcp_md5sig_pool *hp;
1173         struct hash_desc *desc;
1174         const struct tcphdr *th = tcp_hdr(skb);
1175         __be32 saddr, daddr;
1176
1177         if (sk) {
1178                 saddr = inet_sk(sk)->inet_saddr;
1179                 daddr = inet_sk(sk)->inet_daddr;
1180         } else if (req) {
1181                 saddr = inet_rsk(req)->loc_addr;
1182                 daddr = inet_rsk(req)->rmt_addr;
1183         } else {
1184                 const struct iphdr *iph = ip_hdr(skb);
1185                 saddr = iph->saddr;
1186                 daddr = iph->daddr;
1187         }
1188
1189         hp = tcp_get_md5sig_pool();
1190         if (!hp)
1191                 goto clear_hash_noput;
1192         desc = &hp->md5_desc;
1193
1194         if (crypto_hash_init(desc))
1195                 goto clear_hash;
1196
1197         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1198                 goto clear_hash;
1199         if (tcp_md5_hash_header(hp, th))
1200                 goto clear_hash;
1201         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1202                 goto clear_hash;
1203         if (tcp_md5_hash_key(hp, key))
1204                 goto clear_hash;
1205         if (crypto_hash_final(desc, md5_hash))
1206                 goto clear_hash;
1207
1208         tcp_put_md5sig_pool();
1209         return 0;
1210
1211 clear_hash:
1212         tcp_put_md5sig_pool();
1213 clear_hash_noput:
1214         memset(md5_hash, 0, 16);
1215         return 1;
1216 }
1217 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1218
1219 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1220 {
1221         /*
1222          * This gets called for each TCP segment that arrives
1223          * so we want to be efficient.
1224          * We have 3 drop cases:
1225          * o No MD5 hash and one expected.
1226          * o MD5 hash and we're not expecting one.
1227          * o MD5 hash and its wrong.
1228          */
1229         const __u8 *hash_location = NULL;
1230         struct tcp_md5sig_key *hash_expected;
1231         const struct iphdr *iph = ip_hdr(skb);
1232         const struct tcphdr *th = tcp_hdr(skb);
1233         int genhash;
1234         unsigned char newhash[16];
1235
1236         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1237                                           AF_INET);
1238         hash_location = tcp_parse_md5sig_option(th);
1239
1240         /* We've parsed the options - do we have a hash? */
1241         if (!hash_expected && !hash_location)
1242                 return false;
1243
1244         if (hash_expected && !hash_location) {
1245                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1246                 return true;
1247         }
1248
1249         if (!hash_expected && hash_location) {
1250                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1251                 return true;
1252         }
1253
1254         /* Okay, so this is hash_expected and hash_location -
1255          * so we need to calculate the checksum.
1256          */
1257         genhash = tcp_v4_md5_hash_skb(newhash,
1258                                       hash_expected,
1259                                       NULL, NULL, skb);
1260
1261         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1262                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1263                                      &iph->saddr, ntohs(th->source),
1264                                      &iph->daddr, ntohs(th->dest),
1265                                      genhash ? " tcp_v4_calc_md5_hash failed"
1266                                      : "");
1267                 return true;
1268         }
1269         return false;
1270 }
1271
1272 #endif
1273
1274 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1275         .family         =       PF_INET,
1276         .obj_size       =       sizeof(struct tcp_request_sock),
1277         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1278         .send_ack       =       tcp_v4_reqsk_send_ack,
1279         .destructor     =       tcp_v4_reqsk_destructor,
1280         .send_reset     =       tcp_v4_send_reset,
1281         .syn_ack_timeout =      tcp_syn_ack_timeout,
1282 };
1283
1284 #ifdef CONFIG_TCP_MD5SIG
1285 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1286         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1287         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1288 };
1289 #endif
1290
1291 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1292                                struct request_sock *req,
1293                                struct tcp_fastopen_cookie *foc,
1294                                struct tcp_fastopen_cookie *valid_foc)
1295 {
1296         bool skip_cookie = false;
1297         struct fastopen_queue *fastopenq;
1298
1299         if (likely(!fastopen_cookie_present(foc))) {
1300                 /* See include/net/tcp.h for the meaning of these knobs */
1301                 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1302                     ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1303                     (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1304                         skip_cookie = true; /* no cookie to validate */
1305                 else
1306                         return false;
1307         }
1308         fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1309         /* A FO option is present; bump the counter. */
1310         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1311
1312         /* Make sure the listener has enabled fastopen, and we don't
1313          * exceed the max # of pending TFO requests allowed before trying
1314          * to validating the cookie in order to avoid burning CPU cycles
1315          * unnecessarily.
1316          *
1317          * XXX (TFO) - The implication of checking the max_qlen before
1318          * processing a cookie request is that clients can't differentiate
1319          * between qlen overflow causing Fast Open to be disabled
1320          * temporarily vs a server not supporting Fast Open at all.
1321          */
1322         if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1323             fastopenq == NULL || fastopenq->max_qlen == 0)
1324                 return false;
1325
1326         if (fastopenq->qlen >= fastopenq->max_qlen) {
1327                 struct request_sock *req1;
1328                 spin_lock(&fastopenq->lock);
1329                 req1 = fastopenq->rskq_rst_head;
1330                 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1331                         spin_unlock(&fastopenq->lock);
1332                         NET_INC_STATS_BH(sock_net(sk),
1333                             LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1334                         /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1335                         foc->len = -1;
1336                         return false;
1337                 }
1338                 fastopenq->rskq_rst_head = req1->dl_next;
1339                 fastopenq->qlen--;
1340                 spin_unlock(&fastopenq->lock);
1341                 reqsk_free(req1);
1342         }
1343         if (skip_cookie) {
1344                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1345                 return true;
1346         }
1347         if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1348                 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1349                         tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1350                         if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1351                             memcmp(&foc->val[0], &valid_foc->val[0],
1352                             TCP_FASTOPEN_COOKIE_SIZE) != 0)
1353                                 return false;
1354                         valid_foc->len = -1;
1355                 }
1356                 /* Acknowledge the data received from the peer. */
1357                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1358                 return true;
1359         } else if (foc->len == 0) { /* Client requesting a cookie */
1360                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1361                 NET_INC_STATS_BH(sock_net(sk),
1362                     LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1363         } else {
1364                 /* Client sent a cookie with wrong size. Treat it
1365                  * the same as invalid and return a valid one.
1366                  */
1367                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1368         }
1369         return false;
1370 }
1371
1372 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1373                                     struct sk_buff *skb,
1374                                     struct sk_buff *skb_synack,
1375                                     struct request_sock *req,
1376                                     struct request_values *rvp)
1377 {
1378         struct tcp_sock *tp = tcp_sk(sk);
1379         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1380         const struct inet_request_sock *ireq = inet_rsk(req);
1381         struct sock *child;
1382         int err;
1383
1384         req->num_retrans = 0;
1385         req->num_timeout = 0;
1386         req->sk = NULL;
1387
1388         child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1389         if (child == NULL) {
1390                 NET_INC_STATS_BH(sock_net(sk),
1391                                  LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1392                 kfree_skb(skb_synack);
1393                 return -1;
1394         }
1395         err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1396                                     ireq->rmt_addr, ireq->opt);
1397         err = net_xmit_eval(err);
1398         if (!err)
1399                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1400         /* XXX (TFO) - is it ok to ignore error and continue? */
1401
1402         spin_lock(&queue->fastopenq->lock);
1403         queue->fastopenq->qlen++;
1404         spin_unlock(&queue->fastopenq->lock);
1405
1406         /* Initialize the child socket. Have to fix some values to take
1407          * into account the child is a Fast Open socket and is created
1408          * only out of the bits carried in the SYN packet.
1409          */
1410         tp = tcp_sk(child);
1411
1412         tp->fastopen_rsk = req;
1413         /* Do a hold on the listner sk so that if the listener is being
1414          * closed, the child that has been accepted can live on and still
1415          * access listen_lock.
1416          */
1417         sock_hold(sk);
1418         tcp_rsk(req)->listener = sk;
1419
1420         /* RFC1323: The window in SYN & SYN/ACK segments is never
1421          * scaled. So correct it appropriately.
1422          */
1423         tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1424
1425         /* Activate the retrans timer so that SYNACK can be retransmitted.
1426          * The request socket is not added to the SYN table of the parent
1427          * because it's been added to the accept queue directly.
1428          */
1429         inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1430             TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1431
1432         /* Add the child socket directly into the accept queue */
1433         inet_csk_reqsk_queue_add(sk, req, child);
1434
1435         /* Now finish processing the fastopen child socket. */
1436         inet_csk(child)->icsk_af_ops->rebuild_header(child);
1437         tcp_init_congestion_control(child);
1438         tcp_mtup_init(child);
1439         tcp_init_buffer_space(child);
1440         tcp_init_metrics(child);
1441
1442         /* Queue the data carried in the SYN packet. We need to first
1443          * bump skb's refcnt because the caller will attempt to free it.
1444          *
1445          * XXX (TFO) - we honor a zero-payload TFO request for now.
1446          * (Any reason not to?)
1447          */
1448         if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1449                 /* Don't queue the skb if there is no payload in SYN.
1450                  * XXX (TFO) - How about SYN+FIN?
1451                  */
1452                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1453         } else {
1454                 skb = skb_get(skb);
1455                 skb_dst_drop(skb);
1456                 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1457                 skb_set_owner_r(skb, child);
1458                 __skb_queue_tail(&child->sk_receive_queue, skb);
1459                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1460                 tp->syn_data_acked = 1;
1461         }
1462         sk->sk_data_ready(sk, 0);
1463         bh_unlock_sock(child);
1464         sock_put(child);
1465         WARN_ON(req->sk == NULL);
1466         return 0;
1467 }
1468
1469 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1470 {
1471         struct tcp_extend_values tmp_ext;
1472         struct tcp_options_received tmp_opt;
1473         const u8 *hash_location;
1474         struct request_sock *req;
1475         struct inet_request_sock *ireq;
1476         struct tcp_sock *tp = tcp_sk(sk);
1477         struct dst_entry *dst = NULL;
1478         __be32 saddr = ip_hdr(skb)->saddr;
1479         __be32 daddr = ip_hdr(skb)->daddr;
1480         __u32 isn = TCP_SKB_CB(skb)->when;
1481         bool want_cookie = false;
1482         struct flowi4 fl4;
1483         struct tcp_fastopen_cookie foc = { .len = -1 };
1484         struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1485         struct sk_buff *skb_synack;
1486         int do_fastopen;
1487
1488         /* Never answer to SYNs send to broadcast or multicast */
1489         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1490                 goto drop;
1491
1492         /* TW buckets are converted to open requests without
1493          * limitations, they conserve resources and peer is
1494          * evidently real one.
1495          */
1496         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1497                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1498                 if (!want_cookie)
1499                         goto drop;
1500         }
1501
1502         /* Accept backlog is full. If we have already queued enough
1503          * of warm entries in syn queue, drop request. It is better than
1504          * clogging syn queue with openreqs with exponentially increasing
1505          * timeout.
1506          */
1507         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1508                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1509                 goto drop;
1510         }
1511
1512         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1513         if (!req)
1514                 goto drop;
1515
1516 #ifdef CONFIG_TCP_MD5SIG
1517         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1518 #endif
1519
1520         tcp_clear_options(&tmp_opt);
1521         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1522         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1523         tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1524             want_cookie ? NULL : &foc);
1525
1526         if (tmp_opt.cookie_plus > 0 &&
1527             tmp_opt.saw_tstamp &&
1528             !tp->rx_opt.cookie_out_never &&
1529             (sysctl_tcp_cookie_size > 0 ||
1530              (tp->cookie_values != NULL &&
1531               tp->cookie_values->cookie_desired > 0))) {
1532                 u8 *c;
1533                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1534                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1535
1536                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1537                         goto drop_and_release;
1538
1539                 /* Secret recipe starts with IP addresses */
1540                 *mess++ ^= (__force u32)daddr;
1541                 *mess++ ^= (__force u32)saddr;
1542
1543                 /* plus variable length Initiator Cookie */
1544                 c = (u8 *)mess;
1545                 while (l-- > 0)
1546                         *c++ ^= *hash_location++;
1547
1548                 want_cookie = false;    /* not our kind of cookie */
1549                 tmp_ext.cookie_out_never = 0; /* false */
1550                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1551         } else if (!tp->rx_opt.cookie_in_always) {
1552                 /* redundant indications, but ensure initialization. */
1553                 tmp_ext.cookie_out_never = 1; /* true */
1554                 tmp_ext.cookie_plus = 0;
1555         } else {
1556                 goto drop_and_release;
1557         }
1558         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1559
1560         if (want_cookie && !tmp_opt.saw_tstamp)
1561                 tcp_clear_options(&tmp_opt);
1562
1563         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1564         tcp_openreq_init(req, &tmp_opt, skb);
1565
1566         ireq = inet_rsk(req);
1567         ireq->loc_addr = daddr;
1568         ireq->rmt_addr = saddr;
1569         ireq->no_srccheck = inet_sk(sk)->transparent;
1570         ireq->opt = tcp_v4_save_options(skb);
1571
1572         if (security_inet_conn_request(sk, skb, req))
1573                 goto drop_and_free;
1574
1575         if (!want_cookie || tmp_opt.tstamp_ok)
1576                 TCP_ECN_create_request(req, skb, sock_net(sk));
1577
1578         if (want_cookie) {
1579                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1580                 req->cookie_ts = tmp_opt.tstamp_ok;
1581         } else if (!isn) {
1582                 /* VJ's idea. We save last timestamp seen
1583                  * from the destination in peer table, when entering
1584                  * state TIME-WAIT, and check against it before
1585                  * accepting new connection request.
1586                  *
1587                  * If "isn" is not zero, this request hit alive
1588                  * timewait bucket, so that all the necessary checks
1589                  * are made in the function processing timewait state.
1590                  */
1591                 if (tmp_opt.saw_tstamp &&
1592                     tcp_death_row.sysctl_tw_recycle &&
1593                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1594                     fl4.daddr == saddr) {
1595                         if (!tcp_peer_is_proven(req, dst, true)) {
1596                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1597                                 goto drop_and_release;
1598                         }
1599                 }
1600                 /* Kill the following clause, if you dislike this way. */
1601                 else if (!sysctl_tcp_syncookies &&
1602                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1603                           (sysctl_max_syn_backlog >> 2)) &&
1604                          !tcp_peer_is_proven(req, dst, false)) {
1605                         /* Without syncookies last quarter of
1606                          * backlog is filled with destinations,
1607                          * proven to be alive.
1608                          * It means that we continue to communicate
1609                          * to destinations, already remembered
1610                          * to the moment of synflood.
1611                          */
1612                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1613                                        &saddr, ntohs(tcp_hdr(skb)->source));
1614                         goto drop_and_release;
1615                 }
1616
1617                 isn = tcp_v4_init_sequence(skb);
1618         }
1619         tcp_rsk(req)->snt_isn = isn;
1620
1621         if (dst == NULL) {
1622                 dst = inet_csk_route_req(sk, &fl4, req);
1623                 if (dst == NULL)
1624                         goto drop_and_free;
1625         }
1626         do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1627
1628         /* We don't call tcp_v4_send_synack() directly because we need
1629          * to make sure a child socket can be created successfully before
1630          * sending back synack!
1631          *
1632          * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1633          * (or better yet, call tcp_send_synack() in the child context
1634          * directly, but will have to fix bunch of other code first)
1635          * after syn_recv_sock() except one will need to first fix the
1636          * latter to remove its dependency on the current implementation
1637          * of tcp_v4_send_synack()->tcp_select_initial_window().
1638          */
1639         skb_synack = tcp_make_synack(sk, dst, req,
1640             (struct request_values *)&tmp_ext,
1641             fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1642
1643         if (skb_synack) {
1644                 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1645                 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1646         } else
1647                 goto drop_and_free;
1648
1649         if (likely(!do_fastopen)) {
1650                 int err;
1651                 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1652                      ireq->rmt_addr, ireq->opt);
1653                 err = net_xmit_eval(err);
1654                 if (err || want_cookie)
1655                         goto drop_and_free;
1656
1657                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1658                 tcp_rsk(req)->listener = NULL;
1659                 /* Add the request_sock to the SYN table */
1660                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1661                 if (fastopen_cookie_present(&foc) && foc.len != 0)
1662                         NET_INC_STATS_BH(sock_net(sk),
1663                             LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1664         } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1665             (struct request_values *)&tmp_ext))
1666                 goto drop_and_free;
1667
1668         return 0;
1669
1670 drop_and_release:
1671         dst_release(dst);
1672 drop_and_free:
1673         reqsk_free(req);
1674 drop:
1675         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1676         return 0;
1677 }
1678 EXPORT_SYMBOL(tcp_v4_conn_request);
1679
1680
1681 /*
1682  * The three way handshake has completed - we got a valid synack -
1683  * now create the new socket.
1684  */
1685 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1686                                   struct request_sock *req,
1687                                   struct dst_entry *dst)
1688 {
1689         struct inet_request_sock *ireq;
1690         struct inet_sock *newinet;
1691         struct tcp_sock *newtp;
1692         struct sock *newsk;
1693 #ifdef CONFIG_TCP_MD5SIG
1694         struct tcp_md5sig_key *key;
1695 #endif
1696         struct ip_options_rcu *inet_opt;
1697
1698         if (sk_acceptq_is_full(sk))
1699                 goto exit_overflow;
1700
1701         newsk = tcp_create_openreq_child(sk, req, skb);
1702         if (!newsk)
1703                 goto exit_nonewsk;
1704
1705         newsk->sk_gso_type = SKB_GSO_TCPV4;
1706         inet_sk_rx_dst_set(newsk, skb);
1707
1708         newtp                 = tcp_sk(newsk);
1709         newinet               = inet_sk(newsk);
1710         ireq                  = inet_rsk(req);
1711         newinet->inet_daddr   = ireq->rmt_addr;
1712         newinet->inet_rcv_saddr = ireq->loc_addr;
1713         newinet->inet_saddr           = ireq->loc_addr;
1714         inet_opt              = ireq->opt;
1715         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1716         ireq->opt             = NULL;
1717         newinet->mc_index     = inet_iif(skb);
1718         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1719         newinet->rcv_tos      = ip_hdr(skb)->tos;
1720         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1721         if (inet_opt)
1722                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1723         newinet->inet_id = newtp->write_seq ^ jiffies;
1724
1725         if (!dst) {
1726                 dst = inet_csk_route_child_sock(sk, newsk, req);
1727                 if (!dst)
1728                         goto put_and_exit;
1729         } else {
1730                 /* syncookie case : see end of cookie_v4_check() */
1731         }
1732         sk_setup_caps(newsk, dst);
1733
1734         tcp_mtup_init(newsk);
1735         tcp_sync_mss(newsk, dst_mtu(dst));
1736         newtp->advmss = dst_metric_advmss(dst);
1737         if (tcp_sk(sk)->rx_opt.user_mss &&
1738             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1739                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1740
1741         tcp_initialize_rcv_mss(newsk);
1742         tcp_synack_rtt_meas(newsk, req);
1743         newtp->total_retrans = req->num_retrans;
1744
1745 #ifdef CONFIG_TCP_MD5SIG
1746         /* Copy over the MD5 key from the original socket */
1747         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1748                                 AF_INET);
1749         if (key != NULL) {
1750                 /*
1751                  * We're using one, so create a matching key
1752                  * on the newsk structure. If we fail to get
1753                  * memory, then we end up not copying the key
1754                  * across. Shucks.
1755                  */
1756                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1757                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1758                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1759         }
1760 #endif
1761
1762         if (__inet_inherit_port(sk, newsk) < 0)
1763                 goto put_and_exit;
1764         __inet_hash_nolisten(newsk, NULL);
1765
1766         return newsk;
1767
1768 exit_overflow:
1769         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1770 exit_nonewsk:
1771         dst_release(dst);
1772 exit:
1773         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1774         return NULL;
1775 put_and_exit:
1776         inet_csk_prepare_forced_close(newsk);
1777         tcp_done(newsk);
1778         goto exit;
1779 }
1780 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1781
1782 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1783 {
1784         struct tcphdr *th = tcp_hdr(skb);
1785         const struct iphdr *iph = ip_hdr(skb);
1786         struct sock *nsk;
1787         struct request_sock **prev;
1788         /* Find possible connection requests. */
1789         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1790                                                        iph->saddr, iph->daddr);
1791         if (req)
1792                 return tcp_check_req(sk, skb, req, prev, false);
1793
1794         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1795                         th->source, iph->daddr, th->dest, inet_iif(skb));
1796
1797         if (nsk) {
1798                 if (nsk->sk_state != TCP_TIME_WAIT) {
1799                         bh_lock_sock(nsk);
1800                         return nsk;
1801                 }
1802                 inet_twsk_put(inet_twsk(nsk));
1803                 return NULL;
1804         }
1805
1806 #ifdef CONFIG_SYN_COOKIES
1807         if (!th->syn)
1808                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1809 #endif
1810         return sk;
1811 }
1812
1813 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1814 {
1815         const struct iphdr *iph = ip_hdr(skb);
1816
1817         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1818                 if (!tcp_v4_check(skb->len, iph->saddr,
1819                                   iph->daddr, skb->csum)) {
1820                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1821                         return 0;
1822                 }
1823         }
1824
1825         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1826                                        skb->len, IPPROTO_TCP, 0);
1827
1828         if (skb->len <= 76) {
1829                 return __skb_checksum_complete(skb);
1830         }
1831         return 0;
1832 }
1833
1834
1835 /* The socket must have it's spinlock held when we get
1836  * here.
1837  *
1838  * We have a potential double-lock case here, so even when
1839  * doing backlog processing we use the BH locking scheme.
1840  * This is because we cannot sleep with the original spinlock
1841  * held.
1842  */
1843 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1844 {
1845         struct sock *rsk;
1846 #ifdef CONFIG_TCP_MD5SIG
1847         /*
1848          * We really want to reject the packet as early as possible
1849          * if:
1850          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1851          *  o There is an MD5 option and we're not expecting one
1852          */
1853         if (tcp_v4_inbound_md5_hash(sk, skb))
1854                 goto discard;
1855 #endif
1856
1857         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1858                 struct dst_entry *dst = sk->sk_rx_dst;
1859
1860                 sock_rps_save_rxhash(sk, skb);
1861                 if (dst) {
1862                         if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1863                             dst->ops->check(dst, 0) == NULL) {
1864                                 dst_release(dst);
1865                                 sk->sk_rx_dst = NULL;
1866                         }
1867                 }
1868                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1869                         rsk = sk;
1870                         goto reset;
1871                 }
1872                 return 0;
1873         }
1874
1875         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1876                 goto csum_err;
1877
1878         if (sk->sk_state == TCP_LISTEN) {
1879                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1880                 if (!nsk)
1881                         goto discard;
1882
1883                 if (nsk != sk) {
1884                         sock_rps_save_rxhash(nsk, skb);
1885                         if (tcp_child_process(sk, nsk, skb)) {
1886                                 rsk = nsk;
1887                                 goto reset;
1888                         }
1889                         return 0;
1890                 }
1891         } else
1892                 sock_rps_save_rxhash(sk, skb);
1893
1894         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1895                 rsk = sk;
1896                 goto reset;
1897         }
1898         return 0;
1899
1900 reset:
1901         tcp_v4_send_reset(rsk, skb);
1902 discard:
1903         kfree_skb(skb);
1904         /* Be careful here. If this function gets more complicated and
1905          * gcc suffers from register pressure on the x86, sk (in %ebx)
1906          * might be destroyed here. This current version compiles correctly,
1907          * but you have been warned.
1908          */
1909         return 0;
1910
1911 csum_err:
1912         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1913         goto discard;
1914 }
1915 EXPORT_SYMBOL(tcp_v4_do_rcv);
1916
1917 void tcp_v4_early_demux(struct sk_buff *skb)
1918 {
1919         const struct iphdr *iph;
1920         const struct tcphdr *th;
1921         struct sock *sk;
1922
1923         if (skb->pkt_type != PACKET_HOST)
1924                 return;
1925
1926         if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1927                 return;
1928
1929         iph = ip_hdr(skb);
1930         th = tcp_hdr(skb);
1931
1932         if (th->doff < sizeof(struct tcphdr) / 4)
1933                 return;
1934
1935         sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1936                                        iph->saddr, th->source,
1937                                        iph->daddr, ntohs(th->dest),
1938                                        skb->skb_iif);
1939         if (sk) {
1940                 skb->sk = sk;
1941                 skb->destructor = sock_edemux;
1942                 if (sk->sk_state != TCP_TIME_WAIT) {
1943                         struct dst_entry *dst = sk->sk_rx_dst;
1944
1945                         if (dst)
1946                                 dst = dst_check(dst, 0);
1947                         if (dst &&
1948                             inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1949                                 skb_dst_set_noref(skb, dst);
1950                 }
1951         }
1952 }
1953
1954 /*
1955  *      From tcp_input.c
1956  */
1957
1958 int tcp_v4_rcv(struct sk_buff *skb)
1959 {
1960         const struct iphdr *iph;
1961         const struct tcphdr *th;
1962         struct sock *sk;
1963         int ret;
1964         struct net *net = dev_net(skb->dev);
1965
1966         if (skb->pkt_type != PACKET_HOST)
1967                 goto discard_it;
1968
1969         /* Count it even if it's bad */
1970         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1971
1972         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1973                 goto discard_it;
1974
1975         th = tcp_hdr(skb);
1976
1977         if (th->doff < sizeof(struct tcphdr) / 4)
1978                 goto bad_packet;
1979         if (!pskb_may_pull(skb, th->doff * 4))
1980                 goto discard_it;
1981
1982         /* An explanation is required here, I think.
1983          * Packet length and doff are validated by header prediction,
1984          * provided case of th->doff==0 is eliminated.
1985          * So, we defer the checks. */
1986         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1987                 goto bad_packet;
1988
1989         th = tcp_hdr(skb);
1990         iph = ip_hdr(skb);
1991         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1992         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1993                                     skb->len - th->doff * 4);
1994         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1995         TCP_SKB_CB(skb)->when    = 0;
1996         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1997         TCP_SKB_CB(skb)->sacked  = 0;
1998
1999         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
2000         if (!sk)
2001                 goto no_tcp_socket;
2002
2003 process:
2004         if (sk->sk_state == TCP_TIME_WAIT)
2005                 goto do_time_wait;
2006
2007         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2008                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2009                 goto discard_and_relse;
2010         }
2011
2012         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2013                 goto discard_and_relse;
2014         nf_reset(skb);
2015
2016         if (sk_filter(sk, skb))
2017                 goto discard_and_relse;
2018
2019         skb->dev = NULL;
2020
2021         bh_lock_sock_nested(sk);
2022         ret = 0;
2023         if (!sock_owned_by_user(sk)) {
2024 #ifdef CONFIG_NET_DMA
2025                 struct tcp_sock *tp = tcp_sk(sk);
2026                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2027                         tp->ucopy.dma_chan = net_dma_find_channel();
2028                 if (tp->ucopy.dma_chan)
2029                         ret = tcp_v4_do_rcv(sk, skb);
2030                 else
2031 #endif
2032                 {
2033                         if (!tcp_prequeue(sk, skb))
2034                                 ret = tcp_v4_do_rcv(sk, skb);
2035                 }
2036         } else if (unlikely(sk_add_backlog(sk, skb,
2037                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
2038                 bh_unlock_sock(sk);
2039                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2040                 goto discard_and_relse;
2041         }
2042         bh_unlock_sock(sk);
2043
2044         sock_put(sk);
2045
2046         return ret;
2047
2048 no_tcp_socket:
2049         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2050                 goto discard_it;
2051
2052         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2053 bad_packet:
2054                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2055         } else {
2056                 tcp_v4_send_reset(NULL, skb);
2057         }
2058
2059 discard_it:
2060         /* Discard frame. */
2061         kfree_skb(skb);
2062         return 0;
2063
2064 discard_and_relse:
2065         sock_put(sk);
2066         goto discard_it;
2067
2068 do_time_wait:
2069         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2070                 inet_twsk_put(inet_twsk(sk));
2071                 goto discard_it;
2072         }
2073
2074         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2075                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2076                 inet_twsk_put(inet_twsk(sk));
2077                 goto discard_it;
2078         }
2079         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2080         case TCP_TW_SYN: {
2081                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2082                                                         &tcp_hashinfo,
2083                                                         iph->saddr, th->source,
2084                                                         iph->daddr, th->dest,
2085                                                         inet_iif(skb));
2086                 if (sk2) {
2087                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2088                         inet_twsk_put(inet_twsk(sk));
2089                         sk = sk2;
2090                         goto process;
2091                 }
2092                 /* Fall through to ACK */
2093         }
2094         case TCP_TW_ACK:
2095                 tcp_v4_timewait_ack(sk, skb);
2096                 break;
2097         case TCP_TW_RST:
2098                 goto no_tcp_socket;
2099         case TCP_TW_SUCCESS:;
2100         }
2101         goto discard_it;
2102 }
2103
2104 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2105         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
2106         .twsk_unique    = tcp_twsk_unique,
2107         .twsk_destructor= tcp_twsk_destructor,
2108 };
2109
2110 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2111 {
2112         struct dst_entry *dst = skb_dst(skb);
2113
2114         dst_hold(dst);
2115         sk->sk_rx_dst = dst;
2116         inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2117 }
2118 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2119
2120 const struct inet_connection_sock_af_ops ipv4_specific = {
2121         .queue_xmit        = ip_queue_xmit,
2122         .send_check        = tcp_v4_send_check,
2123         .rebuild_header    = inet_sk_rebuild_header,
2124         .sk_rx_dst_set     = inet_sk_rx_dst_set,
2125         .conn_request      = tcp_v4_conn_request,
2126         .syn_recv_sock     = tcp_v4_syn_recv_sock,
2127         .net_header_len    = sizeof(struct iphdr),
2128         .setsockopt        = ip_setsockopt,
2129         .getsockopt        = ip_getsockopt,
2130         .addr2sockaddr     = inet_csk_addr2sockaddr,
2131         .sockaddr_len      = sizeof(struct sockaddr_in),
2132         .bind_conflict     = inet_csk_bind_conflict,
2133 #ifdef CONFIG_COMPAT
2134         .compat_setsockopt = compat_ip_setsockopt,
2135         .compat_getsockopt = compat_ip_getsockopt,
2136 #endif
2137 };
2138 EXPORT_SYMBOL(ipv4_specific);
2139
2140 #ifdef CONFIG_TCP_MD5SIG
2141 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2142         .md5_lookup             = tcp_v4_md5_lookup,
2143         .calc_md5_hash          = tcp_v4_md5_hash_skb,
2144         .md5_parse              = tcp_v4_parse_md5_keys,
2145 };
2146 #endif
2147
2148 /* NOTE: A lot of things set to zero explicitly by call to
2149  *       sk_alloc() so need not be done here.
2150  */
2151 static int tcp_v4_init_sock(struct sock *sk)
2152 {
2153         struct inet_connection_sock *icsk = inet_csk(sk);
2154
2155         tcp_init_sock(sk);
2156
2157         icsk->icsk_af_ops = &ipv4_specific;
2158
2159 #ifdef CONFIG_TCP_MD5SIG
2160         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2161 #endif
2162
2163         return 0;
2164 }
2165
2166 void tcp_v4_destroy_sock(struct sock *sk)
2167 {
2168         struct tcp_sock *tp = tcp_sk(sk);
2169
2170         tcp_clear_xmit_timers(sk);
2171
2172         tcp_cleanup_congestion_control(sk);
2173
2174         /* Cleanup up the write buffer. */
2175         tcp_write_queue_purge(sk);
2176
2177         /* Cleans up our, hopefully empty, out_of_order_queue. */
2178         __skb_queue_purge(&tp->out_of_order_queue);
2179
2180 #ifdef CONFIG_TCP_MD5SIG
2181         /* Clean up the MD5 key list, if any */
2182         if (tp->md5sig_info) {
2183                 tcp_clear_md5_list(sk);
2184                 kfree_rcu(tp->md5sig_info, rcu);
2185                 tp->md5sig_info = NULL;
2186         }
2187 #endif
2188
2189 #ifdef CONFIG_NET_DMA
2190         /* Cleans up our sk_async_wait_queue */
2191         __skb_queue_purge(&sk->sk_async_wait_queue);
2192 #endif
2193
2194         /* Clean prequeue, it must be empty really */
2195         __skb_queue_purge(&tp->ucopy.prequeue);
2196
2197         /* Clean up a referenced TCP bind bucket. */
2198         if (inet_csk(sk)->icsk_bind_hash)
2199                 inet_put_port(sk);
2200
2201         /* TCP Cookie Transactions */
2202         if (tp->cookie_values != NULL) {
2203                 kref_put(&tp->cookie_values->kref,
2204                          tcp_cookie_values_release);
2205                 tp->cookie_values = NULL;
2206         }
2207         BUG_ON(tp->fastopen_rsk != NULL);
2208
2209         /* If socket is aborted during connect operation */
2210         tcp_free_fastopen_req(tp);
2211
2212         sk_sockets_allocated_dec(sk);
2213         sock_release_memcg(sk);
2214 }
2215 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2216
2217 #ifdef CONFIG_PROC_FS
2218 /* Proc filesystem TCP sock list dumping. */
2219
2220 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2221 {
2222         return hlist_nulls_empty(head) ? NULL :
2223                 list_entry(head->first, struct inet_timewait_sock, tw_node);
2224 }
2225
2226 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2227 {
2228         return !is_a_nulls(tw->tw_node.next) ?
2229                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2230 }
2231
2232 /*
2233  * Get next listener socket follow cur.  If cur is NULL, get first socket
2234  * starting from bucket given in st->bucket; when st->bucket is zero the
2235  * very first socket in the hash table is returned.
2236  */
2237 static void *listening_get_next(struct seq_file *seq, void *cur)
2238 {
2239         struct inet_connection_sock *icsk;
2240         struct hlist_nulls_node *node;
2241         struct sock *sk = cur;
2242         struct inet_listen_hashbucket *ilb;
2243         struct tcp_iter_state *st = seq->private;
2244         struct net *net = seq_file_net(seq);
2245
2246         if (!sk) {
2247                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2248                 spin_lock_bh(&ilb->lock);
2249                 sk = sk_nulls_head(&ilb->head);
2250                 st->offset = 0;
2251                 goto get_sk;
2252         }
2253         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2254         ++st->num;
2255         ++st->offset;
2256
2257         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2258                 struct request_sock *req = cur;
2259
2260                 icsk = inet_csk(st->syn_wait_sk);
2261                 req = req->dl_next;
2262                 while (1) {
2263                         while (req) {
2264                                 if (req->rsk_ops->family == st->family) {
2265                                         cur = req;
2266                                         goto out;
2267                                 }
2268                                 req = req->dl_next;
2269                         }
2270                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2271                                 break;
2272 get_req:
2273                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2274                 }
2275                 sk        = sk_nulls_next(st->syn_wait_sk);
2276                 st->state = TCP_SEQ_STATE_LISTENING;
2277                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2278         } else {
2279                 icsk = inet_csk(sk);
2280                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2281                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2282                         goto start_req;
2283                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2284                 sk = sk_nulls_next(sk);
2285         }
2286 get_sk:
2287         sk_nulls_for_each_from(sk, node) {
2288                 if (!net_eq(sock_net(sk), net))
2289                         continue;
2290                 if (sk->sk_family == st->family) {
2291                         cur = sk;
2292                         goto out;
2293                 }
2294                 icsk = inet_csk(sk);
2295                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2296                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2297 start_req:
2298                         st->uid         = sock_i_uid(sk);
2299                         st->syn_wait_sk = sk;
2300                         st->state       = TCP_SEQ_STATE_OPENREQ;
2301                         st->sbucket     = 0;
2302                         goto get_req;
2303                 }
2304                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2305         }
2306         spin_unlock_bh(&ilb->lock);
2307         st->offset = 0;
2308         if (++st->bucket < INET_LHTABLE_SIZE) {
2309                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2310                 spin_lock_bh(&ilb->lock);
2311                 sk = sk_nulls_head(&ilb->head);
2312                 goto get_sk;
2313         }
2314         cur = NULL;
2315 out:
2316         return cur;
2317 }
2318
2319 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2320 {
2321         struct tcp_iter_state *st = seq->private;
2322         void *rc;
2323
2324         st->bucket = 0;
2325         st->offset = 0;
2326         rc = listening_get_next(seq, NULL);
2327
2328         while (rc && *pos) {
2329                 rc = listening_get_next(seq, rc);
2330                 --*pos;
2331         }
2332         return rc;
2333 }
2334
2335 static inline bool empty_bucket(struct tcp_iter_state *st)
2336 {
2337         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2338                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2339 }
2340
2341 /*
2342  * Get first established socket starting from bucket given in st->bucket.
2343  * If st->bucket is zero, the very first socket in the hash is returned.
2344  */
2345 static void *established_get_first(struct seq_file *seq)
2346 {
2347         struct tcp_iter_state *st = seq->private;
2348         struct net *net = seq_file_net(seq);
2349         void *rc = NULL;
2350
2351         st->offset = 0;
2352         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2353                 struct sock *sk;
2354                 struct hlist_nulls_node *node;
2355                 struct inet_timewait_sock *tw;
2356                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2357
2358                 /* Lockless fast path for the common case of empty buckets */
2359                 if (empty_bucket(st))
2360                         continue;
2361
2362                 spin_lock_bh(lock);
2363                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2364                         if (sk->sk_family != st->family ||
2365                             !net_eq(sock_net(sk), net)) {
2366                                 continue;
2367                         }
2368                         rc = sk;
2369                         goto out;
2370                 }
2371                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2372                 inet_twsk_for_each(tw, node,
2373                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2374                         if (tw->tw_family != st->family ||
2375                             !net_eq(twsk_net(tw), net)) {
2376                                 continue;
2377                         }
2378                         rc = tw;
2379                         goto out;
2380                 }
2381                 spin_unlock_bh(lock);
2382                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2383         }
2384 out:
2385         return rc;
2386 }
2387
2388 static void *established_get_next(struct seq_file *seq, void *cur)
2389 {
2390         struct sock *sk = cur;
2391         struct inet_timewait_sock *tw;
2392         struct hlist_nulls_node *node;
2393         struct tcp_iter_state *st = seq->private;
2394         struct net *net = seq_file_net(seq);
2395
2396         ++st->num;
2397         ++st->offset;
2398
2399         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2400                 tw = cur;
2401                 tw = tw_next(tw);
2402 get_tw:
2403                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2404                         tw = tw_next(tw);
2405                 }
2406                 if (tw) {
2407                         cur = tw;
2408                         goto out;
2409                 }
2410                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2411                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2412
2413                 /* Look for next non empty bucket */
2414                 st->offset = 0;
2415                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2416                                 empty_bucket(st))
2417                         ;
2418                 if (st->bucket > tcp_hashinfo.ehash_mask)
2419                         return NULL;
2420
2421                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2422                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2423         } else
2424                 sk = sk_nulls_next(sk);
2425
2426         sk_nulls_for_each_from(sk, node) {
2427                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2428                         goto found;
2429         }
2430
2431         st->state = TCP_SEQ_STATE_TIME_WAIT;
2432         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2433         goto get_tw;
2434 found:
2435         cur = sk;
2436 out:
2437         return cur;
2438 }
2439
2440 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2441 {
2442         struct tcp_iter_state *st = seq->private;
2443         void *rc;
2444
2445         st->bucket = 0;
2446         rc = established_get_first(seq);
2447
2448         while (rc && pos) {
2449                 rc = established_get_next(seq, rc);
2450                 --pos;
2451         }
2452         return rc;
2453 }
2454
2455 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2456 {
2457         void *rc;
2458         struct tcp_iter_state *st = seq->private;
2459
2460         st->state = TCP_SEQ_STATE_LISTENING;
2461         rc        = listening_get_idx(seq, &pos);
2462
2463         if (!rc) {
2464                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2465                 rc        = established_get_idx(seq, pos);
2466         }
2467
2468         return rc;
2469 }
2470
2471 static void *tcp_seek_last_pos(struct seq_file *seq)
2472 {
2473         struct tcp_iter_state *st = seq->private;
2474         int offset = st->offset;
2475         int orig_num = st->num;
2476         void *rc = NULL;
2477
2478         switch (st->state) {
2479         case TCP_SEQ_STATE_OPENREQ:
2480         case TCP_SEQ_STATE_LISTENING:
2481                 if (st->bucket >= INET_LHTABLE_SIZE)
2482                         break;
2483                 st->state = TCP_SEQ_STATE_LISTENING;
2484                 rc = listening_get_next(seq, NULL);
2485                 while (offset-- && rc)
2486                         rc = listening_get_next(seq, rc);
2487                 if (rc)
2488                         break;
2489                 st->bucket = 0;
2490                 /* Fallthrough */
2491         case TCP_SEQ_STATE_ESTABLISHED:
2492         case TCP_SEQ_STATE_TIME_WAIT:
2493                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2494                 if (st->bucket > tcp_hashinfo.ehash_mask)
2495                         break;
2496                 rc = established_get_first(seq);
2497                 while (offset-- && rc)
2498                         rc = established_get_next(seq, rc);
2499         }
2500
2501         st->num = orig_num;
2502
2503         return rc;
2504 }
2505
2506 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2507 {
2508         struct tcp_iter_state *st = seq->private;
2509         void *rc;
2510
2511         if (*pos && *pos == st->last_pos) {
2512                 rc = tcp_seek_last_pos(seq);
2513                 if (rc)
2514                         goto out;
2515         }
2516
2517         st->state = TCP_SEQ_STATE_LISTENING;
2518         st->num = 0;
2519         st->bucket = 0;
2520         st->offset = 0;
2521         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2522
2523 out:
2524         st->last_pos = *pos;
2525         return rc;
2526 }
2527
2528 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2529 {
2530         struct tcp_iter_state *st = seq->private;
2531         void *rc = NULL;
2532
2533         if (v == SEQ_START_TOKEN) {
2534                 rc = tcp_get_idx(seq, 0);
2535                 goto out;
2536         }
2537
2538         switch (st->state) {
2539         case TCP_SEQ_STATE_OPENREQ:
2540         case TCP_SEQ_STATE_LISTENING:
2541                 rc = listening_get_next(seq, v);
2542                 if (!rc) {
2543                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2544                         st->bucket = 0;
2545                         st->offset = 0;
2546                         rc        = established_get_first(seq);
2547                 }
2548                 break;
2549         case TCP_SEQ_STATE_ESTABLISHED:
2550         case TCP_SEQ_STATE_TIME_WAIT:
2551                 rc = established_get_next(seq, v);
2552                 break;
2553         }
2554 out:
2555         ++*pos;
2556         st->last_pos = *pos;
2557         return rc;
2558 }
2559
2560 static void tcp_seq_stop(struct seq_file *seq, void *v)
2561 {
2562         struct tcp_iter_state *st = seq->private;
2563
2564         switch (st->state) {
2565         case TCP_SEQ_STATE_OPENREQ:
2566                 if (v) {
2567                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2568                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2569                 }
2570         case TCP_SEQ_STATE_LISTENING:
2571                 if (v != SEQ_START_TOKEN)
2572                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2573                 break;
2574         case TCP_SEQ_STATE_TIME_WAIT:
2575         case TCP_SEQ_STATE_ESTABLISHED:
2576                 if (v)
2577                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2578                 break;
2579         }
2580 }
2581
2582 int tcp_seq_open(struct inode *inode, struct file *file)
2583 {
2584         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2585         struct tcp_iter_state *s;
2586         int err;
2587
2588         err = seq_open_net(inode, file, &afinfo->seq_ops,
2589                           sizeof(struct tcp_iter_state));
2590         if (err < 0)
2591                 return err;
2592
2593         s = ((struct seq_file *)file->private_data)->private;
2594         s->family               = afinfo->family;
2595         s->last_pos             = 0;
2596         return 0;
2597 }
2598 EXPORT_SYMBOL(tcp_seq_open);
2599
2600 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2601 {
2602         int rc = 0;
2603         struct proc_dir_entry *p;
2604
2605         afinfo->seq_ops.start           = tcp_seq_start;
2606         afinfo->seq_ops.next            = tcp_seq_next;
2607         afinfo->seq_ops.stop            = tcp_seq_stop;
2608
2609         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2610                              afinfo->seq_fops, afinfo);
2611         if (!p)
2612                 rc = -ENOMEM;
2613         return rc;
2614 }
2615 EXPORT_SYMBOL(tcp_proc_register);
2616
2617 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2618 {
2619         remove_proc_entry(afinfo->name, net->proc_net);
2620 }
2621 EXPORT_SYMBOL(tcp_proc_unregister);
2622
2623 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2624                          struct seq_file *f, int i, kuid_t uid, int *len)
2625 {
2626         const struct inet_request_sock *ireq = inet_rsk(req);
2627         long delta = req->expires - jiffies;
2628
2629         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2630                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2631                 i,
2632                 ireq->loc_addr,
2633                 ntohs(inet_sk(sk)->inet_sport),
2634                 ireq->rmt_addr,
2635                 ntohs(ireq->rmt_port),
2636                 TCP_SYN_RECV,
2637                 0, 0, /* could print option size, but that is af dependent. */
2638                 1,    /* timers active (only the expire timer) */
2639                 jiffies_delta_to_clock_t(delta),
2640                 req->num_timeout,
2641                 from_kuid_munged(seq_user_ns(f), uid),
2642                 0,  /* non standard timer */
2643                 0, /* open_requests have no inode */
2644                 atomic_read(&sk->sk_refcnt),
2645                 req,
2646                 len);
2647 }
2648
2649 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2650 {
2651         int timer_active;
2652         unsigned long timer_expires;
2653         const struct tcp_sock *tp = tcp_sk(sk);
2654         const struct inet_connection_sock *icsk = inet_csk(sk);
2655         const struct inet_sock *inet = inet_sk(sk);
2656         struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2657         __be32 dest = inet->inet_daddr;
2658         __be32 src = inet->inet_rcv_saddr;
2659         __u16 destp = ntohs(inet->inet_dport);
2660         __u16 srcp = ntohs(inet->inet_sport);
2661         int rx_queue;
2662
2663         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2664                 timer_active    = 1;
2665                 timer_expires   = icsk->icsk_timeout;
2666         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2667                 timer_active    = 4;
2668                 timer_expires   = icsk->icsk_timeout;
2669         } else if (timer_pending(&sk->sk_timer)) {
2670                 timer_active    = 2;
2671                 timer_expires   = sk->sk_timer.expires;
2672         } else {
2673                 timer_active    = 0;
2674                 timer_expires = jiffies;
2675         }
2676
2677         if (sk->sk_state == TCP_LISTEN)
2678                 rx_queue = sk->sk_ack_backlog;
2679         else
2680                 /*
2681                  * because we dont lock socket, we might find a transient negative value
2682                  */
2683                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2684
2685         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2686                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2687                 i, src, srcp, dest, destp, sk->sk_state,
2688                 tp->write_seq - tp->snd_una,
2689                 rx_queue,
2690                 timer_active,
2691                 jiffies_delta_to_clock_t(timer_expires - jiffies),
2692                 icsk->icsk_retransmits,
2693                 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2694                 icsk->icsk_probes_out,
2695                 sock_i_ino(sk),
2696                 atomic_read(&sk->sk_refcnt), sk,
2697                 jiffies_to_clock_t(icsk->icsk_rto),
2698                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2699                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2700                 tp->snd_cwnd,
2701                 sk->sk_state == TCP_LISTEN ?
2702                     (fastopenq ? fastopenq->max_qlen : 0) :
2703                     (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2704                 len);
2705 }
2706
2707 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2708                                struct seq_file *f, int i, int *len)
2709 {
2710         __be32 dest, src;
2711         __u16 destp, srcp;
2712         long delta = tw->tw_ttd - jiffies;
2713
2714         dest  = tw->tw_daddr;
2715         src   = tw->tw_rcv_saddr;
2716         destp = ntohs(tw->tw_dport);
2717         srcp  = ntohs(tw->tw_sport);
2718
2719         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2720                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2721                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2722                 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2723                 atomic_read(&tw->tw_refcnt), tw, len);
2724 }
2725
2726 #define TMPSZ 150
2727
2728 static int tcp4_seq_show(struct seq_file *seq, void *v)
2729 {
2730         struct tcp_iter_state *st;
2731         int len;
2732
2733         if (v == SEQ_START_TOKEN) {
2734                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2735                            "  sl  local_address rem_address   st tx_queue "
2736                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2737                            "inode");
2738                 goto out;
2739         }
2740         st = seq->private;
2741
2742         switch (st->state) {
2743         case TCP_SEQ_STATE_LISTENING:
2744         case TCP_SEQ_STATE_ESTABLISHED:
2745                 get_tcp4_sock(v, seq, st->num, &len);
2746                 break;
2747         case TCP_SEQ_STATE_OPENREQ:
2748                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2749                 break;
2750         case TCP_SEQ_STATE_TIME_WAIT:
2751                 get_timewait4_sock(v, seq, st->num, &len);
2752                 break;
2753         }
2754         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2755 out:
2756         return 0;
2757 }
2758
2759 static const struct file_operations tcp_afinfo_seq_fops = {
2760         .owner   = THIS_MODULE,
2761         .open    = tcp_seq_open,
2762         .read    = seq_read,
2763         .llseek  = seq_lseek,
2764         .release = seq_release_net
2765 };
2766
2767 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2768         .name           = "tcp",
2769         .family         = AF_INET,
2770         .seq_fops       = &tcp_afinfo_seq_fops,
2771         .seq_ops        = {
2772                 .show           = tcp4_seq_show,
2773         },
2774 };
2775
2776 static int __net_init tcp4_proc_init_net(struct net *net)
2777 {
2778         return tcp_proc_register(net, &tcp4_seq_afinfo);
2779 }
2780
2781 static void __net_exit tcp4_proc_exit_net(struct net *net)
2782 {
2783         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2784 }
2785
2786 static struct pernet_operations tcp4_net_ops = {
2787         .init = tcp4_proc_init_net,
2788         .exit = tcp4_proc_exit_net,
2789 };
2790
2791 int __init tcp4_proc_init(void)
2792 {
2793         return register_pernet_subsys(&tcp4_net_ops);
2794 }
2795
2796 void tcp4_proc_exit(void)
2797 {
2798         unregister_pernet_subsys(&tcp4_net_ops);
2799 }
2800 #endif /* CONFIG_PROC_FS */
2801
2802 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2803 {
2804         const struct iphdr *iph = skb_gro_network_header(skb);
2805         __wsum wsum;
2806         __sum16 sum;
2807
2808         switch (skb->ip_summed) {
2809         case CHECKSUM_COMPLETE:
2810                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2811                                   skb->csum)) {
2812                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2813                         break;
2814                 }
2815 flush:
2816                 NAPI_GRO_CB(skb)->flush = 1;
2817                 return NULL;
2818
2819         case CHECKSUM_NONE:
2820                 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2821                                           skb_gro_len(skb), IPPROTO_TCP, 0);
2822                 sum = csum_fold(skb_checksum(skb,
2823                                              skb_gro_offset(skb),
2824                                              skb_gro_len(skb),
2825                                              wsum));
2826                 if (sum)
2827                         goto flush;
2828
2829                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2830                 break;
2831         }
2832
2833         return tcp_gro_receive(head, skb);
2834 }
2835
2836 int tcp4_gro_complete(struct sk_buff *skb)
2837 {
2838         const struct iphdr *iph = ip_hdr(skb);
2839         struct tcphdr *th = tcp_hdr(skb);
2840
2841         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2842                                   iph->saddr, iph->daddr, 0);
2843         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2844
2845         return tcp_gro_complete(skb);
2846 }
2847
2848 struct proto tcp_prot = {
2849         .name                   = "TCP",
2850         .owner                  = THIS_MODULE,
2851         .close                  = tcp_close,
2852         .connect                = tcp_v4_connect,
2853         .disconnect             = tcp_disconnect,
2854         .accept                 = inet_csk_accept,
2855         .ioctl                  = tcp_ioctl,
2856         .init                   = tcp_v4_init_sock,
2857         .destroy                = tcp_v4_destroy_sock,
2858         .shutdown               = tcp_shutdown,
2859         .setsockopt             = tcp_setsockopt,
2860         .getsockopt             = tcp_getsockopt,
2861         .recvmsg                = tcp_recvmsg,
2862         .sendmsg                = tcp_sendmsg,
2863         .sendpage               = tcp_sendpage,
2864         .backlog_rcv            = tcp_v4_do_rcv,
2865         .release_cb             = tcp_release_cb,
2866         .mtu_reduced            = tcp_v4_mtu_reduced,
2867         .hash                   = inet_hash,
2868         .unhash                 = inet_unhash,
2869         .get_port               = inet_csk_get_port,
2870         .enter_memory_pressure  = tcp_enter_memory_pressure,
2871         .sockets_allocated      = &tcp_sockets_allocated,
2872         .orphan_count           = &tcp_orphan_count,
2873         .memory_allocated       = &tcp_memory_allocated,
2874         .memory_pressure        = &tcp_memory_pressure,
2875         .sysctl_wmem            = sysctl_tcp_wmem,
2876         .sysctl_rmem            = sysctl_tcp_rmem,
2877         .max_header             = MAX_TCP_HEADER,
2878         .obj_size               = sizeof(struct tcp_sock),
2879         .slab_flags             = SLAB_DESTROY_BY_RCU,
2880         .twsk_prot              = &tcp_timewait_sock_ops,
2881         .rsk_prot               = &tcp_request_sock_ops,
2882         .h.hashinfo             = &tcp_hashinfo,
2883         .no_autobind            = true,
2884 #ifdef CONFIG_COMPAT
2885         .compat_setsockopt      = compat_tcp_setsockopt,
2886         .compat_getsockopt      = compat_tcp_getsockopt,
2887 #endif
2888 #ifdef CONFIG_MEMCG_KMEM
2889         .init_cgroup            = tcp_init_cgroup,
2890         .destroy_cgroup         = tcp_destroy_cgroup,
2891         .proto_cgroup           = tcp_proto_cgroup,
2892 #endif
2893 };
2894 EXPORT_SYMBOL(tcp_prot);
2895
2896 static int __net_init tcp_sk_init(struct net *net)
2897 {
2898         net->ipv4.sysctl_tcp_ecn = 2;
2899         return 0;
2900 }
2901
2902 static void __net_exit tcp_sk_exit(struct net *net)
2903 {
2904 }
2905
2906 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2907 {
2908         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2909 }
2910
2911 static struct pernet_operations __net_initdata tcp_sk_ops = {
2912        .init       = tcp_sk_init,
2913        .exit       = tcp_sk_exit,
2914        .exit_batch = tcp_sk_exit_batch,
2915 };
2916
2917 void __init tcp_v4_init(void)
2918 {
2919         inet_hashinfo_init(&tcp_hashinfo);
2920         if (register_pernet_subsys(&tcp_sk_ops))
2921                 panic("Failed to create the TCP control socket.\n");
2922 }