tcp: fix tcp_shifted_skb() adjustment of lost_cnt_hint for FACK
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
109 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130         struct inet_connection_sock *icsk = inet_csk(sk);
131         const unsigned int lss = icsk->icsk_ack.last_seg_size;
132         unsigned int len;
133
134         icsk->icsk_ack.last_seg_size = 0;
135
136         /* skb->len may jitter because of SACKs, even if peer
137          * sends good full-sized frames.
138          */
139         len = skb_shinfo(skb)->gso_size ? : skb->len;
140         if (len >= icsk->icsk_ack.rcv_mss) {
141                 icsk->icsk_ack.rcv_mss = len;
142         } else {
143                 /* Otherwise, we make more careful check taking into account,
144                  * that SACKs block is variable.
145                  *
146                  * "len" is invariant segment length, including TCP header.
147                  */
148                 len += skb->data - skb_transport_header(skb);
149                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150                     /* If PSH is not set, packet should be
151                      * full sized, provided peer TCP is not badly broken.
152                      * This observation (if it is correct 8)) allows
153                      * to handle super-low mtu links fairly.
154                      */
155                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157                         /* Subtract also invariant (if peer is RFC compliant),
158                          * tcp header plus fixed timestamp option length.
159                          * Resulting "len" is MSS free of SACK jitter.
160                          */
161                         len -= tcp_sk(sk)->tcp_header_len;
162                         icsk->icsk_ack.last_seg_size = len;
163                         if (len == lss) {
164                                 icsk->icsk_ack.rcv_mss = len;
165                                 return;
166                         }
167                 }
168                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171         }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176         struct inet_connection_sock *icsk = inet_csk(sk);
177         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179         if (quickacks == 0)
180                 quickacks = 2;
181         if (quickacks > icsk->icsk_ack.quick)
182                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187         struct inet_connection_sock *icsk = inet_csk(sk);
188         tcp_incr_quickack(sk);
189         icsk->icsk_ack.pingpong = 0;
190         icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199         const struct inet_connection_sock *icsk = inet_csk(sk);
200         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205         if (tp->ecn_flags & TCP_ECN_OK)
206                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211         if (tcp_hdr(skb)->cwr)
212                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222         if (!(tp->ecn_flags & TCP_ECN_OK))
223                 return;
224
225         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226         case INET_ECN_NOT_ECT:
227                 /* Funny extension: if ECT is not set on a segment,
228                  * and we already seen ECT on a previous segment,
229                  * it is probably a retransmit.
230                  */
231                 if (tp->ecn_flags & TCP_ECN_SEEN)
232                         tcp_enter_quickack_mode((struct sock *)tp);
233                 break;
234         case INET_ECN_CE:
235                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
236                 /* fallinto */
237         default:
238                 tp->ecn_flags |= TCP_ECN_SEEN;
239         }
240 }
241
242 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
243 {
244         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
245                 tp->ecn_flags &= ~TCP_ECN_OK;
246 }
247
248 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
249 {
250         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
251                 tp->ecn_flags &= ~TCP_ECN_OK;
252 }
253
254 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
255 {
256         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
257                 return 1;
258         return 0;
259 }
260
261 /* Buffer size and advertised window tuning.
262  *
263  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
264  */
265
266 static void tcp_fixup_sndbuf(struct sock *sk)
267 {
268         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
269
270         sndmem *= TCP_INIT_CWND;
271         if (sk->sk_sndbuf < sndmem)
272                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
273 }
274
275 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
276  *
277  * All tcp_full_space() is split to two parts: "network" buffer, allocated
278  * forward and advertised in receiver window (tp->rcv_wnd) and
279  * "application buffer", required to isolate scheduling/application
280  * latencies from network.
281  * window_clamp is maximal advertised window. It can be less than
282  * tcp_full_space(), in this case tcp_full_space() - window_clamp
283  * is reserved for "application" buffer. The less window_clamp is
284  * the smoother our behaviour from viewpoint of network, but the lower
285  * throughput and the higher sensitivity of the connection to losses. 8)
286  *
287  * rcv_ssthresh is more strict window_clamp used at "slow start"
288  * phase to predict further behaviour of this connection.
289  * It is used for two goals:
290  * - to enforce header prediction at sender, even when application
291  *   requires some significant "application buffer". It is check #1.
292  * - to prevent pruning of receive queue because of misprediction
293  *   of receiver window. Check #2.
294  *
295  * The scheme does not work when sender sends good segments opening
296  * window and then starts to feed us spaghetti. But it should work
297  * in common situations. Otherwise, we have to rely on queue collapsing.
298  */
299
300 /* Slow part of check#2. */
301 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
302 {
303         struct tcp_sock *tp = tcp_sk(sk);
304         /* Optimize this! */
305         int truesize = tcp_win_from_space(skb->truesize) >> 1;
306         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
307
308         while (tp->rcv_ssthresh <= window) {
309                 if (truesize <= skb->len)
310                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
311
312                 truesize >>= 1;
313                 window >>= 1;
314         }
315         return 0;
316 }
317
318 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
319 {
320         struct tcp_sock *tp = tcp_sk(sk);
321
322         /* Check #1 */
323         if (tp->rcv_ssthresh < tp->window_clamp &&
324             (int)tp->rcv_ssthresh < tcp_space(sk) &&
325             !tcp_memory_pressure) {
326                 int incr;
327
328                 /* Check #2. Increase window, if skb with such overhead
329                  * will fit to rcvbuf in future.
330                  */
331                 if (tcp_win_from_space(skb->truesize) <= skb->len)
332                         incr = 2 * tp->advmss;
333                 else
334                         incr = __tcp_grow_window(sk, skb);
335
336                 if (incr) {
337                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
338                                                tp->window_clamp);
339                         inet_csk(sk)->icsk_ack.quick |= 1;
340                 }
341         }
342 }
343
344 /* 3. Tuning rcvbuf, when connection enters established state. */
345
346 static void tcp_fixup_rcvbuf(struct sock *sk)
347 {
348         u32 mss = tcp_sk(sk)->advmss;
349         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
350         int rcvmem;
351
352         /* Limit to 10 segments if mss <= 1460,
353          * or 14600/mss segments, with a minimum of two segments.
354          */
355         if (mss > 1460)
356                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
357
358         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
359         while (tcp_win_from_space(rcvmem) < mss)
360                 rcvmem += 128;
361
362         rcvmem *= icwnd;
363
364         if (sk->sk_rcvbuf < rcvmem)
365                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
366 }
367
368 /* 4. Try to fixup all. It is made immediately after connection enters
369  *    established state.
370  */
371 static void tcp_init_buffer_space(struct sock *sk)
372 {
373         struct tcp_sock *tp = tcp_sk(sk);
374         int maxwin;
375
376         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
377                 tcp_fixup_rcvbuf(sk);
378         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
379                 tcp_fixup_sndbuf(sk);
380
381         tp->rcvq_space.space = tp->rcv_wnd;
382
383         maxwin = tcp_full_space(sk);
384
385         if (tp->window_clamp >= maxwin) {
386                 tp->window_clamp = maxwin;
387
388                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
389                         tp->window_clamp = max(maxwin -
390                                                (maxwin >> sysctl_tcp_app_win),
391                                                4 * tp->advmss);
392         }
393
394         /* Force reservation of one segment. */
395         if (sysctl_tcp_app_win &&
396             tp->window_clamp > 2 * tp->advmss &&
397             tp->window_clamp + tp->advmss > maxwin)
398                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
399
400         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
401         tp->snd_cwnd_stamp = tcp_time_stamp;
402 }
403
404 /* 5. Recalculate window clamp after socket hit its memory bounds. */
405 static void tcp_clamp_window(struct sock *sk)
406 {
407         struct tcp_sock *tp = tcp_sk(sk);
408         struct inet_connection_sock *icsk = inet_csk(sk);
409
410         icsk->icsk_ack.quick = 0;
411
412         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
413             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
414             !tcp_memory_pressure &&
415             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
416                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
417                                     sysctl_tcp_rmem[2]);
418         }
419         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
420                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
421 }
422
423 /* Initialize RCV_MSS value.
424  * RCV_MSS is an our guess about MSS used by the peer.
425  * We haven't any direct information about the MSS.
426  * It's better to underestimate the RCV_MSS rather than overestimate.
427  * Overestimations make us ACKing less frequently than needed.
428  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
429  */
430 void tcp_initialize_rcv_mss(struct sock *sk)
431 {
432         const struct tcp_sock *tp = tcp_sk(sk);
433         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
434
435         hint = min(hint, tp->rcv_wnd / 2);
436         hint = min(hint, TCP_MSS_DEFAULT);
437         hint = max(hint, TCP_MIN_MSS);
438
439         inet_csk(sk)->icsk_ack.rcv_mss = hint;
440 }
441 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
442
443 /* Receiver "autotuning" code.
444  *
445  * The algorithm for RTT estimation w/o timestamps is based on
446  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
447  * <http://public.lanl.gov/radiant/pubs.html#DRS>
448  *
449  * More detail on this code can be found at
450  * <http://staff.psc.edu/jheffner/>,
451  * though this reference is out of date.  A new paper
452  * is pending.
453  */
454 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
455 {
456         u32 new_sample = tp->rcv_rtt_est.rtt;
457         long m = sample;
458
459         if (m == 0)
460                 m = 1;
461
462         if (new_sample != 0) {
463                 /* If we sample in larger samples in the non-timestamp
464                  * case, we could grossly overestimate the RTT especially
465                  * with chatty applications or bulk transfer apps which
466                  * are stalled on filesystem I/O.
467                  *
468                  * Also, since we are only going for a minimum in the
469                  * non-timestamp case, we do not smooth things out
470                  * else with timestamps disabled convergence takes too
471                  * long.
472                  */
473                 if (!win_dep) {
474                         m -= (new_sample >> 3);
475                         new_sample += m;
476                 } else if (m < new_sample)
477                         new_sample = m << 3;
478         } else {
479                 /* No previous measure. */
480                 new_sample = m << 3;
481         }
482
483         if (tp->rcv_rtt_est.rtt != new_sample)
484                 tp->rcv_rtt_est.rtt = new_sample;
485 }
486
487 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
488 {
489         if (tp->rcv_rtt_est.time == 0)
490                 goto new_measure;
491         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
492                 return;
493         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
494
495 new_measure:
496         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
497         tp->rcv_rtt_est.time = tcp_time_stamp;
498 }
499
500 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
501                                           const struct sk_buff *skb)
502 {
503         struct tcp_sock *tp = tcp_sk(sk);
504         if (tp->rx_opt.rcv_tsecr &&
505             (TCP_SKB_CB(skb)->end_seq -
506              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
507                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
508 }
509
510 /*
511  * This function should be called every time data is copied to user space.
512  * It calculates the appropriate TCP receive buffer space.
513  */
514 void tcp_rcv_space_adjust(struct sock *sk)
515 {
516         struct tcp_sock *tp = tcp_sk(sk);
517         int time;
518         int space;
519
520         if (tp->rcvq_space.time == 0)
521                 goto new_measure;
522
523         time = tcp_time_stamp - tp->rcvq_space.time;
524         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
525                 return;
526
527         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
528
529         space = max(tp->rcvq_space.space, space);
530
531         if (tp->rcvq_space.space != space) {
532                 int rcvmem;
533
534                 tp->rcvq_space.space = space;
535
536                 if (sysctl_tcp_moderate_rcvbuf &&
537                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
538                         int new_clamp = space;
539
540                         /* Receive space grows, normalize in order to
541                          * take into account packet headers and sk_buff
542                          * structure overhead.
543                          */
544                         space /= tp->advmss;
545                         if (!space)
546                                 space = 1;
547                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
548                         while (tcp_win_from_space(rcvmem) < tp->advmss)
549                                 rcvmem += 128;
550                         space *= rcvmem;
551                         space = min(space, sysctl_tcp_rmem[2]);
552                         if (space > sk->sk_rcvbuf) {
553                                 sk->sk_rcvbuf = space;
554
555                                 /* Make the window clamp follow along.  */
556                                 tp->window_clamp = new_clamp;
557                         }
558                 }
559         }
560
561 new_measure:
562         tp->rcvq_space.seq = tp->copied_seq;
563         tp->rcvq_space.time = tcp_time_stamp;
564 }
565
566 /* There is something which you must keep in mind when you analyze the
567  * behavior of the tp->ato delayed ack timeout interval.  When a
568  * connection starts up, we want to ack as quickly as possible.  The
569  * problem is that "good" TCP's do slow start at the beginning of data
570  * transmission.  The means that until we send the first few ACK's the
571  * sender will sit on his end and only queue most of his data, because
572  * he can only send snd_cwnd unacked packets at any given time.  For
573  * each ACK we send, he increments snd_cwnd and transmits more of his
574  * queue.  -DaveM
575  */
576 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
577 {
578         struct tcp_sock *tp = tcp_sk(sk);
579         struct inet_connection_sock *icsk = inet_csk(sk);
580         u32 now;
581
582         inet_csk_schedule_ack(sk);
583
584         tcp_measure_rcv_mss(sk, skb);
585
586         tcp_rcv_rtt_measure(tp);
587
588         now = tcp_time_stamp;
589
590         if (!icsk->icsk_ack.ato) {
591                 /* The _first_ data packet received, initialize
592                  * delayed ACK engine.
593                  */
594                 tcp_incr_quickack(sk);
595                 icsk->icsk_ack.ato = TCP_ATO_MIN;
596         } else {
597                 int m = now - icsk->icsk_ack.lrcvtime;
598
599                 if (m <= TCP_ATO_MIN / 2) {
600                         /* The fastest case is the first. */
601                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
602                 } else if (m < icsk->icsk_ack.ato) {
603                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
604                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
605                                 icsk->icsk_ack.ato = icsk->icsk_rto;
606                 } else if (m > icsk->icsk_rto) {
607                         /* Too long gap. Apparently sender failed to
608                          * restart window, so that we send ACKs quickly.
609                          */
610                         tcp_incr_quickack(sk);
611                         sk_mem_reclaim(sk);
612                 }
613         }
614         icsk->icsk_ack.lrcvtime = now;
615
616         TCP_ECN_check_ce(tp, skb);
617
618         if (skb->len >= 128)
619                 tcp_grow_window(sk, skb);
620 }
621
622 /* Called to compute a smoothed rtt estimate. The data fed to this
623  * routine either comes from timestamps, or from segments that were
624  * known _not_ to have been retransmitted [see Karn/Partridge
625  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
626  * piece by Van Jacobson.
627  * NOTE: the next three routines used to be one big routine.
628  * To save cycles in the RFC 1323 implementation it was better to break
629  * it up into three procedures. -- erics
630  */
631 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
632 {
633         struct tcp_sock *tp = tcp_sk(sk);
634         long m = mrtt; /* RTT */
635
636         /*      The following amusing code comes from Jacobson's
637          *      article in SIGCOMM '88.  Note that rtt and mdev
638          *      are scaled versions of rtt and mean deviation.
639          *      This is designed to be as fast as possible
640          *      m stands for "measurement".
641          *
642          *      On a 1990 paper the rto value is changed to:
643          *      RTO = rtt + 4 * mdev
644          *
645          * Funny. This algorithm seems to be very broken.
646          * These formulae increase RTO, when it should be decreased, increase
647          * too slowly, when it should be increased quickly, decrease too quickly
648          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
649          * does not matter how to _calculate_ it. Seems, it was trap
650          * that VJ failed to avoid. 8)
651          */
652         if (m == 0)
653                 m = 1;
654         if (tp->srtt != 0) {
655                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
656                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
657                 if (m < 0) {
658                         m = -m;         /* m is now abs(error) */
659                         m -= (tp->mdev >> 2);   /* similar update on mdev */
660                         /* This is similar to one of Eifel findings.
661                          * Eifel blocks mdev updates when rtt decreases.
662                          * This solution is a bit different: we use finer gain
663                          * for mdev in this case (alpha*beta).
664                          * Like Eifel it also prevents growth of rto,
665                          * but also it limits too fast rto decreases,
666                          * happening in pure Eifel.
667                          */
668                         if (m > 0)
669                                 m >>= 3;
670                 } else {
671                         m -= (tp->mdev >> 2);   /* similar update on mdev */
672                 }
673                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
674                 if (tp->mdev > tp->mdev_max) {
675                         tp->mdev_max = tp->mdev;
676                         if (tp->mdev_max > tp->rttvar)
677                                 tp->rttvar = tp->mdev_max;
678                 }
679                 if (after(tp->snd_una, tp->rtt_seq)) {
680                         if (tp->mdev_max < tp->rttvar)
681                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
682                         tp->rtt_seq = tp->snd_nxt;
683                         tp->mdev_max = tcp_rto_min(sk);
684                 }
685         } else {
686                 /* no previous measure. */
687                 tp->srtt = m << 3;      /* take the measured time to be rtt */
688                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
689                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
690                 tp->rtt_seq = tp->snd_nxt;
691         }
692 }
693
694 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
695  * routine referred to above.
696  */
697 static inline void tcp_set_rto(struct sock *sk)
698 {
699         const struct tcp_sock *tp = tcp_sk(sk);
700         /* Old crap is replaced with new one. 8)
701          *
702          * More seriously:
703          * 1. If rtt variance happened to be less 50msec, it is hallucination.
704          *    It cannot be less due to utterly erratic ACK generation made
705          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
706          *    to do with delayed acks, because at cwnd>2 true delack timeout
707          *    is invisible. Actually, Linux-2.4 also generates erratic
708          *    ACKs in some circumstances.
709          */
710         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
711
712         /* 2. Fixups made earlier cannot be right.
713          *    If we do not estimate RTO correctly without them,
714          *    all the algo is pure shit and should be replaced
715          *    with correct one. It is exactly, which we pretend to do.
716          */
717
718         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
719          * guarantees that rto is higher.
720          */
721         tcp_bound_rto(sk);
722 }
723
724 /* Save metrics learned by this TCP session.
725    This function is called only, when TCP finishes successfully
726    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
727  */
728 void tcp_update_metrics(struct sock *sk)
729 {
730         struct tcp_sock *tp = tcp_sk(sk);
731         struct dst_entry *dst = __sk_dst_get(sk);
732
733         if (sysctl_tcp_nometrics_save)
734                 return;
735
736         dst_confirm(dst);
737
738         if (dst && (dst->flags & DST_HOST)) {
739                 const struct inet_connection_sock *icsk = inet_csk(sk);
740                 int m;
741                 unsigned long rtt;
742
743                 if (icsk->icsk_backoff || !tp->srtt) {
744                         /* This session failed to estimate rtt. Why?
745                          * Probably, no packets returned in time.
746                          * Reset our results.
747                          */
748                         if (!(dst_metric_locked(dst, RTAX_RTT)))
749                                 dst_metric_set(dst, RTAX_RTT, 0);
750                         return;
751                 }
752
753                 rtt = dst_metric_rtt(dst, RTAX_RTT);
754                 m = rtt - tp->srtt;
755
756                 /* If newly calculated rtt larger than stored one,
757                  * store new one. Otherwise, use EWMA. Remember,
758                  * rtt overestimation is always better than underestimation.
759                  */
760                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
761                         if (m <= 0)
762                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
763                         else
764                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
765                 }
766
767                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
768                         unsigned long var;
769                         if (m < 0)
770                                 m = -m;
771
772                         /* Scale deviation to rttvar fixed point */
773                         m >>= 1;
774                         if (m < tp->mdev)
775                                 m = tp->mdev;
776
777                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
778                         if (m >= var)
779                                 var = m;
780                         else
781                                 var -= (var - m) >> 2;
782
783                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
784                 }
785
786                 if (tcp_in_initial_slowstart(tp)) {
787                         /* Slow start still did not finish. */
788                         if (dst_metric(dst, RTAX_SSTHRESH) &&
789                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
790                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
791                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
792                         if (!dst_metric_locked(dst, RTAX_CWND) &&
793                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
794                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
795                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
796                            icsk->icsk_ca_state == TCP_CA_Open) {
797                         /* Cong. avoidance phase, cwnd is reliable. */
798                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
799                                 dst_metric_set(dst, RTAX_SSTHRESH,
800                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
801                         if (!dst_metric_locked(dst, RTAX_CWND))
802                                 dst_metric_set(dst, RTAX_CWND,
803                                                (dst_metric(dst, RTAX_CWND) +
804                                                 tp->snd_cwnd) >> 1);
805                 } else {
806                         /* Else slow start did not finish, cwnd is non-sense,
807                            ssthresh may be also invalid.
808                          */
809                         if (!dst_metric_locked(dst, RTAX_CWND))
810                                 dst_metric_set(dst, RTAX_CWND,
811                                                (dst_metric(dst, RTAX_CWND) +
812                                                 tp->snd_ssthresh) >> 1);
813                         if (dst_metric(dst, RTAX_SSTHRESH) &&
814                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
815                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
816                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
817                 }
818
819                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
820                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
821                             tp->reordering != sysctl_tcp_reordering)
822                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
823                 }
824         }
825 }
826
827 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
828 {
829         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
830
831         if (!cwnd)
832                 cwnd = TCP_INIT_CWND;
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         } else {
896                 /* ssthresh may have been reduced unnecessarily during.
897                  * 3WHS. Restore it back to its initial default.
898                  */
899                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
900         }
901         if (dst_metric(dst, RTAX_REORDERING) &&
902             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
903                 tcp_disable_fack(tp);
904                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
905         }
906
907         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
908                 goto reset;
909
910         /* Initial rtt is determined from SYN,SYN-ACK.
911          * The segment is small and rtt may appear much
912          * less than real one. Use per-dst memory
913          * to make it more realistic.
914          *
915          * A bit of theory. RTT is time passed after "normal" sized packet
916          * is sent until it is ACKed. In normal circumstances sending small
917          * packets force peer to delay ACKs and calculation is correct too.
918          * The algorithm is adaptive and, provided we follow specs, it
919          * NEVER underestimate RTT. BUT! If peer tries to make some clever
920          * tricks sort of "quick acks" for time long enough to decrease RTT
921          * to low value, and then abruptly stops to do it and starts to delay
922          * ACKs, wait for troubles.
923          */
924         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
925                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
926                 tp->rtt_seq = tp->snd_nxt;
927         }
928         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
929                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
930                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
931         }
932         tcp_set_rto(sk);
933 reset:
934         if (tp->srtt == 0) {
935                 /* RFC2988bis: We've failed to get a valid RTT sample from
936                  * 3WHS. This is most likely due to retransmission,
937                  * including spurious one. Reset the RTO back to 3secs
938                  * from the more aggressive 1sec to avoid more spurious
939                  * retransmission.
940                  */
941                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
942                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
943         }
944         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
945          * retransmitted. In light of RFC2988bis' more aggressive 1sec
946          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
947          * retransmission has occurred.
948          */
949         if (tp->total_retrans > 1)
950                 tp->snd_cwnd = 1;
951         else
952                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
953         tp->snd_cwnd_stamp = tcp_time_stamp;
954 }
955
956 static void tcp_update_reordering(struct sock *sk, const int metric,
957                                   const int ts)
958 {
959         struct tcp_sock *tp = tcp_sk(sk);
960         if (metric > tp->reordering) {
961                 int mib_idx;
962
963                 tp->reordering = min(TCP_MAX_REORDERING, metric);
964
965                 /* This exciting event is worth to be remembered. 8) */
966                 if (ts)
967                         mib_idx = LINUX_MIB_TCPTSREORDER;
968                 else if (tcp_is_reno(tp))
969                         mib_idx = LINUX_MIB_TCPRENOREORDER;
970                 else if (tcp_is_fack(tp))
971                         mib_idx = LINUX_MIB_TCPFACKREORDER;
972                 else
973                         mib_idx = LINUX_MIB_TCPSACKREORDER;
974
975                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
976 #if FASTRETRANS_DEBUG > 1
977                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
978                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
979                        tp->reordering,
980                        tp->fackets_out,
981                        tp->sacked_out,
982                        tp->undo_marker ? tp->undo_retrans : 0);
983 #endif
984                 tcp_disable_fack(tp);
985         }
986 }
987
988 /* This must be called before lost_out is incremented */
989 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
990 {
991         if ((tp->retransmit_skb_hint == NULL) ||
992             before(TCP_SKB_CB(skb)->seq,
993                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
994                 tp->retransmit_skb_hint = skb;
995
996         if (!tp->lost_out ||
997             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
998                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
999 }
1000
1001 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1002 {
1003         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1004                 tcp_verify_retransmit_hint(tp, skb);
1005
1006                 tp->lost_out += tcp_skb_pcount(skb);
1007                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1008         }
1009 }
1010
1011 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1012                                             struct sk_buff *skb)
1013 {
1014         tcp_verify_retransmit_hint(tp, skb);
1015
1016         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1017                 tp->lost_out += tcp_skb_pcount(skb);
1018                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1019         }
1020 }
1021
1022 /* This procedure tags the retransmission queue when SACKs arrive.
1023  *
1024  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1025  * Packets in queue with these bits set are counted in variables
1026  * sacked_out, retrans_out and lost_out, correspondingly.
1027  *
1028  * Valid combinations are:
1029  * Tag  InFlight        Description
1030  * 0    1               - orig segment is in flight.
1031  * S    0               - nothing flies, orig reached receiver.
1032  * L    0               - nothing flies, orig lost by net.
1033  * R    2               - both orig and retransmit are in flight.
1034  * L|R  1               - orig is lost, retransmit is in flight.
1035  * S|R  1               - orig reached receiver, retrans is still in flight.
1036  * (L|S|R is logically valid, it could occur when L|R is sacked,
1037  *  but it is equivalent to plain S and code short-curcuits it to S.
1038  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1039  *
1040  * These 6 states form finite state machine, controlled by the following events:
1041  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1042  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1043  * 3. Loss detection event of one of three flavors:
1044  *      A. Scoreboard estimator decided the packet is lost.
1045  *         A'. Reno "three dupacks" marks head of queue lost.
1046  *         A''. Its FACK modfication, head until snd.fack is lost.
1047  *      B. SACK arrives sacking data transmitted after never retransmitted
1048  *         hole was sent out.
1049  *      C. SACK arrives sacking SND.NXT at the moment, when the
1050  *         segment was retransmitted.
1051  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1052  *
1053  * It is pleasant to note, that state diagram turns out to be commutative,
1054  * so that we are allowed not to be bothered by order of our actions,
1055  * when multiple events arrive simultaneously. (see the function below).
1056  *
1057  * Reordering detection.
1058  * --------------------
1059  * Reordering metric is maximal distance, which a packet can be displaced
1060  * in packet stream. With SACKs we can estimate it:
1061  *
1062  * 1. SACK fills old hole and the corresponding segment was not
1063  *    ever retransmitted -> reordering. Alas, we cannot use it
1064  *    when segment was retransmitted.
1065  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1066  *    for retransmitted and already SACKed segment -> reordering..
1067  * Both of these heuristics are not used in Loss state, when we cannot
1068  * account for retransmits accurately.
1069  *
1070  * SACK block validation.
1071  * ----------------------
1072  *
1073  * SACK block range validation checks that the received SACK block fits to
1074  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1075  * Note that SND.UNA is not included to the range though being valid because
1076  * it means that the receiver is rather inconsistent with itself reporting
1077  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1078  * perfectly valid, however, in light of RFC2018 which explicitly states
1079  * that "SACK block MUST reflect the newest segment.  Even if the newest
1080  * segment is going to be discarded ...", not that it looks very clever
1081  * in case of head skb. Due to potentional receiver driven attacks, we
1082  * choose to avoid immediate execution of a walk in write queue due to
1083  * reneging and defer head skb's loss recovery to standard loss recovery
1084  * procedure that will eventually trigger (nothing forbids us doing this).
1085  *
1086  * Implements also blockage to start_seq wrap-around. Problem lies in the
1087  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1088  * there's no guarantee that it will be before snd_nxt (n). The problem
1089  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1090  * wrap (s_w):
1091  *
1092  *         <- outs wnd ->                          <- wrapzone ->
1093  *         u     e      n                         u_w   e_w  s n_w
1094  *         |     |      |                          |     |   |  |
1095  * |<------------+------+----- TCP seqno space --------------+---------->|
1096  * ...-- <2^31 ->|                                           |<--------...
1097  * ...---- >2^31 ------>|                                    |<--------...
1098  *
1099  * Current code wouldn't be vulnerable but it's better still to discard such
1100  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1101  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1102  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1103  * equal to the ideal case (infinite seqno space without wrap caused issues).
1104  *
1105  * With D-SACK the lower bound is extended to cover sequence space below
1106  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1107  * again, D-SACK block must not to go across snd_una (for the same reason as
1108  * for the normal SACK blocks, explained above). But there all simplicity
1109  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1110  * fully below undo_marker they do not affect behavior in anyway and can
1111  * therefore be safely ignored. In rare cases (which are more or less
1112  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1113  * fragmentation and packet reordering past skb's retransmission. To consider
1114  * them correctly, the acceptable range must be extended even more though
1115  * the exact amount is rather hard to quantify. However, tp->max_window can
1116  * be used as an exaggerated estimate.
1117  */
1118 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1119                                   u32 start_seq, u32 end_seq)
1120 {
1121         /* Too far in future, or reversed (interpretation is ambiguous) */
1122         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1123                 return 0;
1124
1125         /* Nasty start_seq wrap-around check (see comments above) */
1126         if (!before(start_seq, tp->snd_nxt))
1127                 return 0;
1128
1129         /* In outstanding window? ...This is valid exit for D-SACKs too.
1130          * start_seq == snd_una is non-sensical (see comments above)
1131          */
1132         if (after(start_seq, tp->snd_una))
1133                 return 1;
1134
1135         if (!is_dsack || !tp->undo_marker)
1136                 return 0;
1137
1138         /* ...Then it's D-SACK, and must reside below snd_una completely */
1139         if (after(end_seq, tp->snd_una))
1140                 return 0;
1141
1142         if (!before(start_seq, tp->undo_marker))
1143                 return 1;
1144
1145         /* Too old */
1146         if (!after(end_seq, tp->undo_marker))
1147                 return 0;
1148
1149         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1150          *   start_seq < undo_marker and end_seq >= undo_marker.
1151          */
1152         return !before(start_seq, end_seq - tp->max_window);
1153 }
1154
1155 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1156  * Event "C". Later note: FACK people cheated me again 8), we have to account
1157  * for reordering! Ugly, but should help.
1158  *
1159  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1160  * less than what is now known to be received by the other end (derived from
1161  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1162  * retransmitted skbs to avoid some costly processing per ACKs.
1163  */
1164 static void tcp_mark_lost_retrans(struct sock *sk)
1165 {
1166         const struct inet_connection_sock *icsk = inet_csk(sk);
1167         struct tcp_sock *tp = tcp_sk(sk);
1168         struct sk_buff *skb;
1169         int cnt = 0;
1170         u32 new_low_seq = tp->snd_nxt;
1171         u32 received_upto = tcp_highest_sack_seq(tp);
1172
1173         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1174             !after(received_upto, tp->lost_retrans_low) ||
1175             icsk->icsk_ca_state != TCP_CA_Recovery)
1176                 return;
1177
1178         tcp_for_write_queue(skb, sk) {
1179                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1180
1181                 if (skb == tcp_send_head(sk))
1182                         break;
1183                 if (cnt == tp->retrans_out)
1184                         break;
1185                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1186                         continue;
1187
1188                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1189                         continue;
1190
1191                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1192                  * constraint here (see above) but figuring out that at
1193                  * least tp->reordering SACK blocks reside between ack_seq
1194                  * and received_upto is not easy task to do cheaply with
1195                  * the available datastructures.
1196                  *
1197                  * Whether FACK should check here for tp->reordering segs
1198                  * in-between one could argue for either way (it would be
1199                  * rather simple to implement as we could count fack_count
1200                  * during the walk and do tp->fackets_out - fack_count).
1201                  */
1202                 if (after(received_upto, ack_seq)) {
1203                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1204                         tp->retrans_out -= tcp_skb_pcount(skb);
1205
1206                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1207                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1208                 } else {
1209                         if (before(ack_seq, new_low_seq))
1210                                 new_low_seq = ack_seq;
1211                         cnt += tcp_skb_pcount(skb);
1212                 }
1213         }
1214
1215         if (tp->retrans_out)
1216                 tp->lost_retrans_low = new_low_seq;
1217 }
1218
1219 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1220                            struct tcp_sack_block_wire *sp, int num_sacks,
1221                            u32 prior_snd_una)
1222 {
1223         struct tcp_sock *tp = tcp_sk(sk);
1224         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1225         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1226         int dup_sack = 0;
1227
1228         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1229                 dup_sack = 1;
1230                 tcp_dsack_seen(tp);
1231                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1232         } else if (num_sacks > 1) {
1233                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1234                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1235
1236                 if (!after(end_seq_0, end_seq_1) &&
1237                     !before(start_seq_0, start_seq_1)) {
1238                         dup_sack = 1;
1239                         tcp_dsack_seen(tp);
1240                         NET_INC_STATS_BH(sock_net(sk),
1241                                         LINUX_MIB_TCPDSACKOFORECV);
1242                 }
1243         }
1244
1245         /* D-SACK for already forgotten data... Do dumb counting. */
1246         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1247             !after(end_seq_0, prior_snd_una) &&
1248             after(end_seq_0, tp->undo_marker))
1249                 tp->undo_retrans--;
1250
1251         return dup_sack;
1252 }
1253
1254 struct tcp_sacktag_state {
1255         int reord;
1256         int fack_count;
1257         int flag;
1258 };
1259
1260 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1261  * the incoming SACK may not exactly match but we can find smaller MSS
1262  * aligned portion of it that matches. Therefore we might need to fragment
1263  * which may fail and creates some hassle (caller must handle error case
1264  * returns).
1265  *
1266  * FIXME: this could be merged to shift decision code
1267  */
1268 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1269                                  u32 start_seq, u32 end_seq)
1270 {
1271         int in_sack, err;
1272         unsigned int pkt_len;
1273         unsigned int mss;
1274
1275         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1276                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1277
1278         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1279             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1280                 mss = tcp_skb_mss(skb);
1281                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1282
1283                 if (!in_sack) {
1284                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1285                         if (pkt_len < mss)
1286                                 pkt_len = mss;
1287                 } else {
1288                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1289                         if (pkt_len < mss)
1290                                 return -EINVAL;
1291                 }
1292
1293                 /* Round if necessary so that SACKs cover only full MSSes
1294                  * and/or the remaining small portion (if present)
1295                  */
1296                 if (pkt_len > mss) {
1297                         unsigned int new_len = (pkt_len / mss) * mss;
1298                         if (!in_sack && new_len < pkt_len) {
1299                                 new_len += mss;
1300                                 if (new_len > skb->len)
1301                                         return 0;
1302                         }
1303                         pkt_len = new_len;
1304                 }
1305                 err = tcp_fragment(sk, skb, pkt_len, mss);
1306                 if (err < 0)
1307                         return err;
1308         }
1309
1310         return in_sack;
1311 }
1312
1313 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1314 static u8 tcp_sacktag_one(struct sock *sk,
1315                           struct tcp_sacktag_state *state, u8 sacked,
1316                           u32 start_seq, u32 end_seq,
1317                           int dup_sack, int pcount)
1318 {
1319         struct tcp_sock *tp = tcp_sk(sk);
1320         int fack_count = state->fack_count;
1321
1322         /* Account D-SACK for retransmitted packet. */
1323         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1324                 if (tp->undo_marker && tp->undo_retrans &&
1325                     after(end_seq, tp->undo_marker))
1326                         tp->undo_retrans--;
1327                 if (sacked & TCPCB_SACKED_ACKED)
1328                         state->reord = min(fack_count, state->reord);
1329         }
1330
1331         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1332         if (!after(end_seq, tp->snd_una))
1333                 return sacked;
1334
1335         if (!(sacked & TCPCB_SACKED_ACKED)) {
1336                 if (sacked & TCPCB_SACKED_RETRANS) {
1337                         /* If the segment is not tagged as lost,
1338                          * we do not clear RETRANS, believing
1339                          * that retransmission is still in flight.
1340                          */
1341                         if (sacked & TCPCB_LOST) {
1342                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1343                                 tp->lost_out -= pcount;
1344                                 tp->retrans_out -= pcount;
1345                         }
1346                 } else {
1347                         if (!(sacked & TCPCB_RETRANS)) {
1348                                 /* New sack for not retransmitted frame,
1349                                  * which was in hole. It is reordering.
1350                                  */
1351                                 if (before(start_seq,
1352                                            tcp_highest_sack_seq(tp)))
1353                                         state->reord = min(fack_count,
1354                                                            state->reord);
1355
1356                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1357                                 if (!after(end_seq, tp->frto_highmark))
1358                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1359                         }
1360
1361                         if (sacked & TCPCB_LOST) {
1362                                 sacked &= ~TCPCB_LOST;
1363                                 tp->lost_out -= pcount;
1364                         }
1365                 }
1366
1367                 sacked |= TCPCB_SACKED_ACKED;
1368                 state->flag |= FLAG_DATA_SACKED;
1369                 tp->sacked_out += pcount;
1370
1371                 fack_count += pcount;
1372
1373                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1374                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1375                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1376                         tp->lost_cnt_hint += pcount;
1377
1378                 if (fack_count > tp->fackets_out)
1379                         tp->fackets_out = fack_count;
1380         }
1381
1382         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1383          * frames and clear it. undo_retrans is decreased above, L|R frames
1384          * are accounted above as well.
1385          */
1386         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1387                 sacked &= ~TCPCB_SACKED_RETRANS;
1388                 tp->retrans_out -= pcount;
1389         }
1390
1391         return sacked;
1392 }
1393
1394 /* Shift newly-SACKed bytes from this skb to the immediately previous
1395  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1396  */
1397 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1398                            struct tcp_sacktag_state *state,
1399                            unsigned int pcount, int shifted, int mss,
1400                            int dup_sack)
1401 {
1402         struct tcp_sock *tp = tcp_sk(sk);
1403         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1404         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1405         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1406
1407         BUG_ON(!pcount);
1408
1409         /* Adjust hint for FACK. Non-FACK is handled in tcp_sacktag_one(). */
1410         if (tcp_is_fack(tp) && (skb == tp->lost_skb_hint))
1411                 tp->lost_cnt_hint += pcount;
1412
1413         TCP_SKB_CB(prev)->end_seq += shifted;
1414         TCP_SKB_CB(skb)->seq += shifted;
1415
1416         skb_shinfo(prev)->gso_segs += pcount;
1417         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1418         skb_shinfo(skb)->gso_segs -= pcount;
1419
1420         /* When we're adding to gso_segs == 1, gso_size will be zero,
1421          * in theory this shouldn't be necessary but as long as DSACK
1422          * code can come after this skb later on it's better to keep
1423          * setting gso_size to something.
1424          */
1425         if (!skb_shinfo(prev)->gso_size) {
1426                 skb_shinfo(prev)->gso_size = mss;
1427                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1428         }
1429
1430         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1431         if (skb_shinfo(skb)->gso_segs <= 1) {
1432                 skb_shinfo(skb)->gso_size = 0;
1433                 skb_shinfo(skb)->gso_type = 0;
1434         }
1435
1436         /* Adjust counters and hints for the newly sacked sequence range but
1437          * discard the return value since prev is already marked.
1438          */
1439         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1440                         start_seq, end_seq, dup_sack, pcount);
1441
1442         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1443         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1444
1445         if (skb->len > 0) {
1446                 BUG_ON(!tcp_skb_pcount(skb));
1447                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1448                 return 0;
1449         }
1450
1451         /* Whole SKB was eaten :-) */
1452
1453         if (skb == tp->retransmit_skb_hint)
1454                 tp->retransmit_skb_hint = prev;
1455         if (skb == tp->scoreboard_skb_hint)
1456                 tp->scoreboard_skb_hint = prev;
1457         if (skb == tp->lost_skb_hint) {
1458                 tp->lost_skb_hint = prev;
1459                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1460         }
1461
1462         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1463         if (skb == tcp_highest_sack(sk))
1464                 tcp_advance_highest_sack(sk, skb);
1465
1466         tcp_unlink_write_queue(skb, sk);
1467         sk_wmem_free_skb(sk, skb);
1468
1469         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1470
1471         return 1;
1472 }
1473
1474 /* I wish gso_size would have a bit more sane initialization than
1475  * something-or-zero which complicates things
1476  */
1477 static int tcp_skb_seglen(const struct sk_buff *skb)
1478 {
1479         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1480 }
1481
1482 /* Shifting pages past head area doesn't work */
1483 static int skb_can_shift(const struct sk_buff *skb)
1484 {
1485         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1486 }
1487
1488 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1489  * skb.
1490  */
1491 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1492                                           struct tcp_sacktag_state *state,
1493                                           u32 start_seq, u32 end_seq,
1494                                           int dup_sack)
1495 {
1496         struct tcp_sock *tp = tcp_sk(sk);
1497         struct sk_buff *prev;
1498         int mss;
1499         int pcount = 0;
1500         int len;
1501         int in_sack;
1502
1503         if (!sk_can_gso(sk))
1504                 goto fallback;
1505
1506         /* Normally R but no L won't result in plain S */
1507         if (!dup_sack &&
1508             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1509                 goto fallback;
1510         if (!skb_can_shift(skb))
1511                 goto fallback;
1512         /* This frame is about to be dropped (was ACKed). */
1513         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1514                 goto fallback;
1515
1516         /* Can only happen with delayed DSACK + discard craziness */
1517         if (unlikely(skb == tcp_write_queue_head(sk)))
1518                 goto fallback;
1519         prev = tcp_write_queue_prev(sk, skb);
1520
1521         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1522                 goto fallback;
1523
1524         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1525                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1526
1527         if (in_sack) {
1528                 len = skb->len;
1529                 pcount = tcp_skb_pcount(skb);
1530                 mss = tcp_skb_seglen(skb);
1531
1532                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1533                  * drop this restriction as unnecessary
1534                  */
1535                 if (mss != tcp_skb_seglen(prev))
1536                         goto fallback;
1537         } else {
1538                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1539                         goto noop;
1540                 /* CHECKME: This is non-MSS split case only?, this will
1541                  * cause skipped skbs due to advancing loop btw, original
1542                  * has that feature too
1543                  */
1544                 if (tcp_skb_pcount(skb) <= 1)
1545                         goto noop;
1546
1547                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1548                 if (!in_sack) {
1549                         /* TODO: head merge to next could be attempted here
1550                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1551                          * though it might not be worth of the additional hassle
1552                          *
1553                          * ...we can probably just fallback to what was done
1554                          * previously. We could try merging non-SACKed ones
1555                          * as well but it probably isn't going to buy off
1556                          * because later SACKs might again split them, and
1557                          * it would make skb timestamp tracking considerably
1558                          * harder problem.
1559                          */
1560                         goto fallback;
1561                 }
1562
1563                 len = end_seq - TCP_SKB_CB(skb)->seq;
1564                 BUG_ON(len < 0);
1565                 BUG_ON(len > skb->len);
1566
1567                 /* MSS boundaries should be honoured or else pcount will
1568                  * severely break even though it makes things bit trickier.
1569                  * Optimize common case to avoid most of the divides
1570                  */
1571                 mss = tcp_skb_mss(skb);
1572
1573                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1574                  * drop this restriction as unnecessary
1575                  */
1576                 if (mss != tcp_skb_seglen(prev))
1577                         goto fallback;
1578
1579                 if (len == mss) {
1580                         pcount = 1;
1581                 } else if (len < mss) {
1582                         goto noop;
1583                 } else {
1584                         pcount = len / mss;
1585                         len = pcount * mss;
1586                 }
1587         }
1588
1589         if (!skb_shift(prev, skb, len))
1590                 goto fallback;
1591         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1592                 goto out;
1593
1594         /* Hole filled allows collapsing with the next as well, this is very
1595          * useful when hole on every nth skb pattern happens
1596          */
1597         if (prev == tcp_write_queue_tail(sk))
1598                 goto out;
1599         skb = tcp_write_queue_next(sk, prev);
1600
1601         if (!skb_can_shift(skb) ||
1602             (skb == tcp_send_head(sk)) ||
1603             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1604             (mss != tcp_skb_seglen(skb)))
1605                 goto out;
1606
1607         len = skb->len;
1608         if (skb_shift(prev, skb, len)) {
1609                 pcount += tcp_skb_pcount(skb);
1610                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1611         }
1612
1613 out:
1614         state->fack_count += pcount;
1615         return prev;
1616
1617 noop:
1618         return skb;
1619
1620 fallback:
1621         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1622         return NULL;
1623 }
1624
1625 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1626                                         struct tcp_sack_block *next_dup,
1627                                         struct tcp_sacktag_state *state,
1628                                         u32 start_seq, u32 end_seq,
1629                                         int dup_sack_in)
1630 {
1631         struct tcp_sock *tp = tcp_sk(sk);
1632         struct sk_buff *tmp;
1633
1634         tcp_for_write_queue_from(skb, sk) {
1635                 int in_sack = 0;
1636                 int dup_sack = dup_sack_in;
1637
1638                 if (skb == tcp_send_head(sk))
1639                         break;
1640
1641                 /* queue is in-order => we can short-circuit the walk early */
1642                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1643                         break;
1644
1645                 if ((next_dup != NULL) &&
1646                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1647                         in_sack = tcp_match_skb_to_sack(sk, skb,
1648                                                         next_dup->start_seq,
1649                                                         next_dup->end_seq);
1650                         if (in_sack > 0)
1651                                 dup_sack = 1;
1652                 }
1653
1654                 /* skb reference here is a bit tricky to get right, since
1655                  * shifting can eat and free both this skb and the next,
1656                  * so not even _safe variant of the loop is enough.
1657                  */
1658                 if (in_sack <= 0) {
1659                         tmp = tcp_shift_skb_data(sk, skb, state,
1660                                                  start_seq, end_seq, dup_sack);
1661                         if (tmp != NULL) {
1662                                 if (tmp != skb) {
1663                                         skb = tmp;
1664                                         continue;
1665                                 }
1666
1667                                 in_sack = 0;
1668                         } else {
1669                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1670                                                                 start_seq,
1671                                                                 end_seq);
1672                         }
1673                 }
1674
1675                 if (unlikely(in_sack < 0))
1676                         break;
1677
1678                 if (in_sack) {
1679                         TCP_SKB_CB(skb)->sacked =
1680                                 tcp_sacktag_one(sk,
1681                                                 state,
1682                                                 TCP_SKB_CB(skb)->sacked,
1683                                                 TCP_SKB_CB(skb)->seq,
1684                                                 TCP_SKB_CB(skb)->end_seq,
1685                                                 dup_sack,
1686                                                 tcp_skb_pcount(skb));
1687
1688                         if (!before(TCP_SKB_CB(skb)->seq,
1689                                     tcp_highest_sack_seq(tp)))
1690                                 tcp_advance_highest_sack(sk, skb);
1691                 }
1692
1693                 state->fack_count += tcp_skb_pcount(skb);
1694         }
1695         return skb;
1696 }
1697
1698 /* Avoid all extra work that is being done by sacktag while walking in
1699  * a normal way
1700  */
1701 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1702                                         struct tcp_sacktag_state *state,
1703                                         u32 skip_to_seq)
1704 {
1705         tcp_for_write_queue_from(skb, sk) {
1706                 if (skb == tcp_send_head(sk))
1707                         break;
1708
1709                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1710                         break;
1711
1712                 state->fack_count += tcp_skb_pcount(skb);
1713         }
1714         return skb;
1715 }
1716
1717 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1718                                                 struct sock *sk,
1719                                                 struct tcp_sack_block *next_dup,
1720                                                 struct tcp_sacktag_state *state,
1721                                                 u32 skip_to_seq)
1722 {
1723         if (next_dup == NULL)
1724                 return skb;
1725
1726         if (before(next_dup->start_seq, skip_to_seq)) {
1727                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1728                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1729                                        next_dup->start_seq, next_dup->end_seq,
1730                                        1);
1731         }
1732
1733         return skb;
1734 }
1735
1736 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1737 {
1738         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1739 }
1740
1741 static int
1742 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1743                         u32 prior_snd_una)
1744 {
1745         const struct inet_connection_sock *icsk = inet_csk(sk);
1746         struct tcp_sock *tp = tcp_sk(sk);
1747         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1748                                     TCP_SKB_CB(ack_skb)->sacked);
1749         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1750         struct tcp_sack_block sp[TCP_NUM_SACKS];
1751         struct tcp_sack_block *cache;
1752         struct tcp_sacktag_state state;
1753         struct sk_buff *skb;
1754         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1755         int used_sacks;
1756         int found_dup_sack = 0;
1757         int i, j;
1758         int first_sack_index;
1759
1760         state.flag = 0;
1761         state.reord = tp->packets_out;
1762
1763         if (!tp->sacked_out) {
1764                 if (WARN_ON(tp->fackets_out))
1765                         tp->fackets_out = 0;
1766                 tcp_highest_sack_reset(sk);
1767         }
1768
1769         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1770                                          num_sacks, prior_snd_una);
1771         if (found_dup_sack)
1772                 state.flag |= FLAG_DSACKING_ACK;
1773
1774         /* Eliminate too old ACKs, but take into
1775          * account more or less fresh ones, they can
1776          * contain valid SACK info.
1777          */
1778         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1779                 return 0;
1780
1781         if (!tp->packets_out)
1782                 goto out;
1783
1784         used_sacks = 0;
1785         first_sack_index = 0;
1786         for (i = 0; i < num_sacks; i++) {
1787                 int dup_sack = !i && found_dup_sack;
1788
1789                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1790                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1791
1792                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1793                                             sp[used_sacks].start_seq,
1794                                             sp[used_sacks].end_seq)) {
1795                         int mib_idx;
1796
1797                         if (dup_sack) {
1798                                 if (!tp->undo_marker)
1799                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1800                                 else
1801                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1802                         } else {
1803                                 /* Don't count olds caused by ACK reordering */
1804                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1805                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1806                                         continue;
1807                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1808                         }
1809
1810                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1811                         if (i == 0)
1812                                 first_sack_index = -1;
1813                         continue;
1814                 }
1815
1816                 /* Ignore very old stuff early */
1817                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1818                         continue;
1819
1820                 used_sacks++;
1821         }
1822
1823         /* order SACK blocks to allow in order walk of the retrans queue */
1824         for (i = used_sacks - 1; i > 0; i--) {
1825                 for (j = 0; j < i; j++) {
1826                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1827                                 swap(sp[j], sp[j + 1]);
1828
1829                                 /* Track where the first SACK block goes to */
1830                                 if (j == first_sack_index)
1831                                         first_sack_index = j + 1;
1832                         }
1833                 }
1834         }
1835
1836         skb = tcp_write_queue_head(sk);
1837         state.fack_count = 0;
1838         i = 0;
1839
1840         if (!tp->sacked_out) {
1841                 /* It's already past, so skip checking against it */
1842                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1843         } else {
1844                 cache = tp->recv_sack_cache;
1845                 /* Skip empty blocks in at head of the cache */
1846                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1847                        !cache->end_seq)
1848                         cache++;
1849         }
1850
1851         while (i < used_sacks) {
1852                 u32 start_seq = sp[i].start_seq;
1853                 u32 end_seq = sp[i].end_seq;
1854                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1855                 struct tcp_sack_block *next_dup = NULL;
1856
1857                 if (found_dup_sack && ((i + 1) == first_sack_index))
1858                         next_dup = &sp[i + 1];
1859
1860                 /* Event "B" in the comment above. */
1861                 if (after(end_seq, tp->high_seq))
1862                         state.flag |= FLAG_DATA_LOST;
1863
1864                 /* Skip too early cached blocks */
1865                 while (tcp_sack_cache_ok(tp, cache) &&
1866                        !before(start_seq, cache->end_seq))
1867                         cache++;
1868
1869                 /* Can skip some work by looking recv_sack_cache? */
1870                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1871                     after(end_seq, cache->start_seq)) {
1872
1873                         /* Head todo? */
1874                         if (before(start_seq, cache->start_seq)) {
1875                                 skb = tcp_sacktag_skip(skb, sk, &state,
1876                                                        start_seq);
1877                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1878                                                        &state,
1879                                                        start_seq,
1880                                                        cache->start_seq,
1881                                                        dup_sack);
1882                         }
1883
1884                         /* Rest of the block already fully processed? */
1885                         if (!after(end_seq, cache->end_seq))
1886                                 goto advance_sp;
1887
1888                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1889                                                        &state,
1890                                                        cache->end_seq);
1891
1892                         /* ...tail remains todo... */
1893                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1894                                 /* ...but better entrypoint exists! */
1895                                 skb = tcp_highest_sack(sk);
1896                                 if (skb == NULL)
1897                                         break;
1898                                 state.fack_count = tp->fackets_out;
1899                                 cache++;
1900                                 goto walk;
1901                         }
1902
1903                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1904                         /* Check overlap against next cached too (past this one already) */
1905                         cache++;
1906                         continue;
1907                 }
1908
1909                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1910                         skb = tcp_highest_sack(sk);
1911                         if (skb == NULL)
1912                                 break;
1913                         state.fack_count = tp->fackets_out;
1914                 }
1915                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1916
1917 walk:
1918                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1919                                        start_seq, end_seq, dup_sack);
1920
1921 advance_sp:
1922                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1923                  * due to in-order walk
1924                  */
1925                 if (after(end_seq, tp->frto_highmark))
1926                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1927
1928                 i++;
1929         }
1930
1931         /* Clear the head of the cache sack blocks so we can skip it next time */
1932         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1933                 tp->recv_sack_cache[i].start_seq = 0;
1934                 tp->recv_sack_cache[i].end_seq = 0;
1935         }
1936         for (j = 0; j < used_sacks; j++)
1937                 tp->recv_sack_cache[i++] = sp[j];
1938
1939         tcp_mark_lost_retrans(sk);
1940
1941         tcp_verify_left_out(tp);
1942
1943         if ((state.reord < tp->fackets_out) &&
1944             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1945             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1946                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1947
1948 out:
1949
1950 #if FASTRETRANS_DEBUG > 0
1951         WARN_ON((int)tp->sacked_out < 0);
1952         WARN_ON((int)tp->lost_out < 0);
1953         WARN_ON((int)tp->retrans_out < 0);
1954         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1955 #endif
1956         return state.flag;
1957 }
1958
1959 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1960  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1961  */
1962 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1963 {
1964         u32 holes;
1965
1966         holes = max(tp->lost_out, 1U);
1967         holes = min(holes, tp->packets_out);
1968
1969         if ((tp->sacked_out + holes) > tp->packets_out) {
1970                 tp->sacked_out = tp->packets_out - holes;
1971                 return 1;
1972         }
1973         return 0;
1974 }
1975
1976 /* If we receive more dupacks than we expected counting segments
1977  * in assumption of absent reordering, interpret this as reordering.
1978  * The only another reason could be bug in receiver TCP.
1979  */
1980 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1981 {
1982         struct tcp_sock *tp = tcp_sk(sk);
1983         if (tcp_limit_reno_sacked(tp))
1984                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1985 }
1986
1987 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1988
1989 static void tcp_add_reno_sack(struct sock *sk)
1990 {
1991         struct tcp_sock *tp = tcp_sk(sk);
1992         tp->sacked_out++;
1993         tcp_check_reno_reordering(sk, 0);
1994         tcp_verify_left_out(tp);
1995 }
1996
1997 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1998
1999 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2000 {
2001         struct tcp_sock *tp = tcp_sk(sk);
2002
2003         if (acked > 0) {
2004                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2005                 if (acked - 1 >= tp->sacked_out)
2006                         tp->sacked_out = 0;
2007                 else
2008                         tp->sacked_out -= acked - 1;
2009         }
2010         tcp_check_reno_reordering(sk, acked);
2011         tcp_verify_left_out(tp);
2012 }
2013
2014 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2015 {
2016         tp->sacked_out = 0;
2017 }
2018
2019 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2020 {
2021         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2022 }
2023
2024 /* F-RTO can only be used if TCP has never retransmitted anything other than
2025  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2026  */
2027 int tcp_use_frto(struct sock *sk)
2028 {
2029         const struct tcp_sock *tp = tcp_sk(sk);
2030         const struct inet_connection_sock *icsk = inet_csk(sk);
2031         struct sk_buff *skb;
2032
2033         if (!sysctl_tcp_frto)
2034                 return 0;
2035
2036         /* MTU probe and F-RTO won't really play nicely along currently */
2037         if (icsk->icsk_mtup.probe_size)
2038                 return 0;
2039
2040         if (tcp_is_sackfrto(tp))
2041                 return 1;
2042
2043         /* Avoid expensive walking of rexmit queue if possible */
2044         if (tp->retrans_out > 1)
2045                 return 0;
2046
2047         skb = tcp_write_queue_head(sk);
2048         if (tcp_skb_is_last(sk, skb))
2049                 return 1;
2050         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2051         tcp_for_write_queue_from(skb, sk) {
2052                 if (skb == tcp_send_head(sk))
2053                         break;
2054                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2055                         return 0;
2056                 /* Short-circuit when first non-SACKed skb has been checked */
2057                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2058                         break;
2059         }
2060         return 1;
2061 }
2062
2063 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2064  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2065  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2066  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2067  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2068  * bits are handled if the Loss state is really to be entered (in
2069  * tcp_enter_frto_loss).
2070  *
2071  * Do like tcp_enter_loss() would; when RTO expires the second time it
2072  * does:
2073  *  "Reduce ssthresh if it has not yet been made inside this window."
2074  */
2075 void tcp_enter_frto(struct sock *sk)
2076 {
2077         const struct inet_connection_sock *icsk = inet_csk(sk);
2078         struct tcp_sock *tp = tcp_sk(sk);
2079         struct sk_buff *skb;
2080
2081         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2082             tp->snd_una == tp->high_seq ||
2083             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2084              !icsk->icsk_retransmits)) {
2085                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2086                 /* Our state is too optimistic in ssthresh() call because cwnd
2087                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2088                  * recovery has not yet completed. Pattern would be this: RTO,
2089                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2090                  * up here twice).
2091                  * RFC4138 should be more specific on what to do, even though
2092                  * RTO is quite unlikely to occur after the first Cumulative ACK
2093                  * due to back-off and complexity of triggering events ...
2094                  */
2095                 if (tp->frto_counter) {
2096                         u32 stored_cwnd;
2097                         stored_cwnd = tp->snd_cwnd;
2098                         tp->snd_cwnd = 2;
2099                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2100                         tp->snd_cwnd = stored_cwnd;
2101                 } else {
2102                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2103                 }
2104                 /* ... in theory, cong.control module could do "any tricks" in
2105                  * ssthresh(), which means that ca_state, lost bits and lost_out
2106                  * counter would have to be faked before the call occurs. We
2107                  * consider that too expensive, unlikely and hacky, so modules
2108                  * using these in ssthresh() must deal these incompatibility
2109                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2110                  */
2111                 tcp_ca_event(sk, CA_EVENT_FRTO);
2112         }
2113
2114         tp->undo_marker = tp->snd_una;
2115         tp->undo_retrans = 0;
2116
2117         skb = tcp_write_queue_head(sk);
2118         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2119                 tp->undo_marker = 0;
2120         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2121                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2122                 tp->retrans_out -= tcp_skb_pcount(skb);
2123         }
2124         tcp_verify_left_out(tp);
2125
2126         /* Too bad if TCP was application limited */
2127         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2128
2129         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2130          * The last condition is necessary at least in tp->frto_counter case.
2131          */
2132         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2133             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2134             after(tp->high_seq, tp->snd_una)) {
2135                 tp->frto_highmark = tp->high_seq;
2136         } else {
2137                 tp->frto_highmark = tp->snd_nxt;
2138         }
2139         tcp_set_ca_state(sk, TCP_CA_Disorder);
2140         tp->high_seq = tp->snd_nxt;
2141         tp->frto_counter = 1;
2142 }
2143
2144 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2145  * which indicates that we should follow the traditional RTO recovery,
2146  * i.e. mark everything lost and do go-back-N retransmission.
2147  */
2148 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2149 {
2150         struct tcp_sock *tp = tcp_sk(sk);
2151         struct sk_buff *skb;
2152
2153         tp->lost_out = 0;
2154         tp->retrans_out = 0;
2155         if (tcp_is_reno(tp))
2156                 tcp_reset_reno_sack(tp);
2157
2158         tcp_for_write_queue(skb, sk) {
2159                 if (skb == tcp_send_head(sk))
2160                         break;
2161
2162                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2163                 /*
2164                  * Count the retransmission made on RTO correctly (only when
2165                  * waiting for the first ACK and did not get it)...
2166                  */
2167                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2168                         /* For some reason this R-bit might get cleared? */
2169                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2170                                 tp->retrans_out += tcp_skb_pcount(skb);
2171                         /* ...enter this if branch just for the first segment */
2172                         flag |= FLAG_DATA_ACKED;
2173                 } else {
2174                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2175                                 tp->undo_marker = 0;
2176                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2177                 }
2178
2179                 /* Marking forward transmissions that were made after RTO lost
2180                  * can cause unnecessary retransmissions in some scenarios,
2181                  * SACK blocks will mitigate that in some but not in all cases.
2182                  * We used to not mark them but it was causing break-ups with
2183                  * receivers that do only in-order receival.
2184                  *
2185                  * TODO: we could detect presence of such receiver and select
2186                  * different behavior per flow.
2187                  */
2188                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2189                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2190                         tp->lost_out += tcp_skb_pcount(skb);
2191                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2192                 }
2193         }
2194         tcp_verify_left_out(tp);
2195
2196         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2197         tp->snd_cwnd_cnt = 0;
2198         tp->snd_cwnd_stamp = tcp_time_stamp;
2199         tp->frto_counter = 0;
2200         tp->bytes_acked = 0;
2201
2202         tp->reordering = min_t(unsigned int, tp->reordering,
2203                                sysctl_tcp_reordering);
2204         tcp_set_ca_state(sk, TCP_CA_Loss);
2205         tp->high_seq = tp->snd_nxt;
2206         TCP_ECN_queue_cwr(tp);
2207
2208         tcp_clear_all_retrans_hints(tp);
2209 }
2210
2211 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2212 {
2213         tp->retrans_out = 0;
2214         tp->lost_out = 0;
2215
2216         tp->undo_marker = 0;
2217         tp->undo_retrans = 0;
2218 }
2219
2220 void tcp_clear_retrans(struct tcp_sock *tp)
2221 {
2222         tcp_clear_retrans_partial(tp);
2223
2224         tp->fackets_out = 0;
2225         tp->sacked_out = 0;
2226 }
2227
2228 /* Enter Loss state. If "how" is not zero, forget all SACK information
2229  * and reset tags completely, otherwise preserve SACKs. If receiver
2230  * dropped its ofo queue, we will know this due to reneging detection.
2231  */
2232 void tcp_enter_loss(struct sock *sk, int how)
2233 {
2234         const struct inet_connection_sock *icsk = inet_csk(sk);
2235         struct tcp_sock *tp = tcp_sk(sk);
2236         struct sk_buff *skb;
2237
2238         /* Reduce ssthresh if it has not yet been made inside this window. */
2239         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2240             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2241                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2242                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2243                 tcp_ca_event(sk, CA_EVENT_LOSS);
2244         }
2245         tp->snd_cwnd       = 1;
2246         tp->snd_cwnd_cnt   = 0;
2247         tp->snd_cwnd_stamp = tcp_time_stamp;
2248
2249         tp->bytes_acked = 0;
2250         tcp_clear_retrans_partial(tp);
2251
2252         if (tcp_is_reno(tp))
2253                 tcp_reset_reno_sack(tp);
2254
2255         if (!how) {
2256                 /* Push undo marker, if it was plain RTO and nothing
2257                  * was retransmitted. */
2258                 tp->undo_marker = tp->snd_una;
2259         } else {
2260                 tp->sacked_out = 0;
2261                 tp->fackets_out = 0;
2262         }
2263         tcp_clear_all_retrans_hints(tp);
2264
2265         tcp_for_write_queue(skb, sk) {
2266                 if (skb == tcp_send_head(sk))
2267                         break;
2268
2269                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2270                         tp->undo_marker = 0;
2271                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2272                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2273                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2274                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2275                         tp->lost_out += tcp_skb_pcount(skb);
2276                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2277                 }
2278         }
2279         tcp_verify_left_out(tp);
2280
2281         tp->reordering = min_t(unsigned int, tp->reordering,
2282                                sysctl_tcp_reordering);
2283         tcp_set_ca_state(sk, TCP_CA_Loss);
2284         tp->high_seq = tp->snd_nxt;
2285         TCP_ECN_queue_cwr(tp);
2286         /* Abort F-RTO algorithm if one is in progress */
2287         tp->frto_counter = 0;
2288 }
2289
2290 /* If ACK arrived pointing to a remembered SACK, it means that our
2291  * remembered SACKs do not reflect real state of receiver i.e.
2292  * receiver _host_ is heavily congested (or buggy).
2293  *
2294  * Do processing similar to RTO timeout.
2295  */
2296 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2297 {
2298         if (flag & FLAG_SACK_RENEGING) {
2299                 struct inet_connection_sock *icsk = inet_csk(sk);
2300                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2301
2302                 tcp_enter_loss(sk, 1);
2303                 icsk->icsk_retransmits++;
2304                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2305                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2306                                           icsk->icsk_rto, TCP_RTO_MAX);
2307                 return 1;
2308         }
2309         return 0;
2310 }
2311
2312 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2313 {
2314         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2315 }
2316
2317 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2318  * counter when SACK is enabled (without SACK, sacked_out is used for
2319  * that purpose).
2320  *
2321  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2322  * segments up to the highest received SACK block so far and holes in
2323  * between them.
2324  *
2325  * With reordering, holes may still be in flight, so RFC3517 recovery
2326  * uses pure sacked_out (total number of SACKed segments) even though
2327  * it violates the RFC that uses duplicate ACKs, often these are equal
2328  * but when e.g. out-of-window ACKs or packet duplication occurs,
2329  * they differ. Since neither occurs due to loss, TCP should really
2330  * ignore them.
2331  */
2332 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2333 {
2334         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2335 }
2336
2337 static inline int tcp_skb_timedout(const struct sock *sk,
2338                                    const struct sk_buff *skb)
2339 {
2340         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2341 }
2342
2343 static inline int tcp_head_timedout(const struct sock *sk)
2344 {
2345         const struct tcp_sock *tp = tcp_sk(sk);
2346
2347         return tp->packets_out &&
2348                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2349 }
2350
2351 /* Linux NewReno/SACK/FACK/ECN state machine.
2352  * --------------------------------------
2353  *
2354  * "Open"       Normal state, no dubious events, fast path.
2355  * "Disorder"   In all the respects it is "Open",
2356  *              but requires a bit more attention. It is entered when
2357  *              we see some SACKs or dupacks. It is split of "Open"
2358  *              mainly to move some processing from fast path to slow one.
2359  * "CWR"        CWND was reduced due to some Congestion Notification event.
2360  *              It can be ECN, ICMP source quench, local device congestion.
2361  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2362  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2363  *
2364  * tcp_fastretrans_alert() is entered:
2365  * - each incoming ACK, if state is not "Open"
2366  * - when arrived ACK is unusual, namely:
2367  *      * SACK
2368  *      * Duplicate ACK.
2369  *      * ECN ECE.
2370  *
2371  * Counting packets in flight is pretty simple.
2372  *
2373  *      in_flight = packets_out - left_out + retrans_out
2374  *
2375  *      packets_out is SND.NXT-SND.UNA counted in packets.
2376  *
2377  *      retrans_out is number of retransmitted segments.
2378  *
2379  *      left_out is number of segments left network, but not ACKed yet.
2380  *
2381  *              left_out = sacked_out + lost_out
2382  *
2383  *     sacked_out: Packets, which arrived to receiver out of order
2384  *                 and hence not ACKed. With SACKs this number is simply
2385  *                 amount of SACKed data. Even without SACKs
2386  *                 it is easy to give pretty reliable estimate of this number,
2387  *                 counting duplicate ACKs.
2388  *
2389  *       lost_out: Packets lost by network. TCP has no explicit
2390  *                 "loss notification" feedback from network (for now).
2391  *                 It means that this number can be only _guessed_.
2392  *                 Actually, it is the heuristics to predict lossage that
2393  *                 distinguishes different algorithms.
2394  *
2395  *      F.e. after RTO, when all the queue is considered as lost,
2396  *      lost_out = packets_out and in_flight = retrans_out.
2397  *
2398  *              Essentially, we have now two algorithms counting
2399  *              lost packets.
2400  *
2401  *              FACK: It is the simplest heuristics. As soon as we decided
2402  *              that something is lost, we decide that _all_ not SACKed
2403  *              packets until the most forward SACK are lost. I.e.
2404  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2405  *              It is absolutely correct estimate, if network does not reorder
2406  *              packets. And it loses any connection to reality when reordering
2407  *              takes place. We use FACK by default until reordering
2408  *              is suspected on the path to this destination.
2409  *
2410  *              NewReno: when Recovery is entered, we assume that one segment
2411  *              is lost (classic Reno). While we are in Recovery and
2412  *              a partial ACK arrives, we assume that one more packet
2413  *              is lost (NewReno). This heuristics are the same in NewReno
2414  *              and SACK.
2415  *
2416  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2417  *  deflation etc. CWND is real congestion window, never inflated, changes
2418  *  only according to classic VJ rules.
2419  *
2420  * Really tricky (and requiring careful tuning) part of algorithm
2421  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2422  * The first determines the moment _when_ we should reduce CWND and,
2423  * hence, slow down forward transmission. In fact, it determines the moment
2424  * when we decide that hole is caused by loss, rather than by a reorder.
2425  *
2426  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2427  * holes, caused by lost packets.
2428  *
2429  * And the most logically complicated part of algorithm is undo
2430  * heuristics. We detect false retransmits due to both too early
2431  * fast retransmit (reordering) and underestimated RTO, analyzing
2432  * timestamps and D-SACKs. When we detect that some segments were
2433  * retransmitted by mistake and CWND reduction was wrong, we undo
2434  * window reduction and abort recovery phase. This logic is hidden
2435  * inside several functions named tcp_try_undo_<something>.
2436  */
2437
2438 /* This function decides, when we should leave Disordered state
2439  * and enter Recovery phase, reducing congestion window.
2440  *
2441  * Main question: may we further continue forward transmission
2442  * with the same cwnd?
2443  */
2444 static int tcp_time_to_recover(struct sock *sk)
2445 {
2446         struct tcp_sock *tp = tcp_sk(sk);
2447         __u32 packets_out;
2448
2449         /* Do not perform any recovery during F-RTO algorithm */
2450         if (tp->frto_counter)
2451                 return 0;
2452
2453         /* Trick#1: The loss is proven. */
2454         if (tp->lost_out)
2455                 return 1;
2456
2457         /* Not-A-Trick#2 : Classic rule... */
2458         if (tcp_dupack_heuristics(tp) > tp->reordering)
2459                 return 1;
2460
2461         /* Trick#3 : when we use RFC2988 timer restart, fast
2462          * retransmit can be triggered by timeout of queue head.
2463          */
2464         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2465                 return 1;
2466
2467         /* Trick#4: It is still not OK... But will it be useful to delay
2468          * recovery more?
2469          */
2470         packets_out = tp->packets_out;
2471         if (packets_out <= tp->reordering &&
2472             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2473             !tcp_may_send_now(sk)) {
2474                 /* We have nothing to send. This connection is limited
2475                  * either by receiver window or by application.
2476                  */
2477                 return 1;
2478         }
2479
2480         /* If a thin stream is detected, retransmit after first
2481          * received dupack. Employ only if SACK is supported in order
2482          * to avoid possible corner-case series of spurious retransmissions
2483          * Use only if there are no unsent data.
2484          */
2485         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2486             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2487             tcp_is_sack(tp) && !tcp_send_head(sk))
2488                 return 1;
2489
2490         return 0;
2491 }
2492
2493 /* New heuristics: it is possible only after we switched to restart timer
2494  * each time when something is ACKed. Hence, we can detect timed out packets
2495  * during fast retransmit without falling to slow start.
2496  *
2497  * Usefulness of this as is very questionable, since we should know which of
2498  * the segments is the next to timeout which is relatively expensive to find
2499  * in general case unless we add some data structure just for that. The
2500  * current approach certainly won't find the right one too often and when it
2501  * finally does find _something_ it usually marks large part of the window
2502  * right away (because a retransmission with a larger timestamp blocks the
2503  * loop from advancing). -ij
2504  */
2505 static void tcp_timeout_skbs(struct sock *sk)
2506 {
2507         struct tcp_sock *tp = tcp_sk(sk);
2508         struct sk_buff *skb;
2509
2510         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2511                 return;
2512
2513         skb = tp->scoreboard_skb_hint;
2514         if (tp->scoreboard_skb_hint == NULL)
2515                 skb = tcp_write_queue_head(sk);
2516
2517         tcp_for_write_queue_from(skb, sk) {
2518                 if (skb == tcp_send_head(sk))
2519                         break;
2520                 if (!tcp_skb_timedout(sk, skb))
2521                         break;
2522
2523                 tcp_skb_mark_lost(tp, skb);
2524         }
2525
2526         tp->scoreboard_skb_hint = skb;
2527
2528         tcp_verify_left_out(tp);
2529 }
2530
2531 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2532  * is against sacked "cnt", otherwise it's against facked "cnt"
2533  */
2534 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2535 {
2536         struct tcp_sock *tp = tcp_sk(sk);
2537         struct sk_buff *skb;
2538         int cnt, oldcnt;
2539         int err;
2540         unsigned int mss;
2541
2542         WARN_ON(packets > tp->packets_out);
2543         if (tp->lost_skb_hint) {
2544                 skb = tp->lost_skb_hint;
2545                 cnt = tp->lost_cnt_hint;
2546                 /* Head already handled? */
2547                 if (mark_head && skb != tcp_write_queue_head(sk))
2548                         return;
2549         } else {
2550                 skb = tcp_write_queue_head(sk);
2551                 cnt = 0;
2552         }
2553
2554         tcp_for_write_queue_from(skb, sk) {
2555                 if (skb == tcp_send_head(sk))
2556                         break;
2557                 /* TODO: do this better */
2558                 /* this is not the most efficient way to do this... */
2559                 tp->lost_skb_hint = skb;
2560                 tp->lost_cnt_hint = cnt;
2561
2562                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2563                         break;
2564
2565                 oldcnt = cnt;
2566                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2567                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2568                         cnt += tcp_skb_pcount(skb);
2569
2570                 if (cnt > packets) {
2571                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2572                             (oldcnt >= packets))
2573                                 break;
2574
2575                         mss = skb_shinfo(skb)->gso_size;
2576                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2577                         if (err < 0)
2578                                 break;
2579                         cnt = packets;
2580                 }
2581
2582                 tcp_skb_mark_lost(tp, skb);
2583
2584                 if (mark_head)
2585                         break;
2586         }
2587         tcp_verify_left_out(tp);
2588 }
2589
2590 /* Account newly detected lost packet(s) */
2591
2592 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2593 {
2594         struct tcp_sock *tp = tcp_sk(sk);
2595
2596         if (tcp_is_reno(tp)) {
2597                 tcp_mark_head_lost(sk, 1, 1);
2598         } else if (tcp_is_fack(tp)) {
2599                 int lost = tp->fackets_out - tp->reordering;
2600                 if (lost <= 0)
2601                         lost = 1;
2602                 tcp_mark_head_lost(sk, lost, 0);
2603         } else {
2604                 int sacked_upto = tp->sacked_out - tp->reordering;
2605                 if (sacked_upto >= 0)
2606                         tcp_mark_head_lost(sk, sacked_upto, 0);
2607                 else if (fast_rexmit)
2608                         tcp_mark_head_lost(sk, 1, 1);
2609         }
2610
2611         tcp_timeout_skbs(sk);
2612 }
2613
2614 /* CWND moderation, preventing bursts due to too big ACKs
2615  * in dubious situations.
2616  */
2617 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2618 {
2619         tp->snd_cwnd = min(tp->snd_cwnd,
2620                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2621         tp->snd_cwnd_stamp = tcp_time_stamp;
2622 }
2623
2624 /* Lower bound on congestion window is slow start threshold
2625  * unless congestion avoidance choice decides to overide it.
2626  */
2627 static inline u32 tcp_cwnd_min(const struct sock *sk)
2628 {
2629         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2630
2631         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2632 }
2633
2634 /* Decrease cwnd each second ack. */
2635 static void tcp_cwnd_down(struct sock *sk, int flag)
2636 {
2637         struct tcp_sock *tp = tcp_sk(sk);
2638         int decr = tp->snd_cwnd_cnt + 1;
2639
2640         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2641             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2642                 tp->snd_cwnd_cnt = decr & 1;
2643                 decr >>= 1;
2644
2645                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2646                         tp->snd_cwnd -= decr;
2647
2648                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2649                 tp->snd_cwnd_stamp = tcp_time_stamp;
2650         }
2651 }
2652
2653 /* Nothing was retransmitted or returned timestamp is less
2654  * than timestamp of the first retransmission.
2655  */
2656 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2657 {
2658         return !tp->retrans_stamp ||
2659                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2660                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2661 }
2662
2663 /* Undo procedures. */
2664
2665 #if FASTRETRANS_DEBUG > 1
2666 static void DBGUNDO(struct sock *sk, const char *msg)
2667 {
2668         struct tcp_sock *tp = tcp_sk(sk);
2669         struct inet_sock *inet = inet_sk(sk);
2670
2671         if (sk->sk_family == AF_INET) {
2672                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2673                        msg,
2674                        &inet->inet_daddr, ntohs(inet->inet_dport),
2675                        tp->snd_cwnd, tcp_left_out(tp),
2676                        tp->snd_ssthresh, tp->prior_ssthresh,
2677                        tp->packets_out);
2678         }
2679 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2680         else if (sk->sk_family == AF_INET6) {
2681                 struct ipv6_pinfo *np = inet6_sk(sk);
2682                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2683                        msg,
2684                        &np->daddr, ntohs(inet->inet_dport),
2685                        tp->snd_cwnd, tcp_left_out(tp),
2686                        tp->snd_ssthresh, tp->prior_ssthresh,
2687                        tp->packets_out);
2688         }
2689 #endif
2690 }
2691 #else
2692 #define DBGUNDO(x...) do { } while (0)
2693 #endif
2694
2695 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2696 {
2697         struct tcp_sock *tp = tcp_sk(sk);
2698
2699         if (tp->prior_ssthresh) {
2700                 const struct inet_connection_sock *icsk = inet_csk(sk);
2701
2702                 if (icsk->icsk_ca_ops->undo_cwnd)
2703                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2704                 else
2705                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2706
2707                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2708                         tp->snd_ssthresh = tp->prior_ssthresh;
2709                         TCP_ECN_withdraw_cwr(tp);
2710                 }
2711         } else {
2712                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2713         }
2714         tp->snd_cwnd_stamp = tcp_time_stamp;
2715 }
2716
2717 static inline int tcp_may_undo(const struct tcp_sock *tp)
2718 {
2719         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2720 }
2721
2722 /* People celebrate: "We love our President!" */
2723 static int tcp_try_undo_recovery(struct sock *sk)
2724 {
2725         struct tcp_sock *tp = tcp_sk(sk);
2726
2727         if (tcp_may_undo(tp)) {
2728                 int mib_idx;
2729
2730                 /* Happy end! We did not retransmit anything
2731                  * or our original transmission succeeded.
2732                  */
2733                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2734                 tcp_undo_cwr(sk, true);
2735                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2736                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2737                 else
2738                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2739
2740                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2741                 tp->undo_marker = 0;
2742         }
2743         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2744                 /* Hold old state until something *above* high_seq
2745                  * is ACKed. For Reno it is MUST to prevent false
2746                  * fast retransmits (RFC2582). SACK TCP is safe. */
2747                 tcp_moderate_cwnd(tp);
2748                 return 1;
2749         }
2750         tcp_set_ca_state(sk, TCP_CA_Open);
2751         return 0;
2752 }
2753
2754 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2755 static void tcp_try_undo_dsack(struct sock *sk)
2756 {
2757         struct tcp_sock *tp = tcp_sk(sk);
2758
2759         if (tp->undo_marker && !tp->undo_retrans) {
2760                 DBGUNDO(sk, "D-SACK");
2761                 tcp_undo_cwr(sk, true);
2762                 tp->undo_marker = 0;
2763                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2764         }
2765 }
2766
2767 /* We can clear retrans_stamp when there are no retransmissions in the
2768  * window. It would seem that it is trivially available for us in
2769  * tp->retrans_out, however, that kind of assumptions doesn't consider
2770  * what will happen if errors occur when sending retransmission for the
2771  * second time. ...It could the that such segment has only
2772  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2773  * the head skb is enough except for some reneging corner cases that
2774  * are not worth the effort.
2775  *
2776  * Main reason for all this complexity is the fact that connection dying
2777  * time now depends on the validity of the retrans_stamp, in particular,
2778  * that successive retransmissions of a segment must not advance
2779  * retrans_stamp under any conditions.
2780  */
2781 static int tcp_any_retrans_done(const struct sock *sk)
2782 {
2783         const struct tcp_sock *tp = tcp_sk(sk);
2784         struct sk_buff *skb;
2785
2786         if (tp->retrans_out)
2787                 return 1;
2788
2789         skb = tcp_write_queue_head(sk);
2790         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2791                 return 1;
2792
2793         return 0;
2794 }
2795
2796 /* Undo during fast recovery after partial ACK. */
2797
2798 static int tcp_try_undo_partial(struct sock *sk, int acked)
2799 {
2800         struct tcp_sock *tp = tcp_sk(sk);
2801         /* Partial ACK arrived. Force Hoe's retransmit. */
2802         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2803
2804         if (tcp_may_undo(tp)) {
2805                 /* Plain luck! Hole if filled with delayed
2806                  * packet, rather than with a retransmit.
2807                  */
2808                 if (!tcp_any_retrans_done(sk))
2809                         tp->retrans_stamp = 0;
2810
2811                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2812
2813                 DBGUNDO(sk, "Hoe");
2814                 tcp_undo_cwr(sk, false);
2815                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2816
2817                 /* So... Do not make Hoe's retransmit yet.
2818                  * If the first packet was delayed, the rest
2819                  * ones are most probably delayed as well.
2820                  */
2821                 failed = 0;
2822         }
2823         return failed;
2824 }
2825
2826 /* Undo during loss recovery after partial ACK. */
2827 static int tcp_try_undo_loss(struct sock *sk)
2828 {
2829         struct tcp_sock *tp = tcp_sk(sk);
2830
2831         if (tcp_may_undo(tp)) {
2832                 struct sk_buff *skb;
2833                 tcp_for_write_queue(skb, sk) {
2834                         if (skb == tcp_send_head(sk))
2835                                 break;
2836                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2837                 }
2838
2839                 tcp_clear_all_retrans_hints(tp);
2840
2841                 DBGUNDO(sk, "partial loss");
2842                 tp->lost_out = 0;
2843                 tcp_undo_cwr(sk, true);
2844                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2845                 inet_csk(sk)->icsk_retransmits = 0;
2846                 tp->undo_marker = 0;
2847                 if (tcp_is_sack(tp))
2848                         tcp_set_ca_state(sk, TCP_CA_Open);
2849                 return 1;
2850         }
2851         return 0;
2852 }
2853
2854 static inline void tcp_complete_cwr(struct sock *sk)
2855 {
2856         struct tcp_sock *tp = tcp_sk(sk);
2857
2858         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2859         if (tp->undo_marker) {
2860                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2861                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2862                 else /* PRR */
2863                         tp->snd_cwnd = tp->snd_ssthresh;
2864                 tp->snd_cwnd_stamp = tcp_time_stamp;
2865         }
2866         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2867 }
2868
2869 static void tcp_try_keep_open(struct sock *sk)
2870 {
2871         struct tcp_sock *tp = tcp_sk(sk);
2872         int state = TCP_CA_Open;
2873
2874         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2875                 state = TCP_CA_Disorder;
2876
2877         if (inet_csk(sk)->icsk_ca_state != state) {
2878                 tcp_set_ca_state(sk, state);
2879                 tp->high_seq = tp->snd_nxt;
2880         }
2881 }
2882
2883 static void tcp_try_to_open(struct sock *sk, int flag)
2884 {
2885         struct tcp_sock *tp = tcp_sk(sk);
2886
2887         tcp_verify_left_out(tp);
2888
2889         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2890                 tp->retrans_stamp = 0;
2891
2892         if (flag & FLAG_ECE)
2893                 tcp_enter_cwr(sk, 1);
2894
2895         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2896                 tcp_try_keep_open(sk);
2897                 tcp_moderate_cwnd(tp);
2898         } else {
2899                 tcp_cwnd_down(sk, flag);
2900         }
2901 }
2902
2903 static void tcp_mtup_probe_failed(struct sock *sk)
2904 {
2905         struct inet_connection_sock *icsk = inet_csk(sk);
2906
2907         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2908         icsk->icsk_mtup.probe_size = 0;
2909 }
2910
2911 static void tcp_mtup_probe_success(struct sock *sk)
2912 {
2913         struct tcp_sock *tp = tcp_sk(sk);
2914         struct inet_connection_sock *icsk = inet_csk(sk);
2915
2916         /* FIXME: breaks with very large cwnd */
2917         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2918         tp->snd_cwnd = tp->snd_cwnd *
2919                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2920                        icsk->icsk_mtup.probe_size;
2921         tp->snd_cwnd_cnt = 0;
2922         tp->snd_cwnd_stamp = tcp_time_stamp;
2923         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2924
2925         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2926         icsk->icsk_mtup.probe_size = 0;
2927         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2928 }
2929
2930 /* Do a simple retransmit without using the backoff mechanisms in
2931  * tcp_timer. This is used for path mtu discovery.
2932  * The socket is already locked here.
2933  */
2934 void tcp_simple_retransmit(struct sock *sk)
2935 {
2936         const struct inet_connection_sock *icsk = inet_csk(sk);
2937         struct tcp_sock *tp = tcp_sk(sk);
2938         struct sk_buff *skb;
2939         unsigned int mss = tcp_current_mss(sk);
2940         u32 prior_lost = tp->lost_out;
2941
2942         tcp_for_write_queue(skb, sk) {
2943                 if (skb == tcp_send_head(sk))
2944                         break;
2945                 if (tcp_skb_seglen(skb) > mss &&
2946                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2947                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2948                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2949                                 tp->retrans_out -= tcp_skb_pcount(skb);
2950                         }
2951                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2952                 }
2953         }
2954
2955         tcp_clear_retrans_hints_partial(tp);
2956
2957         if (prior_lost == tp->lost_out)
2958                 return;
2959
2960         if (tcp_is_reno(tp))
2961                 tcp_limit_reno_sacked(tp);
2962
2963         tcp_verify_left_out(tp);
2964
2965         /* Don't muck with the congestion window here.
2966          * Reason is that we do not increase amount of _data_
2967          * in network, but units changed and effective
2968          * cwnd/ssthresh really reduced now.
2969          */
2970         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2971                 tp->high_seq = tp->snd_nxt;
2972                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2973                 tp->prior_ssthresh = 0;
2974                 tp->undo_marker = 0;
2975                 tcp_set_ca_state(sk, TCP_CA_Loss);
2976         }
2977         tcp_xmit_retransmit_queue(sk);
2978 }
2979 EXPORT_SYMBOL(tcp_simple_retransmit);
2980
2981 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2982  * (proportional rate reduction with slow start reduction bound) as described in
2983  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2984  * It computes the number of packets to send (sndcnt) based on packets newly
2985  * delivered:
2986  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2987  *      cwnd reductions across a full RTT.
2988  *   2) If packets in flight is lower than ssthresh (such as due to excess
2989  *      losses and/or application stalls), do not perform any further cwnd
2990  *      reductions, but instead slow start up to ssthresh.
2991  */
2992 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2993                                         int fast_rexmit, int flag)
2994 {
2995         struct tcp_sock *tp = tcp_sk(sk);
2996         int sndcnt = 0;
2997         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2998
2999         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3000                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3001                                tp->prior_cwnd - 1;
3002                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3003         } else {
3004                 sndcnt = min_t(int, delta,
3005                                max_t(int, tp->prr_delivered - tp->prr_out,
3006                                      newly_acked_sacked) + 1);
3007         }
3008
3009         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3010         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3011 }
3012
3013 /* Process an event, which can update packets-in-flight not trivially.
3014  * Main goal of this function is to calculate new estimate for left_out,
3015  * taking into account both packets sitting in receiver's buffer and
3016  * packets lost by network.
3017  *
3018  * Besides that it does CWND reduction, when packet loss is detected
3019  * and changes state of machine.
3020  *
3021  * It does _not_ decide what to send, it is made in function
3022  * tcp_xmit_retransmit_queue().
3023  */
3024 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3025                                   int newly_acked_sacked, int flag)
3026 {
3027         struct inet_connection_sock *icsk = inet_csk(sk);
3028         struct tcp_sock *tp = tcp_sk(sk);
3029         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3030         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3031                                     (tcp_fackets_out(tp) > tp->reordering));
3032         int fast_rexmit = 0, mib_idx;
3033
3034         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3035                 tp->sacked_out = 0;
3036         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3037                 tp->fackets_out = 0;
3038
3039         /* Now state machine starts.
3040          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3041         if (flag & FLAG_ECE)
3042                 tp->prior_ssthresh = 0;
3043
3044         /* B. In all the states check for reneging SACKs. */
3045         if (tcp_check_sack_reneging(sk, flag))
3046                 return;
3047
3048         /* C. Process data loss notification, provided it is valid. */
3049         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3050             before(tp->snd_una, tp->high_seq) &&
3051             icsk->icsk_ca_state != TCP_CA_Open &&
3052             tp->fackets_out > tp->reordering) {
3053                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3054                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
3055         }
3056
3057         /* D. Check consistency of the current state. */
3058         tcp_verify_left_out(tp);
3059
3060         /* E. Check state exit conditions. State can be terminated
3061          *    when high_seq is ACKed. */
3062         if (icsk->icsk_ca_state == TCP_CA_Open) {
3063                 WARN_ON(tp->retrans_out != 0);
3064                 tp->retrans_stamp = 0;
3065         } else if (!before(tp->snd_una, tp->high_seq)) {
3066                 switch (icsk->icsk_ca_state) {
3067                 case TCP_CA_Loss:
3068                         icsk->icsk_retransmits = 0;
3069                         if (tcp_try_undo_recovery(sk))
3070                                 return;
3071                         break;
3072
3073                 case TCP_CA_CWR:
3074                         /* CWR is to be held something *above* high_seq
3075                          * is ACKed for CWR bit to reach receiver. */
3076                         if (tp->snd_una != tp->high_seq) {
3077                                 tcp_complete_cwr(sk);
3078                                 tcp_set_ca_state(sk, TCP_CA_Open);
3079                         }
3080                         break;
3081
3082                 case TCP_CA_Disorder:
3083                         tcp_try_undo_dsack(sk);
3084                         if (!tp->undo_marker ||
3085                             /* For SACK case do not Open to allow to undo
3086                              * catching for all duplicate ACKs. */
3087                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3088                                 tp->undo_marker = 0;
3089                                 tcp_set_ca_state(sk, TCP_CA_Open);
3090                         }
3091                         break;
3092
3093                 case TCP_CA_Recovery:
3094                         if (tcp_is_reno(tp))
3095                                 tcp_reset_reno_sack(tp);
3096                         if (tcp_try_undo_recovery(sk))
3097                                 return;
3098                         tcp_complete_cwr(sk);
3099                         break;
3100                 }
3101         }
3102
3103         /* F. Process state. */
3104         switch (icsk->icsk_ca_state) {
3105         case TCP_CA_Recovery:
3106                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3107                         if (tcp_is_reno(tp) && is_dupack)
3108                                 tcp_add_reno_sack(sk);
3109                 } else
3110                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3111                 break;
3112         case TCP_CA_Loss:
3113                 if (flag & FLAG_DATA_ACKED)
3114                         icsk->icsk_retransmits = 0;
3115                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3116                         tcp_reset_reno_sack(tp);
3117                 if (!tcp_try_undo_loss(sk)) {
3118                         tcp_moderate_cwnd(tp);
3119                         tcp_xmit_retransmit_queue(sk);
3120                         return;
3121                 }
3122                 if (icsk->icsk_ca_state != TCP_CA_Open)
3123                         return;
3124                 /* Loss is undone; fall through to processing in Open state. */
3125         default:
3126                 if (tcp_is_reno(tp)) {
3127                         if (flag & FLAG_SND_UNA_ADVANCED)
3128                                 tcp_reset_reno_sack(tp);
3129                         if (is_dupack)
3130                                 tcp_add_reno_sack(sk);
3131                 }
3132
3133                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3134                         tcp_try_undo_dsack(sk);
3135
3136                 if (!tcp_time_to_recover(sk)) {
3137                         tcp_try_to_open(sk, flag);
3138                         return;
3139                 }
3140
3141                 /* MTU probe failure: don't reduce cwnd */
3142                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3143                     icsk->icsk_mtup.probe_size &&
3144                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3145                         tcp_mtup_probe_failed(sk);
3146                         /* Restores the reduction we did in tcp_mtup_probe() */
3147                         tp->snd_cwnd++;
3148                         tcp_simple_retransmit(sk);
3149                         return;
3150                 }
3151
3152                 /* Otherwise enter Recovery state */
3153
3154                 if (tcp_is_reno(tp))
3155                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3156                 else
3157                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3158
3159                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3160
3161                 tp->high_seq = tp->snd_nxt;
3162                 tp->prior_ssthresh = 0;
3163                 tp->undo_marker = tp->snd_una;
3164                 tp->undo_retrans = tp->retrans_out;
3165
3166                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3167                         if (!(flag & FLAG_ECE))
3168                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3169                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3170                         TCP_ECN_queue_cwr(tp);
3171                 }
3172
3173                 tp->bytes_acked = 0;
3174                 tp->snd_cwnd_cnt = 0;
3175                 tp->prior_cwnd = tp->snd_cwnd;
3176                 tp->prr_delivered = 0;
3177                 tp->prr_out = 0;
3178                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3179                 fast_rexmit = 1;
3180         }
3181
3182         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3183                 tcp_update_scoreboard(sk, fast_rexmit);
3184         tp->prr_delivered += newly_acked_sacked;
3185         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3186         tcp_xmit_retransmit_queue(sk);
3187 }
3188
3189 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3190 {
3191         tcp_rtt_estimator(sk, seq_rtt);
3192         tcp_set_rto(sk);
3193         inet_csk(sk)->icsk_backoff = 0;
3194 }
3195 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3196
3197 /* Read draft-ietf-tcplw-high-performance before mucking
3198  * with this code. (Supersedes RFC1323)
3199  */
3200 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3201 {
3202         /* RTTM Rule: A TSecr value received in a segment is used to
3203          * update the averaged RTT measurement only if the segment
3204          * acknowledges some new data, i.e., only if it advances the
3205          * left edge of the send window.
3206          *
3207          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3208          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3209          *
3210          * Changed: reset backoff as soon as we see the first valid sample.
3211          * If we do not, we get strongly overestimated rto. With timestamps
3212          * samples are accepted even from very old segments: f.e., when rtt=1
3213          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3214          * answer arrives rto becomes 120 seconds! If at least one of segments
3215          * in window is lost... Voila.                          --ANK (010210)
3216          */
3217         struct tcp_sock *tp = tcp_sk(sk);
3218
3219         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3220 }
3221
3222 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3223 {
3224         /* We don't have a timestamp. Can only use
3225          * packets that are not retransmitted to determine
3226          * rtt estimates. Also, we must not reset the
3227          * backoff for rto until we get a non-retransmitted
3228          * packet. This allows us to deal with a situation
3229          * where the network delay has increased suddenly.
3230          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3231          */
3232
3233         if (flag & FLAG_RETRANS_DATA_ACKED)
3234                 return;
3235
3236         tcp_valid_rtt_meas(sk, seq_rtt);
3237 }
3238
3239 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3240                                       const s32 seq_rtt)
3241 {
3242         const struct tcp_sock *tp = tcp_sk(sk);
3243         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3244         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3245                 tcp_ack_saw_tstamp(sk, flag);
3246         else if (seq_rtt >= 0)
3247                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3248 }
3249
3250 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3251 {
3252         const struct inet_connection_sock *icsk = inet_csk(sk);
3253         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3254         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3255 }
3256
3257 /* Restart timer after forward progress on connection.
3258  * RFC2988 recommends to restart timer to now+rto.
3259  */
3260 static void tcp_rearm_rto(struct sock *sk)
3261 {
3262         const struct tcp_sock *tp = tcp_sk(sk);
3263
3264         if (!tp->packets_out) {
3265                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3266         } else {
3267                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3268                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3269         }
3270 }
3271
3272 /* If we get here, the whole TSO packet has not been acked. */
3273 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3274 {
3275         struct tcp_sock *tp = tcp_sk(sk);
3276         u32 packets_acked;
3277
3278         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3279
3280         packets_acked = tcp_skb_pcount(skb);
3281         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3282                 return 0;
3283         packets_acked -= tcp_skb_pcount(skb);
3284
3285         if (packets_acked) {
3286                 BUG_ON(tcp_skb_pcount(skb) == 0);
3287                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3288         }
3289
3290         return packets_acked;
3291 }
3292
3293 /* Remove acknowledged frames from the retransmission queue. If our packet
3294  * is before the ack sequence we can discard it as it's confirmed to have
3295  * arrived at the other end.
3296  */
3297 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3298                                u32 prior_snd_una)
3299 {
3300         struct tcp_sock *tp = tcp_sk(sk);
3301         const struct inet_connection_sock *icsk = inet_csk(sk);
3302         struct sk_buff *skb;
3303         u32 now = tcp_time_stamp;
3304         int fully_acked = 1;
3305         int flag = 0;
3306         u32 pkts_acked = 0;
3307         u32 reord = tp->packets_out;
3308         u32 prior_sacked = tp->sacked_out;
3309         s32 seq_rtt = -1;
3310         s32 ca_seq_rtt = -1;
3311         ktime_t last_ackt = net_invalid_timestamp();
3312
3313         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3314                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3315                 u32 acked_pcount;
3316                 u8 sacked = scb->sacked;
3317
3318                 /* Determine how many packets and what bytes were acked, tso and else */
3319                 if (after(scb->end_seq, tp->snd_una)) {
3320                         if (tcp_skb_pcount(skb) == 1 ||
3321                             !after(tp->snd_una, scb->seq))
3322                                 break;
3323
3324                         acked_pcount = tcp_tso_acked(sk, skb);
3325                         if (!acked_pcount)
3326                                 break;
3327
3328                         fully_acked = 0;
3329                 } else {
3330                         acked_pcount = tcp_skb_pcount(skb);
3331                 }
3332
3333                 if (sacked & TCPCB_RETRANS) {
3334                         if (sacked & TCPCB_SACKED_RETRANS)
3335                                 tp->retrans_out -= acked_pcount;
3336                         flag |= FLAG_RETRANS_DATA_ACKED;
3337                         ca_seq_rtt = -1;
3338                         seq_rtt = -1;
3339                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3340                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3341                 } else {
3342                         ca_seq_rtt = now - scb->when;
3343                         last_ackt = skb->tstamp;
3344                         if (seq_rtt < 0) {
3345                                 seq_rtt = ca_seq_rtt;
3346                         }
3347                         if (!(sacked & TCPCB_SACKED_ACKED))
3348                                 reord = min(pkts_acked, reord);
3349                 }
3350
3351                 if (sacked & TCPCB_SACKED_ACKED)
3352                         tp->sacked_out -= acked_pcount;
3353                 if (sacked & TCPCB_LOST)
3354                         tp->lost_out -= acked_pcount;
3355
3356                 tp->packets_out -= acked_pcount;
3357                 pkts_acked += acked_pcount;
3358
3359                 /* Initial outgoing SYN's get put onto the write_queue
3360                  * just like anything else we transmit.  It is not
3361                  * true data, and if we misinform our callers that
3362                  * this ACK acks real data, we will erroneously exit
3363                  * connection startup slow start one packet too
3364                  * quickly.  This is severely frowned upon behavior.
3365                  */
3366                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3367                         flag |= FLAG_DATA_ACKED;
3368                 } else {
3369                         flag |= FLAG_SYN_ACKED;
3370                         tp->retrans_stamp = 0;
3371                 }
3372
3373                 if (!fully_acked)
3374                         break;
3375
3376                 tcp_unlink_write_queue(skb, sk);
3377                 sk_wmem_free_skb(sk, skb);
3378                 tp->scoreboard_skb_hint = NULL;
3379                 if (skb == tp->retransmit_skb_hint)
3380                         tp->retransmit_skb_hint = NULL;
3381                 if (skb == tp->lost_skb_hint)
3382                         tp->lost_skb_hint = NULL;
3383         }
3384
3385         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3386                 tp->snd_up = tp->snd_una;
3387
3388         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3389                 flag |= FLAG_SACK_RENEGING;
3390
3391         if (flag & FLAG_ACKED) {
3392                 const struct tcp_congestion_ops *ca_ops
3393                         = inet_csk(sk)->icsk_ca_ops;
3394
3395                 if (unlikely(icsk->icsk_mtup.probe_size &&
3396                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3397                         tcp_mtup_probe_success(sk);
3398                 }
3399
3400                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3401                 tcp_rearm_rto(sk);
3402
3403                 if (tcp_is_reno(tp)) {
3404                         tcp_remove_reno_sacks(sk, pkts_acked);
3405                 } else {
3406                         int delta;
3407
3408                         /* Non-retransmitted hole got filled? That's reordering */
3409                         if (reord < prior_fackets)
3410                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3411
3412                         delta = tcp_is_fack(tp) ? pkts_acked :
3413                                                   prior_sacked - tp->sacked_out;
3414                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3415                 }
3416
3417                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3418
3419                 if (ca_ops->pkts_acked) {
3420                         s32 rtt_us = -1;
3421
3422                         /* Is the ACK triggering packet unambiguous? */
3423                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3424                                 /* High resolution needed and available? */
3425                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3426                                     !ktime_equal(last_ackt,
3427                                                  net_invalid_timestamp()))
3428                                         rtt_us = ktime_us_delta(ktime_get_real(),
3429                                                                 last_ackt);
3430                                 else if (ca_seq_rtt >= 0)
3431                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3432                         }
3433
3434                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3435                 }
3436         }
3437
3438 #if FASTRETRANS_DEBUG > 0
3439         WARN_ON((int)tp->sacked_out < 0);
3440         WARN_ON((int)tp->lost_out < 0);
3441         WARN_ON((int)tp->retrans_out < 0);
3442         if (!tp->packets_out && tcp_is_sack(tp)) {
3443                 icsk = inet_csk(sk);
3444                 if (tp->lost_out) {
3445                         printk(KERN_DEBUG "Leak l=%u %d\n",
3446                                tp->lost_out, icsk->icsk_ca_state);
3447                         tp->lost_out = 0;
3448                 }
3449                 if (tp->sacked_out) {
3450                         printk(KERN_DEBUG "Leak s=%u %d\n",
3451                                tp->sacked_out, icsk->icsk_ca_state);
3452                         tp->sacked_out = 0;
3453                 }
3454                 if (tp->retrans_out) {
3455                         printk(KERN_DEBUG "Leak r=%u %d\n",
3456                                tp->retrans_out, icsk->icsk_ca_state);
3457                         tp->retrans_out = 0;
3458                 }
3459         }
3460 #endif
3461         return flag;
3462 }
3463
3464 static void tcp_ack_probe(struct sock *sk)
3465 {
3466         const struct tcp_sock *tp = tcp_sk(sk);
3467         struct inet_connection_sock *icsk = inet_csk(sk);
3468
3469         /* Was it a usable window open? */
3470
3471         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3472                 icsk->icsk_backoff = 0;
3473                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3474                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3475                  * This function is not for random using!
3476                  */
3477         } else {
3478                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3479                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3480                                           TCP_RTO_MAX);
3481         }
3482 }
3483
3484 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3485 {
3486         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3487                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3488 }
3489
3490 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3491 {
3492         const struct tcp_sock *tp = tcp_sk(sk);
3493         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3494                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3495 }
3496
3497 /* Check that window update is acceptable.
3498  * The function assumes that snd_una<=ack<=snd_next.
3499  */
3500 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3501                                         const u32 ack, const u32 ack_seq,
3502                                         const u32 nwin)
3503 {
3504         return  after(ack, tp->snd_una) ||
3505                 after(ack_seq, tp->snd_wl1) ||
3506                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3507 }
3508
3509 /* Update our send window.
3510  *
3511  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3512  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3513  */
3514 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3515                                  u32 ack_seq)
3516 {
3517         struct tcp_sock *tp = tcp_sk(sk);
3518         int flag = 0;
3519         u32 nwin = ntohs(tcp_hdr(skb)->window);
3520
3521         if (likely(!tcp_hdr(skb)->syn))
3522                 nwin <<= tp->rx_opt.snd_wscale;
3523
3524         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3525                 flag |= FLAG_WIN_UPDATE;
3526                 tcp_update_wl(tp, ack_seq);
3527
3528                 if (tp->snd_wnd != nwin) {
3529                         tp->snd_wnd = nwin;
3530
3531                         /* Note, it is the only place, where
3532                          * fast path is recovered for sending TCP.
3533                          */
3534                         tp->pred_flags = 0;
3535                         tcp_fast_path_check(sk);
3536
3537                         if (nwin > tp->max_window) {
3538                                 tp->max_window = nwin;
3539                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3540                         }
3541                 }
3542         }
3543
3544         tp->snd_una = ack;
3545
3546         return flag;
3547 }
3548
3549 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3550  * continue in congestion avoidance.
3551  */
3552 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3553 {
3554         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3555         tp->snd_cwnd_cnt = 0;
3556         tp->bytes_acked = 0;
3557         TCP_ECN_queue_cwr(tp);
3558         tcp_moderate_cwnd(tp);
3559 }
3560
3561 /* A conservative spurious RTO response algorithm: reduce cwnd using
3562  * rate halving and continue in congestion avoidance.
3563  */
3564 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3565 {
3566         tcp_enter_cwr(sk, 0);
3567 }
3568
3569 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3570 {
3571         if (flag & FLAG_ECE)
3572                 tcp_ratehalving_spur_to_response(sk);
3573         else
3574                 tcp_undo_cwr(sk, true);
3575 }
3576
3577 /* F-RTO spurious RTO detection algorithm (RFC4138)
3578  *
3579  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3580  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3581  * window (but not to or beyond highest sequence sent before RTO):
3582  *   On First ACK,  send two new segments out.
3583  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3584  *                  algorithm is not part of the F-RTO detection algorithm
3585  *                  given in RFC4138 but can be selected separately).
3586  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3587  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3588  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3589  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3590  *
3591  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3592  * original window even after we transmit two new data segments.
3593  *
3594  * SACK version:
3595  *   on first step, wait until first cumulative ACK arrives, then move to
3596  *   the second step. In second step, the next ACK decides.
3597  *
3598  * F-RTO is implemented (mainly) in four functions:
3599  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3600  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3601  *     called when tcp_use_frto() showed green light
3602  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3603  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3604  *     to prove that the RTO is indeed spurious. It transfers the control
3605  *     from F-RTO to the conventional RTO recovery
3606  */
3607 static int tcp_process_frto(struct sock *sk, int flag)
3608 {
3609         struct tcp_sock *tp = tcp_sk(sk);
3610
3611         tcp_verify_left_out(tp);
3612
3613         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3614         if (flag & FLAG_DATA_ACKED)
3615                 inet_csk(sk)->icsk_retransmits = 0;
3616
3617         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3618             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3619                 tp->undo_marker = 0;
3620
3621         if (!before(tp->snd_una, tp->frto_highmark)) {
3622                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3623                 return 1;
3624         }
3625
3626         if (!tcp_is_sackfrto(tp)) {
3627                 /* RFC4138 shortcoming in step 2; should also have case c):
3628                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3629                  * data, winupdate
3630                  */
3631                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3632                         return 1;
3633
3634                 if (!(flag & FLAG_DATA_ACKED)) {
3635                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3636                                             flag);
3637                         return 1;
3638                 }
3639         } else {
3640                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3641                         /* Prevent sending of new data. */
3642                         tp->snd_cwnd = min(tp->snd_cwnd,
3643                                            tcp_packets_in_flight(tp));
3644                         return 1;
3645                 }
3646
3647                 if ((tp->frto_counter >= 2) &&
3648                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3649                      ((flag & FLAG_DATA_SACKED) &&
3650                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3651                         /* RFC4138 shortcoming (see comment above) */
3652                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3653                             (flag & FLAG_NOT_DUP))
3654                                 return 1;
3655
3656                         tcp_enter_frto_loss(sk, 3, flag);
3657                         return 1;
3658                 }
3659         }
3660
3661         if (tp->frto_counter == 1) {
3662                 /* tcp_may_send_now needs to see updated state */
3663                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3664                 tp->frto_counter = 2;
3665
3666                 if (!tcp_may_send_now(sk))
3667                         tcp_enter_frto_loss(sk, 2, flag);
3668
3669                 return 1;
3670         } else {
3671                 switch (sysctl_tcp_frto_response) {
3672                 case 2:
3673                         tcp_undo_spur_to_response(sk, flag);
3674                         break;
3675                 case 1:
3676                         tcp_conservative_spur_to_response(tp);
3677                         break;
3678                 default:
3679                         tcp_ratehalving_spur_to_response(sk);
3680                         break;
3681                 }
3682                 tp->frto_counter = 0;
3683                 tp->undo_marker = 0;
3684                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3685         }
3686         return 0;
3687 }
3688
3689 /* This routine deals with incoming acks, but not outgoing ones. */
3690 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3691 {
3692         struct inet_connection_sock *icsk = inet_csk(sk);
3693         struct tcp_sock *tp = tcp_sk(sk);
3694         u32 prior_snd_una = tp->snd_una;
3695         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3696         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3697         u32 prior_in_flight;
3698         u32 prior_fackets;
3699         int prior_packets;
3700         int prior_sacked = tp->sacked_out;
3701         int newly_acked_sacked = 0;
3702         int frto_cwnd = 0;
3703
3704         /* If the ack is older than previous acks
3705          * then we can probably ignore it.
3706          */
3707         if (before(ack, prior_snd_una))
3708                 goto old_ack;
3709
3710         /* If the ack includes data we haven't sent yet, discard
3711          * this segment (RFC793 Section 3.9).
3712          */
3713         if (after(ack, tp->snd_nxt))
3714                 goto invalid_ack;
3715
3716         if (after(ack, prior_snd_una))
3717                 flag |= FLAG_SND_UNA_ADVANCED;
3718
3719         if (sysctl_tcp_abc) {
3720                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3721                         tp->bytes_acked += ack - prior_snd_una;
3722                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3723                         /* we assume just one segment left network */
3724                         tp->bytes_acked += min(ack - prior_snd_una,
3725                                                tp->mss_cache);
3726         }
3727
3728         prior_fackets = tp->fackets_out;
3729         prior_in_flight = tcp_packets_in_flight(tp);
3730
3731         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3732                 /* Window is constant, pure forward advance.
3733                  * No more checks are required.
3734                  * Note, we use the fact that SND.UNA>=SND.WL2.
3735                  */
3736                 tcp_update_wl(tp, ack_seq);
3737                 tp->snd_una = ack;
3738                 flag |= FLAG_WIN_UPDATE;
3739
3740                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3741
3742                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3743         } else {
3744                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3745                         flag |= FLAG_DATA;
3746                 else
3747                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3748
3749                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3750
3751                 if (TCP_SKB_CB(skb)->sacked)
3752                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3753
3754                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3755                         flag |= FLAG_ECE;
3756
3757                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3758         }
3759
3760         /* We passed data and got it acked, remove any soft error
3761          * log. Something worked...
3762          */
3763         sk->sk_err_soft = 0;
3764         icsk->icsk_probes_out = 0;
3765         tp->rcv_tstamp = tcp_time_stamp;
3766         prior_packets = tp->packets_out;
3767         if (!prior_packets)
3768                 goto no_queue;
3769
3770         /* See if we can take anything off of the retransmit queue. */
3771         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3772
3773         newly_acked_sacked = (prior_packets - prior_sacked) -
3774                              (tp->packets_out - tp->sacked_out);
3775
3776         if (tp->frto_counter)
3777                 frto_cwnd = tcp_process_frto(sk, flag);
3778         /* Guarantee sacktag reordering detection against wrap-arounds */
3779         if (before(tp->frto_highmark, tp->snd_una))
3780                 tp->frto_highmark = 0;
3781
3782         if (tcp_ack_is_dubious(sk, flag)) {
3783                 /* Advance CWND, if state allows this. */
3784                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3785                     tcp_may_raise_cwnd(sk, flag))
3786                         tcp_cong_avoid(sk, ack, prior_in_flight);
3787                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3788                                       newly_acked_sacked, flag);
3789         } else {
3790                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3791                         tcp_cong_avoid(sk, ack, prior_in_flight);
3792         }
3793
3794         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3795                 dst_confirm(__sk_dst_get(sk));
3796
3797         return 1;
3798
3799 no_queue:
3800         /* If this ack opens up a zero window, clear backoff.  It was
3801          * being used to time the probes, and is probably far higher than
3802          * it needs to be for normal retransmission.
3803          */
3804         if (tcp_send_head(sk))
3805                 tcp_ack_probe(sk);
3806         return 1;
3807
3808 invalid_ack:
3809         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3810         return -1;
3811
3812 old_ack:
3813         if (TCP_SKB_CB(skb)->sacked) {
3814                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3815                 if (icsk->icsk_ca_state == TCP_CA_Open)
3816                         tcp_try_keep_open(sk);
3817         }
3818
3819         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3820         return 0;
3821 }
3822
3823 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3824  * But, this can also be called on packets in the established flow when
3825  * the fast version below fails.
3826  */
3827 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3828                        const u8 **hvpp, int estab)
3829 {
3830         const unsigned char *ptr;
3831         const struct tcphdr *th = tcp_hdr(skb);
3832         int length = (th->doff * 4) - sizeof(struct tcphdr);
3833
3834         ptr = (const unsigned char *)(th + 1);
3835         opt_rx->saw_tstamp = 0;
3836
3837         while (length > 0) {
3838                 int opcode = *ptr++;
3839                 int opsize;
3840
3841                 switch (opcode) {
3842                 case TCPOPT_EOL:
3843                         return;
3844                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3845                         length--;
3846                         continue;
3847                 default:
3848                         opsize = *ptr++;
3849                         if (opsize < 2) /* "silly options" */
3850                                 return;
3851                         if (opsize > length)
3852                                 return; /* don't parse partial options */
3853                         switch (opcode) {
3854                         case TCPOPT_MSS:
3855                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3856                                         u16 in_mss = get_unaligned_be16(ptr);
3857                                         if (in_mss) {
3858                                                 if (opt_rx->user_mss &&
3859                                                     opt_rx->user_mss < in_mss)
3860                                                         in_mss = opt_rx->user_mss;
3861                                                 opt_rx->mss_clamp = in_mss;
3862                                         }
3863                                 }
3864                                 break;
3865                         case TCPOPT_WINDOW:
3866                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3867                                     !estab && sysctl_tcp_window_scaling) {
3868                                         __u8 snd_wscale = *(__u8 *)ptr;
3869                                         opt_rx->wscale_ok = 1;
3870                                         if (snd_wscale > 14) {
3871                                                 if (net_ratelimit())
3872                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3873                                                                "scaling value %d >14 received.\n",
3874                                                                snd_wscale);
3875                                                 snd_wscale = 14;
3876                                         }
3877                                         opt_rx->snd_wscale = snd_wscale;
3878                                 }
3879                                 break;
3880                         case TCPOPT_TIMESTAMP:
3881                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3882                                     ((estab && opt_rx->tstamp_ok) ||
3883                                      (!estab && sysctl_tcp_timestamps))) {
3884                                         opt_rx->saw_tstamp = 1;
3885                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3886                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3887                                 }
3888                                 break;
3889                         case TCPOPT_SACK_PERM:
3890                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3891                                     !estab && sysctl_tcp_sack) {
3892                                         opt_rx->sack_ok = 1;
3893                                         tcp_sack_reset(opt_rx);
3894                                 }
3895                                 break;
3896
3897                         case TCPOPT_SACK:
3898                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3899                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3900                                    opt_rx->sack_ok) {
3901                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3902                                 }
3903                                 break;
3904 #ifdef CONFIG_TCP_MD5SIG
3905                         case TCPOPT_MD5SIG:
3906                                 /*
3907                                  * The MD5 Hash has already been
3908                                  * checked (see tcp_v{4,6}_do_rcv()).
3909                                  */
3910                                 break;
3911 #endif
3912                         case TCPOPT_COOKIE:
3913                                 /* This option is variable length.
3914                                  */
3915                                 switch (opsize) {
3916                                 case TCPOLEN_COOKIE_BASE:
3917                                         /* not yet implemented */
3918                                         break;
3919                                 case TCPOLEN_COOKIE_PAIR:
3920                                         /* not yet implemented */
3921                                         break;
3922                                 case TCPOLEN_COOKIE_MIN+0:
3923                                 case TCPOLEN_COOKIE_MIN+2:
3924                                 case TCPOLEN_COOKIE_MIN+4:
3925                                 case TCPOLEN_COOKIE_MIN+6:
3926                                 case TCPOLEN_COOKIE_MAX:
3927                                         /* 16-bit multiple */
3928                                         opt_rx->cookie_plus = opsize;
3929                                         *hvpp = ptr;
3930                                         break;
3931                                 default:
3932                                         /* ignore option */
3933                                         break;
3934                                 }
3935                                 break;
3936                         }
3937
3938                         ptr += opsize-2;
3939                         length -= opsize;
3940                 }
3941         }
3942 }
3943 EXPORT_SYMBOL(tcp_parse_options);
3944
3945 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3946 {
3947         const __be32 *ptr = (const __be32 *)(th + 1);
3948
3949         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3950                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3951                 tp->rx_opt.saw_tstamp = 1;
3952                 ++ptr;
3953                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3954                 ++ptr;
3955                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3956                 return 1;
3957         }
3958         return 0;
3959 }
3960
3961 /* Fast parse options. This hopes to only see timestamps.
3962  * If it is wrong it falls back on tcp_parse_options().
3963  */
3964 static int tcp_fast_parse_options(const struct sk_buff *skb,
3965                                   const struct tcphdr *th,
3966                                   struct tcp_sock *tp, const u8 **hvpp)
3967 {
3968         /* In the spirit of fast parsing, compare doff directly to constant
3969          * values.  Because equality is used, short doff can be ignored here.
3970          */
3971         if (th->doff == (sizeof(*th) / 4)) {
3972                 tp->rx_opt.saw_tstamp = 0;
3973                 return 0;
3974         } else if (tp->rx_opt.tstamp_ok &&
3975                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3976                 if (tcp_parse_aligned_timestamp(tp, th))
3977                         return 1;
3978         }
3979         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3980         return 1;
3981 }
3982
3983 #ifdef CONFIG_TCP_MD5SIG
3984 /*
3985  * Parse MD5 Signature option
3986  */
3987 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3988 {
3989         int length = (th->doff << 2) - sizeof(*th);
3990         const u8 *ptr = (const u8 *)(th + 1);
3991
3992         /* If the TCP option is too short, we can short cut */
3993         if (length < TCPOLEN_MD5SIG)
3994                 return NULL;
3995
3996         while (length > 0) {
3997                 int opcode = *ptr++;
3998                 int opsize;
3999
4000                 switch(opcode) {
4001                 case TCPOPT_EOL:
4002                         return NULL;
4003                 case TCPOPT_NOP:
4004                         length--;
4005                         continue;
4006                 default:
4007                         opsize = *ptr++;
4008                         if (opsize < 2 || opsize > length)
4009                                 return NULL;
4010                         if (opcode == TCPOPT_MD5SIG)
4011                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4012                 }
4013                 ptr += opsize - 2;
4014                 length -= opsize;
4015         }
4016         return NULL;
4017 }
4018 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4019 #endif
4020
4021 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4022 {
4023         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4024         tp->rx_opt.ts_recent_stamp = get_seconds();
4025 }
4026
4027 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4028 {
4029         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4030                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4031                  * extra check below makes sure this can only happen
4032                  * for pure ACK frames.  -DaveM
4033                  *
4034                  * Not only, also it occurs for expired timestamps.
4035                  */
4036
4037                 if (tcp_paws_check(&tp->rx_opt, 0))
4038                         tcp_store_ts_recent(tp);
4039         }
4040 }
4041
4042 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4043  *
4044  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4045  * it can pass through stack. So, the following predicate verifies that
4046  * this segment is not used for anything but congestion avoidance or
4047  * fast retransmit. Moreover, we even are able to eliminate most of such
4048  * second order effects, if we apply some small "replay" window (~RTO)
4049  * to timestamp space.
4050  *
4051  * All these measures still do not guarantee that we reject wrapped ACKs
4052  * on networks with high bandwidth, when sequence space is recycled fastly,
4053  * but it guarantees that such events will be very rare and do not affect
4054  * connection seriously. This doesn't look nice, but alas, PAWS is really
4055  * buggy extension.
4056  *
4057  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4058  * states that events when retransmit arrives after original data are rare.
4059  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4060  * the biggest problem on large power networks even with minor reordering.
4061  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4062  * up to bandwidth of 18Gigabit/sec. 8) ]
4063  */
4064
4065 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4066 {
4067         const struct tcp_sock *tp = tcp_sk(sk);
4068         const struct tcphdr *th = tcp_hdr(skb);
4069         u32 seq = TCP_SKB_CB(skb)->seq;
4070         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4071
4072         return (/* 1. Pure ACK with correct sequence number. */
4073                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4074
4075                 /* 2. ... and duplicate ACK. */
4076                 ack == tp->snd_una &&
4077
4078                 /* 3. ... and does not update window. */
4079                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4080
4081                 /* 4. ... and sits in replay window. */
4082                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4083 }
4084
4085 static inline int tcp_paws_discard(const struct sock *sk,
4086                                    const struct sk_buff *skb)
4087 {
4088         const struct tcp_sock *tp = tcp_sk(sk);
4089
4090         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4091                !tcp_disordered_ack(sk, skb);
4092 }
4093
4094 /* Check segment sequence number for validity.
4095  *
4096  * Segment controls are considered valid, if the segment
4097  * fits to the window after truncation to the window. Acceptability
4098  * of data (and SYN, FIN, of course) is checked separately.
4099  * See tcp_data_queue(), for example.
4100  *
4101  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4102  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4103  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4104  * (borrowed from freebsd)
4105  */
4106
4107 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4108 {
4109         return  !before(end_seq, tp->rcv_wup) &&
4110                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4111 }
4112
4113 /* When we get a reset we do this. */
4114 static void tcp_reset(struct sock *sk)
4115 {
4116         /* We want the right error as BSD sees it (and indeed as we do). */
4117         switch (sk->sk_state) {
4118         case TCP_SYN_SENT:
4119                 sk->sk_err = ECONNREFUSED;
4120                 break;
4121         case TCP_CLOSE_WAIT:
4122                 sk->sk_err = EPIPE;
4123                 break;
4124         case TCP_CLOSE:
4125                 return;
4126         default:
4127                 sk->sk_err = ECONNRESET;
4128         }
4129         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4130         smp_wmb();
4131
4132         if (!sock_flag(sk, SOCK_DEAD))
4133                 sk->sk_error_report(sk);
4134
4135         tcp_done(sk);
4136 }
4137
4138 /*
4139  *      Process the FIN bit. This now behaves as it is supposed to work
4140  *      and the FIN takes effect when it is validly part of sequence
4141  *      space. Not before when we get holes.
4142  *
4143  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4144  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4145  *      TIME-WAIT)
4146  *
4147  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4148  *      close and we go into CLOSING (and later onto TIME-WAIT)
4149  *
4150  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4151  */
4152 static void tcp_fin(struct sock *sk)
4153 {
4154         struct tcp_sock *tp = tcp_sk(sk);
4155
4156         inet_csk_schedule_ack(sk);
4157
4158         sk->sk_shutdown |= RCV_SHUTDOWN;
4159         sock_set_flag(sk, SOCK_DONE);
4160
4161         switch (sk->sk_state) {
4162         case TCP_SYN_RECV:
4163         case TCP_ESTABLISHED:
4164                 /* Move to CLOSE_WAIT */
4165                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4166                 inet_csk(sk)->icsk_ack.pingpong = 1;
4167                 break;
4168
4169         case TCP_CLOSE_WAIT:
4170         case TCP_CLOSING:
4171                 /* Received a retransmission of the FIN, do
4172                  * nothing.
4173                  */
4174                 break;
4175         case TCP_LAST_ACK:
4176                 /* RFC793: Remain in the LAST-ACK state. */
4177                 break;
4178
4179         case TCP_FIN_WAIT1:
4180                 /* This case occurs when a simultaneous close
4181                  * happens, we must ack the received FIN and
4182                  * enter the CLOSING state.
4183                  */
4184                 tcp_send_ack(sk);
4185                 tcp_set_state(sk, TCP_CLOSING);
4186                 break;
4187         case TCP_FIN_WAIT2:
4188                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4189                 tcp_send_ack(sk);
4190                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4191                 break;
4192         default:
4193                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4194                  * cases we should never reach this piece of code.
4195                  */
4196                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4197                        __func__, sk->sk_state);
4198                 break;
4199         }
4200
4201         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4202          * Probably, we should reset in this case. For now drop them.
4203          */
4204         __skb_queue_purge(&tp->out_of_order_queue);
4205         if (tcp_is_sack(tp))
4206                 tcp_sack_reset(&tp->rx_opt);
4207         sk_mem_reclaim(sk);
4208
4209         if (!sock_flag(sk, SOCK_DEAD)) {
4210                 sk->sk_state_change(sk);
4211
4212                 /* Do not send POLL_HUP for half duplex close. */
4213                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4214                     sk->sk_state == TCP_CLOSE)
4215                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4216                 else
4217                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4218         }
4219 }
4220
4221 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4222                                   u32 end_seq)
4223 {
4224         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4225                 if (before(seq, sp->start_seq))
4226                         sp->start_seq = seq;
4227                 if (after(end_seq, sp->end_seq))
4228                         sp->end_seq = end_seq;
4229                 return 1;
4230         }
4231         return 0;
4232 }
4233
4234 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4235 {
4236         struct tcp_sock *tp = tcp_sk(sk);
4237
4238         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4239                 int mib_idx;
4240
4241                 if (before(seq, tp->rcv_nxt))
4242                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4243                 else
4244                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4245
4246                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4247
4248                 tp->rx_opt.dsack = 1;
4249                 tp->duplicate_sack[0].start_seq = seq;
4250                 tp->duplicate_sack[0].end_seq = end_seq;
4251         }
4252 }
4253
4254 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4255 {
4256         struct tcp_sock *tp = tcp_sk(sk);
4257
4258         if (!tp->rx_opt.dsack)
4259                 tcp_dsack_set(sk, seq, end_seq);
4260         else
4261                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4262 }
4263
4264 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4265 {
4266         struct tcp_sock *tp = tcp_sk(sk);
4267
4268         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4269             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4270                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4271                 tcp_enter_quickack_mode(sk);
4272
4273                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4274                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4275
4276                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4277                                 end_seq = tp->rcv_nxt;
4278                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4279                 }
4280         }
4281
4282         tcp_send_ack(sk);
4283 }
4284
4285 /* These routines update the SACK block as out-of-order packets arrive or
4286  * in-order packets close up the sequence space.
4287  */
4288 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4289 {
4290         int this_sack;
4291         struct tcp_sack_block *sp = &tp->selective_acks[0];
4292         struct tcp_sack_block *swalk = sp + 1;
4293
4294         /* See if the recent change to the first SACK eats into
4295          * or hits the sequence space of other SACK blocks, if so coalesce.
4296          */
4297         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4298                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4299                         int i;
4300
4301                         /* Zap SWALK, by moving every further SACK up by one slot.
4302                          * Decrease num_sacks.
4303                          */
4304                         tp->rx_opt.num_sacks--;
4305                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4306                                 sp[i] = sp[i + 1];
4307                         continue;
4308                 }
4309                 this_sack++, swalk++;
4310         }
4311 }
4312
4313 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4314 {
4315         struct tcp_sock *tp = tcp_sk(sk);
4316         struct tcp_sack_block *sp = &tp->selective_acks[0];
4317         int cur_sacks = tp->rx_opt.num_sacks;
4318         int this_sack;
4319
4320         if (!cur_sacks)
4321                 goto new_sack;
4322
4323         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4324                 if (tcp_sack_extend(sp, seq, end_seq)) {
4325                         /* Rotate this_sack to the first one. */
4326                         for (; this_sack > 0; this_sack--, sp--)
4327                                 swap(*sp, *(sp - 1));
4328                         if (cur_sacks > 1)
4329                                 tcp_sack_maybe_coalesce(tp);
4330                         return;
4331                 }
4332         }
4333
4334         /* Could not find an adjacent existing SACK, build a new one,
4335          * put it at the front, and shift everyone else down.  We
4336          * always know there is at least one SACK present already here.
4337          *
4338          * If the sack array is full, forget about the last one.
4339          */
4340         if (this_sack >= TCP_NUM_SACKS) {
4341                 this_sack--;
4342                 tp->rx_opt.num_sacks--;
4343                 sp--;
4344         }
4345         for (; this_sack > 0; this_sack--, sp--)
4346                 *sp = *(sp - 1);
4347
4348 new_sack:
4349         /* Build the new head SACK, and we're done. */
4350         sp->start_seq = seq;
4351         sp->end_seq = end_seq;
4352         tp->rx_opt.num_sacks++;
4353 }
4354
4355 /* RCV.NXT advances, some SACKs should be eaten. */
4356
4357 static void tcp_sack_remove(struct tcp_sock *tp)
4358 {
4359         struct tcp_sack_block *sp = &tp->selective_acks[0];
4360         int num_sacks = tp->rx_opt.num_sacks;
4361         int this_sack;
4362
4363         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4364         if (skb_queue_empty(&tp->out_of_order_queue)) {
4365                 tp->rx_opt.num_sacks = 0;
4366                 return;
4367         }
4368
4369         for (this_sack = 0; this_sack < num_sacks;) {
4370                 /* Check if the start of the sack is covered by RCV.NXT. */
4371                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4372                         int i;
4373
4374                         /* RCV.NXT must cover all the block! */
4375                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4376
4377                         /* Zap this SACK, by moving forward any other SACKS. */
4378                         for (i=this_sack+1; i < num_sacks; i++)
4379                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4380                         num_sacks--;
4381                         continue;
4382                 }
4383                 this_sack++;
4384                 sp++;
4385         }
4386         tp->rx_opt.num_sacks = num_sacks;
4387 }
4388
4389 /* This one checks to see if we can put data from the
4390  * out_of_order queue into the receive_queue.
4391  */
4392 static void tcp_ofo_queue(struct sock *sk)
4393 {
4394         struct tcp_sock *tp = tcp_sk(sk);
4395         __u32 dsack_high = tp->rcv_nxt;
4396         struct sk_buff *skb;
4397
4398         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4399                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4400                         break;
4401
4402                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4403                         __u32 dsack = dsack_high;
4404                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4405                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4406                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4407                 }
4408
4409                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4410                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4411                         __skb_unlink(skb, &tp->out_of_order_queue);
4412                         __kfree_skb(skb);
4413                         continue;
4414                 }
4415                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4416                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4417                            TCP_SKB_CB(skb)->end_seq);
4418
4419                 __skb_unlink(skb, &tp->out_of_order_queue);
4420                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4421                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4422                 if (tcp_hdr(skb)->fin)
4423                         tcp_fin(sk);
4424         }
4425 }
4426
4427 static int tcp_prune_ofo_queue(struct sock *sk);
4428 static int tcp_prune_queue(struct sock *sk);
4429
4430 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4431 {
4432         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4433             !sk_rmem_schedule(sk, size)) {
4434
4435                 if (tcp_prune_queue(sk) < 0)
4436                         return -1;
4437
4438                 if (!sk_rmem_schedule(sk, size)) {
4439                         if (!tcp_prune_ofo_queue(sk))
4440                                 return -1;
4441
4442                         if (!sk_rmem_schedule(sk, size))
4443                                 return -1;
4444                 }
4445         }
4446         return 0;
4447 }
4448
4449 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4450 {
4451         const struct tcphdr *th = tcp_hdr(skb);
4452         struct tcp_sock *tp = tcp_sk(sk);
4453         int eaten = -1;
4454
4455         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4456                 goto drop;
4457
4458         skb_dst_drop(skb);
4459         __skb_pull(skb, th->doff * 4);
4460
4461         TCP_ECN_accept_cwr(tp, skb);
4462
4463         tp->rx_opt.dsack = 0;
4464
4465         /*  Queue data for delivery to the user.
4466          *  Packets in sequence go to the receive queue.
4467          *  Out of sequence packets to the out_of_order_queue.
4468          */
4469         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4470                 if (tcp_receive_window(tp) == 0)
4471                         goto out_of_window;
4472
4473                 /* Ok. In sequence. In window. */
4474                 if (tp->ucopy.task == current &&
4475                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4476                     sock_owned_by_user(sk) && !tp->urg_data) {
4477                         int chunk = min_t(unsigned int, skb->len,
4478                                           tp->ucopy.len);
4479
4480                         __set_current_state(TASK_RUNNING);
4481
4482                         local_bh_enable();
4483                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4484                                 tp->ucopy.len -= chunk;
4485                                 tp->copied_seq += chunk;
4486                                 eaten = (chunk == skb->len);
4487                                 tcp_rcv_space_adjust(sk);
4488                         }
4489                         local_bh_disable();
4490                 }
4491
4492                 if (eaten <= 0) {
4493 queue_and_out:
4494                         if (eaten < 0 &&
4495                             tcp_try_rmem_schedule(sk, skb->truesize))
4496                                 goto drop;
4497
4498                         skb_set_owner_r(skb, sk);
4499                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4500                 }
4501                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4502                 if (skb->len)
4503                         tcp_event_data_recv(sk, skb);
4504                 if (th->fin)
4505                         tcp_fin(sk);
4506
4507                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4508                         tcp_ofo_queue(sk);
4509
4510                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4511                          * gap in queue is filled.
4512                          */
4513                         if (skb_queue_empty(&tp->out_of_order_queue))
4514                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4515                 }
4516
4517                 if (tp->rx_opt.num_sacks)
4518                         tcp_sack_remove(tp);
4519
4520                 tcp_fast_path_check(sk);
4521
4522                 if (eaten > 0)
4523                         __kfree_skb(skb);
4524                 else if (!sock_flag(sk, SOCK_DEAD))
4525                         sk->sk_data_ready(sk, 0);
4526                 return;
4527         }
4528
4529         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4530                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4531                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4532                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4533
4534 out_of_window:
4535                 tcp_enter_quickack_mode(sk);
4536                 inet_csk_schedule_ack(sk);
4537 drop:
4538                 __kfree_skb(skb);
4539                 return;
4540         }
4541
4542         /* Out of window. F.e. zero window probe. */
4543         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4544                 goto out_of_window;
4545
4546         tcp_enter_quickack_mode(sk);
4547
4548         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4549                 /* Partial packet, seq < rcv_next < end_seq */
4550                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4551                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4552                            TCP_SKB_CB(skb)->end_seq);
4553
4554                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4555
4556                 /* If window is closed, drop tail of packet. But after
4557                  * remembering D-SACK for its head made in previous line.
4558                  */
4559                 if (!tcp_receive_window(tp))
4560                         goto out_of_window;
4561                 goto queue_and_out;
4562         }
4563
4564         TCP_ECN_check_ce(tp, skb);
4565
4566         if (tcp_try_rmem_schedule(sk, skb->truesize))
4567                 goto drop;
4568
4569         /* Disable header prediction. */
4570         tp->pred_flags = 0;
4571         inet_csk_schedule_ack(sk);
4572
4573         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4574                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4575
4576         skb_set_owner_r(skb, sk);
4577
4578         if (!skb_peek(&tp->out_of_order_queue)) {
4579                 /* Initial out of order segment, build 1 SACK. */
4580                 if (tcp_is_sack(tp)) {
4581                         tp->rx_opt.num_sacks = 1;
4582                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4583                         tp->selective_acks[0].end_seq =
4584                                                 TCP_SKB_CB(skb)->end_seq;
4585                 }
4586                 __skb_queue_head(&tp->out_of_order_queue, skb);
4587         } else {
4588                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4589                 u32 seq = TCP_SKB_CB(skb)->seq;
4590                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4591
4592                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4593                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4594
4595                         if (!tp->rx_opt.num_sacks ||
4596                             tp->selective_acks[0].end_seq != seq)
4597                                 goto add_sack;
4598
4599                         /* Common case: data arrive in order after hole. */
4600                         tp->selective_acks[0].end_seq = end_seq;
4601                         return;
4602                 }
4603
4604                 /* Find place to insert this segment. */
4605                 while (1) {
4606                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4607                                 break;
4608                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4609                                 skb1 = NULL;
4610                                 break;
4611                         }
4612                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4613                 }
4614
4615                 /* Do skb overlap to previous one? */
4616                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4617                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4618                                 /* All the bits are present. Drop. */
4619                                 __kfree_skb(skb);
4620                                 tcp_dsack_set(sk, seq, end_seq);
4621                                 goto add_sack;
4622                         }
4623                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4624                                 /* Partial overlap. */
4625                                 tcp_dsack_set(sk, seq,
4626                                               TCP_SKB_CB(skb1)->end_seq);
4627                         } else {
4628                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4629                                                        skb1))
4630                                         skb1 = NULL;
4631                                 else
4632                                         skb1 = skb_queue_prev(
4633                                                 &tp->out_of_order_queue,
4634                                                 skb1);
4635                         }
4636                 }
4637                 if (!skb1)
4638                         __skb_queue_head(&tp->out_of_order_queue, skb);
4639                 else
4640                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4641
4642                 /* And clean segments covered by new one as whole. */
4643                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4644                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4645
4646                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4647                                 break;
4648                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4649                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4650                                                  end_seq);
4651                                 break;
4652                         }
4653                         __skb_unlink(skb1, &tp->out_of_order_queue);
4654                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4655                                          TCP_SKB_CB(skb1)->end_seq);
4656                         __kfree_skb(skb1);
4657                 }
4658
4659 add_sack:
4660                 if (tcp_is_sack(tp))
4661                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4662         }
4663 }
4664
4665 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4666                                         struct sk_buff_head *list)
4667 {
4668         struct sk_buff *next = NULL;
4669
4670         if (!skb_queue_is_last(list, skb))
4671                 next = skb_queue_next(list, skb);
4672
4673         __skb_unlink(skb, list);
4674         __kfree_skb(skb);
4675         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4676
4677         return next;
4678 }
4679
4680 /* Collapse contiguous sequence of skbs head..tail with
4681  * sequence numbers start..end.
4682  *
4683  * If tail is NULL, this means until the end of the list.
4684  *
4685  * Segments with FIN/SYN are not collapsed (only because this
4686  * simplifies code)
4687  */
4688 static void
4689 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4690              struct sk_buff *head, struct sk_buff *tail,
4691              u32 start, u32 end)
4692 {
4693         struct sk_buff *skb, *n;
4694         bool end_of_skbs;
4695
4696         /* First, check that queue is collapsible and find
4697          * the point where collapsing can be useful. */
4698         skb = head;
4699 restart:
4700         end_of_skbs = true;
4701         skb_queue_walk_from_safe(list, skb, n) {
4702                 if (skb == tail)
4703                         break;
4704                 /* No new bits? It is possible on ofo queue. */
4705                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4706                         skb = tcp_collapse_one(sk, skb, list);
4707                         if (!skb)
4708                                 break;
4709                         goto restart;
4710                 }
4711
4712                 /* The first skb to collapse is:
4713                  * - not SYN/FIN and
4714                  * - bloated or contains data before "start" or
4715                  *   overlaps to the next one.
4716                  */
4717                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4718                     (tcp_win_from_space(skb->truesize) > skb->len ||
4719                      before(TCP_SKB_CB(skb)->seq, start))) {
4720                         end_of_skbs = false;
4721                         break;
4722                 }
4723
4724                 if (!skb_queue_is_last(list, skb)) {
4725                         struct sk_buff *next = skb_queue_next(list, skb);
4726                         if (next != tail &&
4727                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4728                                 end_of_skbs = false;
4729                                 break;
4730                         }
4731                 }
4732
4733                 /* Decided to skip this, advance start seq. */
4734                 start = TCP_SKB_CB(skb)->end_seq;
4735         }
4736         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4737                 return;
4738
4739         while (before(start, end)) {
4740                 struct sk_buff *nskb;
4741                 unsigned int header = skb_headroom(skb);
4742                 int copy = SKB_MAX_ORDER(header, 0);
4743
4744                 /* Too big header? This can happen with IPv6. */
4745                 if (copy < 0)
4746                         return;
4747                 if (end - start < copy)
4748                         copy = end - start;
4749                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4750                 if (!nskb)
4751                         return;
4752
4753                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4754                 skb_set_network_header(nskb, (skb_network_header(skb) -
4755                                               skb->head));
4756                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4757                                                 skb->head));
4758                 skb_reserve(nskb, header);
4759                 memcpy(nskb->head, skb->head, header);
4760                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4761                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4762                 __skb_queue_before(list, skb, nskb);
4763                 skb_set_owner_r(nskb, sk);
4764
4765                 /* Copy data, releasing collapsed skbs. */
4766                 while (copy > 0) {
4767                         int offset = start - TCP_SKB_CB(skb)->seq;
4768                         int size = TCP_SKB_CB(skb)->end_seq - start;
4769
4770                         BUG_ON(offset < 0);
4771                         if (size > 0) {
4772                                 size = min(copy, size);
4773                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4774                                         BUG();
4775                                 TCP_SKB_CB(nskb)->end_seq += size;
4776                                 copy -= size;
4777                                 start += size;
4778                         }
4779                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4780                                 skb = tcp_collapse_one(sk, skb, list);
4781                                 if (!skb ||
4782                                     skb == tail ||
4783                                     tcp_hdr(skb)->syn ||
4784                                     tcp_hdr(skb)->fin)
4785                                         return;
4786                         }
4787                 }
4788         }
4789 }
4790
4791 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4792  * and tcp_collapse() them until all the queue is collapsed.
4793  */
4794 static void tcp_collapse_ofo_queue(struct sock *sk)
4795 {
4796         struct tcp_sock *tp = tcp_sk(sk);
4797         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4798         struct sk_buff *head;
4799         u32 start, end;
4800
4801         if (skb == NULL)
4802                 return;
4803
4804         start = TCP_SKB_CB(skb)->seq;
4805         end = TCP_SKB_CB(skb)->end_seq;
4806         head = skb;
4807
4808         for (;;) {
4809                 struct sk_buff *next = NULL;
4810
4811                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4812                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4813                 skb = next;
4814
4815                 /* Segment is terminated when we see gap or when
4816                  * we are at the end of all the queue. */
4817                 if (!skb ||
4818                     after(TCP_SKB_CB(skb)->seq, end) ||
4819                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4820                         tcp_collapse(sk, &tp->out_of_order_queue,
4821                                      head, skb, start, end);
4822                         head = skb;
4823                         if (!skb)
4824                                 break;
4825                         /* Start new segment */
4826                         start = TCP_SKB_CB(skb)->seq;
4827                         end = TCP_SKB_CB(skb)->end_seq;
4828                 } else {
4829                         if (before(TCP_SKB_CB(skb)->seq, start))
4830                                 start = TCP_SKB_CB(skb)->seq;
4831                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4832                                 end = TCP_SKB_CB(skb)->end_seq;
4833                 }
4834         }
4835 }
4836
4837 /*
4838  * Purge the out-of-order queue.
4839  * Return true if queue was pruned.
4840  */
4841 static int tcp_prune_ofo_queue(struct sock *sk)
4842 {
4843         struct tcp_sock *tp = tcp_sk(sk);
4844         int res = 0;
4845
4846         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4847                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4848                 __skb_queue_purge(&tp->out_of_order_queue);
4849
4850                 /* Reset SACK state.  A conforming SACK implementation will
4851                  * do the same at a timeout based retransmit.  When a connection
4852                  * is in a sad state like this, we care only about integrity
4853                  * of the connection not performance.
4854                  */
4855                 if (tp->rx_opt.sack_ok)
4856                         tcp_sack_reset(&tp->rx_opt);
4857                 sk_mem_reclaim(sk);
4858                 res = 1;
4859         }
4860         return res;
4861 }
4862
4863 /* Reduce allocated memory if we can, trying to get
4864  * the socket within its memory limits again.
4865  *
4866  * Return less than zero if we should start dropping frames
4867  * until the socket owning process reads some of the data
4868  * to stabilize the situation.
4869  */
4870 static int tcp_prune_queue(struct sock *sk)
4871 {
4872         struct tcp_sock *tp = tcp_sk(sk);
4873
4874         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4875
4876         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4877
4878         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4879                 tcp_clamp_window(sk);
4880         else if (tcp_memory_pressure)
4881                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4882
4883         tcp_collapse_ofo_queue(sk);
4884         if (!skb_queue_empty(&sk->sk_receive_queue))
4885                 tcp_collapse(sk, &sk->sk_receive_queue,
4886                              skb_peek(&sk->sk_receive_queue),
4887                              NULL,
4888                              tp->copied_seq, tp->rcv_nxt);
4889         sk_mem_reclaim(sk);
4890
4891         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4892                 return 0;
4893
4894         /* Collapsing did not help, destructive actions follow.
4895          * This must not ever occur. */
4896
4897         tcp_prune_ofo_queue(sk);
4898
4899         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4900                 return 0;
4901
4902         /* If we are really being abused, tell the caller to silently
4903          * drop receive data on the floor.  It will get retransmitted
4904          * and hopefully then we'll have sufficient space.
4905          */
4906         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4907
4908         /* Massive buffer overcommit. */
4909         tp->pred_flags = 0;
4910         return -1;
4911 }
4912
4913 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4914  * As additional protections, we do not touch cwnd in retransmission phases,
4915  * and if application hit its sndbuf limit recently.
4916  */
4917 void tcp_cwnd_application_limited(struct sock *sk)
4918 {
4919         struct tcp_sock *tp = tcp_sk(sk);
4920
4921         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4922             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4923                 /* Limited by application or receiver window. */
4924                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4925                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4926                 if (win_used < tp->snd_cwnd) {
4927                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4928                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4929                 }
4930                 tp->snd_cwnd_used = 0;
4931         }
4932         tp->snd_cwnd_stamp = tcp_time_stamp;
4933 }
4934
4935 static int tcp_should_expand_sndbuf(const struct sock *sk)
4936 {
4937         const struct tcp_sock *tp = tcp_sk(sk);
4938
4939         /* If the user specified a specific send buffer setting, do
4940          * not modify it.
4941          */
4942         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4943                 return 0;
4944
4945         /* If we are under global TCP memory pressure, do not expand.  */
4946         if (tcp_memory_pressure)
4947                 return 0;
4948
4949         /* If we are under soft global TCP memory pressure, do not expand.  */
4950         if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4951                 return 0;
4952
4953         /* If we filled the congestion window, do not expand.  */
4954         if (tp->packets_out >= tp->snd_cwnd)
4955                 return 0;
4956
4957         return 1;
4958 }
4959
4960 /* When incoming ACK allowed to free some skb from write_queue,
4961  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4962  * on the exit from tcp input handler.
4963  *
4964  * PROBLEM: sndbuf expansion does not work well with largesend.
4965  */
4966 static void tcp_new_space(struct sock *sk)
4967 {
4968         struct tcp_sock *tp = tcp_sk(sk);
4969
4970         if (tcp_should_expand_sndbuf(sk)) {
4971                 int sndmem = SKB_TRUESIZE(max_t(u32,
4972                                                 tp->rx_opt.mss_clamp,
4973                                                 tp->mss_cache) +
4974                                           MAX_TCP_HEADER);
4975                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4976                                      tp->reordering + 1);
4977                 sndmem *= 2 * demanded;
4978                 if (sndmem > sk->sk_sndbuf)
4979                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4980                 tp->snd_cwnd_stamp = tcp_time_stamp;
4981         }
4982
4983         sk->sk_write_space(sk);
4984 }
4985
4986 static void tcp_check_space(struct sock *sk)
4987 {
4988         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4989                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4990                 if (sk->sk_socket &&
4991                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4992                         tcp_new_space(sk);
4993         }
4994 }
4995
4996 static inline void tcp_data_snd_check(struct sock *sk)
4997 {
4998         tcp_push_pending_frames(sk);
4999         tcp_check_space(sk);
5000 }
5001
5002 /*
5003  * Check if sending an ack is needed.
5004  */
5005 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5006 {
5007         struct tcp_sock *tp = tcp_sk(sk);
5008
5009             /* More than one full frame received... */
5010         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5011              /* ... and right edge of window advances far enough.
5012               * (tcp_recvmsg() will send ACK otherwise). Or...
5013               */
5014              __tcp_select_window(sk) >= tp->rcv_wnd) ||
5015             /* We ACK each frame or... */
5016             tcp_in_quickack_mode(sk) ||
5017             /* We have out of order data. */
5018             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5019                 /* Then ack it now */
5020                 tcp_send_ack(sk);
5021         } else {
5022                 /* Else, send delayed ack. */
5023                 tcp_send_delayed_ack(sk);
5024         }
5025 }
5026
5027 static inline void tcp_ack_snd_check(struct sock *sk)
5028 {
5029         if (!inet_csk_ack_scheduled(sk)) {
5030                 /* We sent a data segment already. */
5031                 return;
5032         }
5033         __tcp_ack_snd_check(sk, 1);
5034 }
5035
5036 /*
5037  *      This routine is only called when we have urgent data
5038  *      signaled. Its the 'slow' part of tcp_urg. It could be
5039  *      moved inline now as tcp_urg is only called from one
5040  *      place. We handle URGent data wrong. We have to - as
5041  *      BSD still doesn't use the correction from RFC961.
5042  *      For 1003.1g we should support a new option TCP_STDURG to permit
5043  *      either form (or just set the sysctl tcp_stdurg).
5044  */
5045
5046 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5047 {
5048         struct tcp_sock *tp = tcp_sk(sk);
5049         u32 ptr = ntohs(th->urg_ptr);
5050
5051         if (ptr && !sysctl_tcp_stdurg)
5052                 ptr--;
5053         ptr += ntohl(th->seq);
5054
5055         /* Ignore urgent data that we've already seen and read. */
5056         if (after(tp->copied_seq, ptr))
5057                 return;
5058
5059         /* Do not replay urg ptr.
5060          *
5061          * NOTE: interesting situation not covered by specs.
5062          * Misbehaving sender may send urg ptr, pointing to segment,
5063          * which we already have in ofo queue. We are not able to fetch
5064          * such data and will stay in TCP_URG_NOTYET until will be eaten
5065          * by recvmsg(). Seems, we are not obliged to handle such wicked
5066          * situations. But it is worth to think about possibility of some
5067          * DoSes using some hypothetical application level deadlock.
5068          */
5069         if (before(ptr, tp->rcv_nxt))
5070                 return;
5071
5072         /* Do we already have a newer (or duplicate) urgent pointer? */
5073         if (tp->urg_data && !after(ptr, tp->urg_seq))
5074                 return;
5075
5076         /* Tell the world about our new urgent pointer. */
5077         sk_send_sigurg(sk);
5078
5079         /* We may be adding urgent data when the last byte read was
5080          * urgent. To do this requires some care. We cannot just ignore
5081          * tp->copied_seq since we would read the last urgent byte again
5082          * as data, nor can we alter copied_seq until this data arrives
5083          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5084          *
5085          * NOTE. Double Dutch. Rendering to plain English: author of comment
5086          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5087          * and expect that both A and B disappear from stream. This is _wrong_.
5088          * Though this happens in BSD with high probability, this is occasional.
5089          * Any application relying on this is buggy. Note also, that fix "works"
5090          * only in this artificial test. Insert some normal data between A and B and we will
5091          * decline of BSD again. Verdict: it is better to remove to trap
5092          * buggy users.
5093          */
5094         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5095             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5096                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5097                 tp->copied_seq++;
5098                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5099                         __skb_unlink(skb, &sk->sk_receive_queue);
5100                         __kfree_skb(skb);
5101                 }
5102         }
5103
5104         tp->urg_data = TCP_URG_NOTYET;
5105         tp->urg_seq = ptr;
5106
5107         /* Disable header prediction. */
5108         tp->pred_flags = 0;
5109 }
5110
5111 /* This is the 'fast' part of urgent handling. */
5112 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5113 {
5114         struct tcp_sock *tp = tcp_sk(sk);
5115
5116         /* Check if we get a new urgent pointer - normally not. */
5117         if (th->urg)
5118                 tcp_check_urg(sk, th);
5119
5120         /* Do we wait for any urgent data? - normally not... */
5121         if (tp->urg_data == TCP_URG_NOTYET) {
5122                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5123                           th->syn;
5124
5125                 /* Is the urgent pointer pointing into this packet? */
5126                 if (ptr < skb->len) {
5127                         u8 tmp;
5128                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5129                                 BUG();
5130                         tp->urg_data = TCP_URG_VALID | tmp;
5131                         if (!sock_flag(sk, SOCK_DEAD))
5132                                 sk->sk_data_ready(sk, 0);
5133                 }
5134         }
5135 }
5136
5137 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5138 {
5139         struct tcp_sock *tp = tcp_sk(sk);
5140         int chunk = skb->len - hlen;
5141         int err;
5142
5143         local_bh_enable();
5144         if (skb_csum_unnecessary(skb))
5145                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5146         else
5147                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5148                                                        tp->ucopy.iov);
5149
5150         if (!err) {
5151                 tp->ucopy.len -= chunk;
5152                 tp->copied_seq += chunk;
5153                 tcp_rcv_space_adjust(sk);
5154         }
5155
5156         local_bh_disable();
5157         return err;
5158 }
5159
5160 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5161                                             struct sk_buff *skb)
5162 {
5163         __sum16 result;
5164
5165         if (sock_owned_by_user(sk)) {
5166                 local_bh_enable();
5167                 result = __tcp_checksum_complete(skb);
5168                 local_bh_disable();
5169         } else {
5170                 result = __tcp_checksum_complete(skb);
5171         }
5172         return result;
5173 }
5174
5175 static inline int tcp_checksum_complete_user(struct sock *sk,
5176                                              struct sk_buff *skb)
5177 {
5178         return !skb_csum_unnecessary(skb) &&
5179                __tcp_checksum_complete_user(sk, skb);
5180 }
5181
5182 #ifdef CONFIG_NET_DMA
5183 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5184                                   int hlen)
5185 {
5186         struct tcp_sock *tp = tcp_sk(sk);
5187         int chunk = skb->len - hlen;
5188         int dma_cookie;
5189         int copied_early = 0;
5190
5191         if (tp->ucopy.wakeup)
5192                 return 0;
5193
5194         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5195                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5196
5197         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5198
5199                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5200                                                          skb, hlen,
5201                                                          tp->ucopy.iov, chunk,
5202                                                          tp->ucopy.pinned_list);
5203
5204                 if (dma_cookie < 0)
5205                         goto out;
5206
5207                 tp->ucopy.dma_cookie = dma_cookie;
5208                 copied_early = 1;
5209
5210                 tp->ucopy.len -= chunk;
5211                 tp->copied_seq += chunk;
5212                 tcp_rcv_space_adjust(sk);
5213
5214                 if ((tp->ucopy.len == 0) ||
5215                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5216                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5217                         tp->ucopy.wakeup = 1;
5218                         sk->sk_data_ready(sk, 0);
5219                 }
5220         } else if (chunk > 0) {
5221                 tp->ucopy.wakeup = 1;
5222                 sk->sk_data_ready(sk, 0);
5223         }
5224 out:
5225         return copied_early;
5226 }
5227 #endif /* CONFIG_NET_DMA */
5228
5229 /* Does PAWS and seqno based validation of an incoming segment, flags will
5230  * play significant role here.
5231  */
5232 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5233                               const struct tcphdr *th, int syn_inerr)
5234 {
5235         const u8 *hash_location;
5236         struct tcp_sock *tp = tcp_sk(sk);
5237
5238         /* RFC1323: H1. Apply PAWS check first. */
5239         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5240             tp->rx_opt.saw_tstamp &&
5241             tcp_paws_discard(sk, skb)) {
5242                 if (!th->rst) {
5243                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5244                         tcp_send_dupack(sk, skb);
5245                         goto discard;
5246                 }
5247                 /* Reset is accepted even if it did not pass PAWS. */
5248         }
5249
5250         /* Step 1: check sequence number */
5251         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5252                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5253                  * (RST) segments are validated by checking their SEQ-fields."
5254                  * And page 69: "If an incoming segment is not acceptable,
5255                  * an acknowledgment should be sent in reply (unless the RST
5256                  * bit is set, if so drop the segment and return)".
5257                  */
5258                 if (!th->rst)
5259                         tcp_send_dupack(sk, skb);
5260                 goto discard;
5261         }
5262
5263         /* Step 2: check RST bit */
5264         if (th->rst) {
5265                 tcp_reset(sk);
5266                 goto discard;
5267         }
5268
5269         /* ts_recent update must be made after we are sure that the packet
5270          * is in window.
5271          */
5272         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5273
5274         /* step 3: check security and precedence [ignored] */
5275
5276         /* step 4: Check for a SYN in window. */
5277         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5278                 if (syn_inerr)
5279                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5280                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5281                 tcp_reset(sk);
5282                 return -1;
5283         }
5284
5285         return 1;
5286
5287 discard:
5288         __kfree_skb(skb);
5289         return 0;
5290 }
5291
5292 /*
5293  *      TCP receive function for the ESTABLISHED state.
5294  *
5295  *      It is split into a fast path and a slow path. The fast path is
5296  *      disabled when:
5297  *      - A zero window was announced from us - zero window probing
5298  *        is only handled properly in the slow path.
5299  *      - Out of order segments arrived.
5300  *      - Urgent data is expected.
5301  *      - There is no buffer space left
5302  *      - Unexpected TCP flags/window values/header lengths are received
5303  *        (detected by checking the TCP header against pred_flags)
5304  *      - Data is sent in both directions. Fast path only supports pure senders
5305  *        or pure receivers (this means either the sequence number or the ack
5306  *        value must stay constant)
5307  *      - Unexpected TCP option.
5308  *
5309  *      When these conditions are not satisfied it drops into a standard
5310  *      receive procedure patterned after RFC793 to handle all cases.
5311  *      The first three cases are guaranteed by proper pred_flags setting,
5312  *      the rest is checked inline. Fast processing is turned on in
5313  *      tcp_data_queue when everything is OK.
5314  */
5315 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5316                         const struct tcphdr *th, unsigned int len)
5317 {
5318         struct tcp_sock *tp = tcp_sk(sk);
5319         int res;
5320
5321         /*
5322          *      Header prediction.
5323          *      The code loosely follows the one in the famous
5324          *      "30 instruction TCP receive" Van Jacobson mail.
5325          *
5326          *      Van's trick is to deposit buffers into socket queue
5327          *      on a device interrupt, to call tcp_recv function
5328          *      on the receive process context and checksum and copy
5329          *      the buffer to user space. smart...
5330          *
5331          *      Our current scheme is not silly either but we take the
5332          *      extra cost of the net_bh soft interrupt processing...
5333          *      We do checksum and copy also but from device to kernel.
5334          */
5335
5336         tp->rx_opt.saw_tstamp = 0;
5337
5338         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5339          *      if header_prediction is to be made
5340          *      'S' will always be tp->tcp_header_len >> 2
5341          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5342          *  turn it off (when there are holes in the receive
5343          *       space for instance)
5344          *      PSH flag is ignored.
5345          */
5346
5347         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5348             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5349             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5350                 int tcp_header_len = tp->tcp_header_len;
5351
5352                 /* Timestamp header prediction: tcp_header_len
5353                  * is automatically equal to th->doff*4 due to pred_flags
5354                  * match.
5355                  */
5356
5357                 /* Check timestamp */
5358                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5359                         /* No? Slow path! */
5360                         if (!tcp_parse_aligned_timestamp(tp, th))
5361                                 goto slow_path;
5362
5363                         /* If PAWS failed, check it more carefully in slow path */
5364                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5365                                 goto slow_path;
5366
5367                         /* DO NOT update ts_recent here, if checksum fails
5368                          * and timestamp was corrupted part, it will result
5369                          * in a hung connection since we will drop all
5370                          * future packets due to the PAWS test.
5371                          */
5372                 }
5373
5374                 if (len <= tcp_header_len) {
5375                         /* Bulk data transfer: sender */
5376                         if (len == tcp_header_len) {
5377                                 /* Predicted packet is in window by definition.
5378                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5379                                  * Hence, check seq<=rcv_wup reduces to:
5380                                  */
5381                                 if (tcp_header_len ==
5382                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5383                                     tp->rcv_nxt == tp->rcv_wup)
5384                                         tcp_store_ts_recent(tp);
5385
5386                                 /* We know that such packets are checksummed
5387                                  * on entry.
5388                                  */
5389                                 tcp_ack(sk, skb, 0);
5390                                 __kfree_skb(skb);
5391                                 tcp_data_snd_check(sk);
5392                                 return 0;
5393                         } else { /* Header too small */
5394                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5395                                 goto discard;
5396                         }
5397                 } else {
5398                         int eaten = 0;
5399                         int copied_early = 0;
5400
5401                         if (tp->copied_seq == tp->rcv_nxt &&
5402                             len - tcp_header_len <= tp->ucopy.len) {
5403 #ifdef CONFIG_NET_DMA
5404                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5405                                         copied_early = 1;
5406                                         eaten = 1;
5407                                 }
5408 #endif
5409                                 if (tp->ucopy.task == current &&
5410                                     sock_owned_by_user(sk) && !copied_early) {
5411                                         __set_current_state(TASK_RUNNING);
5412
5413                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5414                                                 eaten = 1;
5415                                 }
5416                                 if (eaten) {
5417                                         /* Predicted packet is in window by definition.
5418                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5419                                          * Hence, check seq<=rcv_wup reduces to:
5420                                          */
5421                                         if (tcp_header_len ==
5422                                             (sizeof(struct tcphdr) +
5423                                              TCPOLEN_TSTAMP_ALIGNED) &&
5424                                             tp->rcv_nxt == tp->rcv_wup)
5425                                                 tcp_store_ts_recent(tp);
5426
5427                                         tcp_rcv_rtt_measure_ts(sk, skb);
5428
5429                                         __skb_pull(skb, tcp_header_len);
5430                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5431                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5432                                 }
5433                                 if (copied_early)
5434                                         tcp_cleanup_rbuf(sk, skb->len);
5435                         }
5436                         if (!eaten) {
5437                                 if (tcp_checksum_complete_user(sk, skb))
5438                                         goto csum_error;
5439
5440                                 /* Predicted packet is in window by definition.
5441                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5442                                  * Hence, check seq<=rcv_wup reduces to:
5443                                  */
5444                                 if (tcp_header_len ==
5445                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5446                                     tp->rcv_nxt == tp->rcv_wup)
5447                                         tcp_store_ts_recent(tp);
5448
5449                                 tcp_rcv_rtt_measure_ts(sk, skb);
5450
5451                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5452                                         goto step5;
5453
5454                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5455
5456                                 /* Bulk data transfer: receiver */
5457                                 __skb_pull(skb, tcp_header_len);
5458                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5459                                 skb_set_owner_r(skb, sk);
5460                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5461                         }
5462
5463                         tcp_event_data_recv(sk, skb);
5464
5465                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5466                                 /* Well, only one small jumplet in fast path... */
5467                                 tcp_ack(sk, skb, FLAG_DATA);
5468                                 tcp_data_snd_check(sk);
5469                                 if (!inet_csk_ack_scheduled(sk))
5470                                         goto no_ack;
5471                         }
5472
5473                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5474                                 __tcp_ack_snd_check(sk, 0);
5475 no_ack:
5476 #ifdef CONFIG_NET_DMA
5477                         if (copied_early)
5478                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5479                         else
5480 #endif
5481                         if (eaten)
5482                                 __kfree_skb(skb);
5483                         else
5484                                 sk->sk_data_ready(sk, 0);
5485                         return 0;
5486                 }
5487         }
5488
5489 slow_path:
5490         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5491                 goto csum_error;
5492
5493         /*
5494          *      Standard slow path.
5495          */
5496
5497         res = tcp_validate_incoming(sk, skb, th, 1);
5498         if (res <= 0)
5499                 return -res;
5500
5501 step5:
5502         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5503                 goto discard;
5504
5505         tcp_rcv_rtt_measure_ts(sk, skb);
5506
5507         /* Process urgent data. */
5508         tcp_urg(sk, skb, th);
5509
5510         /* step 7: process the segment text */
5511         tcp_data_queue(sk, skb);
5512
5513         tcp_data_snd_check(sk);
5514         tcp_ack_snd_check(sk);
5515         return 0;
5516
5517 csum_error:
5518         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5519
5520 discard:
5521         __kfree_skb(skb);
5522         return 0;
5523 }
5524 EXPORT_SYMBOL(tcp_rcv_established);
5525
5526 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5527                                          const struct tcphdr *th, unsigned int len)
5528 {
5529         const u8 *hash_location;
5530         struct inet_connection_sock *icsk = inet_csk(sk);
5531         struct tcp_sock *tp = tcp_sk(sk);
5532         struct tcp_cookie_values *cvp = tp->cookie_values;
5533         int saved_clamp = tp->rx_opt.mss_clamp;
5534
5535         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5536
5537         if (th->ack) {
5538                 /* rfc793:
5539                  * "If the state is SYN-SENT then
5540                  *    first check the ACK bit
5541                  *      If the ACK bit is set
5542                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5543                  *        a reset (unless the RST bit is set, if so drop
5544                  *        the segment and return)"
5545                  *
5546                  *  We do not send data with SYN, so that RFC-correct
5547                  *  test reduces to:
5548                  */
5549                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5550                         goto reset_and_undo;
5551
5552                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5553                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5554                              tcp_time_stamp)) {
5555                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5556                         goto reset_and_undo;
5557                 }
5558
5559                 /* Now ACK is acceptable.
5560                  *
5561                  * "If the RST bit is set
5562                  *    If the ACK was acceptable then signal the user "error:
5563                  *    connection reset", drop the segment, enter CLOSED state,
5564                  *    delete TCB, and return."
5565                  */
5566
5567                 if (th->rst) {
5568                         tcp_reset(sk);
5569                         goto discard;
5570                 }
5571
5572                 /* rfc793:
5573                  *   "fifth, if neither of the SYN or RST bits is set then
5574                  *    drop the segment and return."
5575                  *
5576                  *    See note below!
5577                  *                                        --ANK(990513)
5578                  */
5579                 if (!th->syn)
5580                         goto discard_and_undo;
5581
5582                 /* rfc793:
5583                  *   "If the SYN bit is on ...
5584                  *    are acceptable then ...
5585                  *    (our SYN has been ACKed), change the connection
5586                  *    state to ESTABLISHED..."
5587                  */
5588
5589                 TCP_ECN_rcv_synack(tp, th);
5590
5591                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5592                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5593
5594                 /* Ok.. it's good. Set up sequence numbers and
5595                  * move to established.
5596                  */
5597                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5598                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5599
5600                 /* RFC1323: The window in SYN & SYN/ACK segments is
5601                  * never scaled.
5602                  */
5603                 tp->snd_wnd = ntohs(th->window);
5604                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5605
5606                 if (!tp->rx_opt.wscale_ok) {
5607                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5608                         tp->window_clamp = min(tp->window_clamp, 65535U);
5609                 }
5610
5611                 if (tp->rx_opt.saw_tstamp) {
5612                         tp->rx_opt.tstamp_ok       = 1;
5613                         tp->tcp_header_len =
5614                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5615                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5616                         tcp_store_ts_recent(tp);
5617                 } else {
5618                         tp->tcp_header_len = sizeof(struct tcphdr);
5619                 }
5620
5621                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5622                         tcp_enable_fack(tp);
5623
5624                 tcp_mtup_init(sk);
5625                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5626                 tcp_initialize_rcv_mss(sk);
5627
5628                 /* Remember, tcp_poll() does not lock socket!
5629                  * Change state from SYN-SENT only after copied_seq
5630                  * is initialized. */
5631                 tp->copied_seq = tp->rcv_nxt;
5632
5633                 if (cvp != NULL &&
5634                     cvp->cookie_pair_size > 0 &&
5635                     tp->rx_opt.cookie_plus > 0) {
5636                         int cookie_size = tp->rx_opt.cookie_plus
5637                                         - TCPOLEN_COOKIE_BASE;
5638                         int cookie_pair_size = cookie_size
5639                                              + cvp->cookie_desired;
5640
5641                         /* A cookie extension option was sent and returned.
5642                          * Note that each incoming SYNACK replaces the
5643                          * Responder cookie.  The initial exchange is most
5644                          * fragile, as protection against spoofing relies
5645                          * entirely upon the sequence and timestamp (above).
5646                          * This replacement strategy allows the correct pair to
5647                          * pass through, while any others will be filtered via
5648                          * Responder verification later.
5649                          */
5650                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5651                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5652                                        hash_location, cookie_size);
5653                                 cvp->cookie_pair_size = cookie_pair_size;
5654                         }
5655                 }
5656
5657                 smp_mb();
5658                 tcp_set_state(sk, TCP_ESTABLISHED);
5659
5660                 security_inet_conn_established(sk, skb);
5661
5662                 /* Make sure socket is routed, for correct metrics.  */
5663                 icsk->icsk_af_ops->rebuild_header(sk);
5664
5665                 tcp_init_metrics(sk);
5666
5667                 tcp_init_congestion_control(sk);
5668
5669                 /* Prevent spurious tcp_cwnd_restart() on first data
5670                  * packet.
5671                  */
5672                 tp->lsndtime = tcp_time_stamp;
5673
5674                 tcp_init_buffer_space(sk);
5675
5676                 if (sock_flag(sk, SOCK_KEEPOPEN))
5677                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5678
5679                 if (!tp->rx_opt.snd_wscale)
5680                         __tcp_fast_path_on(tp, tp->snd_wnd);
5681                 else
5682                         tp->pred_flags = 0;
5683
5684                 if (!sock_flag(sk, SOCK_DEAD)) {
5685                         sk->sk_state_change(sk);
5686                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5687                 }
5688
5689                 if (sk->sk_write_pending ||
5690                     icsk->icsk_accept_queue.rskq_defer_accept ||
5691                     icsk->icsk_ack.pingpong) {
5692                         /* Save one ACK. Data will be ready after
5693                          * several ticks, if write_pending is set.
5694                          *
5695                          * It may be deleted, but with this feature tcpdumps
5696                          * look so _wonderfully_ clever, that I was not able
5697                          * to stand against the temptation 8)     --ANK
5698                          */
5699                         inet_csk_schedule_ack(sk);
5700                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5701                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5702                         tcp_incr_quickack(sk);
5703                         tcp_enter_quickack_mode(sk);
5704                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5705                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5706
5707 discard:
5708                         __kfree_skb(skb);
5709                         return 0;
5710                 } else {
5711                         tcp_send_ack(sk);
5712                 }
5713                 return -1;
5714         }
5715
5716         /* No ACK in the segment */
5717
5718         if (th->rst) {
5719                 /* rfc793:
5720                  * "If the RST bit is set
5721                  *
5722                  *      Otherwise (no ACK) drop the segment and return."
5723                  */
5724
5725                 goto discard_and_undo;
5726         }
5727
5728         /* PAWS check. */
5729         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5730             tcp_paws_reject(&tp->rx_opt, 0))
5731                 goto discard_and_undo;
5732
5733         if (th->syn) {
5734                 /* We see SYN without ACK. It is attempt of
5735                  * simultaneous connect with crossed SYNs.
5736                  * Particularly, it can be connect to self.
5737                  */
5738                 tcp_set_state(sk, TCP_SYN_RECV);
5739
5740                 if (tp->rx_opt.saw_tstamp) {
5741                         tp->rx_opt.tstamp_ok = 1;
5742                         tcp_store_ts_recent(tp);
5743                         tp->tcp_header_len =
5744                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5745                 } else {
5746                         tp->tcp_header_len = sizeof(struct tcphdr);
5747                 }
5748
5749                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5750                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5751
5752                 /* RFC1323: The window in SYN & SYN/ACK segments is
5753                  * never scaled.
5754                  */
5755                 tp->snd_wnd    = ntohs(th->window);
5756                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5757                 tp->max_window = tp->snd_wnd;
5758
5759                 TCP_ECN_rcv_syn(tp, th);
5760
5761                 tcp_mtup_init(sk);
5762                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5763                 tcp_initialize_rcv_mss(sk);
5764
5765                 tcp_send_synack(sk);
5766 #if 0
5767                 /* Note, we could accept data and URG from this segment.
5768                  * There are no obstacles to make this.
5769                  *
5770                  * However, if we ignore data in ACKless segments sometimes,
5771                  * we have no reasons to accept it sometimes.
5772                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5773                  * is not flawless. So, discard packet for sanity.
5774                  * Uncomment this return to process the data.
5775                  */
5776                 return -1;
5777 #else
5778                 goto discard;
5779 #endif
5780         }
5781         /* "fifth, if neither of the SYN or RST bits is set then
5782          * drop the segment and return."
5783          */
5784
5785 discard_and_undo:
5786         tcp_clear_options(&tp->rx_opt);
5787         tp->rx_opt.mss_clamp = saved_clamp;
5788         goto discard;
5789
5790 reset_and_undo:
5791         tcp_clear_options(&tp->rx_opt);
5792         tp->rx_opt.mss_clamp = saved_clamp;
5793         return 1;
5794 }
5795
5796 /*
5797  *      This function implements the receiving procedure of RFC 793 for
5798  *      all states except ESTABLISHED and TIME_WAIT.
5799  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5800  *      address independent.
5801  */
5802
5803 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5804                           const struct tcphdr *th, unsigned int len)
5805 {
5806         struct tcp_sock *tp = tcp_sk(sk);
5807         struct inet_connection_sock *icsk = inet_csk(sk);
5808         int queued = 0;
5809         int res;
5810
5811         tp->rx_opt.saw_tstamp = 0;
5812
5813         switch (sk->sk_state) {
5814         case TCP_CLOSE:
5815                 goto discard;
5816
5817         case TCP_LISTEN:
5818                 if (th->ack)
5819                         return 1;
5820
5821                 if (th->rst)
5822                         goto discard;
5823
5824                 if (th->syn) {
5825                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5826                                 return 1;
5827
5828                         /* Now we have several options: In theory there is
5829                          * nothing else in the frame. KA9Q has an option to
5830                          * send data with the syn, BSD accepts data with the
5831                          * syn up to the [to be] advertised window and
5832                          * Solaris 2.1 gives you a protocol error. For now
5833                          * we just ignore it, that fits the spec precisely
5834                          * and avoids incompatibilities. It would be nice in
5835                          * future to drop through and process the data.
5836                          *
5837                          * Now that TTCP is starting to be used we ought to
5838                          * queue this data.
5839                          * But, this leaves one open to an easy denial of
5840                          * service attack, and SYN cookies can't defend
5841                          * against this problem. So, we drop the data
5842                          * in the interest of security over speed unless
5843                          * it's still in use.
5844                          */
5845                         kfree_skb(skb);
5846                         return 0;
5847                 }
5848                 goto discard;
5849
5850         case TCP_SYN_SENT:
5851                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5852                 if (queued >= 0)
5853                         return queued;
5854
5855                 /* Do step6 onward by hand. */
5856                 tcp_urg(sk, skb, th);
5857                 __kfree_skb(skb);
5858                 tcp_data_snd_check(sk);
5859                 return 0;
5860         }
5861
5862         res = tcp_validate_incoming(sk, skb, th, 0);
5863         if (res <= 0)
5864                 return -res;
5865
5866         /* step 5: check the ACK field */
5867         if (th->ack) {
5868                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5869
5870                 switch (sk->sk_state) {
5871                 case TCP_SYN_RECV:
5872                         if (acceptable) {
5873                                 tp->copied_seq = tp->rcv_nxt;
5874                                 smp_mb();
5875                                 tcp_set_state(sk, TCP_ESTABLISHED);
5876                                 sk->sk_state_change(sk);
5877
5878                                 /* Note, that this wakeup is only for marginal
5879                                  * crossed SYN case. Passively open sockets
5880                                  * are not waked up, because sk->sk_sleep ==
5881                                  * NULL and sk->sk_socket == NULL.
5882                                  */
5883                                 if (sk->sk_socket)
5884                                         sk_wake_async(sk,
5885                                                       SOCK_WAKE_IO, POLL_OUT);
5886
5887                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5888                                 tp->snd_wnd = ntohs(th->window) <<
5889                                               tp->rx_opt.snd_wscale;
5890                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5891
5892                                 if (tp->rx_opt.tstamp_ok)
5893                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5894
5895                                 /* Make sure socket is routed, for
5896                                  * correct metrics.
5897                                  */
5898                                 icsk->icsk_af_ops->rebuild_header(sk);
5899
5900                                 tcp_init_metrics(sk);
5901
5902                                 tcp_init_congestion_control(sk);
5903
5904                                 /* Prevent spurious tcp_cwnd_restart() on
5905                                  * first data packet.
5906                                  */
5907                                 tp->lsndtime = tcp_time_stamp;
5908
5909                                 tcp_mtup_init(sk);
5910                                 tcp_initialize_rcv_mss(sk);
5911                                 tcp_init_buffer_space(sk);
5912                                 tcp_fast_path_on(tp);
5913                         } else {
5914                                 return 1;
5915                         }
5916                         break;
5917
5918                 case TCP_FIN_WAIT1:
5919                         if (tp->snd_una == tp->write_seq) {
5920                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5921                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5922                                 dst_confirm(__sk_dst_get(sk));
5923
5924                                 if (!sock_flag(sk, SOCK_DEAD))
5925                                         /* Wake up lingering close() */
5926                                         sk->sk_state_change(sk);
5927                                 else {
5928                                         int tmo;
5929
5930                                         if (tp->linger2 < 0 ||
5931                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5932                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5933                                                 tcp_done(sk);
5934                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5935                                                 return 1;
5936                                         }
5937
5938                                         tmo = tcp_fin_time(sk);
5939                                         if (tmo > TCP_TIMEWAIT_LEN) {
5940                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5941                                         } else if (th->fin || sock_owned_by_user(sk)) {
5942                                                 /* Bad case. We could lose such FIN otherwise.
5943                                                  * It is not a big problem, but it looks confusing
5944                                                  * and not so rare event. We still can lose it now,
5945                                                  * if it spins in bh_lock_sock(), but it is really
5946                                                  * marginal case.
5947                                                  */
5948                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5949                                         } else {
5950                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5951                                                 goto discard;
5952                                         }
5953                                 }
5954                         }
5955                         break;
5956
5957                 case TCP_CLOSING:
5958                         if (tp->snd_una == tp->write_seq) {
5959                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5960                                 goto discard;
5961                         }
5962                         break;
5963
5964                 case TCP_LAST_ACK:
5965                         if (tp->snd_una == tp->write_seq) {
5966                                 tcp_update_metrics(sk);
5967                                 tcp_done(sk);
5968                                 goto discard;
5969                         }
5970                         break;
5971                 }
5972         } else
5973                 goto discard;
5974
5975         /* step 6: check the URG bit */
5976         tcp_urg(sk, skb, th);
5977
5978         /* step 7: process the segment text */
5979         switch (sk->sk_state) {
5980         case TCP_CLOSE_WAIT:
5981         case TCP_CLOSING:
5982         case TCP_LAST_ACK:
5983                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5984                         break;
5985         case TCP_FIN_WAIT1:
5986         case TCP_FIN_WAIT2:
5987                 /* RFC 793 says to queue data in these states,
5988                  * RFC 1122 says we MUST send a reset.
5989                  * BSD 4.4 also does reset.
5990                  */
5991                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5992                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5993                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5994                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5995                                 tcp_reset(sk);
5996                                 return 1;
5997                         }
5998                 }
5999                 /* Fall through */
6000         case TCP_ESTABLISHED:
6001                 tcp_data_queue(sk, skb);
6002                 queued = 1;
6003                 break;
6004         }
6005
6006         /* tcp_data could move socket to TIME-WAIT */
6007         if (sk->sk_state != TCP_CLOSE) {
6008                 tcp_data_snd_check(sk);
6009                 tcp_ack_snd_check(sk);
6010         }
6011
6012         if (!queued) {
6013 discard:
6014                 __kfree_skb(skb);
6015         }
6016         return 0;
6017 }
6018 EXPORT_SYMBOL(tcp_rcv_state_process);