Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104                                           ip_hdr(skb)->saddr,
105                                           tcp_hdr(skb)->dest,
106                                           tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112         struct tcp_sock *tp = tcp_sk(sk);
113
114         /* With PAWS, it is safe from the viewpoint
115            of data integrity. Even without PAWS it is safe provided sequence
116            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118            Actually, the idea is close to VJ's one, only timestamp cache is
119            held not per host, but per port pair and TW bucket is used as state
120            holder.
121
122            If TW bucket has been already destroyed we fall back to VJ's scheme
123            and use initial timestamp retrieved from peer table.
124          */
125         if (tcptw->tw_ts_recent_stamp &&
126             (twp == NULL || (sysctl_tcp_tw_reuse &&
127                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129                 if (tp->write_seq == 0)
130                         tp->write_seq = 1;
131                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
132                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133                 sock_hold(sktw);
134                 return 1;
135         }
136
137         return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145         struct inet_sock *inet = inet_sk(sk);
146         struct tcp_sock *tp = tcp_sk(sk);
147         __be16 orig_sport, orig_dport;
148         __be32 daddr, nexthop;
149         struct flowi4 *fl4;
150         struct rtable *rt;
151         int err;
152         struct ip_options_rcu *inet_opt;
153
154         if (addr_len < sizeof(struct sockaddr_in))
155                 return -EINVAL;
156
157         if (usin->sin_family != AF_INET)
158                 return -EAFNOSUPPORT;
159
160         nexthop = daddr = usin->sin_addr.s_addr;
161         inet_opt = rcu_dereference_protected(inet->inet_opt,
162                                              sock_owned_by_user(sk));
163         if (inet_opt && inet_opt->opt.srr) {
164                 if (!daddr)
165                         return -EINVAL;
166                 nexthop = inet_opt->opt.faddr;
167         }
168
169         orig_sport = inet->inet_sport;
170         orig_dport = usin->sin_port;
171         fl4 = &inet->cork.fl.u.ip4;
172         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174                               IPPROTO_TCP,
175                               orig_sport, orig_dport, sk, true);
176         if (IS_ERR(rt)) {
177                 err = PTR_ERR(rt);
178                 if (err == -ENETUNREACH)
179                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180                 return err;
181         }
182
183         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184                 ip_rt_put(rt);
185                 return -ENETUNREACH;
186         }
187
188         if (!inet_opt || !inet_opt->opt.srr)
189                 daddr = fl4->daddr;
190
191         if (!inet->inet_saddr)
192                 inet->inet_saddr = fl4->saddr;
193         inet->inet_rcv_saddr = inet->inet_saddr;
194
195         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196                 /* Reset inherited state */
197                 tp->rx_opt.ts_recent       = 0;
198                 tp->rx_opt.ts_recent_stamp = 0;
199                 if (likely(!tp->repair))
200                         tp->write_seq      = 0;
201         }
202
203         if (tcp_death_row.sysctl_tw_recycle &&
204             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205                 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207         inet->inet_dport = usin->sin_port;
208         inet->inet_daddr = daddr;
209
210         inet_csk(sk)->icsk_ext_hdr_len = 0;
211         if (inet_opt)
212                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216         /* Socket identity is still unknown (sport may be zero).
217          * However we set state to SYN-SENT and not releasing socket
218          * lock select source port, enter ourselves into the hash tables and
219          * complete initialization after this.
220          */
221         tcp_set_state(sk, TCP_SYN_SENT);
222         err = inet_hash_connect(&tcp_death_row, sk);
223         if (err)
224                 goto failure;
225
226         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227                                inet->inet_sport, inet->inet_dport, sk);
228         if (IS_ERR(rt)) {
229                 err = PTR_ERR(rt);
230                 rt = NULL;
231                 goto failure;
232         }
233         /* OK, now commit destination to socket.  */
234         sk->sk_gso_type = SKB_GSO_TCPV4;
235         sk_setup_caps(sk, &rt->dst);
236
237         if (!tp->write_seq && likely(!tp->repair))
238                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239                                                            inet->inet_daddr,
240                                                            inet->inet_sport,
241                                                            usin->sin_port);
242
243         inet->inet_id = tp->write_seq ^ jiffies;
244
245         err = tcp_connect(sk);
246
247         rt = NULL;
248         if (err)
249                 goto failure;
250
251         return 0;
252
253 failure:
254         /*
255          * This unhashes the socket and releases the local port,
256          * if necessary.
257          */
258         tcp_set_state(sk, TCP_CLOSE);
259         ip_rt_put(rt);
260         sk->sk_route_caps = 0;
261         inet->inet_dport = 0;
262         return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268  * It can be called through tcp_release_cb() if socket was owned by user
269  * at the time tcp_v4_err() was called to handle ICMP message.
270  */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273         struct dst_entry *dst;
274         struct inet_sock *inet = inet_sk(sk);
275         u32 mtu = tcp_sk(sk)->mtu_info;
276
277         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278          * send out by Linux are always <576bytes so they should go through
279          * unfragmented).
280          */
281         if (sk->sk_state == TCP_LISTEN)
282                 return;
283
284         dst = inet_csk_update_pmtu(sk, mtu);
285         if (!dst)
286                 return;
287
288         /* Something is about to be wrong... Remember soft error
289          * for the case, if this connection will not able to recover.
290          */
291         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292                 sk->sk_err_soft = EMSGSIZE;
293
294         mtu = dst_mtu(dst);
295
296         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298                 tcp_sync_mss(sk, mtu);
299
300                 /* Resend the TCP packet because it's
301                  * clear that the old packet has been
302                  * dropped. This is the new "fast" path mtu
303                  * discovery.
304                  */
305                 tcp_simple_retransmit(sk);
306         } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311         struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313         if (dst)
314                 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337         struct inet_connection_sock *icsk;
338         struct tcp_sock *tp;
339         struct inet_sock *inet;
340         const int type = icmp_hdr(icmp_skb)->type;
341         const int code = icmp_hdr(icmp_skb)->code;
342         struct sock *sk;
343         struct sk_buff *skb;
344         struct request_sock *req;
345         __u32 seq;
346         __u32 remaining;
347         int err;
348         struct net *net = dev_net(icmp_skb->dev);
349
350         if (icmp_skb->len < (iph->ihl << 2) + 8) {
351                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352                 return;
353         }
354
355         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356                         iph->saddr, th->source, inet_iif(icmp_skb));
357         if (!sk) {
358                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359                 return;
360         }
361         if (sk->sk_state == TCP_TIME_WAIT) {
362                 inet_twsk_put(inet_twsk(sk));
363                 return;
364         }
365
366         bh_lock_sock(sk);
367         /* If too many ICMPs get dropped on busy
368          * servers this needs to be solved differently.
369          * We do take care of PMTU discovery (RFC1191) special case :
370          * we can receive locally generated ICMP messages while socket is held.
371          */
372         if (sock_owned_by_user(sk)) {
373                 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
374                         NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
375         }
376         if (sk->sk_state == TCP_CLOSE)
377                 goto out;
378
379         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
380                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
381                 goto out;
382         }
383
384         icsk = inet_csk(sk);
385         tp = tcp_sk(sk);
386         req = tp->fastopen_rsk;
387         seq = ntohl(th->seq);
388         if (sk->sk_state != TCP_LISTEN &&
389             !between(seq, tp->snd_una, tp->snd_nxt) &&
390             (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
391                 /* For a Fast Open socket, allow seq to be snt_isn. */
392                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
393                 goto out;
394         }
395
396         switch (type) {
397         case ICMP_REDIRECT:
398                 do_redirect(icmp_skb, sk);
399                 goto out;
400         case ICMP_SOURCE_QUENCH:
401                 /* Just silently ignore these. */
402                 goto out;
403         case ICMP_PARAMETERPROB:
404                 err = EPROTO;
405                 break;
406         case ICMP_DEST_UNREACH:
407                 if (code > NR_ICMP_UNREACH)
408                         goto out;
409
410                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
411                         tp->mtu_info = info;
412                         if (!sock_owned_by_user(sk)) {
413                                 tcp_v4_mtu_reduced(sk);
414                         } else {
415                                 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
416                                         sock_hold(sk);
417                         }
418                         goto out;
419                 }
420
421                 err = icmp_err_convert[code].errno;
422                 /* check if icmp_skb allows revert of backoff
423                  * (see draft-zimmermann-tcp-lcd) */
424                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425                         break;
426                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
427                     !icsk->icsk_backoff)
428                         break;
429
430                 /* XXX (TFO) - revisit the following logic for TFO */
431
432                 if (sock_owned_by_user(sk))
433                         break;
434
435                 icsk->icsk_backoff--;
436                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
437                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
438                 tcp_bound_rto(sk);
439
440                 skb = tcp_write_queue_head(sk);
441                 BUG_ON(!skb);
442
443                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
444                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
445
446                 if (remaining) {
447                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
448                                                   remaining, TCP_RTO_MAX);
449                 } else {
450                         /* RTO revert clocked out retransmission.
451                          * Will retransmit now */
452                         tcp_retransmit_timer(sk);
453                 }
454
455                 break;
456         case ICMP_TIME_EXCEEDED:
457                 err = EHOSTUNREACH;
458                 break;
459         default:
460                 goto out;
461         }
462
463         /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
464          * than following the TCP_SYN_RECV case and closing the socket,
465          * we ignore the ICMP error and keep trying like a fully established
466          * socket. Is this the right thing to do?
467          */
468         if (req && req->sk == NULL)
469                 goto out;
470
471         switch (sk->sk_state) {
472                 struct request_sock *req, **prev;
473         case TCP_LISTEN:
474                 if (sock_owned_by_user(sk))
475                         goto out;
476
477                 req = inet_csk_search_req(sk, &prev, th->dest,
478                                           iph->daddr, iph->saddr);
479                 if (!req)
480                         goto out;
481
482                 /* ICMPs are not backlogged, hence we cannot get
483                    an established socket here.
484                  */
485                 WARN_ON(req->sk);
486
487                 if (seq != tcp_rsk(req)->snt_isn) {
488                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
489                         goto out;
490                 }
491
492                 /*
493                  * Still in SYN_RECV, just remove it silently.
494                  * There is no good way to pass the error to the newly
495                  * created socket, and POSIX does not want network
496                  * errors returned from accept().
497                  */
498                 inet_csk_reqsk_queue_drop(sk, req, prev);
499                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
500                 goto out;
501
502         case TCP_SYN_SENT:
503         case TCP_SYN_RECV:  /* Cannot happen.
504                                It can f.e. if SYNs crossed,
505                                or Fast Open.
506                              */
507                 if (!sock_owned_by_user(sk)) {
508                         sk->sk_err = err;
509
510                         sk->sk_error_report(sk);
511
512                         tcp_done(sk);
513                 } else {
514                         sk->sk_err_soft = err;
515                 }
516                 goto out;
517         }
518
519         /* If we've already connected we will keep trying
520          * until we time out, or the user gives up.
521          *
522          * rfc1122 4.2.3.9 allows to consider as hard errors
523          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524          * but it is obsoleted by pmtu discovery).
525          *
526          * Note, that in modern internet, where routing is unreliable
527          * and in each dark corner broken firewalls sit, sending random
528          * errors ordered by their masters even this two messages finally lose
529          * their original sense (even Linux sends invalid PORT_UNREACHs)
530          *
531          * Now we are in compliance with RFCs.
532          *                                                      --ANK (980905)
533          */
534
535         inet = inet_sk(sk);
536         if (!sock_owned_by_user(sk) && inet->recverr) {
537                 sk->sk_err = err;
538                 sk->sk_error_report(sk);
539         } else  { /* Only an error on timeout */
540                 sk->sk_err_soft = err;
541         }
542
543 out:
544         bh_unlock_sock(sk);
545         sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549                                 __be32 saddr, __be32 daddr)
550 {
551         struct tcphdr *th = tcp_hdr(skb);
552
553         if (skb->ip_summed == CHECKSUM_PARTIAL) {
554                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555                 skb->csum_start = skb_transport_header(skb) - skb->head;
556                 skb->csum_offset = offsetof(struct tcphdr, check);
557         } else {
558                 th->check = tcp_v4_check(skb->len, saddr, daddr,
559                                          csum_partial(th,
560                                                       th->doff << 2,
561                                                       skb->csum));
562         }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568         const struct inet_sock *inet = inet_sk(sk);
569
570         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576         const struct iphdr *iph;
577         struct tcphdr *th;
578
579         if (!pskb_may_pull(skb, sizeof(*th)))
580                 return -EINVAL;
581
582         iph = ip_hdr(skb);
583         th = tcp_hdr(skb);
584
585         th->check = 0;
586         skb->ip_summed = CHECKSUM_PARTIAL;
587         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588         return 0;
589 }
590
591 /*
592  *      This routine will send an RST to the other tcp.
593  *
594  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595  *                    for reset.
596  *      Answer: if a packet caused RST, it is not for a socket
597  *              existing in our system, if it is matched to a socket,
598  *              it is just duplicate segment or bug in other side's TCP.
599  *              So that we build reply only basing on parameters
600  *              arrived with segment.
601  *      Exception: precedence violation. We do not implement it in any case.
602  */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606         const struct tcphdr *th = tcp_hdr(skb);
607         struct {
608                 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612         } rep;
613         struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615         struct tcp_md5sig_key *key;
616         const __u8 *hash_location = NULL;
617         unsigned char newhash[16];
618         int genhash;
619         struct sock *sk1 = NULL;
620 #endif
621         struct net *net;
622
623         /* Never send a reset in response to a reset. */
624         if (th->rst)
625                 return;
626
627         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628                 return;
629
630         /* Swap the send and the receive. */
631         memset(&rep, 0, sizeof(rep));
632         rep.th.dest   = th->source;
633         rep.th.source = th->dest;
634         rep.th.doff   = sizeof(struct tcphdr) / 4;
635         rep.th.rst    = 1;
636
637         if (th->ack) {
638                 rep.th.seq = th->ack_seq;
639         } else {
640                 rep.th.ack = 1;
641                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642                                        skb->len - (th->doff << 2));
643         }
644
645         memset(&arg, 0, sizeof(arg));
646         arg.iov[0].iov_base = (unsigned char *)&rep;
647         arg.iov[0].iov_len  = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650         hash_location = tcp_parse_md5sig_option(th);
651         if (!sk && hash_location) {
652                 /*
653                  * active side is lost. Try to find listening socket through
654                  * source port, and then find md5 key through listening socket.
655                  * we are not loose security here:
656                  * Incoming packet is checked with md5 hash with finding key,
657                  * no RST generated if md5 hash doesn't match.
658                  */
659                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660                                              &tcp_hashinfo, ip_hdr(skb)->daddr,
661                                              ntohs(th->source), inet_iif(skb));
662                 /* don't send rst if it can't find key */
663                 if (!sk1)
664                         return;
665                 rcu_read_lock();
666                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
667                                         &ip_hdr(skb)->saddr, AF_INET);
668                 if (!key)
669                         goto release_sk1;
670
671                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
672                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
673                         goto release_sk1;
674         } else {
675                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
676                                              &ip_hdr(skb)->saddr,
677                                              AF_INET) : NULL;
678         }
679
680         if (key) {
681                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
682                                    (TCPOPT_NOP << 16) |
683                                    (TCPOPT_MD5SIG << 8) |
684                                    TCPOLEN_MD5SIG);
685                 /* Update length and the length the header thinks exists */
686                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
687                 rep.th.doff = arg.iov[0].iov_len / 4;
688
689                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
690                                      key, ip_hdr(skb)->saddr,
691                                      ip_hdr(skb)->daddr, &rep.th);
692         }
693 #endif
694         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
695                                       ip_hdr(skb)->saddr, /* XXX */
696                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
697         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
698         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
699         /* When socket is gone, all binding information is lost.
700          * routing might fail in this case. No choice here, if we choose to force
701          * input interface, we will misroute in case of asymmetric route.
702          */
703         if (sk)
704                 arg.bound_dev_if = sk->sk_bound_dev_if;
705
706         net = dev_net(skb_dst(skb)->dev);
707         arg.tos = ip_hdr(skb)->tos;
708         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
709                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
710
711         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
712         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
713
714 #ifdef CONFIG_TCP_MD5SIG
715 release_sk1:
716         if (sk1) {
717                 rcu_read_unlock();
718                 sock_put(sk1);
719         }
720 #endif
721 }
722
723 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
724    outside socket context is ugly, certainly. What can I do?
725  */
726
727 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
728                             u32 win, u32 ts, int oif,
729                             struct tcp_md5sig_key *key,
730                             int reply_flags, u8 tos)
731 {
732         const struct tcphdr *th = tcp_hdr(skb);
733         struct {
734                 struct tcphdr th;
735                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
736 #ifdef CONFIG_TCP_MD5SIG
737                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
738 #endif
739                         ];
740         } rep;
741         struct ip_reply_arg arg;
742         struct net *net = dev_net(skb_dst(skb)->dev);
743
744         memset(&rep.th, 0, sizeof(struct tcphdr));
745         memset(&arg, 0, sizeof(arg));
746
747         arg.iov[0].iov_base = (unsigned char *)&rep;
748         arg.iov[0].iov_len  = sizeof(rep.th);
749         if (ts) {
750                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
751                                    (TCPOPT_TIMESTAMP << 8) |
752                                    TCPOLEN_TIMESTAMP);
753                 rep.opt[1] = htonl(tcp_time_stamp);
754                 rep.opt[2] = htonl(ts);
755                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
756         }
757
758         /* Swap the send and the receive. */
759         rep.th.dest    = th->source;
760         rep.th.source  = th->dest;
761         rep.th.doff    = arg.iov[0].iov_len / 4;
762         rep.th.seq     = htonl(seq);
763         rep.th.ack_seq = htonl(ack);
764         rep.th.ack     = 1;
765         rep.th.window  = htons(win);
766
767 #ifdef CONFIG_TCP_MD5SIG
768         if (key) {
769                 int offset = (ts) ? 3 : 0;
770
771                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
772                                           (TCPOPT_NOP << 16) |
773                                           (TCPOPT_MD5SIG << 8) |
774                                           TCPOLEN_MD5SIG);
775                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
776                 rep.th.doff = arg.iov[0].iov_len/4;
777
778                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
779                                     key, ip_hdr(skb)->saddr,
780                                     ip_hdr(skb)->daddr, &rep.th);
781         }
782 #endif
783         arg.flags = reply_flags;
784         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
785                                       ip_hdr(skb)->saddr, /* XXX */
786                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
787         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
788         if (oif)
789                 arg.bound_dev_if = oif;
790         arg.tos = tos;
791         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
792                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
793
794         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
795 }
796
797 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
798 {
799         struct inet_timewait_sock *tw = inet_twsk(sk);
800         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
801
802         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
803                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
804                         tcptw->tw_ts_recent,
805                         tw->tw_bound_dev_if,
806                         tcp_twsk_md5_key(tcptw),
807                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
808                         tw->tw_tos
809                         );
810
811         inet_twsk_put(tw);
812 }
813
814 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
815                                   struct request_sock *req)
816 {
817         /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
818          * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
819          */
820         tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
821                         tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
822                         tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
823                         req->ts_recent,
824                         0,
825                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
826                                           AF_INET),
827                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
828                         ip_hdr(skb)->tos);
829 }
830
831 /*
832  *      Send a SYN-ACK after having received a SYN.
833  *      This still operates on a request_sock only, not on a big
834  *      socket.
835  */
836 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
837                               struct request_sock *req,
838                               struct request_values *rvp,
839                               u16 queue_mapping,
840                               bool nocache)
841 {
842         const struct inet_request_sock *ireq = inet_rsk(req);
843         struct flowi4 fl4;
844         int err = -1;
845         struct sk_buff * skb;
846
847         /* First, grab a route. */
848         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
849                 return -1;
850
851         skb = tcp_make_synack(sk, dst, req, rvp, NULL);
852
853         if (skb) {
854                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
855
856                 skb_set_queue_mapping(skb, queue_mapping);
857                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
858                                             ireq->rmt_addr,
859                                             ireq->opt);
860                 err = net_xmit_eval(err);
861                 if (!tcp_rsk(req)->snt_synack && !err)
862                         tcp_rsk(req)->snt_synack = tcp_time_stamp;
863         }
864
865         return err;
866 }
867
868 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
869                              struct request_values *rvp)
870 {
871         int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
872
873         if (!res)
874                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
875         return res;
876 }
877
878 /*
879  *      IPv4 request_sock destructor.
880  */
881 static void tcp_v4_reqsk_destructor(struct request_sock *req)
882 {
883         kfree(inet_rsk(req)->opt);
884 }
885
886 /*
887  * Return true if a syncookie should be sent
888  */
889 bool tcp_syn_flood_action(struct sock *sk,
890                          const struct sk_buff *skb,
891                          const char *proto)
892 {
893         const char *msg = "Dropping request";
894         bool want_cookie = false;
895         struct listen_sock *lopt;
896
897
898
899 #ifdef CONFIG_SYN_COOKIES
900         if (sysctl_tcp_syncookies) {
901                 msg = "Sending cookies";
902                 want_cookie = true;
903                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
904         } else
905 #endif
906                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
907
908         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
909         if (!lopt->synflood_warned) {
910                 lopt->synflood_warned = 1;
911                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
912                         proto, ntohs(tcp_hdr(skb)->dest), msg);
913         }
914         return want_cookie;
915 }
916 EXPORT_SYMBOL(tcp_syn_flood_action);
917
918 /*
919  * Save and compile IPv4 options into the request_sock if needed.
920  */
921 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
922 {
923         const struct ip_options *opt = &(IPCB(skb)->opt);
924         struct ip_options_rcu *dopt = NULL;
925
926         if (opt && opt->optlen) {
927                 int opt_size = sizeof(*dopt) + opt->optlen;
928
929                 dopt = kmalloc(opt_size, GFP_ATOMIC);
930                 if (dopt) {
931                         if (ip_options_echo(&dopt->opt, skb)) {
932                                 kfree(dopt);
933                                 dopt = NULL;
934                         }
935                 }
936         }
937         return dopt;
938 }
939
940 #ifdef CONFIG_TCP_MD5SIG
941 /*
942  * RFC2385 MD5 checksumming requires a mapping of
943  * IP address->MD5 Key.
944  * We need to maintain these in the sk structure.
945  */
946
947 /* Find the Key structure for an address.  */
948 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
949                                          const union tcp_md5_addr *addr,
950                                          int family)
951 {
952         struct tcp_sock *tp = tcp_sk(sk);
953         struct tcp_md5sig_key *key;
954         struct hlist_node *pos;
955         unsigned int size = sizeof(struct in_addr);
956         struct tcp_md5sig_info *md5sig;
957
958         /* caller either holds rcu_read_lock() or socket lock */
959         md5sig = rcu_dereference_check(tp->md5sig_info,
960                                        sock_owned_by_user(sk) ||
961                                        lockdep_is_held(&sk->sk_lock.slock));
962         if (!md5sig)
963                 return NULL;
964 #if IS_ENABLED(CONFIG_IPV6)
965         if (family == AF_INET6)
966                 size = sizeof(struct in6_addr);
967 #endif
968         hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
969                 if (key->family != family)
970                         continue;
971                 if (!memcmp(&key->addr, addr, size))
972                         return key;
973         }
974         return NULL;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_lookup);
977
978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
979                                          struct sock *addr_sk)
980 {
981         union tcp_md5_addr *addr;
982
983         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
984         return tcp_md5_do_lookup(sk, addr, AF_INET);
985 }
986 EXPORT_SYMBOL(tcp_v4_md5_lookup);
987
988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
989                                                       struct request_sock *req)
990 {
991         union tcp_md5_addr *addr;
992
993         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
994         return tcp_md5_do_lookup(sk, addr, AF_INET);
995 }
996
997 /* This can be called on a newly created socket, from other files */
998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
999                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1000 {
1001         /* Add Key to the list */
1002         struct tcp_md5sig_key *key;
1003         struct tcp_sock *tp = tcp_sk(sk);
1004         struct tcp_md5sig_info *md5sig;
1005
1006         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1007         if (key) {
1008                 /* Pre-existing entry - just update that one. */
1009                 memcpy(key->key, newkey, newkeylen);
1010                 key->keylen = newkeylen;
1011                 return 0;
1012         }
1013
1014         md5sig = rcu_dereference_protected(tp->md5sig_info,
1015                                            sock_owned_by_user(sk));
1016         if (!md5sig) {
1017                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1018                 if (!md5sig)
1019                         return -ENOMEM;
1020
1021                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022                 INIT_HLIST_HEAD(&md5sig->head);
1023                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1024         }
1025
1026         key = sock_kmalloc(sk, sizeof(*key), gfp);
1027         if (!key)
1028                 return -ENOMEM;
1029         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1030                 sock_kfree_s(sk, key, sizeof(*key));
1031                 return -ENOMEM;
1032         }
1033
1034         memcpy(key->key, newkey, newkeylen);
1035         key->keylen = newkeylen;
1036         key->family = family;
1037         memcpy(&key->addr, addr,
1038                (family == AF_INET6) ? sizeof(struct in6_addr) :
1039                                       sizeof(struct in_addr));
1040         hlist_add_head_rcu(&key->node, &md5sig->head);
1041         return 0;
1042 }
1043 EXPORT_SYMBOL(tcp_md5_do_add);
1044
1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1046 {
1047         struct tcp_sock *tp = tcp_sk(sk);
1048         struct tcp_md5sig_key *key;
1049         struct tcp_md5sig_info *md5sig;
1050
1051         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1052         if (!key)
1053                 return -ENOENT;
1054         hlist_del_rcu(&key->node);
1055         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056         kfree_rcu(key, rcu);
1057         md5sig = rcu_dereference_protected(tp->md5sig_info,
1058                                            sock_owned_by_user(sk));
1059         if (hlist_empty(&md5sig->head))
1060                 tcp_free_md5sig_pool();
1061         return 0;
1062 }
1063 EXPORT_SYMBOL(tcp_md5_do_del);
1064
1065 static void tcp_clear_md5_list(struct sock *sk)
1066 {
1067         struct tcp_sock *tp = tcp_sk(sk);
1068         struct tcp_md5sig_key *key;
1069         struct hlist_node *pos, *n;
1070         struct tcp_md5sig_info *md5sig;
1071
1072         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1073
1074         if (!hlist_empty(&md5sig->head))
1075                 tcp_free_md5sig_pool();
1076         hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1077                 hlist_del_rcu(&key->node);
1078                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1079                 kfree_rcu(key, rcu);
1080         }
1081 }
1082
1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1084                                  int optlen)
1085 {
1086         struct tcp_md5sig cmd;
1087         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1088
1089         if (optlen < sizeof(cmd))
1090                 return -EINVAL;
1091
1092         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1093                 return -EFAULT;
1094
1095         if (sin->sin_family != AF_INET)
1096                 return -EINVAL;
1097
1098         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1099                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1100                                       AF_INET);
1101
1102         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1103                 return -EINVAL;
1104
1105         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1106                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1107                               GFP_KERNEL);
1108 }
1109
1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1111                                         __be32 daddr, __be32 saddr, int nbytes)
1112 {
1113         struct tcp4_pseudohdr *bp;
1114         struct scatterlist sg;
1115
1116         bp = &hp->md5_blk.ip4;
1117
1118         /*
1119          * 1. the TCP pseudo-header (in the order: source IP address,
1120          * destination IP address, zero-padded protocol number, and
1121          * segment length)
1122          */
1123         bp->saddr = saddr;
1124         bp->daddr = daddr;
1125         bp->pad = 0;
1126         bp->protocol = IPPROTO_TCP;
1127         bp->len = cpu_to_be16(nbytes);
1128
1129         sg_init_one(&sg, bp, sizeof(*bp));
1130         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1131 }
1132
1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1134                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1135 {
1136         struct tcp_md5sig_pool *hp;
1137         struct hash_desc *desc;
1138
1139         hp = tcp_get_md5sig_pool();
1140         if (!hp)
1141                 goto clear_hash_noput;
1142         desc = &hp->md5_desc;
1143
1144         if (crypto_hash_init(desc))
1145                 goto clear_hash;
1146         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1147                 goto clear_hash;
1148         if (tcp_md5_hash_header(hp, th))
1149                 goto clear_hash;
1150         if (tcp_md5_hash_key(hp, key))
1151                 goto clear_hash;
1152         if (crypto_hash_final(desc, md5_hash))
1153                 goto clear_hash;
1154
1155         tcp_put_md5sig_pool();
1156         return 0;
1157
1158 clear_hash:
1159         tcp_put_md5sig_pool();
1160 clear_hash_noput:
1161         memset(md5_hash, 0, 16);
1162         return 1;
1163 }
1164
1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1166                         const struct sock *sk, const struct request_sock *req,
1167                         const struct sk_buff *skb)
1168 {
1169         struct tcp_md5sig_pool *hp;
1170         struct hash_desc *desc;
1171         const struct tcphdr *th = tcp_hdr(skb);
1172         __be32 saddr, daddr;
1173
1174         if (sk) {
1175                 saddr = inet_sk(sk)->inet_saddr;
1176                 daddr = inet_sk(sk)->inet_daddr;
1177         } else if (req) {
1178                 saddr = inet_rsk(req)->loc_addr;
1179                 daddr = inet_rsk(req)->rmt_addr;
1180         } else {
1181                 const struct iphdr *iph = ip_hdr(skb);
1182                 saddr = iph->saddr;
1183                 daddr = iph->daddr;
1184         }
1185
1186         hp = tcp_get_md5sig_pool();
1187         if (!hp)
1188                 goto clear_hash_noput;
1189         desc = &hp->md5_desc;
1190
1191         if (crypto_hash_init(desc))
1192                 goto clear_hash;
1193
1194         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1195                 goto clear_hash;
1196         if (tcp_md5_hash_header(hp, th))
1197                 goto clear_hash;
1198         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1199                 goto clear_hash;
1200         if (tcp_md5_hash_key(hp, key))
1201                 goto clear_hash;
1202         if (crypto_hash_final(desc, md5_hash))
1203                 goto clear_hash;
1204
1205         tcp_put_md5sig_pool();
1206         return 0;
1207
1208 clear_hash:
1209         tcp_put_md5sig_pool();
1210 clear_hash_noput:
1211         memset(md5_hash, 0, 16);
1212         return 1;
1213 }
1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1215
1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1217 {
1218         /*
1219          * This gets called for each TCP segment that arrives
1220          * so we want to be efficient.
1221          * We have 3 drop cases:
1222          * o No MD5 hash and one expected.
1223          * o MD5 hash and we're not expecting one.
1224          * o MD5 hash and its wrong.
1225          */
1226         const __u8 *hash_location = NULL;
1227         struct tcp_md5sig_key *hash_expected;
1228         const struct iphdr *iph = ip_hdr(skb);
1229         const struct tcphdr *th = tcp_hdr(skb);
1230         int genhash;
1231         unsigned char newhash[16];
1232
1233         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1234                                           AF_INET);
1235         hash_location = tcp_parse_md5sig_option(th);
1236
1237         /* We've parsed the options - do we have a hash? */
1238         if (!hash_expected && !hash_location)
1239                 return false;
1240
1241         if (hash_expected && !hash_location) {
1242                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1243                 return true;
1244         }
1245
1246         if (!hash_expected && hash_location) {
1247                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1248                 return true;
1249         }
1250
1251         /* Okay, so this is hash_expected and hash_location -
1252          * so we need to calculate the checksum.
1253          */
1254         genhash = tcp_v4_md5_hash_skb(newhash,
1255                                       hash_expected,
1256                                       NULL, NULL, skb);
1257
1258         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1259                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260                                      &iph->saddr, ntohs(th->source),
1261                                      &iph->daddr, ntohs(th->dest),
1262                                      genhash ? " tcp_v4_calc_md5_hash failed"
1263                                      : "");
1264                 return true;
1265         }
1266         return false;
1267 }
1268
1269 #endif
1270
1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1272         .family         =       PF_INET,
1273         .obj_size       =       sizeof(struct tcp_request_sock),
1274         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1275         .send_ack       =       tcp_v4_reqsk_send_ack,
1276         .destructor     =       tcp_v4_reqsk_destructor,
1277         .send_reset     =       tcp_v4_send_reset,
1278         .syn_ack_timeout =      tcp_syn_ack_timeout,
1279 };
1280
1281 #ifdef CONFIG_TCP_MD5SIG
1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1283         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1284         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1285 };
1286 #endif
1287
1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1289                                struct request_sock *req,
1290                                struct tcp_fastopen_cookie *foc,
1291                                struct tcp_fastopen_cookie *valid_foc)
1292 {
1293         bool skip_cookie = false;
1294         struct fastopen_queue *fastopenq;
1295
1296         if (likely(!fastopen_cookie_present(foc))) {
1297                 /* See include/net/tcp.h for the meaning of these knobs */
1298                 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1299                     ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1300                     (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1301                         skip_cookie = true; /* no cookie to validate */
1302                 else
1303                         return false;
1304         }
1305         fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1306         /* A FO option is present; bump the counter. */
1307         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1308
1309         /* Make sure the listener has enabled fastopen, and we don't
1310          * exceed the max # of pending TFO requests allowed before trying
1311          * to validating the cookie in order to avoid burning CPU cycles
1312          * unnecessarily.
1313          *
1314          * XXX (TFO) - The implication of checking the max_qlen before
1315          * processing a cookie request is that clients can't differentiate
1316          * between qlen overflow causing Fast Open to be disabled
1317          * temporarily vs a server not supporting Fast Open at all.
1318          */
1319         if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1320             fastopenq == NULL || fastopenq->max_qlen == 0)
1321                 return false;
1322
1323         if (fastopenq->qlen >= fastopenq->max_qlen) {
1324                 struct request_sock *req1;
1325                 spin_lock(&fastopenq->lock);
1326                 req1 = fastopenq->rskq_rst_head;
1327                 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1328                         spin_unlock(&fastopenq->lock);
1329                         NET_INC_STATS_BH(sock_net(sk),
1330                             LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1331                         /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1332                         foc->len = -1;
1333                         return false;
1334                 }
1335                 fastopenq->rskq_rst_head = req1->dl_next;
1336                 fastopenq->qlen--;
1337                 spin_unlock(&fastopenq->lock);
1338                 reqsk_free(req1);
1339         }
1340         if (skip_cookie) {
1341                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1342                 return true;
1343         }
1344         if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1345                 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1346                         tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1347                         if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1348                             memcmp(&foc->val[0], &valid_foc->val[0],
1349                             TCP_FASTOPEN_COOKIE_SIZE) != 0)
1350                                 return false;
1351                         valid_foc->len = -1;
1352                 }
1353                 /* Acknowledge the data received from the peer. */
1354                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1355                 return true;
1356         } else if (foc->len == 0) { /* Client requesting a cookie */
1357                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1358                 NET_INC_STATS_BH(sock_net(sk),
1359                     LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1360         } else {
1361                 /* Client sent a cookie with wrong size. Treat it
1362                  * the same as invalid and return a valid one.
1363                  */
1364                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365         }
1366         return false;
1367 }
1368
1369 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1370                                     struct sk_buff *skb,
1371                                     struct sk_buff *skb_synack,
1372                                     struct request_sock *req,
1373                                     struct request_values *rvp)
1374 {
1375         struct tcp_sock *tp = tcp_sk(sk);
1376         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1377         const struct inet_request_sock *ireq = inet_rsk(req);
1378         struct sock *child;
1379         int err;
1380
1381         req->num_retrans = 0;
1382         req->num_timeout = 0;
1383         req->sk = NULL;
1384
1385         child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1386         if (child == NULL) {
1387                 NET_INC_STATS_BH(sock_net(sk),
1388                                  LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1389                 kfree_skb(skb_synack);
1390                 return -1;
1391         }
1392         err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1393                                     ireq->rmt_addr, ireq->opt);
1394         err = net_xmit_eval(err);
1395         if (!err)
1396                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1397         /* XXX (TFO) - is it ok to ignore error and continue? */
1398
1399         spin_lock(&queue->fastopenq->lock);
1400         queue->fastopenq->qlen++;
1401         spin_unlock(&queue->fastopenq->lock);
1402
1403         /* Initialize the child socket. Have to fix some values to take
1404          * into account the child is a Fast Open socket and is created
1405          * only out of the bits carried in the SYN packet.
1406          */
1407         tp = tcp_sk(child);
1408
1409         tp->fastopen_rsk = req;
1410         /* Do a hold on the listner sk so that if the listener is being
1411          * closed, the child that has been accepted can live on and still
1412          * access listen_lock.
1413          */
1414         sock_hold(sk);
1415         tcp_rsk(req)->listener = sk;
1416
1417         /* RFC1323: The window in SYN & SYN/ACK segments is never
1418          * scaled. So correct it appropriately.
1419          */
1420         tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1421
1422         /* Activate the retrans timer so that SYNACK can be retransmitted.
1423          * The request socket is not added to the SYN table of the parent
1424          * because it's been added to the accept queue directly.
1425          */
1426         inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1427             TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1428
1429         /* Add the child socket directly into the accept queue */
1430         inet_csk_reqsk_queue_add(sk, req, child);
1431
1432         /* Now finish processing the fastopen child socket. */
1433         inet_csk(child)->icsk_af_ops->rebuild_header(child);
1434         tcp_init_congestion_control(child);
1435         tcp_mtup_init(child);
1436         tcp_init_buffer_space(child);
1437         tcp_init_metrics(child);
1438
1439         /* Queue the data carried in the SYN packet. We need to first
1440          * bump skb's refcnt because the caller will attempt to free it.
1441          *
1442          * XXX (TFO) - we honor a zero-payload TFO request for now.
1443          * (Any reason not to?)
1444          */
1445         if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1446                 /* Don't queue the skb if there is no payload in SYN.
1447                  * XXX (TFO) - How about SYN+FIN?
1448                  */
1449                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1450         } else {
1451                 skb = skb_get(skb);
1452                 skb_dst_drop(skb);
1453                 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1454                 skb_set_owner_r(skb, child);
1455                 __skb_queue_tail(&child->sk_receive_queue, skb);
1456                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1457                 tp->syn_data_acked = 1;
1458         }
1459         sk->sk_data_ready(sk, 0);
1460         bh_unlock_sock(child);
1461         sock_put(child);
1462         WARN_ON(req->sk == NULL);
1463         return 0;
1464 }
1465
1466 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1467 {
1468         struct tcp_extend_values tmp_ext;
1469         struct tcp_options_received tmp_opt;
1470         const u8 *hash_location;
1471         struct request_sock *req;
1472         struct inet_request_sock *ireq;
1473         struct tcp_sock *tp = tcp_sk(sk);
1474         struct dst_entry *dst = NULL;
1475         __be32 saddr = ip_hdr(skb)->saddr;
1476         __be32 daddr = ip_hdr(skb)->daddr;
1477         __u32 isn = TCP_SKB_CB(skb)->when;
1478         bool want_cookie = false;
1479         struct flowi4 fl4;
1480         struct tcp_fastopen_cookie foc = { .len = -1 };
1481         struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1482         struct sk_buff *skb_synack;
1483         int do_fastopen;
1484
1485         /* Never answer to SYNs send to broadcast or multicast */
1486         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1487                 goto drop;
1488
1489         /* TW buckets are converted to open requests without
1490          * limitations, they conserve resources and peer is
1491          * evidently real one.
1492          */
1493         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1494                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1495                 if (!want_cookie)
1496                         goto drop;
1497         }
1498
1499         /* Accept backlog is full. If we have already queued enough
1500          * of warm entries in syn queue, drop request. It is better than
1501          * clogging syn queue with openreqs with exponentially increasing
1502          * timeout.
1503          */
1504         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1505                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1506                 goto drop;
1507         }
1508
1509         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1510         if (!req)
1511                 goto drop;
1512
1513 #ifdef CONFIG_TCP_MD5SIG
1514         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1515 #endif
1516
1517         tcp_clear_options(&tmp_opt);
1518         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1519         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1520         tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1521             want_cookie ? NULL : &foc);
1522
1523         if (tmp_opt.cookie_plus > 0 &&
1524             tmp_opt.saw_tstamp &&
1525             !tp->rx_opt.cookie_out_never &&
1526             (sysctl_tcp_cookie_size > 0 ||
1527              (tp->cookie_values != NULL &&
1528               tp->cookie_values->cookie_desired > 0))) {
1529                 u8 *c;
1530                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1531                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1532
1533                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1534                         goto drop_and_release;
1535
1536                 /* Secret recipe starts with IP addresses */
1537                 *mess++ ^= (__force u32)daddr;
1538                 *mess++ ^= (__force u32)saddr;
1539
1540                 /* plus variable length Initiator Cookie */
1541                 c = (u8 *)mess;
1542                 while (l-- > 0)
1543                         *c++ ^= *hash_location++;
1544
1545                 want_cookie = false;    /* not our kind of cookie */
1546                 tmp_ext.cookie_out_never = 0; /* false */
1547                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1548         } else if (!tp->rx_opt.cookie_in_always) {
1549                 /* redundant indications, but ensure initialization. */
1550                 tmp_ext.cookie_out_never = 1; /* true */
1551                 tmp_ext.cookie_plus = 0;
1552         } else {
1553                 goto drop_and_release;
1554         }
1555         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1556
1557         if (want_cookie && !tmp_opt.saw_tstamp)
1558                 tcp_clear_options(&tmp_opt);
1559
1560         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1561         tcp_openreq_init(req, &tmp_opt, skb);
1562
1563         ireq = inet_rsk(req);
1564         ireq->loc_addr = daddr;
1565         ireq->rmt_addr = saddr;
1566         ireq->no_srccheck = inet_sk(sk)->transparent;
1567         ireq->opt = tcp_v4_save_options(skb);
1568
1569         if (security_inet_conn_request(sk, skb, req))
1570                 goto drop_and_free;
1571
1572         if (!want_cookie || tmp_opt.tstamp_ok)
1573                 TCP_ECN_create_request(req, skb);
1574
1575         if (want_cookie) {
1576                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1577                 req->cookie_ts = tmp_opt.tstamp_ok;
1578         } else if (!isn) {
1579                 /* VJ's idea. We save last timestamp seen
1580                  * from the destination in peer table, when entering
1581                  * state TIME-WAIT, and check against it before
1582                  * accepting new connection request.
1583                  *
1584                  * If "isn" is not zero, this request hit alive
1585                  * timewait bucket, so that all the necessary checks
1586                  * are made in the function processing timewait state.
1587                  */
1588                 if (tmp_opt.saw_tstamp &&
1589                     tcp_death_row.sysctl_tw_recycle &&
1590                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1591                     fl4.daddr == saddr) {
1592                         if (!tcp_peer_is_proven(req, dst, true)) {
1593                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1594                                 goto drop_and_release;
1595                         }
1596                 }
1597                 /* Kill the following clause, if you dislike this way. */
1598                 else if (!sysctl_tcp_syncookies &&
1599                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1600                           (sysctl_max_syn_backlog >> 2)) &&
1601                          !tcp_peer_is_proven(req, dst, false)) {
1602                         /* Without syncookies last quarter of
1603                          * backlog is filled with destinations,
1604                          * proven to be alive.
1605                          * It means that we continue to communicate
1606                          * to destinations, already remembered
1607                          * to the moment of synflood.
1608                          */
1609                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1610                                        &saddr, ntohs(tcp_hdr(skb)->source));
1611                         goto drop_and_release;
1612                 }
1613
1614                 isn = tcp_v4_init_sequence(skb);
1615         }
1616         tcp_rsk(req)->snt_isn = isn;
1617
1618         if (dst == NULL) {
1619                 dst = inet_csk_route_req(sk, &fl4, req);
1620                 if (dst == NULL)
1621                         goto drop_and_free;
1622         }
1623         do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1624
1625         /* We don't call tcp_v4_send_synack() directly because we need
1626          * to make sure a child socket can be created successfully before
1627          * sending back synack!
1628          *
1629          * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1630          * (or better yet, call tcp_send_synack() in the child context
1631          * directly, but will have to fix bunch of other code first)
1632          * after syn_recv_sock() except one will need to first fix the
1633          * latter to remove its dependency on the current implementation
1634          * of tcp_v4_send_synack()->tcp_select_initial_window().
1635          */
1636         skb_synack = tcp_make_synack(sk, dst, req,
1637             (struct request_values *)&tmp_ext,
1638             fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1639
1640         if (skb_synack) {
1641                 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1642                 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1643         } else
1644                 goto drop_and_free;
1645
1646         if (likely(!do_fastopen)) {
1647                 int err;
1648                 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1649                      ireq->rmt_addr, ireq->opt);
1650                 err = net_xmit_eval(err);
1651                 if (err || want_cookie)
1652                         goto drop_and_free;
1653
1654                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1655                 tcp_rsk(req)->listener = NULL;
1656                 /* Add the request_sock to the SYN table */
1657                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1658                 if (fastopen_cookie_present(&foc) && foc.len != 0)
1659                         NET_INC_STATS_BH(sock_net(sk),
1660                             LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1661         } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1662             (struct request_values *)&tmp_ext))
1663                 goto drop_and_free;
1664
1665         return 0;
1666
1667 drop_and_release:
1668         dst_release(dst);
1669 drop_and_free:
1670         reqsk_free(req);
1671 drop:
1672         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1673         return 0;
1674 }
1675 EXPORT_SYMBOL(tcp_v4_conn_request);
1676
1677
1678 /*
1679  * The three way handshake has completed - we got a valid synack -
1680  * now create the new socket.
1681  */
1682 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1683                                   struct request_sock *req,
1684                                   struct dst_entry *dst)
1685 {
1686         struct inet_request_sock *ireq;
1687         struct inet_sock *newinet;
1688         struct tcp_sock *newtp;
1689         struct sock *newsk;
1690 #ifdef CONFIG_TCP_MD5SIG
1691         struct tcp_md5sig_key *key;
1692 #endif
1693         struct ip_options_rcu *inet_opt;
1694
1695         if (sk_acceptq_is_full(sk))
1696                 goto exit_overflow;
1697
1698         newsk = tcp_create_openreq_child(sk, req, skb);
1699         if (!newsk)
1700                 goto exit_nonewsk;
1701
1702         newsk->sk_gso_type = SKB_GSO_TCPV4;
1703         inet_sk_rx_dst_set(newsk, skb);
1704
1705         newtp                 = tcp_sk(newsk);
1706         newinet               = inet_sk(newsk);
1707         ireq                  = inet_rsk(req);
1708         newinet->inet_daddr   = ireq->rmt_addr;
1709         newinet->inet_rcv_saddr = ireq->loc_addr;
1710         newinet->inet_saddr           = ireq->loc_addr;
1711         inet_opt              = ireq->opt;
1712         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1713         ireq->opt             = NULL;
1714         newinet->mc_index     = inet_iif(skb);
1715         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1716         newinet->rcv_tos      = ip_hdr(skb)->tos;
1717         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1718         if (inet_opt)
1719                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1720         newinet->inet_id = newtp->write_seq ^ jiffies;
1721
1722         if (!dst) {
1723                 dst = inet_csk_route_child_sock(sk, newsk, req);
1724                 if (!dst)
1725                         goto put_and_exit;
1726         } else {
1727                 /* syncookie case : see end of cookie_v4_check() */
1728         }
1729         sk_setup_caps(newsk, dst);
1730
1731         tcp_mtup_init(newsk);
1732         tcp_sync_mss(newsk, dst_mtu(dst));
1733         newtp->advmss = dst_metric_advmss(dst);
1734         if (tcp_sk(sk)->rx_opt.user_mss &&
1735             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1736                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1737
1738         tcp_initialize_rcv_mss(newsk);
1739         tcp_synack_rtt_meas(newsk, req);
1740         newtp->total_retrans = req->num_retrans;
1741
1742 #ifdef CONFIG_TCP_MD5SIG
1743         /* Copy over the MD5 key from the original socket */
1744         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1745                                 AF_INET);
1746         if (key != NULL) {
1747                 /*
1748                  * We're using one, so create a matching key
1749                  * on the newsk structure. If we fail to get
1750                  * memory, then we end up not copying the key
1751                  * across. Shucks.
1752                  */
1753                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1754                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1755                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1756         }
1757 #endif
1758
1759         if (__inet_inherit_port(sk, newsk) < 0)
1760                 goto put_and_exit;
1761         __inet_hash_nolisten(newsk, NULL);
1762
1763         return newsk;
1764
1765 exit_overflow:
1766         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1767 exit_nonewsk:
1768         dst_release(dst);
1769 exit:
1770         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1771         return NULL;
1772 put_and_exit:
1773         inet_csk_prepare_forced_close(newsk);
1774         tcp_done(newsk);
1775         goto exit;
1776 }
1777 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1778
1779 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1780 {
1781         struct tcphdr *th = tcp_hdr(skb);
1782         const struct iphdr *iph = ip_hdr(skb);
1783         struct sock *nsk;
1784         struct request_sock **prev;
1785         /* Find possible connection requests. */
1786         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1787                                                        iph->saddr, iph->daddr);
1788         if (req)
1789                 return tcp_check_req(sk, skb, req, prev, false);
1790
1791         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1792                         th->source, iph->daddr, th->dest, inet_iif(skb));
1793
1794         if (nsk) {
1795                 if (nsk->sk_state != TCP_TIME_WAIT) {
1796                         bh_lock_sock(nsk);
1797                         return nsk;
1798                 }
1799                 inet_twsk_put(inet_twsk(nsk));
1800                 return NULL;
1801         }
1802
1803 #ifdef CONFIG_SYN_COOKIES
1804         if (!th->syn)
1805                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1806 #endif
1807         return sk;
1808 }
1809
1810 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1811 {
1812         const struct iphdr *iph = ip_hdr(skb);
1813
1814         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1815                 if (!tcp_v4_check(skb->len, iph->saddr,
1816                                   iph->daddr, skb->csum)) {
1817                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1818                         return 0;
1819                 }
1820         }
1821
1822         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1823                                        skb->len, IPPROTO_TCP, 0);
1824
1825         if (skb->len <= 76) {
1826                 return __skb_checksum_complete(skb);
1827         }
1828         return 0;
1829 }
1830
1831
1832 /* The socket must have it's spinlock held when we get
1833  * here.
1834  *
1835  * We have a potential double-lock case here, so even when
1836  * doing backlog processing we use the BH locking scheme.
1837  * This is because we cannot sleep with the original spinlock
1838  * held.
1839  */
1840 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1841 {
1842         struct sock *rsk;
1843 #ifdef CONFIG_TCP_MD5SIG
1844         /*
1845          * We really want to reject the packet as early as possible
1846          * if:
1847          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1848          *  o There is an MD5 option and we're not expecting one
1849          */
1850         if (tcp_v4_inbound_md5_hash(sk, skb))
1851                 goto discard;
1852 #endif
1853
1854         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1855                 struct dst_entry *dst = sk->sk_rx_dst;
1856
1857                 sock_rps_save_rxhash(sk, skb);
1858                 if (dst) {
1859                         if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1860                             dst->ops->check(dst, 0) == NULL) {
1861                                 dst_release(dst);
1862                                 sk->sk_rx_dst = NULL;
1863                         }
1864                 }
1865                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1866                         rsk = sk;
1867                         goto reset;
1868                 }
1869                 return 0;
1870         }
1871
1872         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1873                 goto csum_err;
1874
1875         if (sk->sk_state == TCP_LISTEN) {
1876                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1877                 if (!nsk)
1878                         goto discard;
1879
1880                 if (nsk != sk) {
1881                         sock_rps_save_rxhash(nsk, skb);
1882                         if (tcp_child_process(sk, nsk, skb)) {
1883                                 rsk = nsk;
1884                                 goto reset;
1885                         }
1886                         return 0;
1887                 }
1888         } else
1889                 sock_rps_save_rxhash(sk, skb);
1890
1891         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1892                 rsk = sk;
1893                 goto reset;
1894         }
1895         return 0;
1896
1897 reset:
1898         tcp_v4_send_reset(rsk, skb);
1899 discard:
1900         kfree_skb(skb);
1901         /* Be careful here. If this function gets more complicated and
1902          * gcc suffers from register pressure on the x86, sk (in %ebx)
1903          * might be destroyed here. This current version compiles correctly,
1904          * but you have been warned.
1905          */
1906         return 0;
1907
1908 csum_err:
1909         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1910         goto discard;
1911 }
1912 EXPORT_SYMBOL(tcp_v4_do_rcv);
1913
1914 void tcp_v4_early_demux(struct sk_buff *skb)
1915 {
1916         const struct iphdr *iph;
1917         const struct tcphdr *th;
1918         struct sock *sk;
1919
1920         if (skb->pkt_type != PACKET_HOST)
1921                 return;
1922
1923         if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1924                 return;
1925
1926         iph = ip_hdr(skb);
1927         th = tcp_hdr(skb);
1928
1929         if (th->doff < sizeof(struct tcphdr) / 4)
1930                 return;
1931
1932         sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1933                                        iph->saddr, th->source,
1934                                        iph->daddr, ntohs(th->dest),
1935                                        skb->skb_iif);
1936         if (sk) {
1937                 skb->sk = sk;
1938                 skb->destructor = sock_edemux;
1939                 if (sk->sk_state != TCP_TIME_WAIT) {
1940                         struct dst_entry *dst = sk->sk_rx_dst;
1941
1942                         if (dst)
1943                                 dst = dst_check(dst, 0);
1944                         if (dst &&
1945                             inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1946                                 skb_dst_set_noref(skb, dst);
1947                 }
1948         }
1949 }
1950
1951 /*
1952  *      From tcp_input.c
1953  */
1954
1955 int tcp_v4_rcv(struct sk_buff *skb)
1956 {
1957         const struct iphdr *iph;
1958         const struct tcphdr *th;
1959         struct sock *sk;
1960         int ret;
1961         struct net *net = dev_net(skb->dev);
1962
1963         if (skb->pkt_type != PACKET_HOST)
1964                 goto discard_it;
1965
1966         /* Count it even if it's bad */
1967         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1968
1969         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1970                 goto discard_it;
1971
1972         th = tcp_hdr(skb);
1973
1974         if (th->doff < sizeof(struct tcphdr) / 4)
1975                 goto bad_packet;
1976         if (!pskb_may_pull(skb, th->doff * 4))
1977                 goto discard_it;
1978
1979         /* An explanation is required here, I think.
1980          * Packet length and doff are validated by header prediction,
1981          * provided case of th->doff==0 is eliminated.
1982          * So, we defer the checks. */
1983         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1984                 goto bad_packet;
1985
1986         th = tcp_hdr(skb);
1987         iph = ip_hdr(skb);
1988         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1989         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1990                                     skb->len - th->doff * 4);
1991         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1992         TCP_SKB_CB(skb)->when    = 0;
1993         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1994         TCP_SKB_CB(skb)->sacked  = 0;
1995
1996         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1997         if (!sk)
1998                 goto no_tcp_socket;
1999
2000 process:
2001         if (sk->sk_state == TCP_TIME_WAIT)
2002                 goto do_time_wait;
2003
2004         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2005                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2006                 goto discard_and_relse;
2007         }
2008
2009         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2010                 goto discard_and_relse;
2011         nf_reset(skb);
2012
2013         if (sk_filter(sk, skb))
2014                 goto discard_and_relse;
2015
2016         skb->dev = NULL;
2017
2018         bh_lock_sock_nested(sk);
2019         ret = 0;
2020         if (!sock_owned_by_user(sk)) {
2021 #ifdef CONFIG_NET_DMA
2022                 struct tcp_sock *tp = tcp_sk(sk);
2023                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2024                         tp->ucopy.dma_chan = net_dma_find_channel();
2025                 if (tp->ucopy.dma_chan)
2026                         ret = tcp_v4_do_rcv(sk, skb);
2027                 else
2028 #endif
2029                 {
2030                         if (!tcp_prequeue(sk, skb))
2031                                 ret = tcp_v4_do_rcv(sk, skb);
2032                 }
2033         } else if (unlikely(sk_add_backlog(sk, skb,
2034                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
2035                 bh_unlock_sock(sk);
2036                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2037                 goto discard_and_relse;
2038         }
2039         bh_unlock_sock(sk);
2040
2041         sock_put(sk);
2042
2043         return ret;
2044
2045 no_tcp_socket:
2046         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2047                 goto discard_it;
2048
2049         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2050 bad_packet:
2051                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2052         } else {
2053                 tcp_v4_send_reset(NULL, skb);
2054         }
2055
2056 discard_it:
2057         /* Discard frame. */
2058         kfree_skb(skb);
2059         return 0;
2060
2061 discard_and_relse:
2062         sock_put(sk);
2063         goto discard_it;
2064
2065 do_time_wait:
2066         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2067                 inet_twsk_put(inet_twsk(sk));
2068                 goto discard_it;
2069         }
2070
2071         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2072                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2073                 inet_twsk_put(inet_twsk(sk));
2074                 goto discard_it;
2075         }
2076         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2077         case TCP_TW_SYN: {
2078                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2079                                                         &tcp_hashinfo,
2080                                                         iph->daddr, th->dest,
2081                                                         inet_iif(skb));
2082                 if (sk2) {
2083                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2084                         inet_twsk_put(inet_twsk(sk));
2085                         sk = sk2;
2086                         goto process;
2087                 }
2088                 /* Fall through to ACK */
2089         }
2090         case TCP_TW_ACK:
2091                 tcp_v4_timewait_ack(sk, skb);
2092                 break;
2093         case TCP_TW_RST:
2094                 goto no_tcp_socket;
2095         case TCP_TW_SUCCESS:;
2096         }
2097         goto discard_it;
2098 }
2099
2100 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2101         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
2102         .twsk_unique    = tcp_twsk_unique,
2103         .twsk_destructor= tcp_twsk_destructor,
2104 };
2105
2106 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2107 {
2108         struct dst_entry *dst = skb_dst(skb);
2109
2110         dst_hold(dst);
2111         sk->sk_rx_dst = dst;
2112         inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2113 }
2114 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2115
2116 const struct inet_connection_sock_af_ops ipv4_specific = {
2117         .queue_xmit        = ip_queue_xmit,
2118         .send_check        = tcp_v4_send_check,
2119         .rebuild_header    = inet_sk_rebuild_header,
2120         .sk_rx_dst_set     = inet_sk_rx_dst_set,
2121         .conn_request      = tcp_v4_conn_request,
2122         .syn_recv_sock     = tcp_v4_syn_recv_sock,
2123         .net_header_len    = sizeof(struct iphdr),
2124         .setsockopt        = ip_setsockopt,
2125         .getsockopt        = ip_getsockopt,
2126         .addr2sockaddr     = inet_csk_addr2sockaddr,
2127         .sockaddr_len      = sizeof(struct sockaddr_in),
2128         .bind_conflict     = inet_csk_bind_conflict,
2129 #ifdef CONFIG_COMPAT
2130         .compat_setsockopt = compat_ip_setsockopt,
2131         .compat_getsockopt = compat_ip_getsockopt,
2132 #endif
2133 };
2134 EXPORT_SYMBOL(ipv4_specific);
2135
2136 #ifdef CONFIG_TCP_MD5SIG
2137 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2138         .md5_lookup             = tcp_v4_md5_lookup,
2139         .calc_md5_hash          = tcp_v4_md5_hash_skb,
2140         .md5_parse              = tcp_v4_parse_md5_keys,
2141 };
2142 #endif
2143
2144 /* NOTE: A lot of things set to zero explicitly by call to
2145  *       sk_alloc() so need not be done here.
2146  */
2147 static int tcp_v4_init_sock(struct sock *sk)
2148 {
2149         struct inet_connection_sock *icsk = inet_csk(sk);
2150
2151         tcp_init_sock(sk);
2152
2153         icsk->icsk_af_ops = &ipv4_specific;
2154
2155 #ifdef CONFIG_TCP_MD5SIG
2156         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2157 #endif
2158
2159         return 0;
2160 }
2161
2162 void tcp_v4_destroy_sock(struct sock *sk)
2163 {
2164         struct tcp_sock *tp = tcp_sk(sk);
2165
2166         tcp_clear_xmit_timers(sk);
2167
2168         tcp_cleanup_congestion_control(sk);
2169
2170         /* Cleanup up the write buffer. */
2171         tcp_write_queue_purge(sk);
2172
2173         /* Cleans up our, hopefully empty, out_of_order_queue. */
2174         __skb_queue_purge(&tp->out_of_order_queue);
2175
2176 #ifdef CONFIG_TCP_MD5SIG
2177         /* Clean up the MD5 key list, if any */
2178         if (tp->md5sig_info) {
2179                 tcp_clear_md5_list(sk);
2180                 kfree_rcu(tp->md5sig_info, rcu);
2181                 tp->md5sig_info = NULL;
2182         }
2183 #endif
2184
2185 #ifdef CONFIG_NET_DMA
2186         /* Cleans up our sk_async_wait_queue */
2187         __skb_queue_purge(&sk->sk_async_wait_queue);
2188 #endif
2189
2190         /* Clean prequeue, it must be empty really */
2191         __skb_queue_purge(&tp->ucopy.prequeue);
2192
2193         /* Clean up a referenced TCP bind bucket. */
2194         if (inet_csk(sk)->icsk_bind_hash)
2195                 inet_put_port(sk);
2196
2197         /* TCP Cookie Transactions */
2198         if (tp->cookie_values != NULL) {
2199                 kref_put(&tp->cookie_values->kref,
2200                          tcp_cookie_values_release);
2201                 tp->cookie_values = NULL;
2202         }
2203         BUG_ON(tp->fastopen_rsk != NULL);
2204
2205         /* If socket is aborted during connect operation */
2206         tcp_free_fastopen_req(tp);
2207
2208         sk_sockets_allocated_dec(sk);
2209         sock_release_memcg(sk);
2210 }
2211 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2212
2213 #ifdef CONFIG_PROC_FS
2214 /* Proc filesystem TCP sock list dumping. */
2215
2216 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2217 {
2218         return hlist_nulls_empty(head) ? NULL :
2219                 list_entry(head->first, struct inet_timewait_sock, tw_node);
2220 }
2221
2222 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2223 {
2224         return !is_a_nulls(tw->tw_node.next) ?
2225                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2226 }
2227
2228 /*
2229  * Get next listener socket follow cur.  If cur is NULL, get first socket
2230  * starting from bucket given in st->bucket; when st->bucket is zero the
2231  * very first socket in the hash table is returned.
2232  */
2233 static void *listening_get_next(struct seq_file *seq, void *cur)
2234 {
2235         struct inet_connection_sock *icsk;
2236         struct hlist_nulls_node *node;
2237         struct sock *sk = cur;
2238         struct inet_listen_hashbucket *ilb;
2239         struct tcp_iter_state *st = seq->private;
2240         struct net *net = seq_file_net(seq);
2241
2242         if (!sk) {
2243                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2244                 spin_lock_bh(&ilb->lock);
2245                 sk = sk_nulls_head(&ilb->head);
2246                 st->offset = 0;
2247                 goto get_sk;
2248         }
2249         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2250         ++st->num;
2251         ++st->offset;
2252
2253         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2254                 struct request_sock *req = cur;
2255
2256                 icsk = inet_csk(st->syn_wait_sk);
2257                 req = req->dl_next;
2258                 while (1) {
2259                         while (req) {
2260                                 if (req->rsk_ops->family == st->family) {
2261                                         cur = req;
2262                                         goto out;
2263                                 }
2264                                 req = req->dl_next;
2265                         }
2266                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2267                                 break;
2268 get_req:
2269                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2270                 }
2271                 sk        = sk_nulls_next(st->syn_wait_sk);
2272                 st->state = TCP_SEQ_STATE_LISTENING;
2273                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2274         } else {
2275                 icsk = inet_csk(sk);
2276                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2277                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2278                         goto start_req;
2279                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2280                 sk = sk_nulls_next(sk);
2281         }
2282 get_sk:
2283         sk_nulls_for_each_from(sk, node) {
2284                 if (!net_eq(sock_net(sk), net))
2285                         continue;
2286                 if (sk->sk_family == st->family) {
2287                         cur = sk;
2288                         goto out;
2289                 }
2290                 icsk = inet_csk(sk);
2291                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2292                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2293 start_req:
2294                         st->uid         = sock_i_uid(sk);
2295                         st->syn_wait_sk = sk;
2296                         st->state       = TCP_SEQ_STATE_OPENREQ;
2297                         st->sbucket     = 0;
2298                         goto get_req;
2299                 }
2300                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2301         }
2302         spin_unlock_bh(&ilb->lock);
2303         st->offset = 0;
2304         if (++st->bucket < INET_LHTABLE_SIZE) {
2305                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2306                 spin_lock_bh(&ilb->lock);
2307                 sk = sk_nulls_head(&ilb->head);
2308                 goto get_sk;
2309         }
2310         cur = NULL;
2311 out:
2312         return cur;
2313 }
2314
2315 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2316 {
2317         struct tcp_iter_state *st = seq->private;
2318         void *rc;
2319
2320         st->bucket = 0;
2321         st->offset = 0;
2322         rc = listening_get_next(seq, NULL);
2323
2324         while (rc && *pos) {
2325                 rc = listening_get_next(seq, rc);
2326                 --*pos;
2327         }
2328         return rc;
2329 }
2330
2331 static inline bool empty_bucket(struct tcp_iter_state *st)
2332 {
2333         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2334                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2335 }
2336
2337 /*
2338  * Get first established socket starting from bucket given in st->bucket.
2339  * If st->bucket is zero, the very first socket in the hash is returned.
2340  */
2341 static void *established_get_first(struct seq_file *seq)
2342 {
2343         struct tcp_iter_state *st = seq->private;
2344         struct net *net = seq_file_net(seq);
2345         void *rc = NULL;
2346
2347         st->offset = 0;
2348         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2349                 struct sock *sk;
2350                 struct hlist_nulls_node *node;
2351                 struct inet_timewait_sock *tw;
2352                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2353
2354                 /* Lockless fast path for the common case of empty buckets */
2355                 if (empty_bucket(st))
2356                         continue;
2357
2358                 spin_lock_bh(lock);
2359                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2360                         if (sk->sk_family != st->family ||
2361                             !net_eq(sock_net(sk), net)) {
2362                                 continue;
2363                         }
2364                         rc = sk;
2365                         goto out;
2366                 }
2367                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2368                 inet_twsk_for_each(tw, node,
2369                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2370                         if (tw->tw_family != st->family ||
2371                             !net_eq(twsk_net(tw), net)) {
2372                                 continue;
2373                         }
2374                         rc = tw;
2375                         goto out;
2376                 }
2377                 spin_unlock_bh(lock);
2378                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2379         }
2380 out:
2381         return rc;
2382 }
2383
2384 static void *established_get_next(struct seq_file *seq, void *cur)
2385 {
2386         struct sock *sk = cur;
2387         struct inet_timewait_sock *tw;
2388         struct hlist_nulls_node *node;
2389         struct tcp_iter_state *st = seq->private;
2390         struct net *net = seq_file_net(seq);
2391
2392         ++st->num;
2393         ++st->offset;
2394
2395         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2396                 tw = cur;
2397                 tw = tw_next(tw);
2398 get_tw:
2399                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2400                         tw = tw_next(tw);
2401                 }
2402                 if (tw) {
2403                         cur = tw;
2404                         goto out;
2405                 }
2406                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2407                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2408
2409                 /* Look for next non empty bucket */
2410                 st->offset = 0;
2411                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2412                                 empty_bucket(st))
2413                         ;
2414                 if (st->bucket > tcp_hashinfo.ehash_mask)
2415                         return NULL;
2416
2417                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2418                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2419         } else
2420                 sk = sk_nulls_next(sk);
2421
2422         sk_nulls_for_each_from(sk, node) {
2423                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2424                         goto found;
2425         }
2426
2427         st->state = TCP_SEQ_STATE_TIME_WAIT;
2428         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2429         goto get_tw;
2430 found:
2431         cur = sk;
2432 out:
2433         return cur;
2434 }
2435
2436 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2437 {
2438         struct tcp_iter_state *st = seq->private;
2439         void *rc;
2440
2441         st->bucket = 0;
2442         rc = established_get_first(seq);
2443
2444         while (rc && pos) {
2445                 rc = established_get_next(seq, rc);
2446                 --pos;
2447         }
2448         return rc;
2449 }
2450
2451 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2452 {
2453         void *rc;
2454         struct tcp_iter_state *st = seq->private;
2455
2456         st->state = TCP_SEQ_STATE_LISTENING;
2457         rc        = listening_get_idx(seq, &pos);
2458
2459         if (!rc) {
2460                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2461                 rc        = established_get_idx(seq, pos);
2462         }
2463
2464         return rc;
2465 }
2466
2467 static void *tcp_seek_last_pos(struct seq_file *seq)
2468 {
2469         struct tcp_iter_state *st = seq->private;
2470         int offset = st->offset;
2471         int orig_num = st->num;
2472         void *rc = NULL;
2473
2474         switch (st->state) {
2475         case TCP_SEQ_STATE_OPENREQ:
2476         case TCP_SEQ_STATE_LISTENING:
2477                 if (st->bucket >= INET_LHTABLE_SIZE)
2478                         break;
2479                 st->state = TCP_SEQ_STATE_LISTENING;
2480                 rc = listening_get_next(seq, NULL);
2481                 while (offset-- && rc)
2482                         rc = listening_get_next(seq, rc);
2483                 if (rc)
2484                         break;
2485                 st->bucket = 0;
2486                 /* Fallthrough */
2487         case TCP_SEQ_STATE_ESTABLISHED:
2488         case TCP_SEQ_STATE_TIME_WAIT:
2489                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2490                 if (st->bucket > tcp_hashinfo.ehash_mask)
2491                         break;
2492                 rc = established_get_first(seq);
2493                 while (offset-- && rc)
2494                         rc = established_get_next(seq, rc);
2495         }
2496
2497         st->num = orig_num;
2498
2499         return rc;
2500 }
2501
2502 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2503 {
2504         struct tcp_iter_state *st = seq->private;
2505         void *rc;
2506
2507         if (*pos && *pos == st->last_pos) {
2508                 rc = tcp_seek_last_pos(seq);
2509                 if (rc)
2510                         goto out;
2511         }
2512
2513         st->state = TCP_SEQ_STATE_LISTENING;
2514         st->num = 0;
2515         st->bucket = 0;
2516         st->offset = 0;
2517         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2518
2519 out:
2520         st->last_pos = *pos;
2521         return rc;
2522 }
2523
2524 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2525 {
2526         struct tcp_iter_state *st = seq->private;
2527         void *rc = NULL;
2528
2529         if (v == SEQ_START_TOKEN) {
2530                 rc = tcp_get_idx(seq, 0);
2531                 goto out;
2532         }
2533
2534         switch (st->state) {
2535         case TCP_SEQ_STATE_OPENREQ:
2536         case TCP_SEQ_STATE_LISTENING:
2537                 rc = listening_get_next(seq, v);
2538                 if (!rc) {
2539                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2540                         st->bucket = 0;
2541                         st->offset = 0;
2542                         rc        = established_get_first(seq);
2543                 }
2544                 break;
2545         case TCP_SEQ_STATE_ESTABLISHED:
2546         case TCP_SEQ_STATE_TIME_WAIT:
2547                 rc = established_get_next(seq, v);
2548                 break;
2549         }
2550 out:
2551         ++*pos;
2552         st->last_pos = *pos;
2553         return rc;
2554 }
2555
2556 static void tcp_seq_stop(struct seq_file *seq, void *v)
2557 {
2558         struct tcp_iter_state *st = seq->private;
2559
2560         switch (st->state) {
2561         case TCP_SEQ_STATE_OPENREQ:
2562                 if (v) {
2563                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2564                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2565                 }
2566         case TCP_SEQ_STATE_LISTENING:
2567                 if (v != SEQ_START_TOKEN)
2568                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2569                 break;
2570         case TCP_SEQ_STATE_TIME_WAIT:
2571         case TCP_SEQ_STATE_ESTABLISHED:
2572                 if (v)
2573                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2574                 break;
2575         }
2576 }
2577
2578 int tcp_seq_open(struct inode *inode, struct file *file)
2579 {
2580         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2581         struct tcp_iter_state *s;
2582         int err;
2583
2584         err = seq_open_net(inode, file, &afinfo->seq_ops,
2585                           sizeof(struct tcp_iter_state));
2586         if (err < 0)
2587                 return err;
2588
2589         s = ((struct seq_file *)file->private_data)->private;
2590         s->family               = afinfo->family;
2591         s->last_pos             = 0;
2592         return 0;
2593 }
2594 EXPORT_SYMBOL(tcp_seq_open);
2595
2596 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2597 {
2598         int rc = 0;
2599         struct proc_dir_entry *p;
2600
2601         afinfo->seq_ops.start           = tcp_seq_start;
2602         afinfo->seq_ops.next            = tcp_seq_next;
2603         afinfo->seq_ops.stop            = tcp_seq_stop;
2604
2605         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2606                              afinfo->seq_fops, afinfo);
2607         if (!p)
2608                 rc = -ENOMEM;
2609         return rc;
2610 }
2611 EXPORT_SYMBOL(tcp_proc_register);
2612
2613 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2614 {
2615         proc_net_remove(net, afinfo->name);
2616 }
2617 EXPORT_SYMBOL(tcp_proc_unregister);
2618
2619 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2620                          struct seq_file *f, int i, kuid_t uid, int *len)
2621 {
2622         const struct inet_request_sock *ireq = inet_rsk(req);
2623         long delta = req->expires - jiffies;
2624
2625         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2626                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2627                 i,
2628                 ireq->loc_addr,
2629                 ntohs(inet_sk(sk)->inet_sport),
2630                 ireq->rmt_addr,
2631                 ntohs(ireq->rmt_port),
2632                 TCP_SYN_RECV,
2633                 0, 0, /* could print option size, but that is af dependent. */
2634                 1,    /* timers active (only the expire timer) */
2635                 jiffies_delta_to_clock_t(delta),
2636                 req->num_timeout,
2637                 from_kuid_munged(seq_user_ns(f), uid),
2638                 0,  /* non standard timer */
2639                 0, /* open_requests have no inode */
2640                 atomic_read(&sk->sk_refcnt),
2641                 req,
2642                 len);
2643 }
2644
2645 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2646 {
2647         int timer_active;
2648         unsigned long timer_expires;
2649         const struct tcp_sock *tp = tcp_sk(sk);
2650         const struct inet_connection_sock *icsk = inet_csk(sk);
2651         const struct inet_sock *inet = inet_sk(sk);
2652         struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2653         __be32 dest = inet->inet_daddr;
2654         __be32 src = inet->inet_rcv_saddr;
2655         __u16 destp = ntohs(inet->inet_dport);
2656         __u16 srcp = ntohs(inet->inet_sport);
2657         int rx_queue;
2658
2659         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2660                 timer_active    = 1;
2661                 timer_expires   = icsk->icsk_timeout;
2662         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2663                 timer_active    = 4;
2664                 timer_expires   = icsk->icsk_timeout;
2665         } else if (timer_pending(&sk->sk_timer)) {
2666                 timer_active    = 2;
2667                 timer_expires   = sk->sk_timer.expires;
2668         } else {
2669                 timer_active    = 0;
2670                 timer_expires = jiffies;
2671         }
2672
2673         if (sk->sk_state == TCP_LISTEN)
2674                 rx_queue = sk->sk_ack_backlog;
2675         else
2676                 /*
2677                  * because we dont lock socket, we might find a transient negative value
2678                  */
2679                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2680
2681         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2682                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2683                 i, src, srcp, dest, destp, sk->sk_state,
2684                 tp->write_seq - tp->snd_una,
2685                 rx_queue,
2686                 timer_active,
2687                 jiffies_delta_to_clock_t(timer_expires - jiffies),
2688                 icsk->icsk_retransmits,
2689                 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2690                 icsk->icsk_probes_out,
2691                 sock_i_ino(sk),
2692                 atomic_read(&sk->sk_refcnt), sk,
2693                 jiffies_to_clock_t(icsk->icsk_rto),
2694                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2695                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2696                 tp->snd_cwnd,
2697                 sk->sk_state == TCP_LISTEN ?
2698                     (fastopenq ? fastopenq->max_qlen : 0) :
2699                     (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2700                 len);
2701 }
2702
2703 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2704                                struct seq_file *f, int i, int *len)
2705 {
2706         __be32 dest, src;
2707         __u16 destp, srcp;
2708         long delta = tw->tw_ttd - jiffies;
2709
2710         dest  = tw->tw_daddr;
2711         src   = tw->tw_rcv_saddr;
2712         destp = ntohs(tw->tw_dport);
2713         srcp  = ntohs(tw->tw_sport);
2714
2715         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2716                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2717                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2718                 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2719                 atomic_read(&tw->tw_refcnt), tw, len);
2720 }
2721
2722 #define TMPSZ 150
2723
2724 static int tcp4_seq_show(struct seq_file *seq, void *v)
2725 {
2726         struct tcp_iter_state *st;
2727         int len;
2728
2729         if (v == SEQ_START_TOKEN) {
2730                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2731                            "  sl  local_address rem_address   st tx_queue "
2732                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2733                            "inode");
2734                 goto out;
2735         }
2736         st = seq->private;
2737
2738         switch (st->state) {
2739         case TCP_SEQ_STATE_LISTENING:
2740         case TCP_SEQ_STATE_ESTABLISHED:
2741                 get_tcp4_sock(v, seq, st->num, &len);
2742                 break;
2743         case TCP_SEQ_STATE_OPENREQ:
2744                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2745                 break;
2746         case TCP_SEQ_STATE_TIME_WAIT:
2747                 get_timewait4_sock(v, seq, st->num, &len);
2748                 break;
2749         }
2750         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2751 out:
2752         return 0;
2753 }
2754
2755 static const struct file_operations tcp_afinfo_seq_fops = {
2756         .owner   = THIS_MODULE,
2757         .open    = tcp_seq_open,
2758         .read    = seq_read,
2759         .llseek  = seq_lseek,
2760         .release = seq_release_net
2761 };
2762
2763 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2764         .name           = "tcp",
2765         .family         = AF_INET,
2766         .seq_fops       = &tcp_afinfo_seq_fops,
2767         .seq_ops        = {
2768                 .show           = tcp4_seq_show,
2769         },
2770 };
2771
2772 static int __net_init tcp4_proc_init_net(struct net *net)
2773 {
2774         return tcp_proc_register(net, &tcp4_seq_afinfo);
2775 }
2776
2777 static void __net_exit tcp4_proc_exit_net(struct net *net)
2778 {
2779         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2780 }
2781
2782 static struct pernet_operations tcp4_net_ops = {
2783         .init = tcp4_proc_init_net,
2784         .exit = tcp4_proc_exit_net,
2785 };
2786
2787 int __init tcp4_proc_init(void)
2788 {
2789         return register_pernet_subsys(&tcp4_net_ops);
2790 }
2791
2792 void tcp4_proc_exit(void)
2793 {
2794         unregister_pernet_subsys(&tcp4_net_ops);
2795 }
2796 #endif /* CONFIG_PROC_FS */
2797
2798 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2799 {
2800         const struct iphdr *iph = skb_gro_network_header(skb);
2801         __wsum wsum;
2802         __sum16 sum;
2803
2804         switch (skb->ip_summed) {
2805         case CHECKSUM_COMPLETE:
2806                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2807                                   skb->csum)) {
2808                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2809                         break;
2810                 }
2811 flush:
2812                 NAPI_GRO_CB(skb)->flush = 1;
2813                 return NULL;
2814
2815         case CHECKSUM_NONE:
2816                 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2817                                           skb_gro_len(skb), IPPROTO_TCP, 0);
2818                 sum = csum_fold(skb_checksum(skb,
2819                                              skb_gro_offset(skb),
2820                                              skb_gro_len(skb),
2821                                              wsum));
2822                 if (sum)
2823                         goto flush;
2824
2825                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2826                 break;
2827         }
2828
2829         return tcp_gro_receive(head, skb);
2830 }
2831
2832 int tcp4_gro_complete(struct sk_buff *skb)
2833 {
2834         const struct iphdr *iph = ip_hdr(skb);
2835         struct tcphdr *th = tcp_hdr(skb);
2836
2837         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2838                                   iph->saddr, iph->daddr, 0);
2839         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2840
2841         return tcp_gro_complete(skb);
2842 }
2843
2844 struct proto tcp_prot = {
2845         .name                   = "TCP",
2846         .owner                  = THIS_MODULE,
2847         .close                  = tcp_close,
2848         .connect                = tcp_v4_connect,
2849         .disconnect             = tcp_disconnect,
2850         .accept                 = inet_csk_accept,
2851         .ioctl                  = tcp_ioctl,
2852         .init                   = tcp_v4_init_sock,
2853         .destroy                = tcp_v4_destroy_sock,
2854         .shutdown               = tcp_shutdown,
2855         .setsockopt             = tcp_setsockopt,
2856         .getsockopt             = tcp_getsockopt,
2857         .recvmsg                = tcp_recvmsg,
2858         .sendmsg                = tcp_sendmsg,
2859         .sendpage               = tcp_sendpage,
2860         .backlog_rcv            = tcp_v4_do_rcv,
2861         .release_cb             = tcp_release_cb,
2862         .mtu_reduced            = tcp_v4_mtu_reduced,
2863         .hash                   = inet_hash,
2864         .unhash                 = inet_unhash,
2865         .get_port               = inet_csk_get_port,
2866         .enter_memory_pressure  = tcp_enter_memory_pressure,
2867         .sockets_allocated      = &tcp_sockets_allocated,
2868         .orphan_count           = &tcp_orphan_count,
2869         .memory_allocated       = &tcp_memory_allocated,
2870         .memory_pressure        = &tcp_memory_pressure,
2871         .sysctl_wmem            = sysctl_tcp_wmem,
2872         .sysctl_rmem            = sysctl_tcp_rmem,
2873         .max_header             = MAX_TCP_HEADER,
2874         .obj_size               = sizeof(struct tcp_sock),
2875         .slab_flags             = SLAB_DESTROY_BY_RCU,
2876         .twsk_prot              = &tcp_timewait_sock_ops,
2877         .rsk_prot               = &tcp_request_sock_ops,
2878         .h.hashinfo             = &tcp_hashinfo,
2879         .no_autobind            = true,
2880 #ifdef CONFIG_COMPAT
2881         .compat_setsockopt      = compat_tcp_setsockopt,
2882         .compat_getsockopt      = compat_tcp_getsockopt,
2883 #endif
2884 #ifdef CONFIG_MEMCG_KMEM
2885         .init_cgroup            = tcp_init_cgroup,
2886         .destroy_cgroup         = tcp_destroy_cgroup,
2887         .proto_cgroup           = tcp_proto_cgroup,
2888 #endif
2889 };
2890 EXPORT_SYMBOL(tcp_prot);
2891
2892 static int __net_init tcp_sk_init(struct net *net)
2893 {
2894         return 0;
2895 }
2896
2897 static void __net_exit tcp_sk_exit(struct net *net)
2898 {
2899 }
2900
2901 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2902 {
2903         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2904 }
2905
2906 static struct pernet_operations __net_initdata tcp_sk_ops = {
2907        .init       = tcp_sk_init,
2908        .exit       = tcp_sk_exit,
2909        .exit_batch = tcp_sk_exit_batch,
2910 };
2911
2912 void __init tcp_v4_init(void)
2913 {
2914         inet_hashinfo_init(&tcp_hashinfo);
2915         if (register_pernet_subsys(&tcp_sk_ops))
2916                 panic("Failed to create the TCP control socket.\n");
2917 }