tcp: limit payload size of sacked skbs
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_frto_response __read_mostly;
97 int sysctl_tcp_nometrics_save __read_mostly;
98
99 int sysctl_tcp_thin_dupack __read_mostly;
100
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_abc __read_mostly;
103
104 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
105 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
106 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
108 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
109 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
110 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
111 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
112 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
114 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
117 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
118 #define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
119
120 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
125
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128
129 /* Adapt the MSS value used to make delayed ack decision to the
130  * real world.
131  */
132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133 {
134         struct inet_connection_sock *icsk = inet_csk(sk);
135         const unsigned int lss = icsk->icsk_ack.last_seg_size;
136         unsigned int len;
137
138         icsk->icsk_ack.last_seg_size = 0;
139
140         /* skb->len may jitter because of SACKs, even if peer
141          * sends good full-sized frames.
142          */
143         len = skb_shinfo(skb)->gso_size ? : skb->len;
144         if (len >= icsk->icsk_ack.rcv_mss) {
145                 icsk->icsk_ack.rcv_mss = len;
146         } else {
147                 /* Otherwise, we make more careful check taking into account,
148                  * that SACKs block is variable.
149                  *
150                  * "len" is invariant segment length, including TCP header.
151                  */
152                 len += skb->data - skb_transport_header(skb);
153                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154                     /* If PSH is not set, packet should be
155                      * full sized, provided peer TCP is not badly broken.
156                      * This observation (if it is correct 8)) allows
157                      * to handle super-low mtu links fairly.
158                      */
159                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161                         /* Subtract also invariant (if peer is RFC compliant),
162                          * tcp header plus fixed timestamp option length.
163                          * Resulting "len" is MSS free of SACK jitter.
164                          */
165                         len -= tcp_sk(sk)->tcp_header_len;
166                         icsk->icsk_ack.last_seg_size = len;
167                         if (len == lss) {
168                                 icsk->icsk_ack.rcv_mss = len;
169                                 return;
170                         }
171                 }
172                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175         }
176 }
177
178 static void tcp_incr_quickack(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182
183         if (quickacks == 0)
184                 quickacks = 2;
185         if (quickacks > icsk->icsk_ack.quick)
186                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 }
188
189 static void tcp_enter_quickack_mode(struct sock *sk)
190 {
191         struct inet_connection_sock *icsk = inet_csk(sk);
192         tcp_incr_quickack(sk);
193         icsk->icsk_ack.pingpong = 0;
194         icsk->icsk_ack.ato = TCP_ATO_MIN;
195 }
196
197 /* Send ACKs quickly, if "quick" count is not exhausted
198  * and the session is not interactive.
199  */
200
201 static inline int tcp_in_quickack_mode(const struct sock *sk)
202 {
203         const struct inet_connection_sock *icsk = inet_csk(sk);
204         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
205 }
206
207 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
208 {
209         if (tp->ecn_flags & TCP_ECN_OK)
210                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
211 }
212
213 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
214 {
215         if (tcp_hdr(skb)->cwr)
216                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217 }
218
219 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
220 {
221         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223
224 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
225 {
226         if (!(tp->ecn_flags & TCP_ECN_OK))
227                 return;
228
229         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
230         case INET_ECN_NOT_ECT:
231                 /* Funny extension: if ECT is not set on a segment,
232                  * and we already seen ECT on a previous segment,
233                  * it is probably a retransmit.
234                  */
235                 if (tp->ecn_flags & TCP_ECN_SEEN)
236                         tcp_enter_quickack_mode((struct sock *)tp);
237                 break;
238         case INET_ECN_CE:
239                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240                 /* fallinto */
241         default:
242                 tp->ecn_flags |= TCP_ECN_SEEN;
243         }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249                 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255                 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261                 return 1;
262         return 0;
263 }
264
265 /* Buffer size and advertised window tuning.
266  *
267  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268  */
269
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273
274         sndmem *= TCP_INIT_CWND;
275         if (sk->sk_sndbuf < sndmem)
276                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280  *
281  * All tcp_full_space() is split to two parts: "network" buffer, allocated
282  * forward and advertised in receiver window (tp->rcv_wnd) and
283  * "application buffer", required to isolate scheduling/application
284  * latencies from network.
285  * window_clamp is maximal advertised window. It can be less than
286  * tcp_full_space(), in this case tcp_full_space() - window_clamp
287  * is reserved for "application" buffer. The less window_clamp is
288  * the smoother our behaviour from viewpoint of network, but the lower
289  * throughput and the higher sensitivity of the connection to losses. 8)
290  *
291  * rcv_ssthresh is more strict window_clamp used at "slow start"
292  * phase to predict further behaviour of this connection.
293  * It is used for two goals:
294  * - to enforce header prediction at sender, even when application
295  *   requires some significant "application buffer". It is check #1.
296  * - to prevent pruning of receive queue because of misprediction
297  *   of receiver window. Check #2.
298  *
299  * The scheme does not work when sender sends good segments opening
300  * window and then starts to feed us spaghetti. But it should work
301  * in common situations. Otherwise, we have to rely on queue collapsing.
302  */
303
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307         struct tcp_sock *tp = tcp_sk(sk);
308         /* Optimize this! */
309         int truesize = tcp_win_from_space(skb->truesize) >> 1;
310         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311
312         while (tp->rcv_ssthresh <= window) {
313                 if (truesize <= skb->len)
314                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315
316                 truesize >>= 1;
317                 window >>= 1;
318         }
319         return 0;
320 }
321
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324         struct tcp_sock *tp = tcp_sk(sk);
325
326         /* Check #1 */
327         if (tp->rcv_ssthresh < tp->window_clamp &&
328             (int)tp->rcv_ssthresh < tcp_space(sk) &&
329             !tcp_memory_pressure) {
330                 int incr;
331
332                 /* Check #2. Increase window, if skb with such overhead
333                  * will fit to rcvbuf in future.
334                  */
335                 if (tcp_win_from_space(skb->truesize) <= skb->len)
336                         incr = 2 * tp->advmss;
337                 else
338                         incr = __tcp_grow_window(sk, skb);
339
340                 if (incr) {
341                         incr = max_t(int, incr, 2 * skb->len);
342                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343                                                tp->window_clamp);
344                         inet_csk(sk)->icsk_ack.quick |= 1;
345                 }
346         }
347 }
348
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350
351 static void tcp_fixup_rcvbuf(struct sock *sk)
352 {
353         u32 mss = tcp_sk(sk)->advmss;
354         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
355         int rcvmem;
356
357         /* Limit to 10 segments if mss <= 1460,
358          * or 14600/mss segments, with a minimum of two segments.
359          */
360         if (mss > 1460)
361                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
362
363         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
364         while (tcp_win_from_space(rcvmem) < mss)
365                 rcvmem += 128;
366
367         rcvmem *= icwnd;
368
369         if (sk->sk_rcvbuf < rcvmem)
370                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
371 }
372
373 /* 4. Try to fixup all. It is made immediately after connection enters
374  *    established state.
375  */
376 static void tcp_init_buffer_space(struct sock *sk)
377 {
378         struct tcp_sock *tp = tcp_sk(sk);
379         int maxwin;
380
381         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
382                 tcp_fixup_rcvbuf(sk);
383         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
384                 tcp_fixup_sndbuf(sk);
385
386         tp->rcvq_space.space = tp->rcv_wnd;
387
388         maxwin = tcp_full_space(sk);
389
390         if (tp->window_clamp >= maxwin) {
391                 tp->window_clamp = maxwin;
392
393                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
394                         tp->window_clamp = max(maxwin -
395                                                (maxwin >> sysctl_tcp_app_win),
396                                                4 * tp->advmss);
397         }
398
399         /* Force reservation of one segment. */
400         if (sysctl_tcp_app_win &&
401             tp->window_clamp > 2 * tp->advmss &&
402             tp->window_clamp + tp->advmss > maxwin)
403                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
404
405         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
406         tp->snd_cwnd_stamp = tcp_time_stamp;
407 }
408
409 /* 5. Recalculate window clamp after socket hit its memory bounds. */
410 static void tcp_clamp_window(struct sock *sk)
411 {
412         struct tcp_sock *tp = tcp_sk(sk);
413         struct inet_connection_sock *icsk = inet_csk(sk);
414
415         icsk->icsk_ack.quick = 0;
416
417         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
418             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
419             !tcp_memory_pressure &&
420             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
421                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
422                                     sysctl_tcp_rmem[2]);
423         }
424         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
425                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
426 }
427
428 /* Initialize RCV_MSS value.
429  * RCV_MSS is an our guess about MSS used by the peer.
430  * We haven't any direct information about the MSS.
431  * It's better to underestimate the RCV_MSS rather than overestimate.
432  * Overestimations make us ACKing less frequently than needed.
433  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
434  */
435 void tcp_initialize_rcv_mss(struct sock *sk)
436 {
437         const struct tcp_sock *tp = tcp_sk(sk);
438         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
439
440         hint = min(hint, tp->rcv_wnd / 2);
441         hint = min(hint, TCP_MSS_DEFAULT);
442         hint = max(hint, TCP_MIN_MSS);
443
444         inet_csk(sk)->icsk_ack.rcv_mss = hint;
445 }
446 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
447
448 /* Receiver "autotuning" code.
449  *
450  * The algorithm for RTT estimation w/o timestamps is based on
451  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
452  * <http://public.lanl.gov/radiant/pubs.html#DRS>
453  *
454  * More detail on this code can be found at
455  * <http://staff.psc.edu/jheffner/>,
456  * though this reference is out of date.  A new paper
457  * is pending.
458  */
459 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
460 {
461         u32 new_sample = tp->rcv_rtt_est.rtt;
462         long m = sample;
463
464         if (m == 0)
465                 m = 1;
466
467         if (new_sample != 0) {
468                 /* If we sample in larger samples in the non-timestamp
469                  * case, we could grossly overestimate the RTT especially
470                  * with chatty applications or bulk transfer apps which
471                  * are stalled on filesystem I/O.
472                  *
473                  * Also, since we are only going for a minimum in the
474                  * non-timestamp case, we do not smooth things out
475                  * else with timestamps disabled convergence takes too
476                  * long.
477                  */
478                 if (!win_dep) {
479                         m -= (new_sample >> 3);
480                         new_sample += m;
481                 } else {
482                         m <<= 3;
483                         if (m < new_sample)
484                                 new_sample = m;
485                 }
486         } else {
487                 /* No previous measure. */
488                 new_sample = m << 3;
489         }
490
491         if (tp->rcv_rtt_est.rtt != new_sample)
492                 tp->rcv_rtt_est.rtt = new_sample;
493 }
494
495 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
496 {
497         if (tp->rcv_rtt_est.time == 0)
498                 goto new_measure;
499         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
500                 return;
501         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
502
503 new_measure:
504         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
505         tp->rcv_rtt_est.time = tcp_time_stamp;
506 }
507
508 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
509                                           const struct sk_buff *skb)
510 {
511         struct tcp_sock *tp = tcp_sk(sk);
512         if (tp->rx_opt.rcv_tsecr &&
513             (TCP_SKB_CB(skb)->end_seq -
514              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
515                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
516 }
517
518 /*
519  * This function should be called every time data is copied to user space.
520  * It calculates the appropriate TCP receive buffer space.
521  */
522 void tcp_rcv_space_adjust(struct sock *sk)
523 {
524         struct tcp_sock *tp = tcp_sk(sk);
525         int time;
526         int space;
527
528         if (tp->rcvq_space.time == 0)
529                 goto new_measure;
530
531         time = tcp_time_stamp - tp->rcvq_space.time;
532         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
533                 return;
534
535         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
536
537         space = max(tp->rcvq_space.space, space);
538
539         if (tp->rcvq_space.space != space) {
540                 int rcvmem;
541
542                 tp->rcvq_space.space = space;
543
544                 if (sysctl_tcp_moderate_rcvbuf &&
545                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
546                         int new_clamp = space;
547
548                         /* Receive space grows, normalize in order to
549                          * take into account packet headers and sk_buff
550                          * structure overhead.
551                          */
552                         space /= tp->advmss;
553                         if (!space)
554                                 space = 1;
555                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
556                         while (tcp_win_from_space(rcvmem) < tp->advmss)
557                                 rcvmem += 128;
558                         space *= rcvmem;
559                         space = min(space, sysctl_tcp_rmem[2]);
560                         if (space > sk->sk_rcvbuf) {
561                                 sk->sk_rcvbuf = space;
562
563                                 /* Make the window clamp follow along.  */
564                                 tp->window_clamp = new_clamp;
565                         }
566                 }
567         }
568
569 new_measure:
570         tp->rcvq_space.seq = tp->copied_seq;
571         tp->rcvq_space.time = tcp_time_stamp;
572 }
573
574 /* There is something which you must keep in mind when you analyze the
575  * behavior of the tp->ato delayed ack timeout interval.  When a
576  * connection starts up, we want to ack as quickly as possible.  The
577  * problem is that "good" TCP's do slow start at the beginning of data
578  * transmission.  The means that until we send the first few ACK's the
579  * sender will sit on his end and only queue most of his data, because
580  * he can only send snd_cwnd unacked packets at any given time.  For
581  * each ACK we send, he increments snd_cwnd and transmits more of his
582  * queue.  -DaveM
583  */
584 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
585 {
586         struct tcp_sock *tp = tcp_sk(sk);
587         struct inet_connection_sock *icsk = inet_csk(sk);
588         u32 now;
589
590         inet_csk_schedule_ack(sk);
591
592         tcp_measure_rcv_mss(sk, skb);
593
594         tcp_rcv_rtt_measure(tp);
595
596         now = tcp_time_stamp;
597
598         if (!icsk->icsk_ack.ato) {
599                 /* The _first_ data packet received, initialize
600                  * delayed ACK engine.
601                  */
602                 tcp_incr_quickack(sk);
603                 icsk->icsk_ack.ato = TCP_ATO_MIN;
604         } else {
605                 int m = now - icsk->icsk_ack.lrcvtime;
606
607                 if (m <= TCP_ATO_MIN / 2) {
608                         /* The fastest case is the first. */
609                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
610                 } else if (m < icsk->icsk_ack.ato) {
611                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
612                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
613                                 icsk->icsk_ack.ato = icsk->icsk_rto;
614                 } else if (m > icsk->icsk_rto) {
615                         /* Too long gap. Apparently sender failed to
616                          * restart window, so that we send ACKs quickly.
617                          */
618                         tcp_incr_quickack(sk);
619                         sk_mem_reclaim(sk);
620                 }
621         }
622         icsk->icsk_ack.lrcvtime = now;
623
624         TCP_ECN_check_ce(tp, skb);
625
626         if (skb->len >= 128)
627                 tcp_grow_window(sk, skb);
628 }
629
630 /* Called to compute a smoothed rtt estimate. The data fed to this
631  * routine either comes from timestamps, or from segments that were
632  * known _not_ to have been retransmitted [see Karn/Partridge
633  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
634  * piece by Van Jacobson.
635  * NOTE: the next three routines used to be one big routine.
636  * To save cycles in the RFC 1323 implementation it was better to break
637  * it up into three procedures. -- erics
638  */
639 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
640 {
641         struct tcp_sock *tp = tcp_sk(sk);
642         long m = mrtt; /* RTT */
643
644         /*      The following amusing code comes from Jacobson's
645          *      article in SIGCOMM '88.  Note that rtt and mdev
646          *      are scaled versions of rtt and mean deviation.
647          *      This is designed to be as fast as possible
648          *      m stands for "measurement".
649          *
650          *      On a 1990 paper the rto value is changed to:
651          *      RTO = rtt + 4 * mdev
652          *
653          * Funny. This algorithm seems to be very broken.
654          * These formulae increase RTO, when it should be decreased, increase
655          * too slowly, when it should be increased quickly, decrease too quickly
656          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
657          * does not matter how to _calculate_ it. Seems, it was trap
658          * that VJ failed to avoid. 8)
659          */
660         if (m == 0)
661                 m = 1;
662         if (tp->srtt != 0) {
663                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
664                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
665                 if (m < 0) {
666                         m = -m;         /* m is now abs(error) */
667                         m -= (tp->mdev >> 2);   /* similar update on mdev */
668                         /* This is similar to one of Eifel findings.
669                          * Eifel blocks mdev updates when rtt decreases.
670                          * This solution is a bit different: we use finer gain
671                          * for mdev in this case (alpha*beta).
672                          * Like Eifel it also prevents growth of rto,
673                          * but also it limits too fast rto decreases,
674                          * happening in pure Eifel.
675                          */
676                         if (m > 0)
677                                 m >>= 3;
678                 } else {
679                         m -= (tp->mdev >> 2);   /* similar update on mdev */
680                 }
681                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
682                 if (tp->mdev > tp->mdev_max) {
683                         tp->mdev_max = tp->mdev;
684                         if (tp->mdev_max > tp->rttvar)
685                                 tp->rttvar = tp->mdev_max;
686                 }
687                 if (after(tp->snd_una, tp->rtt_seq)) {
688                         if (tp->mdev_max < tp->rttvar)
689                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
690                         tp->rtt_seq = tp->snd_nxt;
691                         tp->mdev_max = tcp_rto_min(sk);
692                 }
693         } else {
694                 /* no previous measure. */
695                 tp->srtt = m << 3;      /* take the measured time to be rtt */
696                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
697                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
698                 tp->rtt_seq = tp->snd_nxt;
699         }
700 }
701
702 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
703  * routine referred to above.
704  */
705 static inline void tcp_set_rto(struct sock *sk)
706 {
707         const struct tcp_sock *tp = tcp_sk(sk);
708         /* Old crap is replaced with new one. 8)
709          *
710          * More seriously:
711          * 1. If rtt variance happened to be less 50msec, it is hallucination.
712          *    It cannot be less due to utterly erratic ACK generation made
713          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
714          *    to do with delayed acks, because at cwnd>2 true delack timeout
715          *    is invisible. Actually, Linux-2.4 also generates erratic
716          *    ACKs in some circumstances.
717          */
718         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
719
720         /* 2. Fixups made earlier cannot be right.
721          *    If we do not estimate RTO correctly without them,
722          *    all the algo is pure shit and should be replaced
723          *    with correct one. It is exactly, which we pretend to do.
724          */
725
726         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
727          * guarantees that rto is higher.
728          */
729         tcp_bound_rto(sk);
730 }
731
732 /* Save metrics learned by this TCP session.
733    This function is called only, when TCP finishes successfully
734    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
735  */
736 void tcp_update_metrics(struct sock *sk)
737 {
738         struct tcp_sock *tp = tcp_sk(sk);
739         struct dst_entry *dst = __sk_dst_get(sk);
740
741         if (sysctl_tcp_nometrics_save)
742                 return;
743
744         dst_confirm(dst);
745
746         if (dst && (dst->flags & DST_HOST)) {
747                 const struct inet_connection_sock *icsk = inet_csk(sk);
748                 int m;
749                 unsigned long rtt;
750
751                 if (icsk->icsk_backoff || !tp->srtt) {
752                         /* This session failed to estimate rtt. Why?
753                          * Probably, no packets returned in time.
754                          * Reset our results.
755                          */
756                         if (!(dst_metric_locked(dst, RTAX_RTT)))
757                                 dst_metric_set(dst, RTAX_RTT, 0);
758                         return;
759                 }
760
761                 rtt = dst_metric_rtt(dst, RTAX_RTT);
762                 m = rtt - tp->srtt;
763
764                 /* If newly calculated rtt larger than stored one,
765                  * store new one. Otherwise, use EWMA. Remember,
766                  * rtt overestimation is always better than underestimation.
767                  */
768                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
769                         if (m <= 0)
770                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
771                         else
772                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
773                 }
774
775                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
776                         unsigned long var;
777                         if (m < 0)
778                                 m = -m;
779
780                         /* Scale deviation to rttvar fixed point */
781                         m >>= 1;
782                         if (m < tp->mdev)
783                                 m = tp->mdev;
784
785                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
786                         if (m >= var)
787                                 var = m;
788                         else
789                                 var -= (var - m) >> 2;
790
791                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
792                 }
793
794                 if (tcp_in_initial_slowstart(tp)) {
795                         /* Slow start still did not finish. */
796                         if (dst_metric(dst, RTAX_SSTHRESH) &&
797                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
798                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
799                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
800                         if (!dst_metric_locked(dst, RTAX_CWND) &&
801                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
802                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
803                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
804                            icsk->icsk_ca_state == TCP_CA_Open) {
805                         /* Cong. avoidance phase, cwnd is reliable. */
806                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
807                                 dst_metric_set(dst, RTAX_SSTHRESH,
808                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
809                         if (!dst_metric_locked(dst, RTAX_CWND))
810                                 dst_metric_set(dst, RTAX_CWND,
811                                                (dst_metric(dst, RTAX_CWND) +
812                                                 tp->snd_cwnd) >> 1);
813                 } else {
814                         /* Else slow start did not finish, cwnd is non-sense,
815                            ssthresh may be also invalid.
816                          */
817                         if (!dst_metric_locked(dst, RTAX_CWND))
818                                 dst_metric_set(dst, RTAX_CWND,
819                                                (dst_metric(dst, RTAX_CWND) +
820                                                 tp->snd_ssthresh) >> 1);
821                         if (dst_metric(dst, RTAX_SSTHRESH) &&
822                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
823                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
824                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
825                 }
826
827                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
828                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
829                             tp->reordering != sysctl_tcp_reordering)
830                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
831                 }
832         }
833 }
834
835 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
836 {
837         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
838
839         if (!cwnd)
840                 cwnd = TCP_INIT_CWND;
841         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
842 }
843
844 /* Set slow start threshold and cwnd not falling to slow start */
845 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
846 {
847         struct tcp_sock *tp = tcp_sk(sk);
848         const struct inet_connection_sock *icsk = inet_csk(sk);
849
850         tp->prior_ssthresh = 0;
851         tp->bytes_acked = 0;
852         if (icsk->icsk_ca_state < TCP_CA_CWR) {
853                 tp->undo_marker = 0;
854                 if (set_ssthresh)
855                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
856                 tp->snd_cwnd = min(tp->snd_cwnd,
857                                    tcp_packets_in_flight(tp) + 1U);
858                 tp->snd_cwnd_cnt = 0;
859                 tp->high_seq = tp->snd_nxt;
860                 tp->snd_cwnd_stamp = tcp_time_stamp;
861                 TCP_ECN_queue_cwr(tp);
862
863                 tcp_set_ca_state(sk, TCP_CA_CWR);
864         }
865 }
866
867 /*
868  * Packet counting of FACK is based on in-order assumptions, therefore TCP
869  * disables it when reordering is detected
870  */
871 static void tcp_disable_fack(struct tcp_sock *tp)
872 {
873         /* RFC3517 uses different metric in lost marker => reset on change */
874         if (tcp_is_fack(tp))
875                 tp->lost_skb_hint = NULL;
876         tp->rx_opt.sack_ok &= ~2;
877 }
878
879 /* Take a notice that peer is sending D-SACKs */
880 static void tcp_dsack_seen(struct tcp_sock *tp)
881 {
882         tp->rx_opt.sack_ok |= 4;
883 }
884
885 /* Initialize metrics on socket. */
886
887 static void tcp_init_metrics(struct sock *sk)
888 {
889         struct tcp_sock *tp = tcp_sk(sk);
890         struct dst_entry *dst = __sk_dst_get(sk);
891
892         if (dst == NULL)
893                 goto reset;
894
895         dst_confirm(dst);
896
897         if (dst_metric_locked(dst, RTAX_CWND))
898                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
899         if (dst_metric(dst, RTAX_SSTHRESH)) {
900                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
901                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
902                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
903         } else {
904                 /* ssthresh may have been reduced unnecessarily during.
905                  * 3WHS. Restore it back to its initial default.
906                  */
907                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
908         }
909         if (dst_metric(dst, RTAX_REORDERING) &&
910             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
911                 tcp_disable_fack(tp);
912                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
913         }
914
915         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
916                 goto reset;
917
918         /* Initial rtt is determined from SYN,SYN-ACK.
919          * The segment is small and rtt may appear much
920          * less than real one. Use per-dst memory
921          * to make it more realistic.
922          *
923          * A bit of theory. RTT is time passed after "normal" sized packet
924          * is sent until it is ACKed. In normal circumstances sending small
925          * packets force peer to delay ACKs and calculation is correct too.
926          * The algorithm is adaptive and, provided we follow specs, it
927          * NEVER underestimate RTT. BUT! If peer tries to make some clever
928          * tricks sort of "quick acks" for time long enough to decrease RTT
929          * to low value, and then abruptly stops to do it and starts to delay
930          * ACKs, wait for troubles.
931          */
932         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
933                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
934                 tp->rtt_seq = tp->snd_nxt;
935         }
936         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
937                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
938                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
939         }
940         tcp_set_rto(sk);
941 reset:
942         if (tp->srtt == 0) {
943                 /* RFC2988bis: We've failed to get a valid RTT sample from
944                  * 3WHS. This is most likely due to retransmission,
945                  * including spurious one. Reset the RTO back to 3secs
946                  * from the more aggressive 1sec to avoid more spurious
947                  * retransmission.
948                  */
949                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
950                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
951         }
952         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
953          * retransmitted. In light of RFC2988bis' more aggressive 1sec
954          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
955          * retransmission has occurred.
956          */
957         if (tp->total_retrans > 1)
958                 tp->snd_cwnd = 1;
959         else
960                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
961         tp->snd_cwnd_stamp = tcp_time_stamp;
962 }
963
964 static void tcp_update_reordering(struct sock *sk, const int metric,
965                                   const int ts)
966 {
967         struct tcp_sock *tp = tcp_sk(sk);
968         if (metric > tp->reordering) {
969                 int mib_idx;
970
971                 tp->reordering = min(TCP_MAX_REORDERING, metric);
972
973                 /* This exciting event is worth to be remembered. 8) */
974                 if (ts)
975                         mib_idx = LINUX_MIB_TCPTSREORDER;
976                 else if (tcp_is_reno(tp))
977                         mib_idx = LINUX_MIB_TCPRENOREORDER;
978                 else if (tcp_is_fack(tp))
979                         mib_idx = LINUX_MIB_TCPFACKREORDER;
980                 else
981                         mib_idx = LINUX_MIB_TCPSACKREORDER;
982
983                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
984 #if FASTRETRANS_DEBUG > 1
985                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
986                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
987                        tp->reordering,
988                        tp->fackets_out,
989                        tp->sacked_out,
990                        tp->undo_marker ? tp->undo_retrans : 0);
991 #endif
992                 tcp_disable_fack(tp);
993         }
994 }
995
996 /* This must be called before lost_out is incremented */
997 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
998 {
999         if ((tp->retransmit_skb_hint == NULL) ||
1000             before(TCP_SKB_CB(skb)->seq,
1001                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1002                 tp->retransmit_skb_hint = skb;
1003
1004         if (!tp->lost_out ||
1005             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1006                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1007 }
1008
1009 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1010 {
1011         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1012                 tcp_verify_retransmit_hint(tp, skb);
1013
1014                 tp->lost_out += tcp_skb_pcount(skb);
1015                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1016         }
1017 }
1018
1019 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1020                                             struct sk_buff *skb)
1021 {
1022         tcp_verify_retransmit_hint(tp, skb);
1023
1024         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1025                 tp->lost_out += tcp_skb_pcount(skb);
1026                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1027         }
1028 }
1029
1030 /* This procedure tags the retransmission queue when SACKs arrive.
1031  *
1032  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1033  * Packets in queue with these bits set are counted in variables
1034  * sacked_out, retrans_out and lost_out, correspondingly.
1035  *
1036  * Valid combinations are:
1037  * Tag  InFlight        Description
1038  * 0    1               - orig segment is in flight.
1039  * S    0               - nothing flies, orig reached receiver.
1040  * L    0               - nothing flies, orig lost by net.
1041  * R    2               - both orig and retransmit are in flight.
1042  * L|R  1               - orig is lost, retransmit is in flight.
1043  * S|R  1               - orig reached receiver, retrans is still in flight.
1044  * (L|S|R is logically valid, it could occur when L|R is sacked,
1045  *  but it is equivalent to plain S and code short-curcuits it to S.
1046  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1047  *
1048  * These 6 states form finite state machine, controlled by the following events:
1049  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1050  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1051  * 3. Loss detection event of one of three flavors:
1052  *      A. Scoreboard estimator decided the packet is lost.
1053  *         A'. Reno "three dupacks" marks head of queue lost.
1054  *         A''. Its FACK modfication, head until snd.fack is lost.
1055  *      B. SACK arrives sacking data transmitted after never retransmitted
1056  *         hole was sent out.
1057  *      C. SACK arrives sacking SND.NXT at the moment, when the
1058  *         segment was retransmitted.
1059  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1060  *
1061  * It is pleasant to note, that state diagram turns out to be commutative,
1062  * so that we are allowed not to be bothered by order of our actions,
1063  * when multiple events arrive simultaneously. (see the function below).
1064  *
1065  * Reordering detection.
1066  * --------------------
1067  * Reordering metric is maximal distance, which a packet can be displaced
1068  * in packet stream. With SACKs we can estimate it:
1069  *
1070  * 1. SACK fills old hole and the corresponding segment was not
1071  *    ever retransmitted -> reordering. Alas, we cannot use it
1072  *    when segment was retransmitted.
1073  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1074  *    for retransmitted and already SACKed segment -> reordering..
1075  * Both of these heuristics are not used in Loss state, when we cannot
1076  * account for retransmits accurately.
1077  *
1078  * SACK block validation.
1079  * ----------------------
1080  *
1081  * SACK block range validation checks that the received SACK block fits to
1082  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1083  * Note that SND.UNA is not included to the range though being valid because
1084  * it means that the receiver is rather inconsistent with itself reporting
1085  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1086  * perfectly valid, however, in light of RFC2018 which explicitly states
1087  * that "SACK block MUST reflect the newest segment.  Even if the newest
1088  * segment is going to be discarded ...", not that it looks very clever
1089  * in case of head skb. Due to potentional receiver driven attacks, we
1090  * choose to avoid immediate execution of a walk in write queue due to
1091  * reneging and defer head skb's loss recovery to standard loss recovery
1092  * procedure that will eventually trigger (nothing forbids us doing this).
1093  *
1094  * Implements also blockage to start_seq wrap-around. Problem lies in the
1095  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1096  * there's no guarantee that it will be before snd_nxt (n). The problem
1097  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1098  * wrap (s_w):
1099  *
1100  *         <- outs wnd ->                          <- wrapzone ->
1101  *         u     e      n                         u_w   e_w  s n_w
1102  *         |     |      |                          |     |   |  |
1103  * |<------------+------+----- TCP seqno space --------------+---------->|
1104  * ...-- <2^31 ->|                                           |<--------...
1105  * ...---- >2^31 ------>|                                    |<--------...
1106  *
1107  * Current code wouldn't be vulnerable but it's better still to discard such
1108  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1109  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1110  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1111  * equal to the ideal case (infinite seqno space without wrap caused issues).
1112  *
1113  * With D-SACK the lower bound is extended to cover sequence space below
1114  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1115  * again, D-SACK block must not to go across snd_una (for the same reason as
1116  * for the normal SACK blocks, explained above). But there all simplicity
1117  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1118  * fully below undo_marker they do not affect behavior in anyway and can
1119  * therefore be safely ignored. In rare cases (which are more or less
1120  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1121  * fragmentation and packet reordering past skb's retransmission. To consider
1122  * them correctly, the acceptable range must be extended even more though
1123  * the exact amount is rather hard to quantify. However, tp->max_window can
1124  * be used as an exaggerated estimate.
1125  */
1126 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1127                                   u32 start_seq, u32 end_seq)
1128 {
1129         /* Too far in future, or reversed (interpretation is ambiguous) */
1130         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1131                 return 0;
1132
1133         /* Nasty start_seq wrap-around check (see comments above) */
1134         if (!before(start_seq, tp->snd_nxt))
1135                 return 0;
1136
1137         /* In outstanding window? ...This is valid exit for D-SACKs too.
1138          * start_seq == snd_una is non-sensical (see comments above)
1139          */
1140         if (after(start_seq, tp->snd_una))
1141                 return 1;
1142
1143         if (!is_dsack || !tp->undo_marker)
1144                 return 0;
1145
1146         /* ...Then it's D-SACK, and must reside below snd_una completely */
1147         if (after(end_seq, tp->snd_una))
1148                 return 0;
1149
1150         if (!before(start_seq, tp->undo_marker))
1151                 return 1;
1152
1153         /* Too old */
1154         if (!after(end_seq, tp->undo_marker))
1155                 return 0;
1156
1157         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1158          *   start_seq < undo_marker and end_seq >= undo_marker.
1159          */
1160         return !before(start_seq, end_seq - tp->max_window);
1161 }
1162
1163 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1164  * Event "C". Later note: FACK people cheated me again 8), we have to account
1165  * for reordering! Ugly, but should help.
1166  *
1167  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1168  * less than what is now known to be received by the other end (derived from
1169  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1170  * retransmitted skbs to avoid some costly processing per ACKs.
1171  */
1172 static void tcp_mark_lost_retrans(struct sock *sk)
1173 {
1174         const struct inet_connection_sock *icsk = inet_csk(sk);
1175         struct tcp_sock *tp = tcp_sk(sk);
1176         struct sk_buff *skb;
1177         int cnt = 0;
1178         u32 new_low_seq = tp->snd_nxt;
1179         u32 received_upto = tcp_highest_sack_seq(tp);
1180
1181         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1182             !after(received_upto, tp->lost_retrans_low) ||
1183             icsk->icsk_ca_state != TCP_CA_Recovery)
1184                 return;
1185
1186         tcp_for_write_queue(skb, sk) {
1187                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1188
1189                 if (skb == tcp_send_head(sk))
1190                         break;
1191                 if (cnt == tp->retrans_out)
1192                         break;
1193                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1194                         continue;
1195
1196                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1197                         continue;
1198
1199                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1200                  * constraint here (see above) but figuring out that at
1201                  * least tp->reordering SACK blocks reside between ack_seq
1202                  * and received_upto is not easy task to do cheaply with
1203                  * the available datastructures.
1204                  *
1205                  * Whether FACK should check here for tp->reordering segs
1206                  * in-between one could argue for either way (it would be
1207                  * rather simple to implement as we could count fack_count
1208                  * during the walk and do tp->fackets_out - fack_count).
1209                  */
1210                 if (after(received_upto, ack_seq)) {
1211                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1212                         tp->retrans_out -= tcp_skb_pcount(skb);
1213
1214                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1215                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1216                 } else {
1217                         if (before(ack_seq, new_low_seq))
1218                                 new_low_seq = ack_seq;
1219                         cnt += tcp_skb_pcount(skb);
1220                 }
1221         }
1222
1223         if (tp->retrans_out)
1224                 tp->lost_retrans_low = new_low_seq;
1225 }
1226
1227 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1228                            struct tcp_sack_block_wire *sp, int num_sacks,
1229                            u32 prior_snd_una)
1230 {
1231         struct tcp_sock *tp = tcp_sk(sk);
1232         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1233         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1234         int dup_sack = 0;
1235
1236         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1237                 dup_sack = 1;
1238                 tcp_dsack_seen(tp);
1239                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1240         } else if (num_sacks > 1) {
1241                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1242                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1243
1244                 if (!after(end_seq_0, end_seq_1) &&
1245                     !before(start_seq_0, start_seq_1)) {
1246                         dup_sack = 1;
1247                         tcp_dsack_seen(tp);
1248                         NET_INC_STATS_BH(sock_net(sk),
1249                                         LINUX_MIB_TCPDSACKOFORECV);
1250                 }
1251         }
1252
1253         /* D-SACK for already forgotten data... Do dumb counting. */
1254         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1255             !after(end_seq_0, prior_snd_una) &&
1256             after(end_seq_0, tp->undo_marker))
1257                 tp->undo_retrans--;
1258
1259         return dup_sack;
1260 }
1261
1262 struct tcp_sacktag_state {
1263         int reord;
1264         int fack_count;
1265         int flag;
1266 };
1267
1268 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1269  * the incoming SACK may not exactly match but we can find smaller MSS
1270  * aligned portion of it that matches. Therefore we might need to fragment
1271  * which may fail and creates some hassle (caller must handle error case
1272  * returns).
1273  *
1274  * FIXME: this could be merged to shift decision code
1275  */
1276 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1277                                  u32 start_seq, u32 end_seq)
1278 {
1279         int in_sack, err;
1280         unsigned int pkt_len;
1281         unsigned int mss;
1282
1283         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1284                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1285
1286         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1287             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1288                 mss = tcp_skb_mss(skb);
1289                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1290
1291                 if (!in_sack) {
1292                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1293                         if (pkt_len < mss)
1294                                 pkt_len = mss;
1295                 } else {
1296                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1297                         if (pkt_len < mss)
1298                                 return -EINVAL;
1299                 }
1300
1301                 /* Round if necessary so that SACKs cover only full MSSes
1302                  * and/or the remaining small portion (if present)
1303                  */
1304                 if (pkt_len > mss) {
1305                         unsigned int new_len = (pkt_len / mss) * mss;
1306                         if (!in_sack && new_len < pkt_len)
1307                                 new_len += mss;
1308                         pkt_len = new_len;
1309                 }
1310
1311                 if (pkt_len >= skb->len && !in_sack)
1312                         return 0;
1313
1314                 err = tcp_fragment(sk, skb, pkt_len, mss);
1315                 if (err < 0)
1316                         return err;
1317         }
1318
1319         return in_sack;
1320 }
1321
1322 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1323 static u8 tcp_sacktag_one(struct sock *sk,
1324                           struct tcp_sacktag_state *state, u8 sacked,
1325                           u32 start_seq, u32 end_seq,
1326                           int dup_sack, int pcount)
1327 {
1328         struct tcp_sock *tp = tcp_sk(sk);
1329         int fack_count = state->fack_count;
1330
1331         /* Account D-SACK for retransmitted packet. */
1332         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1333                 if (tp->undo_marker && tp->undo_retrans &&
1334                     after(end_seq, tp->undo_marker))
1335                         tp->undo_retrans--;
1336                 if (sacked & TCPCB_SACKED_ACKED)
1337                         state->reord = min(fack_count, state->reord);
1338         }
1339
1340         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1341         if (!after(end_seq, tp->snd_una))
1342                 return sacked;
1343
1344         if (!(sacked & TCPCB_SACKED_ACKED)) {
1345                 if (sacked & TCPCB_SACKED_RETRANS) {
1346                         /* If the segment is not tagged as lost,
1347                          * we do not clear RETRANS, believing
1348                          * that retransmission is still in flight.
1349                          */
1350                         if (sacked & TCPCB_LOST) {
1351                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1352                                 tp->lost_out -= pcount;
1353                                 tp->retrans_out -= pcount;
1354                         }
1355                 } else {
1356                         if (!(sacked & TCPCB_RETRANS)) {
1357                                 /* New sack for not retransmitted frame,
1358                                  * which was in hole. It is reordering.
1359                                  */
1360                                 if (before(start_seq,
1361                                            tcp_highest_sack_seq(tp)))
1362                                         state->reord = min(fack_count,
1363                                                            state->reord);
1364
1365                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1366                                 if (!after(end_seq, tp->frto_highmark))
1367                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1368                         }
1369
1370                         if (sacked & TCPCB_LOST) {
1371                                 sacked &= ~TCPCB_LOST;
1372                                 tp->lost_out -= pcount;
1373                         }
1374                 }
1375
1376                 sacked |= TCPCB_SACKED_ACKED;
1377                 state->flag |= FLAG_DATA_SACKED;
1378                 tp->sacked_out += pcount;
1379
1380                 fack_count += pcount;
1381
1382                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1383                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1384                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1385                         tp->lost_cnt_hint += pcount;
1386
1387                 if (fack_count > tp->fackets_out)
1388                         tp->fackets_out = fack_count;
1389         }
1390
1391         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1392          * frames and clear it. undo_retrans is decreased above, L|R frames
1393          * are accounted above as well.
1394          */
1395         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1396                 sacked &= ~TCPCB_SACKED_RETRANS;
1397                 tp->retrans_out -= pcount;
1398         }
1399
1400         return sacked;
1401 }
1402
1403 /* Shift newly-SACKed bytes from this skb to the immediately previous
1404  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1405  */
1406 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1407                            struct tcp_sacktag_state *state,
1408                            unsigned int pcount, int shifted, int mss,
1409                            int dup_sack)
1410 {
1411         struct tcp_sock *tp = tcp_sk(sk);
1412         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1413         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1414         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1415
1416         BUG_ON(!pcount);
1417
1418         /* Adjust counters and hints for the newly sacked sequence
1419          * range but discard the return value since prev is already
1420          * marked. We must tag the range first because the seq
1421          * advancement below implicitly advances
1422          * tcp_highest_sack_seq() when skb is highest_sack.
1423          */
1424         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1425                         start_seq, end_seq, dup_sack, pcount);
1426
1427         if (skb == tp->lost_skb_hint)
1428                 tp->lost_cnt_hint += pcount;
1429
1430         TCP_SKB_CB(prev)->end_seq += shifted;
1431         TCP_SKB_CB(skb)->seq += shifted;
1432
1433         skb_shinfo(prev)->gso_segs += pcount;
1434         WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1435         skb_shinfo(skb)->gso_segs -= pcount;
1436
1437         /* When we're adding to gso_segs == 1, gso_size will be zero,
1438          * in theory this shouldn't be necessary but as long as DSACK
1439          * code can come after this skb later on it's better to keep
1440          * setting gso_size to something.
1441          */
1442         if (!skb_shinfo(prev)->gso_size) {
1443                 skb_shinfo(prev)->gso_size = mss;
1444                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1445         }
1446
1447         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1448         if (skb_shinfo(skb)->gso_segs <= 1) {
1449                 skb_shinfo(skb)->gso_size = 0;
1450                 skb_shinfo(skb)->gso_type = 0;
1451         }
1452
1453         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1454         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1455
1456         if (skb->len > 0) {
1457                 BUG_ON(!tcp_skb_pcount(skb));
1458                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1459                 return 0;
1460         }
1461
1462         /* Whole SKB was eaten :-) */
1463
1464         if (skb == tp->retransmit_skb_hint)
1465                 tp->retransmit_skb_hint = prev;
1466         if (skb == tp->scoreboard_skb_hint)
1467                 tp->scoreboard_skb_hint = prev;
1468         if (skb == tp->lost_skb_hint) {
1469                 tp->lost_skb_hint = prev;
1470                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1471         }
1472
1473         TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1474         if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1475                 TCP_SKB_CB(prev)->end_seq++;
1476
1477         if (skb == tcp_highest_sack(sk))
1478                 tcp_advance_highest_sack(sk, skb);
1479
1480         tcp_unlink_write_queue(skb, sk);
1481         sk_wmem_free_skb(sk, skb);
1482
1483         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1484
1485         return 1;
1486 }
1487
1488 /* I wish gso_size would have a bit more sane initialization than
1489  * something-or-zero which complicates things
1490  */
1491 static int tcp_skb_seglen(const struct sk_buff *skb)
1492 {
1493         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1494 }
1495
1496 /* Shifting pages past head area doesn't work */
1497 static int skb_can_shift(const struct sk_buff *skb)
1498 {
1499         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1500 }
1501
1502 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1503                   int pcount, int shiftlen)
1504 {
1505         /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1506          * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1507          * to make sure not storing more than 65535 * 8 bytes per skb,
1508          * even if current MSS is bigger.
1509          */
1510         if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1511                 return 0;
1512         if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1513                 return 0;
1514         return skb_shift(to, from, shiftlen);
1515 }
1516
1517 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1518  * skb.
1519  */
1520 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1521                                           struct tcp_sacktag_state *state,
1522                                           u32 start_seq, u32 end_seq,
1523                                           int dup_sack)
1524 {
1525         struct tcp_sock *tp = tcp_sk(sk);
1526         struct sk_buff *prev;
1527         int mss;
1528         int next_pcount;
1529         int pcount = 0;
1530         int len;
1531         int in_sack;
1532
1533         if (!sk_can_gso(sk))
1534                 goto fallback;
1535
1536         /* Normally R but no L won't result in plain S */
1537         if (!dup_sack &&
1538             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1539                 goto fallback;
1540         if (!skb_can_shift(skb))
1541                 goto fallback;
1542         /* This frame is about to be dropped (was ACKed). */
1543         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1544                 goto fallback;
1545
1546         /* Can only happen with delayed DSACK + discard craziness */
1547         if (unlikely(skb == tcp_write_queue_head(sk)))
1548                 goto fallback;
1549         prev = tcp_write_queue_prev(sk, skb);
1550
1551         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1552                 goto fallback;
1553
1554         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1555                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1556
1557         if (in_sack) {
1558                 len = skb->len;
1559                 pcount = tcp_skb_pcount(skb);
1560                 mss = tcp_skb_seglen(skb);
1561
1562                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1563                  * drop this restriction as unnecessary
1564                  */
1565                 if (mss != tcp_skb_seglen(prev))
1566                         goto fallback;
1567         } else {
1568                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1569                         goto noop;
1570                 /* CHECKME: This is non-MSS split case only?, this will
1571                  * cause skipped skbs due to advancing loop btw, original
1572                  * has that feature too
1573                  */
1574                 if (tcp_skb_pcount(skb) <= 1)
1575                         goto noop;
1576
1577                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1578                 if (!in_sack) {
1579                         /* TODO: head merge to next could be attempted here
1580                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1581                          * though it might not be worth of the additional hassle
1582                          *
1583                          * ...we can probably just fallback to what was done
1584                          * previously. We could try merging non-SACKed ones
1585                          * as well but it probably isn't going to buy off
1586                          * because later SACKs might again split them, and
1587                          * it would make skb timestamp tracking considerably
1588                          * harder problem.
1589                          */
1590                         goto fallback;
1591                 }
1592
1593                 len = end_seq - TCP_SKB_CB(skb)->seq;
1594                 BUG_ON(len < 0);
1595                 BUG_ON(len > skb->len);
1596
1597                 /* MSS boundaries should be honoured or else pcount will
1598                  * severely break even though it makes things bit trickier.
1599                  * Optimize common case to avoid most of the divides
1600                  */
1601                 mss = tcp_skb_mss(skb);
1602
1603                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1604                  * drop this restriction as unnecessary
1605                  */
1606                 if (mss != tcp_skb_seglen(prev))
1607                         goto fallback;
1608
1609                 if (len == mss) {
1610                         pcount = 1;
1611                 } else if (len < mss) {
1612                         goto noop;
1613                 } else {
1614                         pcount = len / mss;
1615                         len = pcount * mss;
1616                 }
1617         }
1618
1619         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1620         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1621                 goto fallback;
1622
1623         if (!tcp_skb_shift(prev, skb, pcount, len))
1624                 goto fallback;
1625         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1626                 goto out;
1627
1628         /* Hole filled allows collapsing with the next as well, this is very
1629          * useful when hole on every nth skb pattern happens
1630          */
1631         if (prev == tcp_write_queue_tail(sk))
1632                 goto out;
1633         skb = tcp_write_queue_next(sk, prev);
1634
1635         if (!skb_can_shift(skb) ||
1636             (skb == tcp_send_head(sk)) ||
1637             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1638             (mss != tcp_skb_seglen(skb)))
1639                 goto out;
1640
1641         len = skb->len;
1642         next_pcount = tcp_skb_pcount(skb);
1643         if (tcp_skb_shift(prev, skb, next_pcount, len)) {
1644                 pcount += next_pcount;
1645                 tcp_shifted_skb(sk, skb, state, next_pcount, len, mss, 0);
1646         }
1647
1648 out:
1649         state->fack_count += pcount;
1650         return prev;
1651
1652 noop:
1653         return skb;
1654
1655 fallback:
1656         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1657         return NULL;
1658 }
1659
1660 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1661                                         struct tcp_sack_block *next_dup,
1662                                         struct tcp_sacktag_state *state,
1663                                         u32 start_seq, u32 end_seq,
1664                                         int dup_sack_in)
1665 {
1666         struct tcp_sock *tp = tcp_sk(sk);
1667         struct sk_buff *tmp;
1668
1669         tcp_for_write_queue_from(skb, sk) {
1670                 int in_sack = 0;
1671                 int dup_sack = dup_sack_in;
1672
1673                 if (skb == tcp_send_head(sk))
1674                         break;
1675
1676                 /* queue is in-order => we can short-circuit the walk early */
1677                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1678                         break;
1679
1680                 if ((next_dup != NULL) &&
1681                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1682                         in_sack = tcp_match_skb_to_sack(sk, skb,
1683                                                         next_dup->start_seq,
1684                                                         next_dup->end_seq);
1685                         if (in_sack > 0)
1686                                 dup_sack = 1;
1687                 }
1688
1689                 /* skb reference here is a bit tricky to get right, since
1690                  * shifting can eat and free both this skb and the next,
1691                  * so not even _safe variant of the loop is enough.
1692                  */
1693                 if (in_sack <= 0) {
1694                         tmp = tcp_shift_skb_data(sk, skb, state,
1695                                                  start_seq, end_seq, dup_sack);
1696                         if (tmp != NULL) {
1697                                 if (tmp != skb) {
1698                                         skb = tmp;
1699                                         continue;
1700                                 }
1701
1702                                 in_sack = 0;
1703                         } else {
1704                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1705                                                                 start_seq,
1706                                                                 end_seq);
1707                         }
1708                 }
1709
1710                 if (unlikely(in_sack < 0))
1711                         break;
1712
1713                 if (in_sack) {
1714                         TCP_SKB_CB(skb)->sacked =
1715                                 tcp_sacktag_one(sk,
1716                                                 state,
1717                                                 TCP_SKB_CB(skb)->sacked,
1718                                                 TCP_SKB_CB(skb)->seq,
1719                                                 TCP_SKB_CB(skb)->end_seq,
1720                                                 dup_sack,
1721                                                 tcp_skb_pcount(skb));
1722
1723                         if (!before(TCP_SKB_CB(skb)->seq,
1724                                     tcp_highest_sack_seq(tp)))
1725                                 tcp_advance_highest_sack(sk, skb);
1726                 }
1727
1728                 state->fack_count += tcp_skb_pcount(skb);
1729         }
1730         return skb;
1731 }
1732
1733 /* Avoid all extra work that is being done by sacktag while walking in
1734  * a normal way
1735  */
1736 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1737                                         struct tcp_sacktag_state *state,
1738                                         u32 skip_to_seq)
1739 {
1740         tcp_for_write_queue_from(skb, sk) {
1741                 if (skb == tcp_send_head(sk))
1742                         break;
1743
1744                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1745                         break;
1746
1747                 state->fack_count += tcp_skb_pcount(skb);
1748         }
1749         return skb;
1750 }
1751
1752 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1753                                                 struct sock *sk,
1754                                                 struct tcp_sack_block *next_dup,
1755                                                 struct tcp_sacktag_state *state,
1756                                                 u32 skip_to_seq)
1757 {
1758         if (next_dup == NULL)
1759                 return skb;
1760
1761         if (before(next_dup->start_seq, skip_to_seq)) {
1762                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1763                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1764                                        next_dup->start_seq, next_dup->end_seq,
1765                                        1);
1766         }
1767
1768         return skb;
1769 }
1770
1771 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1772 {
1773         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1774 }
1775
1776 static int
1777 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1778                         u32 prior_snd_una)
1779 {
1780         const struct inet_connection_sock *icsk = inet_csk(sk);
1781         struct tcp_sock *tp = tcp_sk(sk);
1782         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1783                                     TCP_SKB_CB(ack_skb)->sacked);
1784         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1785         struct tcp_sack_block sp[TCP_NUM_SACKS];
1786         struct tcp_sack_block *cache;
1787         struct tcp_sacktag_state state;
1788         struct sk_buff *skb;
1789         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1790         int used_sacks;
1791         int found_dup_sack = 0;
1792         int i, j;
1793         int first_sack_index;
1794
1795         state.flag = 0;
1796         state.reord = tp->packets_out;
1797
1798         if (!tp->sacked_out) {
1799                 if (WARN_ON(tp->fackets_out))
1800                         tp->fackets_out = 0;
1801                 tcp_highest_sack_reset(sk);
1802         }
1803
1804         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1805                                          num_sacks, prior_snd_una);
1806         if (found_dup_sack)
1807                 state.flag |= FLAG_DSACKING_ACK;
1808
1809         /* Eliminate too old ACKs, but take into
1810          * account more or less fresh ones, they can
1811          * contain valid SACK info.
1812          */
1813         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1814                 return 0;
1815
1816         if (!tp->packets_out)
1817                 goto out;
1818
1819         used_sacks = 0;
1820         first_sack_index = 0;
1821         for (i = 0; i < num_sacks; i++) {
1822                 int dup_sack = !i && found_dup_sack;
1823
1824                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1825                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1826
1827                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1828                                             sp[used_sacks].start_seq,
1829                                             sp[used_sacks].end_seq)) {
1830                         int mib_idx;
1831
1832                         if (dup_sack) {
1833                                 if (!tp->undo_marker)
1834                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1835                                 else
1836                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1837                         } else {
1838                                 /* Don't count olds caused by ACK reordering */
1839                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1840                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1841                                         continue;
1842                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1843                         }
1844
1845                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1846                         if (i == 0)
1847                                 first_sack_index = -1;
1848                         continue;
1849                 }
1850
1851                 /* Ignore very old stuff early */
1852                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1853                         continue;
1854
1855                 used_sacks++;
1856         }
1857
1858         /* order SACK blocks to allow in order walk of the retrans queue */
1859         for (i = used_sacks - 1; i > 0; i--) {
1860                 for (j = 0; j < i; j++) {
1861                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1862                                 swap(sp[j], sp[j + 1]);
1863
1864                                 /* Track where the first SACK block goes to */
1865                                 if (j == first_sack_index)
1866                                         first_sack_index = j + 1;
1867                         }
1868                 }
1869         }
1870
1871         skb = tcp_write_queue_head(sk);
1872         state.fack_count = 0;
1873         i = 0;
1874
1875         if (!tp->sacked_out) {
1876                 /* It's already past, so skip checking against it */
1877                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1878         } else {
1879                 cache = tp->recv_sack_cache;
1880                 /* Skip empty blocks in at head of the cache */
1881                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1882                        !cache->end_seq)
1883                         cache++;
1884         }
1885
1886         while (i < used_sacks) {
1887                 u32 start_seq = sp[i].start_seq;
1888                 u32 end_seq = sp[i].end_seq;
1889                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1890                 struct tcp_sack_block *next_dup = NULL;
1891
1892                 if (found_dup_sack && ((i + 1) == first_sack_index))
1893                         next_dup = &sp[i + 1];
1894
1895                 /* Event "B" in the comment above. */
1896                 if (after(end_seq, tp->high_seq))
1897                         state.flag |= FLAG_DATA_LOST;
1898
1899                 /* Skip too early cached blocks */
1900                 while (tcp_sack_cache_ok(tp, cache) &&
1901                        !before(start_seq, cache->end_seq))
1902                         cache++;
1903
1904                 /* Can skip some work by looking recv_sack_cache? */
1905                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1906                     after(end_seq, cache->start_seq)) {
1907
1908                         /* Head todo? */
1909                         if (before(start_seq, cache->start_seq)) {
1910                                 skb = tcp_sacktag_skip(skb, sk, &state,
1911                                                        start_seq);
1912                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1913                                                        &state,
1914                                                        start_seq,
1915                                                        cache->start_seq,
1916                                                        dup_sack);
1917                         }
1918
1919                         /* Rest of the block already fully processed? */
1920                         if (!after(end_seq, cache->end_seq))
1921                                 goto advance_sp;
1922
1923                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1924                                                        &state,
1925                                                        cache->end_seq);
1926
1927                         /* ...tail remains todo... */
1928                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1929                                 /* ...but better entrypoint exists! */
1930                                 skb = tcp_highest_sack(sk);
1931                                 if (skb == NULL)
1932                                         break;
1933                                 state.fack_count = tp->fackets_out;
1934                                 cache++;
1935                                 goto walk;
1936                         }
1937
1938                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1939                         /* Check overlap against next cached too (past this one already) */
1940                         cache++;
1941                         continue;
1942                 }
1943
1944                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1945                         skb = tcp_highest_sack(sk);
1946                         if (skb == NULL)
1947                                 break;
1948                         state.fack_count = tp->fackets_out;
1949                 }
1950                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1951
1952 walk:
1953                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1954                                        start_seq, end_seq, dup_sack);
1955
1956 advance_sp:
1957                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1958                  * due to in-order walk
1959                  */
1960                 if (after(end_seq, tp->frto_highmark))
1961                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1962
1963                 i++;
1964         }
1965
1966         /* Clear the head of the cache sack blocks so we can skip it next time */
1967         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1968                 tp->recv_sack_cache[i].start_seq = 0;
1969                 tp->recv_sack_cache[i].end_seq = 0;
1970         }
1971         for (j = 0; j < used_sacks; j++)
1972                 tp->recv_sack_cache[i++] = sp[j];
1973
1974         tcp_mark_lost_retrans(sk);
1975
1976         tcp_verify_left_out(tp);
1977
1978         if ((state.reord < tp->fackets_out) &&
1979             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1980             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1981                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1982
1983 out:
1984
1985 #if FASTRETRANS_DEBUG > 0
1986         WARN_ON((int)tp->sacked_out < 0);
1987         WARN_ON((int)tp->lost_out < 0);
1988         WARN_ON((int)tp->retrans_out < 0);
1989         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1990 #endif
1991         return state.flag;
1992 }
1993
1994 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1995  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1996  */
1997 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1998 {
1999         u32 holes;
2000
2001         holes = max(tp->lost_out, 1U);
2002         holes = min(holes, tp->packets_out);
2003
2004         if ((tp->sacked_out + holes) > tp->packets_out) {
2005                 tp->sacked_out = tp->packets_out - holes;
2006                 return 1;
2007         }
2008         return 0;
2009 }
2010
2011 /* If we receive more dupacks than we expected counting segments
2012  * in assumption of absent reordering, interpret this as reordering.
2013  * The only another reason could be bug in receiver TCP.
2014  */
2015 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2016 {
2017         struct tcp_sock *tp = tcp_sk(sk);
2018         if (tcp_limit_reno_sacked(tp))
2019                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
2020 }
2021
2022 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2023
2024 static void tcp_add_reno_sack(struct sock *sk)
2025 {
2026         struct tcp_sock *tp = tcp_sk(sk);
2027         tp->sacked_out++;
2028         tcp_check_reno_reordering(sk, 0);
2029         tcp_verify_left_out(tp);
2030 }
2031
2032 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2033
2034 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2035 {
2036         struct tcp_sock *tp = tcp_sk(sk);
2037
2038         if (acked > 0) {
2039                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2040                 if (acked - 1 >= tp->sacked_out)
2041                         tp->sacked_out = 0;
2042                 else
2043                         tp->sacked_out -= acked - 1;
2044         }
2045         tcp_check_reno_reordering(sk, acked);
2046         tcp_verify_left_out(tp);
2047 }
2048
2049 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2050 {
2051         tp->sacked_out = 0;
2052 }
2053
2054 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2055 {
2056         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2057 }
2058
2059 /* F-RTO can only be used if TCP has never retransmitted anything other than
2060  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2061  */
2062 int tcp_use_frto(struct sock *sk)
2063 {
2064         const struct tcp_sock *tp = tcp_sk(sk);
2065         const struct inet_connection_sock *icsk = inet_csk(sk);
2066         struct sk_buff *skb;
2067
2068         if (!sysctl_tcp_frto)
2069                 return 0;
2070
2071         /* MTU probe and F-RTO won't really play nicely along currently */
2072         if (icsk->icsk_mtup.probe_size)
2073                 return 0;
2074
2075         if (tcp_is_sackfrto(tp))
2076                 return 1;
2077
2078         /* Avoid expensive walking of rexmit queue if possible */
2079         if (tp->retrans_out > 1)
2080                 return 0;
2081
2082         skb = tcp_write_queue_head(sk);
2083         if (tcp_skb_is_last(sk, skb))
2084                 return 1;
2085         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2086         tcp_for_write_queue_from(skb, sk) {
2087                 if (skb == tcp_send_head(sk))
2088                         break;
2089                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2090                         return 0;
2091                 /* Short-circuit when first non-SACKed skb has been checked */
2092                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2093                         break;
2094         }
2095         return 1;
2096 }
2097
2098 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2099  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2100  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2101  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2102  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2103  * bits are handled if the Loss state is really to be entered (in
2104  * tcp_enter_frto_loss).
2105  *
2106  * Do like tcp_enter_loss() would; when RTO expires the second time it
2107  * does:
2108  *  "Reduce ssthresh if it has not yet been made inside this window."
2109  */
2110 void tcp_enter_frto(struct sock *sk)
2111 {
2112         const struct inet_connection_sock *icsk = inet_csk(sk);
2113         struct tcp_sock *tp = tcp_sk(sk);
2114         struct sk_buff *skb;
2115
2116         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2117             tp->snd_una == tp->high_seq ||
2118             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2119              !icsk->icsk_retransmits)) {
2120                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2121                 /* Our state is too optimistic in ssthresh() call because cwnd
2122                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2123                  * recovery has not yet completed. Pattern would be this: RTO,
2124                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2125                  * up here twice).
2126                  * RFC4138 should be more specific on what to do, even though
2127                  * RTO is quite unlikely to occur after the first Cumulative ACK
2128                  * due to back-off and complexity of triggering events ...
2129                  */
2130                 if (tp->frto_counter) {
2131                         u32 stored_cwnd;
2132                         stored_cwnd = tp->snd_cwnd;
2133                         tp->snd_cwnd = 2;
2134                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2135                         tp->snd_cwnd = stored_cwnd;
2136                 } else {
2137                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2138                 }
2139                 /* ... in theory, cong.control module could do "any tricks" in
2140                  * ssthresh(), which means that ca_state, lost bits and lost_out
2141                  * counter would have to be faked before the call occurs. We
2142                  * consider that too expensive, unlikely and hacky, so modules
2143                  * using these in ssthresh() must deal these incompatibility
2144                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2145                  */
2146                 tcp_ca_event(sk, CA_EVENT_FRTO);
2147         }
2148
2149         tp->undo_marker = tp->snd_una;
2150         tp->undo_retrans = 0;
2151
2152         skb = tcp_write_queue_head(sk);
2153         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2154                 tp->undo_marker = 0;
2155         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2156                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2157                 tp->retrans_out -= tcp_skb_pcount(skb);
2158         }
2159         tcp_verify_left_out(tp);
2160
2161         /* Too bad if TCP was application limited */
2162         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2163
2164         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2165          * The last condition is necessary at least in tp->frto_counter case.
2166          */
2167         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2168             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2169             after(tp->high_seq, tp->snd_una)) {
2170                 tp->frto_highmark = tp->high_seq;
2171         } else {
2172                 tp->frto_highmark = tp->snd_nxt;
2173         }
2174         tcp_set_ca_state(sk, TCP_CA_Disorder);
2175         tp->high_seq = tp->snd_nxt;
2176         tp->frto_counter = 1;
2177 }
2178
2179 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2180  * which indicates that we should follow the traditional RTO recovery,
2181  * i.e. mark everything lost and do go-back-N retransmission.
2182  */
2183 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2184 {
2185         struct tcp_sock *tp = tcp_sk(sk);
2186         struct sk_buff *skb;
2187
2188         tp->lost_out = 0;
2189         tp->retrans_out = 0;
2190         if (tcp_is_reno(tp))
2191                 tcp_reset_reno_sack(tp);
2192
2193         tcp_for_write_queue(skb, sk) {
2194                 if (skb == tcp_send_head(sk))
2195                         break;
2196
2197                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2198                 /*
2199                  * Count the retransmission made on RTO correctly (only when
2200                  * waiting for the first ACK and did not get it)...
2201                  */
2202                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2203                         /* For some reason this R-bit might get cleared? */
2204                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2205                                 tp->retrans_out += tcp_skb_pcount(skb);
2206                         /* ...enter this if branch just for the first segment */
2207                         flag |= FLAG_DATA_ACKED;
2208                 } else {
2209                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2210                                 tp->undo_marker = 0;
2211                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2212                 }
2213
2214                 /* Marking forward transmissions that were made after RTO lost
2215                  * can cause unnecessary retransmissions in some scenarios,
2216                  * SACK blocks will mitigate that in some but not in all cases.
2217                  * We used to not mark them but it was causing break-ups with
2218                  * receivers that do only in-order receival.
2219                  *
2220                  * TODO: we could detect presence of such receiver and select
2221                  * different behavior per flow.
2222                  */
2223                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2224                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2225                         tp->lost_out += tcp_skb_pcount(skb);
2226                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2227                 }
2228         }
2229         tcp_verify_left_out(tp);
2230
2231         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2232         tp->snd_cwnd_cnt = 0;
2233         tp->snd_cwnd_stamp = tcp_time_stamp;
2234         tp->frto_counter = 0;
2235         tp->bytes_acked = 0;
2236
2237         tp->reordering = min_t(unsigned int, tp->reordering,
2238                                sysctl_tcp_reordering);
2239         tcp_set_ca_state(sk, TCP_CA_Loss);
2240         tp->high_seq = tp->snd_nxt;
2241         TCP_ECN_queue_cwr(tp);
2242
2243         tcp_clear_all_retrans_hints(tp);
2244 }
2245
2246 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2247 {
2248         tp->retrans_out = 0;
2249         tp->lost_out = 0;
2250
2251         tp->undo_marker = 0;
2252         tp->undo_retrans = 0;
2253 }
2254
2255 void tcp_clear_retrans(struct tcp_sock *tp)
2256 {
2257         tcp_clear_retrans_partial(tp);
2258
2259         tp->fackets_out = 0;
2260         tp->sacked_out = 0;
2261 }
2262
2263 /* Enter Loss state. If "how" is not zero, forget all SACK information
2264  * and reset tags completely, otherwise preserve SACKs. If receiver
2265  * dropped its ofo queue, we will know this due to reneging detection.
2266  */
2267 void tcp_enter_loss(struct sock *sk, int how)
2268 {
2269         const struct inet_connection_sock *icsk = inet_csk(sk);
2270         struct tcp_sock *tp = tcp_sk(sk);
2271         struct sk_buff *skb;
2272
2273         /* Reduce ssthresh if it has not yet been made inside this window. */
2274         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2275             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2276                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2277                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2278                 tcp_ca_event(sk, CA_EVENT_LOSS);
2279         }
2280         tp->snd_cwnd       = 1;
2281         tp->snd_cwnd_cnt   = 0;
2282         tp->snd_cwnd_stamp = tcp_time_stamp;
2283
2284         tp->bytes_acked = 0;
2285         tcp_clear_retrans_partial(tp);
2286
2287         if (tcp_is_reno(tp))
2288                 tcp_reset_reno_sack(tp);
2289
2290         tp->undo_marker = tp->snd_una;
2291         if (how) {
2292                 tp->sacked_out = 0;
2293                 tp->fackets_out = 0;
2294         }
2295         tcp_clear_all_retrans_hints(tp);
2296
2297         tcp_for_write_queue(skb, sk) {
2298                 if (skb == tcp_send_head(sk))
2299                         break;
2300
2301                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2302                         tp->undo_marker = 0;
2303                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2304                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2305                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2306                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2307                         tp->lost_out += tcp_skb_pcount(skb);
2308                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2309                 }
2310         }
2311         tcp_verify_left_out(tp);
2312
2313         tp->reordering = min_t(unsigned int, tp->reordering,
2314                                sysctl_tcp_reordering);
2315         tcp_set_ca_state(sk, TCP_CA_Loss);
2316         tp->high_seq = tp->snd_nxt;
2317         TCP_ECN_queue_cwr(tp);
2318         /* Abort F-RTO algorithm if one is in progress */
2319         tp->frto_counter = 0;
2320 }
2321
2322 /* If ACK arrived pointing to a remembered SACK, it means that our
2323  * remembered SACKs do not reflect real state of receiver i.e.
2324  * receiver _host_ is heavily congested (or buggy).
2325  *
2326  * Do processing similar to RTO timeout.
2327  */
2328 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2329 {
2330         if (flag & FLAG_SACK_RENEGING) {
2331                 struct inet_connection_sock *icsk = inet_csk(sk);
2332                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2333
2334                 tcp_enter_loss(sk, 1);
2335                 icsk->icsk_retransmits++;
2336                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2337                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2338                                           icsk->icsk_rto, TCP_RTO_MAX);
2339                 return 1;
2340         }
2341         return 0;
2342 }
2343
2344 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2345 {
2346         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2347 }
2348
2349 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2350  * counter when SACK is enabled (without SACK, sacked_out is used for
2351  * that purpose).
2352  *
2353  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2354  * segments up to the highest received SACK block so far and holes in
2355  * between them.
2356  *
2357  * With reordering, holes may still be in flight, so RFC3517 recovery
2358  * uses pure sacked_out (total number of SACKed segments) even though
2359  * it violates the RFC that uses duplicate ACKs, often these are equal
2360  * but when e.g. out-of-window ACKs or packet duplication occurs,
2361  * they differ. Since neither occurs due to loss, TCP should really
2362  * ignore them.
2363  */
2364 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2365 {
2366         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2367 }
2368
2369 static inline int tcp_skb_timedout(const struct sock *sk,
2370                                    const struct sk_buff *skb)
2371 {
2372         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2373 }
2374
2375 static inline int tcp_head_timedout(const struct sock *sk)
2376 {
2377         const struct tcp_sock *tp = tcp_sk(sk);
2378
2379         return tp->packets_out &&
2380                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2381 }
2382
2383 /* Linux NewReno/SACK/FACK/ECN state machine.
2384  * --------------------------------------
2385  *
2386  * "Open"       Normal state, no dubious events, fast path.
2387  * "Disorder"   In all the respects it is "Open",
2388  *              but requires a bit more attention. It is entered when
2389  *              we see some SACKs or dupacks. It is split of "Open"
2390  *              mainly to move some processing from fast path to slow one.
2391  * "CWR"        CWND was reduced due to some Congestion Notification event.
2392  *              It can be ECN, ICMP source quench, local device congestion.
2393  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2394  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2395  *
2396  * tcp_fastretrans_alert() is entered:
2397  * - each incoming ACK, if state is not "Open"
2398  * - when arrived ACK is unusual, namely:
2399  *      * SACK
2400  *      * Duplicate ACK.
2401  *      * ECN ECE.
2402  *
2403  * Counting packets in flight is pretty simple.
2404  *
2405  *      in_flight = packets_out - left_out + retrans_out
2406  *
2407  *      packets_out is SND.NXT-SND.UNA counted in packets.
2408  *
2409  *      retrans_out is number of retransmitted segments.
2410  *
2411  *      left_out is number of segments left network, but not ACKed yet.
2412  *
2413  *              left_out = sacked_out + lost_out
2414  *
2415  *     sacked_out: Packets, which arrived to receiver out of order
2416  *                 and hence not ACKed. With SACKs this number is simply
2417  *                 amount of SACKed data. Even without SACKs
2418  *                 it is easy to give pretty reliable estimate of this number,
2419  *                 counting duplicate ACKs.
2420  *
2421  *       lost_out: Packets lost by network. TCP has no explicit
2422  *                 "loss notification" feedback from network (for now).
2423  *                 It means that this number can be only _guessed_.
2424  *                 Actually, it is the heuristics to predict lossage that
2425  *                 distinguishes different algorithms.
2426  *
2427  *      F.e. after RTO, when all the queue is considered as lost,
2428  *      lost_out = packets_out and in_flight = retrans_out.
2429  *
2430  *              Essentially, we have now two algorithms counting
2431  *              lost packets.
2432  *
2433  *              FACK: It is the simplest heuristics. As soon as we decided
2434  *              that something is lost, we decide that _all_ not SACKed
2435  *              packets until the most forward SACK are lost. I.e.
2436  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2437  *              It is absolutely correct estimate, if network does not reorder
2438  *              packets. And it loses any connection to reality when reordering
2439  *              takes place. We use FACK by default until reordering
2440  *              is suspected on the path to this destination.
2441  *
2442  *              NewReno: when Recovery is entered, we assume that one segment
2443  *              is lost (classic Reno). While we are in Recovery and
2444  *              a partial ACK arrives, we assume that one more packet
2445  *              is lost (NewReno). This heuristics are the same in NewReno
2446  *              and SACK.
2447  *
2448  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2449  *  deflation etc. CWND is real congestion window, never inflated, changes
2450  *  only according to classic VJ rules.
2451  *
2452  * Really tricky (and requiring careful tuning) part of algorithm
2453  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2454  * The first determines the moment _when_ we should reduce CWND and,
2455  * hence, slow down forward transmission. In fact, it determines the moment
2456  * when we decide that hole is caused by loss, rather than by a reorder.
2457  *
2458  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2459  * holes, caused by lost packets.
2460  *
2461  * And the most logically complicated part of algorithm is undo
2462  * heuristics. We detect false retransmits due to both too early
2463  * fast retransmit (reordering) and underestimated RTO, analyzing
2464  * timestamps and D-SACKs. When we detect that some segments were
2465  * retransmitted by mistake and CWND reduction was wrong, we undo
2466  * window reduction and abort recovery phase. This logic is hidden
2467  * inside several functions named tcp_try_undo_<something>.
2468  */
2469
2470 /* This function decides, when we should leave Disordered state
2471  * and enter Recovery phase, reducing congestion window.
2472  *
2473  * Main question: may we further continue forward transmission
2474  * with the same cwnd?
2475  */
2476 static int tcp_time_to_recover(struct sock *sk)
2477 {
2478         struct tcp_sock *tp = tcp_sk(sk);
2479         __u32 packets_out;
2480
2481         /* Do not perform any recovery during F-RTO algorithm */
2482         if (tp->frto_counter)
2483                 return 0;
2484
2485         /* Trick#1: The loss is proven. */
2486         if (tp->lost_out)
2487                 return 1;
2488
2489         /* Not-A-Trick#2 : Classic rule... */
2490         if (tcp_dupack_heuristics(tp) > tp->reordering)
2491                 return 1;
2492
2493         /* Trick#3 : when we use RFC2988 timer restart, fast
2494          * retransmit can be triggered by timeout of queue head.
2495          */
2496         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2497                 return 1;
2498
2499         /* Trick#4: It is still not OK... But will it be useful to delay
2500          * recovery more?
2501          */
2502         packets_out = tp->packets_out;
2503         if (packets_out <= tp->reordering &&
2504             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2505             !tcp_may_send_now(sk)) {
2506                 /* We have nothing to send. This connection is limited
2507                  * either by receiver window or by application.
2508                  */
2509                 return 1;
2510         }
2511
2512         /* If a thin stream is detected, retransmit after first
2513          * received dupack. Employ only if SACK is supported in order
2514          * to avoid possible corner-case series of spurious retransmissions
2515          * Use only if there are no unsent data.
2516          */
2517         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2518             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2519             tcp_is_sack(tp) && !tcp_send_head(sk))
2520                 return 1;
2521
2522         return 0;
2523 }
2524
2525 /* New heuristics: it is possible only after we switched to restart timer
2526  * each time when something is ACKed. Hence, we can detect timed out packets
2527  * during fast retransmit without falling to slow start.
2528  *
2529  * Usefulness of this as is very questionable, since we should know which of
2530  * the segments is the next to timeout which is relatively expensive to find
2531  * in general case unless we add some data structure just for that. The
2532  * current approach certainly won't find the right one too often and when it
2533  * finally does find _something_ it usually marks large part of the window
2534  * right away (because a retransmission with a larger timestamp blocks the
2535  * loop from advancing). -ij
2536  */
2537 static void tcp_timeout_skbs(struct sock *sk)
2538 {
2539         struct tcp_sock *tp = tcp_sk(sk);
2540         struct sk_buff *skb;
2541
2542         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2543                 return;
2544
2545         skb = tp->scoreboard_skb_hint;
2546         if (tp->scoreboard_skb_hint == NULL)
2547                 skb = tcp_write_queue_head(sk);
2548
2549         tcp_for_write_queue_from(skb, sk) {
2550                 if (skb == tcp_send_head(sk))
2551                         break;
2552                 if (!tcp_skb_timedout(sk, skb))
2553                         break;
2554
2555                 tcp_skb_mark_lost(tp, skb);
2556         }
2557
2558         tp->scoreboard_skb_hint = skb;
2559
2560         tcp_verify_left_out(tp);
2561 }
2562
2563 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2564  * is against sacked "cnt", otherwise it's against facked "cnt"
2565  */
2566 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2567 {
2568         struct tcp_sock *tp = tcp_sk(sk);
2569         struct sk_buff *skb;
2570         int cnt, oldcnt;
2571         int err;
2572         unsigned int mss;
2573
2574         WARN_ON(packets > tp->packets_out);
2575         if (tp->lost_skb_hint) {
2576                 skb = tp->lost_skb_hint;
2577                 cnt = tp->lost_cnt_hint;
2578                 /* Head already handled? */
2579                 if (mark_head && skb != tcp_write_queue_head(sk))
2580                         return;
2581         } else {
2582                 skb = tcp_write_queue_head(sk);
2583                 cnt = 0;
2584         }
2585
2586         tcp_for_write_queue_from(skb, sk) {
2587                 if (skb == tcp_send_head(sk))
2588                         break;
2589                 /* TODO: do this better */
2590                 /* this is not the most efficient way to do this... */
2591                 tp->lost_skb_hint = skb;
2592                 tp->lost_cnt_hint = cnt;
2593
2594                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2595                         break;
2596
2597                 oldcnt = cnt;
2598                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2599                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2600                         cnt += tcp_skb_pcount(skb);
2601
2602                 if (cnt > packets) {
2603                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2604                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2605                             (oldcnt >= packets))
2606                                 break;
2607
2608                         mss = skb_shinfo(skb)->gso_size;
2609                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2610                         if (err < 0)
2611                                 break;
2612                         cnt = packets;
2613                 }
2614
2615                 tcp_skb_mark_lost(tp, skb);
2616
2617                 if (mark_head)
2618                         break;
2619         }
2620         tcp_verify_left_out(tp);
2621 }
2622
2623 /* Account newly detected lost packet(s) */
2624
2625 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2626 {
2627         struct tcp_sock *tp = tcp_sk(sk);
2628
2629         if (tcp_is_reno(tp)) {
2630                 tcp_mark_head_lost(sk, 1, 1);
2631         } else if (tcp_is_fack(tp)) {
2632                 int lost = tp->fackets_out - tp->reordering;
2633                 if (lost <= 0)
2634                         lost = 1;
2635                 tcp_mark_head_lost(sk, lost, 0);
2636         } else {
2637                 int sacked_upto = tp->sacked_out - tp->reordering;
2638                 if (sacked_upto >= 0)
2639                         tcp_mark_head_lost(sk, sacked_upto, 0);
2640                 else if (fast_rexmit)
2641                         tcp_mark_head_lost(sk, 1, 1);
2642         }
2643
2644         tcp_timeout_skbs(sk);
2645 }
2646
2647 /* CWND moderation, preventing bursts due to too big ACKs
2648  * in dubious situations.
2649  */
2650 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2651 {
2652         tp->snd_cwnd = min(tp->snd_cwnd,
2653                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2654         tp->snd_cwnd_stamp = tcp_time_stamp;
2655 }
2656
2657 /* Lower bound on congestion window is slow start threshold
2658  * unless congestion avoidance choice decides to overide it.
2659  */
2660 static inline u32 tcp_cwnd_min(const struct sock *sk)
2661 {
2662         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2663
2664         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2665 }
2666
2667 /* Decrease cwnd each second ack. */
2668 static void tcp_cwnd_down(struct sock *sk, int flag)
2669 {
2670         struct tcp_sock *tp = tcp_sk(sk);
2671         int decr = tp->snd_cwnd_cnt + 1;
2672
2673         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2674             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2675                 tp->snd_cwnd_cnt = decr & 1;
2676                 decr >>= 1;
2677
2678                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2679                         tp->snd_cwnd -= decr;
2680
2681                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2682                 tp->snd_cwnd_stamp = tcp_time_stamp;
2683         }
2684 }
2685
2686 /* Nothing was retransmitted or returned timestamp is less
2687  * than timestamp of the first retransmission.
2688  */
2689 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2690 {
2691         return !tp->retrans_stamp ||
2692                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2693                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2694 }
2695
2696 /* Undo procedures. */
2697
2698 #if FASTRETRANS_DEBUG > 1
2699 static void DBGUNDO(struct sock *sk, const char *msg)
2700 {
2701         struct tcp_sock *tp = tcp_sk(sk);
2702         struct inet_sock *inet = inet_sk(sk);
2703
2704         if (sk->sk_family == AF_INET) {
2705                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2706                        msg,
2707                        &inet->inet_daddr, ntohs(inet->inet_dport),
2708                        tp->snd_cwnd, tcp_left_out(tp),
2709                        tp->snd_ssthresh, tp->prior_ssthresh,
2710                        tp->packets_out);
2711         }
2712 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2713         else if (sk->sk_family == AF_INET6) {
2714                 struct ipv6_pinfo *np = inet6_sk(sk);
2715                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2716                        msg,
2717                        &np->daddr, ntohs(inet->inet_dport),
2718                        tp->snd_cwnd, tcp_left_out(tp),
2719                        tp->snd_ssthresh, tp->prior_ssthresh,
2720                        tp->packets_out);
2721         }
2722 #endif
2723 }
2724 #else
2725 #define DBGUNDO(x...) do { } while (0)
2726 #endif
2727
2728 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2729 {
2730         struct tcp_sock *tp = tcp_sk(sk);
2731
2732         if (tp->prior_ssthresh) {
2733                 const struct inet_connection_sock *icsk = inet_csk(sk);
2734
2735                 if (icsk->icsk_ca_ops->undo_cwnd)
2736                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2737                 else
2738                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2739
2740                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2741                         tp->snd_ssthresh = tp->prior_ssthresh;
2742                         TCP_ECN_withdraw_cwr(tp);
2743                 }
2744         } else {
2745                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2746         }
2747         tp->snd_cwnd_stamp = tcp_time_stamp;
2748 }
2749
2750 static inline int tcp_may_undo(const struct tcp_sock *tp)
2751 {
2752         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2753 }
2754
2755 /* People celebrate: "We love our President!" */
2756 static int tcp_try_undo_recovery(struct sock *sk)
2757 {
2758         struct tcp_sock *tp = tcp_sk(sk);
2759
2760         if (tcp_may_undo(tp)) {
2761                 int mib_idx;
2762
2763                 /* Happy end! We did not retransmit anything
2764                  * or our original transmission succeeded.
2765                  */
2766                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2767                 tcp_undo_cwr(sk, true);
2768                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2769                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2770                 else
2771                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2772
2773                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2774                 tp->undo_marker = 0;
2775         }
2776         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2777                 /* Hold old state until something *above* high_seq
2778                  * is ACKed. For Reno it is MUST to prevent false
2779                  * fast retransmits (RFC2582). SACK TCP is safe. */
2780                 tcp_moderate_cwnd(tp);
2781                 return 1;
2782         }
2783         tcp_set_ca_state(sk, TCP_CA_Open);
2784         return 0;
2785 }
2786
2787 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2788 static void tcp_try_undo_dsack(struct sock *sk)
2789 {
2790         struct tcp_sock *tp = tcp_sk(sk);
2791
2792         if (tp->undo_marker && !tp->undo_retrans) {
2793                 DBGUNDO(sk, "D-SACK");
2794                 tcp_undo_cwr(sk, true);
2795                 tp->undo_marker = 0;
2796                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2797         }
2798 }
2799
2800 /* We can clear retrans_stamp when there are no retransmissions in the
2801  * window. It would seem that it is trivially available for us in
2802  * tp->retrans_out, however, that kind of assumptions doesn't consider
2803  * what will happen if errors occur when sending retransmission for the
2804  * second time. ...It could the that such segment has only
2805  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2806  * the head skb is enough except for some reneging corner cases that
2807  * are not worth the effort.
2808  *
2809  * Main reason for all this complexity is the fact that connection dying
2810  * time now depends on the validity of the retrans_stamp, in particular,
2811  * that successive retransmissions of a segment must not advance
2812  * retrans_stamp under any conditions.
2813  */
2814 static int tcp_any_retrans_done(const struct sock *sk)
2815 {
2816         const struct tcp_sock *tp = tcp_sk(sk);
2817         struct sk_buff *skb;
2818
2819         if (tp->retrans_out)
2820                 return 1;
2821
2822         skb = tcp_write_queue_head(sk);
2823         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2824                 return 1;
2825
2826         return 0;
2827 }
2828
2829 /* Undo during fast recovery after partial ACK. */
2830
2831 static int tcp_try_undo_partial(struct sock *sk, int acked)
2832 {
2833         struct tcp_sock *tp = tcp_sk(sk);
2834         /* Partial ACK arrived. Force Hoe's retransmit. */
2835         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2836
2837         if (tcp_may_undo(tp)) {
2838                 /* Plain luck! Hole if filled with delayed
2839                  * packet, rather than with a retransmit.
2840                  */
2841                 if (!tcp_any_retrans_done(sk))
2842                         tp->retrans_stamp = 0;
2843
2844                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2845
2846                 DBGUNDO(sk, "Hoe");
2847                 tcp_undo_cwr(sk, false);
2848                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2849
2850                 /* So... Do not make Hoe's retransmit yet.
2851                  * If the first packet was delayed, the rest
2852                  * ones are most probably delayed as well.
2853                  */
2854                 failed = 0;
2855         }
2856         return failed;
2857 }
2858
2859 /* Undo during loss recovery after partial ACK. */
2860 static int tcp_try_undo_loss(struct sock *sk)
2861 {
2862         struct tcp_sock *tp = tcp_sk(sk);
2863
2864         if (tcp_may_undo(tp)) {
2865                 struct sk_buff *skb;
2866                 tcp_for_write_queue(skb, sk) {
2867                         if (skb == tcp_send_head(sk))
2868                                 break;
2869                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2870                 }
2871
2872                 tcp_clear_all_retrans_hints(tp);
2873
2874                 DBGUNDO(sk, "partial loss");
2875                 tp->lost_out = 0;
2876                 tcp_undo_cwr(sk, true);
2877                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2878                 inet_csk(sk)->icsk_retransmits = 0;
2879                 tp->undo_marker = 0;
2880                 if (tcp_is_sack(tp))
2881                         tcp_set_ca_state(sk, TCP_CA_Open);
2882                 return 1;
2883         }
2884         return 0;
2885 }
2886
2887 static inline void tcp_complete_cwr(struct sock *sk)
2888 {
2889         struct tcp_sock *tp = tcp_sk(sk);
2890
2891         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2892         if (tp->undo_marker) {
2893                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2894                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2895                         tp->snd_cwnd_stamp = tcp_time_stamp;
2896                 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2897                         /* PRR algorithm. */
2898                         tp->snd_cwnd = tp->snd_ssthresh;
2899                         tp->snd_cwnd_stamp = tcp_time_stamp;
2900                 }
2901         }
2902         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2903 }
2904
2905 static void tcp_try_keep_open(struct sock *sk)
2906 {
2907         struct tcp_sock *tp = tcp_sk(sk);
2908         int state = TCP_CA_Open;
2909
2910         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2911                 state = TCP_CA_Disorder;
2912
2913         if (inet_csk(sk)->icsk_ca_state != state) {
2914                 tcp_set_ca_state(sk, state);
2915                 tp->high_seq = tp->snd_nxt;
2916         }
2917 }
2918
2919 static void tcp_try_to_open(struct sock *sk, int flag)
2920 {
2921         struct tcp_sock *tp = tcp_sk(sk);
2922
2923         tcp_verify_left_out(tp);
2924
2925         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2926                 tp->retrans_stamp = 0;
2927
2928         if (flag & FLAG_ECE)
2929                 tcp_enter_cwr(sk, 1);
2930
2931         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2932                 tcp_try_keep_open(sk);
2933                 tcp_moderate_cwnd(tp);
2934         } else {
2935                 tcp_cwnd_down(sk, flag);
2936         }
2937 }
2938
2939 static void tcp_mtup_probe_failed(struct sock *sk)
2940 {
2941         struct inet_connection_sock *icsk = inet_csk(sk);
2942
2943         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2944         icsk->icsk_mtup.probe_size = 0;
2945 }
2946
2947 static void tcp_mtup_probe_success(struct sock *sk)
2948 {
2949         struct tcp_sock *tp = tcp_sk(sk);
2950         struct inet_connection_sock *icsk = inet_csk(sk);
2951
2952         /* FIXME: breaks with very large cwnd */
2953         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2954         tp->snd_cwnd = tp->snd_cwnd *
2955                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2956                        icsk->icsk_mtup.probe_size;
2957         tp->snd_cwnd_cnt = 0;
2958         tp->snd_cwnd_stamp = tcp_time_stamp;
2959         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2960
2961         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2962         icsk->icsk_mtup.probe_size = 0;
2963         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2964 }
2965
2966 /* Do a simple retransmit without using the backoff mechanisms in
2967  * tcp_timer. This is used for path mtu discovery.
2968  * The socket is already locked here.
2969  */
2970 void tcp_simple_retransmit(struct sock *sk)
2971 {
2972         const struct inet_connection_sock *icsk = inet_csk(sk);
2973         struct tcp_sock *tp = tcp_sk(sk);
2974         struct sk_buff *skb;
2975         unsigned int mss = tcp_current_mss(sk);
2976         u32 prior_lost = tp->lost_out;
2977
2978         tcp_for_write_queue(skb, sk) {
2979                 if (skb == tcp_send_head(sk))
2980                         break;
2981                 if (tcp_skb_seglen(skb) > mss &&
2982                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2983                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2984                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2985                                 tp->retrans_out -= tcp_skb_pcount(skb);
2986                         }
2987                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2988                 }
2989         }
2990
2991         tcp_clear_retrans_hints_partial(tp);
2992
2993         if (prior_lost == tp->lost_out)
2994                 return;
2995
2996         if (tcp_is_reno(tp))
2997                 tcp_limit_reno_sacked(tp);
2998
2999         tcp_verify_left_out(tp);
3000
3001         /* Don't muck with the congestion window here.
3002          * Reason is that we do not increase amount of _data_
3003          * in network, but units changed and effective
3004          * cwnd/ssthresh really reduced now.
3005          */
3006         if (icsk->icsk_ca_state != TCP_CA_Loss) {
3007                 tp->high_seq = tp->snd_nxt;
3008                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3009                 tp->prior_ssthresh = 0;
3010                 tp->undo_marker = 0;
3011                 tcp_set_ca_state(sk, TCP_CA_Loss);
3012         }
3013         tcp_xmit_retransmit_queue(sk);
3014 }
3015 EXPORT_SYMBOL(tcp_simple_retransmit);
3016
3017 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
3018  * (proportional rate reduction with slow start reduction bound) as described in
3019  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3020  * It computes the number of packets to send (sndcnt) based on packets newly
3021  * delivered:
3022  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3023  *      cwnd reductions across a full RTT.
3024  *   2) If packets in flight is lower than ssthresh (such as due to excess
3025  *      losses and/or application stalls), do not perform any further cwnd
3026  *      reductions, but instead slow start up to ssthresh.
3027  */
3028 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3029                                         int fast_rexmit, int flag)
3030 {
3031         struct tcp_sock *tp = tcp_sk(sk);
3032         int sndcnt = 0;
3033         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3034
3035         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3036                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3037                                tp->prior_cwnd - 1;
3038                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3039         } else {
3040                 sndcnt = min_t(int, delta,
3041                                max_t(int, tp->prr_delivered - tp->prr_out,
3042                                      newly_acked_sacked) + 1);
3043         }
3044
3045         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3046         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3047 }
3048
3049 /* Process an event, which can update packets-in-flight not trivially.
3050  * Main goal of this function is to calculate new estimate for left_out,
3051  * taking into account both packets sitting in receiver's buffer and
3052  * packets lost by network.
3053  *
3054  * Besides that it does CWND reduction, when packet loss is detected
3055  * and changes state of machine.
3056  *
3057  * It does _not_ decide what to send, it is made in function
3058  * tcp_xmit_retransmit_queue().
3059  */
3060 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3061                                   int newly_acked_sacked, int flag)
3062 {
3063         struct inet_connection_sock *icsk = inet_csk(sk);
3064         struct tcp_sock *tp = tcp_sk(sk);
3065         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3066         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3067                                     (tcp_fackets_out(tp) > tp->reordering));
3068         int fast_rexmit = 0, mib_idx;
3069
3070         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3071                 tp->sacked_out = 0;
3072         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3073                 tp->fackets_out = 0;
3074
3075         /* Now state machine starts.
3076          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3077         if (flag & FLAG_ECE)
3078                 tp->prior_ssthresh = 0;
3079
3080         /* B. In all the states check for reneging SACKs. */
3081         if (tcp_check_sack_reneging(sk, flag))
3082                 return;
3083
3084         /* C. Process data loss notification, provided it is valid. */
3085         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3086             before(tp->snd_una, tp->high_seq) &&
3087             icsk->icsk_ca_state != TCP_CA_Open &&
3088             tp->fackets_out > tp->reordering) {
3089                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3090                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
3091         }
3092
3093         /* D. Check consistency of the current state. */
3094         tcp_verify_left_out(tp);
3095
3096         /* E. Check state exit conditions. State can be terminated
3097          *    when high_seq is ACKed. */
3098         if (icsk->icsk_ca_state == TCP_CA_Open) {
3099                 WARN_ON(tp->retrans_out != 0);
3100                 tp->retrans_stamp = 0;
3101         } else if (!before(tp->snd_una, tp->high_seq)) {
3102                 switch (icsk->icsk_ca_state) {
3103                 case TCP_CA_Loss:
3104                         icsk->icsk_retransmits = 0;
3105                         if (tcp_try_undo_recovery(sk))
3106                                 return;
3107                         break;
3108
3109                 case TCP_CA_CWR:
3110                         /* CWR is to be held something *above* high_seq
3111                          * is ACKed for CWR bit to reach receiver. */
3112                         if (tp->snd_una != tp->high_seq) {
3113                                 tcp_complete_cwr(sk);
3114                                 tcp_set_ca_state(sk, TCP_CA_Open);
3115                         }
3116                         break;
3117
3118                 case TCP_CA_Disorder:
3119                         tcp_try_undo_dsack(sk);
3120                         if (!tp->undo_marker ||
3121                             /* For SACK case do not Open to allow to undo
3122                              * catching for all duplicate ACKs. */
3123                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3124                                 tp->undo_marker = 0;
3125                                 tcp_set_ca_state(sk, TCP_CA_Open);
3126                         }
3127                         break;
3128
3129                 case TCP_CA_Recovery:
3130                         if (tcp_is_reno(tp))
3131                                 tcp_reset_reno_sack(tp);
3132                         if (tcp_try_undo_recovery(sk))
3133                                 return;
3134                         tcp_complete_cwr(sk);
3135                         break;
3136                 }
3137         }
3138
3139         /* F. Process state. */
3140         switch (icsk->icsk_ca_state) {
3141         case TCP_CA_Recovery:
3142                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3143                         if (tcp_is_reno(tp) && is_dupack)
3144                                 tcp_add_reno_sack(sk);
3145                 } else
3146                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3147                 break;
3148         case TCP_CA_Loss:
3149                 if (flag & FLAG_DATA_ACKED)
3150                         icsk->icsk_retransmits = 0;
3151                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3152                         tcp_reset_reno_sack(tp);
3153                 if (!tcp_try_undo_loss(sk)) {
3154                         tcp_moderate_cwnd(tp);
3155                         tcp_xmit_retransmit_queue(sk);
3156                         return;
3157                 }
3158                 if (icsk->icsk_ca_state != TCP_CA_Open)
3159                         return;
3160                 /* Loss is undone; fall through to processing in Open state. */
3161         default:
3162                 if (tcp_is_reno(tp)) {
3163                         if (flag & FLAG_SND_UNA_ADVANCED)
3164                                 tcp_reset_reno_sack(tp);
3165                         if (is_dupack)
3166                                 tcp_add_reno_sack(sk);
3167                 }
3168
3169                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3170                         tcp_try_undo_dsack(sk);
3171
3172                 if (!tcp_time_to_recover(sk)) {
3173                         tcp_try_to_open(sk, flag);
3174                         return;
3175                 }
3176
3177                 /* MTU probe failure: don't reduce cwnd */
3178                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3179                     icsk->icsk_mtup.probe_size &&
3180                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3181                         tcp_mtup_probe_failed(sk);
3182                         /* Restores the reduction we did in tcp_mtup_probe() */
3183                         tp->snd_cwnd++;
3184                         tcp_simple_retransmit(sk);
3185                         return;
3186                 }
3187
3188                 /* Otherwise enter Recovery state */
3189
3190                 if (tcp_is_reno(tp))
3191                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3192                 else
3193                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3194
3195                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3196
3197                 tp->high_seq = tp->snd_nxt;
3198                 tp->prior_ssthresh = 0;
3199                 tp->undo_marker = tp->snd_una;
3200                 tp->undo_retrans = tp->retrans_out;
3201
3202                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3203                         if (!(flag & FLAG_ECE))
3204                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3205                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3206                         TCP_ECN_queue_cwr(tp);
3207                 }
3208
3209                 tp->bytes_acked = 0;
3210                 tp->snd_cwnd_cnt = 0;
3211                 tp->prior_cwnd = tp->snd_cwnd;
3212                 tp->prr_delivered = 0;
3213                 tp->prr_out = 0;
3214                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3215                 fast_rexmit = 1;
3216         }
3217
3218         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3219                 tcp_update_scoreboard(sk, fast_rexmit);
3220         tp->prr_delivered += newly_acked_sacked;
3221         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3222         tcp_xmit_retransmit_queue(sk);
3223 }
3224
3225 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3226 {
3227         tcp_rtt_estimator(sk, seq_rtt);
3228         tcp_set_rto(sk);
3229         inet_csk(sk)->icsk_backoff = 0;
3230 }
3231 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3232
3233 /* Read draft-ietf-tcplw-high-performance before mucking
3234  * with this code. (Supersedes RFC1323)
3235  */
3236 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3237 {
3238         /* RTTM Rule: A TSecr value received in a segment is used to
3239          * update the averaged RTT measurement only if the segment
3240          * acknowledges some new data, i.e., only if it advances the
3241          * left edge of the send window.
3242          *
3243          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3244          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3245          *
3246          * Changed: reset backoff as soon as we see the first valid sample.
3247          * If we do not, we get strongly overestimated rto. With timestamps
3248          * samples are accepted even from very old segments: f.e., when rtt=1
3249          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3250          * answer arrives rto becomes 120 seconds! If at least one of segments
3251          * in window is lost... Voila.                          --ANK (010210)
3252          */
3253         struct tcp_sock *tp = tcp_sk(sk);
3254
3255         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3256 }
3257
3258 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3259 {
3260         /* We don't have a timestamp. Can only use
3261          * packets that are not retransmitted to determine
3262          * rtt estimates. Also, we must not reset the
3263          * backoff for rto until we get a non-retransmitted
3264          * packet. This allows us to deal with a situation
3265          * where the network delay has increased suddenly.
3266          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3267          */
3268
3269         if (flag & FLAG_RETRANS_DATA_ACKED)
3270                 return;
3271
3272         tcp_valid_rtt_meas(sk, seq_rtt);
3273 }
3274
3275 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3276                                       const s32 seq_rtt)
3277 {
3278         const struct tcp_sock *tp = tcp_sk(sk);
3279         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3280         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3281                 tcp_ack_saw_tstamp(sk, flag);
3282         else if (seq_rtt >= 0)
3283                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3284 }
3285
3286 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3287 {
3288         const struct inet_connection_sock *icsk = inet_csk(sk);
3289         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3290         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3291 }
3292
3293 /* Restart timer after forward progress on connection.
3294  * RFC2988 recommends to restart timer to now+rto.
3295  */
3296 static void tcp_rearm_rto(struct sock *sk)
3297 {
3298         const struct tcp_sock *tp = tcp_sk(sk);
3299
3300         if (!tp->packets_out) {
3301                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3302         } else {
3303                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3304                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3305         }
3306 }
3307
3308 /* If we get here, the whole TSO packet has not been acked. */
3309 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3310 {
3311         struct tcp_sock *tp = tcp_sk(sk);
3312         u32 packets_acked;
3313
3314         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3315
3316         packets_acked = tcp_skb_pcount(skb);
3317         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3318                 return 0;
3319         packets_acked -= tcp_skb_pcount(skb);
3320
3321         if (packets_acked) {
3322                 BUG_ON(tcp_skb_pcount(skb) == 0);
3323                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3324         }
3325
3326         return packets_acked;
3327 }
3328
3329 /* Remove acknowledged frames from the retransmission queue. If our packet
3330  * is before the ack sequence we can discard it as it's confirmed to have
3331  * arrived at the other end.
3332  */
3333 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3334                                u32 prior_snd_una)
3335 {
3336         struct tcp_sock *tp = tcp_sk(sk);
3337         const struct inet_connection_sock *icsk = inet_csk(sk);
3338         struct sk_buff *skb;
3339         u32 now = tcp_time_stamp;
3340         int fully_acked = 1;
3341         int flag = 0;
3342         u32 pkts_acked = 0;
3343         u32 reord = tp->packets_out;
3344         u32 prior_sacked = tp->sacked_out;
3345         s32 seq_rtt = -1;
3346         s32 ca_seq_rtt = -1;
3347         ktime_t last_ackt = net_invalid_timestamp();
3348
3349         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3350                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3351                 u32 acked_pcount;
3352                 u8 sacked = scb->sacked;
3353
3354                 /* Determine how many packets and what bytes were acked, tso and else */
3355                 if (after(scb->end_seq, tp->snd_una)) {
3356                         if (tcp_skb_pcount(skb) == 1 ||
3357                             !after(tp->snd_una, scb->seq))
3358                                 break;
3359
3360                         acked_pcount = tcp_tso_acked(sk, skb);
3361                         if (!acked_pcount)
3362                                 break;
3363
3364                         fully_acked = 0;
3365                 } else {
3366                         acked_pcount = tcp_skb_pcount(skb);
3367                 }
3368
3369                 if (sacked & TCPCB_RETRANS) {
3370                         if (sacked & TCPCB_SACKED_RETRANS)
3371                                 tp->retrans_out -= acked_pcount;
3372                         flag |= FLAG_RETRANS_DATA_ACKED;
3373                         ca_seq_rtt = -1;
3374                         seq_rtt = -1;
3375                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3376                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3377                 } else {
3378                         ca_seq_rtt = now - scb->when;
3379                         last_ackt = skb->tstamp;
3380                         if (seq_rtt < 0) {
3381                                 seq_rtt = ca_seq_rtt;
3382                         }
3383                         if (!(sacked & TCPCB_SACKED_ACKED))
3384                                 reord = min(pkts_acked, reord);
3385                 }
3386
3387                 if (sacked & TCPCB_SACKED_ACKED)
3388                         tp->sacked_out -= acked_pcount;
3389                 if (sacked & TCPCB_LOST)
3390                         tp->lost_out -= acked_pcount;
3391
3392                 tp->packets_out -= acked_pcount;
3393                 pkts_acked += acked_pcount;
3394
3395                 /* Initial outgoing SYN's get put onto the write_queue
3396                  * just like anything else we transmit.  It is not
3397                  * true data, and if we misinform our callers that
3398                  * this ACK acks real data, we will erroneously exit
3399                  * connection startup slow start one packet too
3400                  * quickly.  This is severely frowned upon behavior.
3401                  */
3402                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3403                         flag |= FLAG_DATA_ACKED;
3404                 } else {
3405                         flag |= FLAG_SYN_ACKED;
3406                         tp->retrans_stamp = 0;
3407                 }
3408
3409                 if (!fully_acked)
3410                         break;
3411
3412                 tcp_unlink_write_queue(skb, sk);
3413                 sk_wmem_free_skb(sk, skb);
3414                 tp->scoreboard_skb_hint = NULL;
3415                 if (skb == tp->retransmit_skb_hint)
3416                         tp->retransmit_skb_hint = NULL;
3417                 if (skb == tp->lost_skb_hint)
3418                         tp->lost_skb_hint = NULL;
3419         }
3420
3421         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3422                 tp->snd_up = tp->snd_una;
3423
3424         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3425                 flag |= FLAG_SACK_RENEGING;
3426
3427         if (flag & FLAG_ACKED) {
3428                 const struct tcp_congestion_ops *ca_ops
3429                         = inet_csk(sk)->icsk_ca_ops;
3430
3431                 if (unlikely(icsk->icsk_mtup.probe_size &&
3432                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3433                         tcp_mtup_probe_success(sk);
3434                 }
3435
3436                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3437                 tcp_rearm_rto(sk);
3438
3439                 if (tcp_is_reno(tp)) {
3440                         tcp_remove_reno_sacks(sk, pkts_acked);
3441                 } else {
3442                         int delta;
3443
3444                         /* Non-retransmitted hole got filled? That's reordering */
3445                         if (reord < prior_fackets && reord <= tp->fackets_out)
3446                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3447
3448                         delta = tcp_is_fack(tp) ? pkts_acked :
3449                                                   prior_sacked - tp->sacked_out;
3450                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3451                 }
3452
3453                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3454
3455                 if (ca_ops->pkts_acked) {
3456                         s32 rtt_us = -1;
3457
3458                         /* Is the ACK triggering packet unambiguous? */
3459                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3460                                 /* High resolution needed and available? */
3461                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3462                                     !ktime_equal(last_ackt,
3463                                                  net_invalid_timestamp()))
3464                                         rtt_us = ktime_us_delta(ktime_get_real(),
3465                                                                 last_ackt);
3466                                 else if (ca_seq_rtt >= 0)
3467                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3468                         }
3469
3470                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3471                 }
3472         }
3473
3474 #if FASTRETRANS_DEBUG > 0
3475         WARN_ON((int)tp->sacked_out < 0);
3476         WARN_ON((int)tp->lost_out < 0);
3477         WARN_ON((int)tp->retrans_out < 0);
3478         if (!tp->packets_out && tcp_is_sack(tp)) {
3479                 icsk = inet_csk(sk);
3480                 if (tp->lost_out) {
3481                         printk(KERN_DEBUG "Leak l=%u %d\n",
3482                                tp->lost_out, icsk->icsk_ca_state);
3483                         tp->lost_out = 0;
3484                 }
3485                 if (tp->sacked_out) {
3486                         printk(KERN_DEBUG "Leak s=%u %d\n",
3487                                tp->sacked_out, icsk->icsk_ca_state);
3488                         tp->sacked_out = 0;
3489                 }
3490                 if (tp->retrans_out) {
3491                         printk(KERN_DEBUG "Leak r=%u %d\n",
3492                                tp->retrans_out, icsk->icsk_ca_state);
3493                         tp->retrans_out = 0;
3494                 }
3495         }
3496 #endif
3497         return flag;
3498 }
3499
3500 static void tcp_ack_probe(struct sock *sk)
3501 {
3502         const struct tcp_sock *tp = tcp_sk(sk);
3503         struct inet_connection_sock *icsk = inet_csk(sk);
3504
3505         /* Was it a usable window open? */
3506
3507         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3508                 icsk->icsk_backoff = 0;
3509                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3510                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3511                  * This function is not for random using!
3512                  */
3513         } else {
3514                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3515                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3516                                           TCP_RTO_MAX);
3517         }
3518 }
3519
3520 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3521 {
3522         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3523                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3524 }
3525
3526 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3527 {
3528         const struct tcp_sock *tp = tcp_sk(sk);
3529         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3530                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3531 }
3532
3533 /* Check that window update is acceptable.
3534  * The function assumes that snd_una<=ack<=snd_next.
3535  */
3536 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3537                                         const u32 ack, const u32 ack_seq,
3538                                         const u32 nwin)
3539 {
3540         return  after(ack, tp->snd_una) ||
3541                 after(ack_seq, tp->snd_wl1) ||
3542                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3543 }
3544
3545 /* Update our send window.
3546  *
3547  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3548  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3549  */
3550 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3551                                  u32 ack_seq)
3552 {
3553         struct tcp_sock *tp = tcp_sk(sk);
3554         int flag = 0;
3555         u32 nwin = ntohs(tcp_hdr(skb)->window);
3556
3557         if (likely(!tcp_hdr(skb)->syn))
3558                 nwin <<= tp->rx_opt.snd_wscale;
3559
3560         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3561                 flag |= FLAG_WIN_UPDATE;
3562                 tcp_update_wl(tp, ack_seq);
3563
3564                 if (tp->snd_wnd != nwin) {
3565                         tp->snd_wnd = nwin;
3566
3567                         /* Note, it is the only place, where
3568                          * fast path is recovered for sending TCP.
3569                          */
3570                         tp->pred_flags = 0;
3571                         tcp_fast_path_check(sk);
3572
3573                         if (nwin > tp->max_window) {
3574                                 tp->max_window = nwin;
3575                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3576                         }
3577                 }
3578         }
3579
3580         tp->snd_una = ack;
3581
3582         return flag;
3583 }
3584
3585 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3586  * continue in congestion avoidance.
3587  */
3588 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3589 {
3590         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3591         tp->snd_cwnd_cnt = 0;
3592         tp->bytes_acked = 0;
3593         TCP_ECN_queue_cwr(tp);
3594         tcp_moderate_cwnd(tp);
3595 }
3596
3597 /* A conservative spurious RTO response algorithm: reduce cwnd using
3598  * rate halving and continue in congestion avoidance.
3599  */
3600 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3601 {
3602         tcp_enter_cwr(sk, 0);
3603 }
3604
3605 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3606 {
3607         if (flag & FLAG_ECE)
3608                 tcp_ratehalving_spur_to_response(sk);
3609         else
3610                 tcp_undo_cwr(sk, true);
3611 }
3612
3613 /* F-RTO spurious RTO detection algorithm (RFC4138)
3614  *
3615  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3616  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3617  * window (but not to or beyond highest sequence sent before RTO):
3618  *   On First ACK,  send two new segments out.
3619  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3620  *                  algorithm is not part of the F-RTO detection algorithm
3621  *                  given in RFC4138 but can be selected separately).
3622  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3623  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3624  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3625  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3626  *
3627  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3628  * original window even after we transmit two new data segments.
3629  *
3630  * SACK version:
3631  *   on first step, wait until first cumulative ACK arrives, then move to
3632  *   the second step. In second step, the next ACK decides.
3633  *
3634  * F-RTO is implemented (mainly) in four functions:
3635  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3636  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3637  *     called when tcp_use_frto() showed green light
3638  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3639  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3640  *     to prove that the RTO is indeed spurious. It transfers the control
3641  *     from F-RTO to the conventional RTO recovery
3642  */
3643 static int tcp_process_frto(struct sock *sk, int flag)
3644 {
3645         struct tcp_sock *tp = tcp_sk(sk);
3646
3647         tcp_verify_left_out(tp);
3648
3649         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3650         if (flag & FLAG_DATA_ACKED)
3651                 inet_csk(sk)->icsk_retransmits = 0;
3652
3653         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3654             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3655                 tp->undo_marker = 0;
3656
3657         if (!before(tp->snd_una, tp->frto_highmark)) {
3658                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3659                 return 1;
3660         }
3661
3662         if (!tcp_is_sackfrto(tp)) {
3663                 /* RFC4138 shortcoming in step 2; should also have case c):
3664                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3665                  * data, winupdate
3666                  */
3667                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3668                         return 1;
3669
3670                 if (!(flag & FLAG_DATA_ACKED)) {
3671                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3672                                             flag);
3673                         return 1;
3674                 }
3675         } else {
3676                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3677                         if (!tcp_packets_in_flight(tp)) {
3678                                 tcp_enter_frto_loss(sk, 2, flag);
3679                                 return true;
3680                         }
3681
3682                         /* Prevent sending of new data. */
3683                         tp->snd_cwnd = min(tp->snd_cwnd,
3684                                            tcp_packets_in_flight(tp));
3685                         return 1;
3686                 }
3687
3688                 if ((tp->frto_counter >= 2) &&
3689                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3690                      ((flag & FLAG_DATA_SACKED) &&
3691                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3692                         /* RFC4138 shortcoming (see comment above) */
3693                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3694                             (flag & FLAG_NOT_DUP))
3695                                 return 1;
3696
3697                         tcp_enter_frto_loss(sk, 3, flag);
3698                         return 1;
3699                 }
3700         }
3701
3702         if (tp->frto_counter == 1) {
3703                 /* tcp_may_send_now needs to see updated state */
3704                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3705                 tp->frto_counter = 2;
3706
3707                 if (!tcp_may_send_now(sk))
3708                         tcp_enter_frto_loss(sk, 2, flag);
3709
3710                 return 1;
3711         } else {
3712                 switch (sysctl_tcp_frto_response) {
3713                 case 2:
3714                         tcp_undo_spur_to_response(sk, flag);
3715                         break;
3716                 case 1:
3717                         tcp_conservative_spur_to_response(tp);
3718                         break;
3719                 default:
3720                         tcp_ratehalving_spur_to_response(sk);
3721                         break;
3722                 }
3723                 tp->frto_counter = 0;
3724                 tp->undo_marker = 0;
3725                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3726         }
3727         return 0;
3728 }
3729
3730 /* RFC 5961 7 [ACK Throttling] */
3731 static void tcp_send_challenge_ack(struct sock *sk)
3732 {
3733         /* unprotected vars, we dont care of overwrites */
3734         static u32 challenge_timestamp;
3735         static unsigned int challenge_count;
3736         u32 count, now = jiffies / HZ;
3737
3738         if (now != challenge_timestamp) {
3739                 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3740
3741                 challenge_timestamp = now;
3742                 ACCESS_ONCE(challenge_count) =
3743                         half + (u32)(
3744                         ((u64) random32() * sysctl_tcp_challenge_ack_limit)
3745                         >> 32);
3746         }
3747         count = ACCESS_ONCE(challenge_count);
3748         if (count > 0) {
3749                 ACCESS_ONCE(challenge_count) = count - 1;
3750                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3751                 tcp_send_ack(sk);
3752         }
3753 }
3754
3755 static void tcp_store_ts_recent(struct tcp_sock *tp)
3756 {
3757         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3758         tp->rx_opt.ts_recent_stamp = get_seconds();
3759 }
3760
3761 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3762 {
3763         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3764                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3765                  * extra check below makes sure this can only happen
3766                  * for pure ACK frames.  -DaveM
3767                  *
3768                  * Not only, also it occurs for expired timestamps.
3769                  */
3770
3771                 if (tcp_paws_check(&tp->rx_opt, 0))
3772                         tcp_store_ts_recent(tp);
3773         }
3774 }
3775
3776 /* This routine deals with incoming acks, but not outgoing ones. */
3777 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3778 {
3779         struct inet_connection_sock *icsk = inet_csk(sk);
3780         struct tcp_sock *tp = tcp_sk(sk);
3781         u32 prior_snd_una = tp->snd_una;
3782         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3783         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3784         u32 prior_in_flight;
3785         u32 prior_fackets;
3786         int prior_packets;
3787         int prior_sacked = tp->sacked_out;
3788         int newly_acked_sacked = 0;
3789         int frto_cwnd = 0;
3790
3791         /* If the ack is older than previous acks
3792          * then we can probably ignore it.
3793          */
3794         if (before(ack, prior_snd_una)) {
3795                 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3796                 if (before(ack, prior_snd_una - tp->max_window)) {
3797                         tcp_send_challenge_ack(sk);
3798                         return -1;
3799                 }
3800                 goto old_ack;
3801         }
3802
3803         /* If the ack includes data we haven't sent yet, discard
3804          * this segment (RFC793 Section 3.9).
3805          */
3806         if (after(ack, tp->snd_nxt))
3807                 goto invalid_ack;
3808
3809         if (after(ack, prior_snd_una))
3810                 flag |= FLAG_SND_UNA_ADVANCED;
3811
3812         if (sysctl_tcp_abc) {
3813                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3814                         tp->bytes_acked += ack - prior_snd_una;
3815                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3816                         /* we assume just one segment left network */
3817                         tp->bytes_acked += min(ack - prior_snd_una,
3818                                                tp->mss_cache);
3819         }
3820
3821         prior_fackets = tp->fackets_out;
3822         prior_in_flight = tcp_packets_in_flight(tp);
3823
3824         /* ts_recent update must be made after we are sure that the packet
3825          * is in window.
3826          */
3827         if (flag & FLAG_UPDATE_TS_RECENT)
3828                 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3829
3830         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3831                 /* Window is constant, pure forward advance.
3832                  * No more checks are required.
3833                  * Note, we use the fact that SND.UNA>=SND.WL2.
3834                  */
3835                 tcp_update_wl(tp, ack_seq);
3836                 tp->snd_una = ack;
3837                 flag |= FLAG_WIN_UPDATE;
3838
3839                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3840
3841                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3842         } else {
3843                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3844                         flag |= FLAG_DATA;
3845                 else
3846                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3847
3848                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3849
3850                 if (TCP_SKB_CB(skb)->sacked)
3851                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3852
3853                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3854                         flag |= FLAG_ECE;
3855
3856                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3857         }
3858
3859         /* We passed data and got it acked, remove any soft error
3860          * log. Something worked...
3861          */
3862         sk->sk_err_soft = 0;
3863         icsk->icsk_probes_out = 0;
3864         tp->rcv_tstamp = tcp_time_stamp;
3865         prior_packets = tp->packets_out;
3866         if (!prior_packets)
3867                 goto no_queue;
3868
3869         /* See if we can take anything off of the retransmit queue. */
3870         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3871
3872         newly_acked_sacked = (prior_packets - prior_sacked) -
3873                              (tp->packets_out - tp->sacked_out);
3874
3875         if (tp->frto_counter)
3876                 frto_cwnd = tcp_process_frto(sk, flag);
3877         /* Guarantee sacktag reordering detection against wrap-arounds */
3878         if (before(tp->frto_highmark, tp->snd_una))
3879                 tp->frto_highmark = 0;
3880
3881         if (tcp_ack_is_dubious(sk, flag)) {
3882                 /* Advance CWND, if state allows this. */
3883                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3884                     tcp_may_raise_cwnd(sk, flag))
3885                         tcp_cong_avoid(sk, ack, prior_in_flight);
3886                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3887                                       newly_acked_sacked, flag);
3888         } else {
3889                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3890                         tcp_cong_avoid(sk, ack, prior_in_flight);
3891         }
3892
3893         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3894                 dst_confirm(__sk_dst_get(sk));
3895
3896         return 1;
3897
3898 no_queue:
3899         /* If this ack opens up a zero window, clear backoff.  It was
3900          * being used to time the probes, and is probably far higher than
3901          * it needs to be for normal retransmission.
3902          */
3903         if (tcp_send_head(sk))
3904                 tcp_ack_probe(sk);
3905         return 1;
3906
3907 invalid_ack:
3908         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3909         return -1;
3910
3911 old_ack:
3912         if (TCP_SKB_CB(skb)->sacked) {
3913                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3914                 if (icsk->icsk_ca_state == TCP_CA_Open)
3915                         tcp_try_keep_open(sk);
3916         }
3917
3918         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3919         return 0;
3920 }
3921
3922 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3923  * But, this can also be called on packets in the established flow when
3924  * the fast version below fails.
3925  */
3926 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3927                        const u8 **hvpp, int estab)
3928 {
3929         const unsigned char *ptr;
3930         const struct tcphdr *th = tcp_hdr(skb);
3931         int length = (th->doff * 4) - sizeof(struct tcphdr);
3932
3933         ptr = (const unsigned char *)(th + 1);
3934         opt_rx->saw_tstamp = 0;
3935
3936         while (length > 0) {
3937                 int opcode = *ptr++;
3938                 int opsize;
3939
3940                 switch (opcode) {
3941                 case TCPOPT_EOL:
3942                         return;
3943                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3944                         length--;
3945                         continue;
3946                 default:
3947                         opsize = *ptr++;
3948                         if (opsize < 2) /* "silly options" */
3949                                 return;
3950                         if (opsize > length)
3951                                 return; /* don't parse partial options */
3952                         switch (opcode) {
3953                         case TCPOPT_MSS:
3954                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3955                                         u16 in_mss = get_unaligned_be16(ptr);
3956                                         if (in_mss) {
3957                                                 if (opt_rx->user_mss &&
3958                                                     opt_rx->user_mss < in_mss)
3959                                                         in_mss = opt_rx->user_mss;
3960                                                 opt_rx->mss_clamp = in_mss;
3961                                         }
3962                                 }
3963                                 break;
3964                         case TCPOPT_WINDOW:
3965                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3966                                     !estab && sysctl_tcp_window_scaling) {
3967                                         __u8 snd_wscale = *(__u8 *)ptr;
3968                                         opt_rx->wscale_ok = 1;
3969                                         if (snd_wscale > 14) {
3970                                                 if (net_ratelimit())
3971                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3972                                                                "scaling value %d >14 received.\n",
3973                                                                snd_wscale);
3974                                                 snd_wscale = 14;
3975                                         }
3976                                         opt_rx->snd_wscale = snd_wscale;
3977                                 }
3978                                 break;
3979                         case TCPOPT_TIMESTAMP:
3980                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3981                                     ((estab && opt_rx->tstamp_ok) ||
3982                                      (!estab && sysctl_tcp_timestamps))) {
3983                                         opt_rx->saw_tstamp = 1;
3984                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3985                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3986                                 }
3987                                 break;
3988                         case TCPOPT_SACK_PERM:
3989                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3990                                     !estab && sysctl_tcp_sack) {
3991                                         opt_rx->sack_ok = 1;
3992                                         tcp_sack_reset(opt_rx);
3993                                 }
3994                                 break;
3995
3996                         case TCPOPT_SACK:
3997                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3998                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3999                                    opt_rx->sack_ok) {
4000                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4001                                 }
4002                                 break;
4003 #ifdef CONFIG_TCP_MD5SIG
4004                         case TCPOPT_MD5SIG:
4005                                 /*
4006                                  * The MD5 Hash has already been
4007                                  * checked (see tcp_v{4,6}_do_rcv()).
4008                                  */
4009                                 break;
4010 #endif
4011                         case TCPOPT_COOKIE:
4012                                 /* This option is variable length.
4013                                  */
4014                                 switch (opsize) {
4015                                 case TCPOLEN_COOKIE_BASE:
4016                                         /* not yet implemented */
4017                                         break;
4018                                 case TCPOLEN_COOKIE_PAIR:
4019                                         /* not yet implemented */
4020                                         break;
4021                                 case TCPOLEN_COOKIE_MIN+0:
4022                                 case TCPOLEN_COOKIE_MIN+2:
4023                                 case TCPOLEN_COOKIE_MIN+4:
4024                                 case TCPOLEN_COOKIE_MIN+6:
4025                                 case TCPOLEN_COOKIE_MAX:
4026                                         /* 16-bit multiple */
4027                                         opt_rx->cookie_plus = opsize;
4028                                         *hvpp = ptr;
4029                                         break;
4030                                 default:
4031                                         /* ignore option */
4032                                         break;
4033                                 }
4034                                 break;
4035                         }
4036
4037                         ptr += opsize-2;
4038                         length -= opsize;
4039                 }
4040         }
4041 }
4042 EXPORT_SYMBOL(tcp_parse_options);
4043
4044 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4045 {
4046         const __be32 *ptr = (const __be32 *)(th + 1);
4047
4048         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4049                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4050                 tp->rx_opt.saw_tstamp = 1;
4051                 ++ptr;
4052                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4053                 ++ptr;
4054                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4055                 return 1;
4056         }
4057         return 0;
4058 }
4059
4060 /* Fast parse options. This hopes to only see timestamps.
4061  * If it is wrong it falls back on tcp_parse_options().
4062  */
4063 static int tcp_fast_parse_options(const struct sk_buff *skb,
4064                                   const struct tcphdr *th,
4065                                   struct tcp_sock *tp, const u8 **hvpp)
4066 {
4067         /* In the spirit of fast parsing, compare doff directly to constant
4068          * values.  Because equality is used, short doff can be ignored here.
4069          */
4070         if (th->doff == (sizeof(*th) / 4)) {
4071                 tp->rx_opt.saw_tstamp = 0;
4072                 return 0;
4073         } else if (tp->rx_opt.tstamp_ok &&
4074                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4075                 if (tcp_parse_aligned_timestamp(tp, th))
4076                         return 1;
4077         }
4078         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4079         return 1;
4080 }
4081
4082 #ifdef CONFIG_TCP_MD5SIG
4083 /*
4084  * Parse MD5 Signature option
4085  */
4086 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4087 {
4088         int length = (th->doff << 2) - sizeof(*th);
4089         const u8 *ptr = (const u8 *)(th + 1);
4090
4091         /* If the TCP option is too short, we can short cut */
4092         if (length < TCPOLEN_MD5SIG)
4093                 return NULL;
4094
4095         while (length > 0) {
4096                 int opcode = *ptr++;
4097                 int opsize;
4098
4099                 switch(opcode) {
4100                 case TCPOPT_EOL:
4101                         return NULL;
4102                 case TCPOPT_NOP:
4103                         length--;
4104                         continue;
4105                 default:
4106                         opsize = *ptr++;
4107                         if (opsize < 2 || opsize > length)
4108                                 return NULL;
4109                         if (opcode == TCPOPT_MD5SIG)
4110                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4111                 }
4112                 ptr += opsize - 2;
4113                 length -= opsize;
4114         }
4115         return NULL;
4116 }
4117 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4118 #endif
4119
4120 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4121  *
4122  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4123  * it can pass through stack. So, the following predicate verifies that
4124  * this segment is not used for anything but congestion avoidance or
4125  * fast retransmit. Moreover, we even are able to eliminate most of such
4126  * second order effects, if we apply some small "replay" window (~RTO)
4127  * to timestamp space.
4128  *
4129  * All these measures still do not guarantee that we reject wrapped ACKs
4130  * on networks with high bandwidth, when sequence space is recycled fastly,
4131  * but it guarantees that such events will be very rare and do not affect
4132  * connection seriously. This doesn't look nice, but alas, PAWS is really
4133  * buggy extension.
4134  *
4135  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4136  * states that events when retransmit arrives after original data are rare.
4137  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4138  * the biggest problem on large power networks even with minor reordering.
4139  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4140  * up to bandwidth of 18Gigabit/sec. 8) ]
4141  */
4142
4143 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4144 {
4145         const struct tcp_sock *tp = tcp_sk(sk);
4146         const struct tcphdr *th = tcp_hdr(skb);
4147         u32 seq = TCP_SKB_CB(skb)->seq;
4148         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4149
4150         return (/* 1. Pure ACK with correct sequence number. */
4151                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4152
4153                 /* 2. ... and duplicate ACK. */
4154                 ack == tp->snd_una &&
4155
4156                 /* 3. ... and does not update window. */
4157                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4158
4159                 /* 4. ... and sits in replay window. */
4160                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4161 }
4162
4163 static inline int tcp_paws_discard(const struct sock *sk,
4164                                    const struct sk_buff *skb)
4165 {
4166         const struct tcp_sock *tp = tcp_sk(sk);
4167
4168         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4169                !tcp_disordered_ack(sk, skb);
4170 }
4171
4172 /* Check segment sequence number for validity.
4173  *
4174  * Segment controls are considered valid, if the segment
4175  * fits to the window after truncation to the window. Acceptability
4176  * of data (and SYN, FIN, of course) is checked separately.
4177  * See tcp_data_queue(), for example.
4178  *
4179  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4180  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4181  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4182  * (borrowed from freebsd)
4183  */
4184
4185 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4186 {
4187         return  !before(end_seq, tp->rcv_wup) &&
4188                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4189 }
4190
4191 /* When we get a reset we do this. */
4192 static void tcp_reset(struct sock *sk)
4193 {
4194         /* We want the right error as BSD sees it (and indeed as we do). */
4195         switch (sk->sk_state) {
4196         case TCP_SYN_SENT:
4197                 sk->sk_err = ECONNREFUSED;
4198                 break;
4199         case TCP_CLOSE_WAIT:
4200                 sk->sk_err = EPIPE;
4201                 break;
4202         case TCP_CLOSE:
4203                 return;
4204         default:
4205                 sk->sk_err = ECONNRESET;
4206         }
4207         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4208         smp_wmb();
4209
4210         if (!sock_flag(sk, SOCK_DEAD))
4211                 sk->sk_error_report(sk);
4212
4213         tcp_done(sk);
4214 }
4215
4216 /*
4217  *      Process the FIN bit. This now behaves as it is supposed to work
4218  *      and the FIN takes effect when it is validly part of sequence
4219  *      space. Not before when we get holes.
4220  *
4221  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4222  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4223  *      TIME-WAIT)
4224  *
4225  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4226  *      close and we go into CLOSING (and later onto TIME-WAIT)
4227  *
4228  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4229  */
4230 static void tcp_fin(struct sock *sk)
4231 {
4232         struct tcp_sock *tp = tcp_sk(sk);
4233
4234         inet_csk_schedule_ack(sk);
4235
4236         sk->sk_shutdown |= RCV_SHUTDOWN;
4237         sock_set_flag(sk, SOCK_DONE);
4238
4239         switch (sk->sk_state) {
4240         case TCP_SYN_RECV:
4241         case TCP_ESTABLISHED:
4242                 /* Move to CLOSE_WAIT */
4243                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4244                 inet_csk(sk)->icsk_ack.pingpong = 1;
4245                 break;
4246
4247         case TCP_CLOSE_WAIT:
4248         case TCP_CLOSING:
4249                 /* Received a retransmission of the FIN, do
4250                  * nothing.
4251                  */
4252                 break;
4253         case TCP_LAST_ACK:
4254                 /* RFC793: Remain in the LAST-ACK state. */
4255                 break;
4256
4257         case TCP_FIN_WAIT1:
4258                 /* This case occurs when a simultaneous close
4259                  * happens, we must ack the received FIN and
4260                  * enter the CLOSING state.
4261                  */
4262                 tcp_send_ack(sk);
4263                 tcp_set_state(sk, TCP_CLOSING);
4264                 break;
4265         case TCP_FIN_WAIT2:
4266                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4267                 tcp_send_ack(sk);
4268                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4269                 break;
4270         default:
4271                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4272                  * cases we should never reach this piece of code.
4273                  */
4274                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4275                        __func__, sk->sk_state);
4276                 break;
4277         }
4278
4279         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4280          * Probably, we should reset in this case. For now drop them.
4281          */
4282         __skb_queue_purge(&tp->out_of_order_queue);
4283         if (tcp_is_sack(tp))
4284                 tcp_sack_reset(&tp->rx_opt);
4285         sk_mem_reclaim(sk);
4286
4287         if (!sock_flag(sk, SOCK_DEAD)) {
4288                 sk->sk_state_change(sk);
4289
4290                 /* Do not send POLL_HUP for half duplex close. */
4291                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4292                     sk->sk_state == TCP_CLOSE)
4293                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4294                 else
4295                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4296         }
4297 }
4298
4299 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4300                                   u32 end_seq)
4301 {
4302         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4303                 if (before(seq, sp->start_seq))
4304                         sp->start_seq = seq;
4305                 if (after(end_seq, sp->end_seq))
4306                         sp->end_seq = end_seq;
4307                 return 1;
4308         }
4309         return 0;
4310 }
4311
4312 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4313 {
4314         struct tcp_sock *tp = tcp_sk(sk);
4315
4316         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4317                 int mib_idx;
4318
4319                 if (before(seq, tp->rcv_nxt))
4320                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4321                 else
4322                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4323
4324                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4325
4326                 tp->rx_opt.dsack = 1;
4327                 tp->duplicate_sack[0].start_seq = seq;
4328                 tp->duplicate_sack[0].end_seq = end_seq;
4329         }
4330 }
4331
4332 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4333 {
4334         struct tcp_sock *tp = tcp_sk(sk);
4335
4336         if (!tp->rx_opt.dsack)
4337                 tcp_dsack_set(sk, seq, end_seq);
4338         else
4339                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4340 }
4341
4342 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4343 {
4344         struct tcp_sock *tp = tcp_sk(sk);
4345
4346         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4347             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4348                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4349                 tcp_enter_quickack_mode(sk);
4350
4351                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4352                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4353
4354                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4355                                 end_seq = tp->rcv_nxt;
4356                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4357                 }
4358         }
4359
4360         tcp_send_ack(sk);
4361 }
4362
4363 /* These routines update the SACK block as out-of-order packets arrive or
4364  * in-order packets close up the sequence space.
4365  */
4366 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4367 {
4368         int this_sack;
4369         struct tcp_sack_block *sp = &tp->selective_acks[0];
4370         struct tcp_sack_block *swalk = sp + 1;
4371
4372         /* See if the recent change to the first SACK eats into
4373          * or hits the sequence space of other SACK blocks, if so coalesce.
4374          */
4375         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4376                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4377                         int i;
4378
4379                         /* Zap SWALK, by moving every further SACK up by one slot.
4380                          * Decrease num_sacks.
4381                          */
4382                         tp->rx_opt.num_sacks--;
4383                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4384                                 sp[i] = sp[i + 1];
4385                         continue;
4386                 }
4387                 this_sack++, swalk++;
4388         }
4389 }
4390
4391 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4392 {
4393         struct tcp_sock *tp = tcp_sk(sk);
4394         struct tcp_sack_block *sp = &tp->selective_acks[0];
4395         int cur_sacks = tp->rx_opt.num_sacks;
4396         int this_sack;
4397
4398         if (!cur_sacks)
4399                 goto new_sack;
4400
4401         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4402                 if (tcp_sack_extend(sp, seq, end_seq)) {
4403                         /* Rotate this_sack to the first one. */
4404                         for (; this_sack > 0; this_sack--, sp--)
4405                                 swap(*sp, *(sp - 1));
4406                         if (cur_sacks > 1)
4407                                 tcp_sack_maybe_coalesce(tp);
4408                         return;
4409                 }
4410         }
4411
4412         /* Could not find an adjacent existing SACK, build a new one,
4413          * put it at the front, and shift everyone else down.  We
4414          * always know there is at least one SACK present already here.
4415          *
4416          * If the sack array is full, forget about the last one.
4417          */
4418         if (this_sack >= TCP_NUM_SACKS) {
4419                 this_sack--;
4420                 tp->rx_opt.num_sacks--;
4421                 sp--;
4422         }
4423         for (; this_sack > 0; this_sack--, sp--)
4424                 *sp = *(sp - 1);
4425
4426 new_sack:
4427         /* Build the new head SACK, and we're done. */
4428         sp->start_seq = seq;
4429         sp->end_seq = end_seq;
4430         tp->rx_opt.num_sacks++;
4431 }
4432
4433 /* RCV.NXT advances, some SACKs should be eaten. */
4434
4435 static void tcp_sack_remove(struct tcp_sock *tp)
4436 {
4437         struct tcp_sack_block *sp = &tp->selective_acks[0];
4438         int num_sacks = tp->rx_opt.num_sacks;
4439         int this_sack;
4440
4441         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4442         if (skb_queue_empty(&tp->out_of_order_queue)) {
4443                 tp->rx_opt.num_sacks = 0;
4444                 return;
4445         }
4446
4447         for (this_sack = 0; this_sack < num_sacks;) {
4448                 /* Check if the start of the sack is covered by RCV.NXT. */
4449                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4450                         int i;
4451
4452                         /* RCV.NXT must cover all the block! */
4453                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4454
4455                         /* Zap this SACK, by moving forward any other SACKS. */
4456                         for (i=this_sack+1; i < num_sacks; i++)
4457                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4458                         num_sacks--;
4459                         continue;
4460                 }
4461                 this_sack++;
4462                 sp++;
4463         }
4464         tp->rx_opt.num_sacks = num_sacks;
4465 }
4466
4467 /* This one checks to see if we can put data from the
4468  * out_of_order queue into the receive_queue.
4469  */
4470 static void tcp_ofo_queue(struct sock *sk)
4471 {
4472         struct tcp_sock *tp = tcp_sk(sk);
4473         __u32 dsack_high = tp->rcv_nxt;
4474         struct sk_buff *skb;
4475
4476         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4477                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4478                         break;
4479
4480                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4481                         __u32 dsack = dsack_high;
4482                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4483                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4484                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4485                 }
4486
4487                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4488                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4489                         __skb_unlink(skb, &tp->out_of_order_queue);
4490                         __kfree_skb(skb);
4491                         continue;
4492                 }
4493                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4494                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4495                            TCP_SKB_CB(skb)->end_seq);
4496
4497                 __skb_unlink(skb, &tp->out_of_order_queue);
4498                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4499                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4500                 if (tcp_hdr(skb)->fin)
4501                         tcp_fin(sk);
4502         }
4503 }
4504
4505 static int tcp_prune_ofo_queue(struct sock *sk);
4506 static int tcp_prune_queue(struct sock *sk);
4507
4508 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4509 {
4510         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4511             !sk_rmem_schedule(sk, size)) {
4512
4513                 if (tcp_prune_queue(sk) < 0)
4514                         return -1;
4515
4516                 if (!sk_rmem_schedule(sk, size)) {
4517                         if (!tcp_prune_ofo_queue(sk))
4518                                 return -1;
4519
4520                         if (!sk_rmem_schedule(sk, size))
4521                                 return -1;
4522                 }
4523         }
4524         return 0;
4525 }
4526
4527 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4528 {
4529         const struct tcphdr *th = tcp_hdr(skb);
4530         struct tcp_sock *tp = tcp_sk(sk);
4531         int eaten = -1;
4532
4533         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4534                 goto drop;
4535
4536         skb_dst_drop(skb);
4537         __skb_pull(skb, th->doff * 4);
4538
4539         TCP_ECN_accept_cwr(tp, skb);
4540
4541         tp->rx_opt.dsack = 0;
4542
4543         /*  Queue data for delivery to the user.
4544          *  Packets in sequence go to the receive queue.
4545          *  Out of sequence packets to the out_of_order_queue.
4546          */
4547         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4548                 if (tcp_receive_window(tp) == 0)
4549                         goto out_of_window;
4550
4551                 /* Ok. In sequence. In window. */
4552                 if (tp->ucopy.task == current &&
4553                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4554                     sock_owned_by_user(sk) && !tp->urg_data) {
4555                         int chunk = min_t(unsigned int, skb->len,
4556                                           tp->ucopy.len);
4557
4558                         __set_current_state(TASK_RUNNING);
4559
4560                         local_bh_enable();
4561                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4562                                 tp->ucopy.len -= chunk;
4563                                 tp->copied_seq += chunk;
4564                                 eaten = (chunk == skb->len);
4565                                 tcp_rcv_space_adjust(sk);
4566                         }
4567                         local_bh_disable();
4568                 }
4569
4570                 if (eaten <= 0) {
4571 queue_and_out:
4572                         if (eaten < 0 &&
4573                             tcp_try_rmem_schedule(sk, skb->truesize))
4574                                 goto drop;
4575
4576                         skb_set_owner_r(skb, sk);
4577                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4578                 }
4579                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4580                 if (skb->len)
4581                         tcp_event_data_recv(sk, skb);
4582                 if (th->fin)
4583                         tcp_fin(sk);
4584
4585                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4586                         tcp_ofo_queue(sk);
4587
4588                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4589                          * gap in queue is filled.
4590                          */
4591                         if (skb_queue_empty(&tp->out_of_order_queue))
4592                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4593                 }
4594
4595                 if (tp->rx_opt.num_sacks)
4596                         tcp_sack_remove(tp);
4597
4598                 tcp_fast_path_check(sk);
4599
4600                 if (eaten > 0)
4601                         __kfree_skb(skb);
4602                 else if (!sock_flag(sk, SOCK_DEAD))
4603                         sk->sk_data_ready(sk, 0);
4604                 return;
4605         }
4606
4607         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4608                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4609                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4610                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4611
4612 out_of_window:
4613                 tcp_enter_quickack_mode(sk);
4614                 inet_csk_schedule_ack(sk);
4615 drop:
4616                 __kfree_skb(skb);
4617                 return;
4618         }
4619
4620         /* Out of window. F.e. zero window probe. */
4621         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4622                 goto out_of_window;
4623
4624         tcp_enter_quickack_mode(sk);
4625
4626         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4627                 /* Partial packet, seq < rcv_next < end_seq */
4628                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4629                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4630                            TCP_SKB_CB(skb)->end_seq);
4631
4632                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4633
4634                 /* If window is closed, drop tail of packet. But after
4635                  * remembering D-SACK for its head made in previous line.
4636                  */
4637                 if (!tcp_receive_window(tp))
4638                         goto out_of_window;
4639                 goto queue_and_out;
4640         }
4641
4642         TCP_ECN_check_ce(tp, skb);
4643
4644         if (tcp_try_rmem_schedule(sk, skb->truesize))
4645                 goto drop;
4646
4647         /* Disable header prediction. */
4648         tp->pred_flags = 0;
4649         inet_csk_schedule_ack(sk);
4650
4651         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4652                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4653
4654         skb_set_owner_r(skb, sk);
4655
4656         if (!skb_peek(&tp->out_of_order_queue)) {
4657                 /* Initial out of order segment, build 1 SACK. */
4658                 if (tcp_is_sack(tp)) {
4659                         tp->rx_opt.num_sacks = 1;
4660                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4661                         tp->selective_acks[0].end_seq =
4662                                                 TCP_SKB_CB(skb)->end_seq;
4663                 }
4664                 __skb_queue_head(&tp->out_of_order_queue, skb);
4665         } else {
4666                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4667                 u32 seq = TCP_SKB_CB(skb)->seq;
4668                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4669
4670                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4671                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4672
4673                         if (!tp->rx_opt.num_sacks ||
4674                             tp->selective_acks[0].end_seq != seq)
4675                                 goto add_sack;
4676
4677                         /* Common case: data arrive in order after hole. */
4678                         tp->selective_acks[0].end_seq = end_seq;
4679                         return;
4680                 }
4681
4682                 /* Find place to insert this segment. */
4683                 while (1) {
4684                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4685                                 break;
4686                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4687                                 skb1 = NULL;
4688                                 break;
4689                         }
4690                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4691                 }
4692
4693                 /* Do skb overlap to previous one? */
4694                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4695                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4696                                 /* All the bits are present. Drop. */
4697                                 __kfree_skb(skb);
4698                                 tcp_dsack_set(sk, seq, end_seq);
4699                                 goto add_sack;
4700                         }
4701                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4702                                 /* Partial overlap. */
4703                                 tcp_dsack_set(sk, seq,
4704                                               TCP_SKB_CB(skb1)->end_seq);
4705                         } else {
4706                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4707                                                        skb1))
4708                                         skb1 = NULL;
4709                                 else
4710                                         skb1 = skb_queue_prev(
4711                                                 &tp->out_of_order_queue,
4712                                                 skb1);
4713                         }
4714                 }
4715                 if (!skb1)
4716                         __skb_queue_head(&tp->out_of_order_queue, skb);
4717                 else
4718                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4719
4720                 /* And clean segments covered by new one as whole. */
4721                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4722                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4723
4724                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4725                                 break;
4726                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4727                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4728                                                  end_seq);
4729                                 break;
4730                         }
4731                         __skb_unlink(skb1, &tp->out_of_order_queue);
4732                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4733                                          TCP_SKB_CB(skb1)->end_seq);
4734                         __kfree_skb(skb1);
4735                 }
4736
4737 add_sack:
4738                 if (tcp_is_sack(tp))
4739                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4740         }
4741 }
4742
4743 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4744                                         struct sk_buff_head *list)
4745 {
4746         struct sk_buff *next = NULL;
4747
4748         if (!skb_queue_is_last(list, skb))
4749                 next = skb_queue_next(list, skb);
4750
4751         __skb_unlink(skb, list);
4752         __kfree_skb(skb);
4753         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4754
4755         return next;
4756 }
4757
4758 /* Collapse contiguous sequence of skbs head..tail with
4759  * sequence numbers start..end.
4760  *
4761  * If tail is NULL, this means until the end of the list.
4762  *
4763  * Segments with FIN/SYN are not collapsed (only because this
4764  * simplifies code)
4765  */
4766 static void
4767 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4768              struct sk_buff *head, struct sk_buff *tail,
4769              u32 start, u32 end)
4770 {
4771         struct sk_buff *skb, *n;
4772         bool end_of_skbs;
4773
4774         /* First, check that queue is collapsible and find
4775          * the point where collapsing can be useful. */
4776         skb = head;
4777 restart:
4778         end_of_skbs = true;
4779         skb_queue_walk_from_safe(list, skb, n) {
4780                 if (skb == tail)
4781                         break;
4782                 /* No new bits? It is possible on ofo queue. */
4783                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4784                         skb = tcp_collapse_one(sk, skb, list);
4785                         if (!skb)
4786                                 break;
4787                         goto restart;
4788                 }
4789
4790                 /* The first skb to collapse is:
4791                  * - not SYN/FIN and
4792                  * - bloated or contains data before "start" or
4793                  *   overlaps to the next one.
4794                  */
4795                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4796                     (tcp_win_from_space(skb->truesize) > skb->len ||
4797                      before(TCP_SKB_CB(skb)->seq, start))) {
4798                         end_of_skbs = false;
4799                         break;
4800                 }
4801
4802                 if (!skb_queue_is_last(list, skb)) {
4803                         struct sk_buff *next = skb_queue_next(list, skb);
4804                         if (next != tail &&
4805                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4806                                 end_of_skbs = false;
4807                                 break;
4808                         }
4809                 }
4810
4811                 /* Decided to skip this, advance start seq. */
4812                 start = TCP_SKB_CB(skb)->end_seq;
4813         }
4814         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4815                 return;
4816
4817         while (before(start, end)) {
4818                 struct sk_buff *nskb;
4819                 unsigned int header = skb_headroom(skb);
4820                 int copy = SKB_MAX_ORDER(header, 0);
4821
4822                 /* Too big header? This can happen with IPv6. */
4823                 if (copy < 0)
4824                         return;
4825                 if (end - start < copy)
4826                         copy = end - start;
4827                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4828                 if (!nskb)
4829                         return;
4830
4831                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4832                 skb_set_network_header(nskb, (skb_network_header(skb) -
4833                                               skb->head));
4834                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4835                                                 skb->head));
4836                 skb_reserve(nskb, header);
4837                 memcpy(nskb->head, skb->head, header);
4838                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4839                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4840                 __skb_queue_before(list, skb, nskb);
4841                 skb_set_owner_r(nskb, sk);
4842
4843                 /* Copy data, releasing collapsed skbs. */
4844                 while (copy > 0) {
4845                         int offset = start - TCP_SKB_CB(skb)->seq;
4846                         int size = TCP_SKB_CB(skb)->end_seq - start;
4847
4848                         BUG_ON(offset < 0);
4849                         if (size > 0) {
4850                                 size = min(copy, size);
4851                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4852                                         BUG();
4853                                 TCP_SKB_CB(nskb)->end_seq += size;
4854                                 copy -= size;
4855                                 start += size;
4856                         }
4857                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4858                                 skb = tcp_collapse_one(sk, skb, list);
4859                                 if (!skb ||
4860                                     skb == tail ||
4861                                     tcp_hdr(skb)->syn ||
4862                                     tcp_hdr(skb)->fin)
4863                                         return;
4864                         }
4865                 }
4866         }
4867 }
4868
4869 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4870  * and tcp_collapse() them until all the queue is collapsed.
4871  */
4872 static void tcp_collapse_ofo_queue(struct sock *sk)
4873 {
4874         struct tcp_sock *tp = tcp_sk(sk);
4875         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4876         struct sk_buff *head;
4877         u32 start, end;
4878
4879         if (skb == NULL)
4880                 return;
4881
4882         start = TCP_SKB_CB(skb)->seq;
4883         end = TCP_SKB_CB(skb)->end_seq;
4884         head = skb;
4885
4886         for (;;) {
4887                 struct sk_buff *next = NULL;
4888
4889                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4890                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4891                 skb = next;
4892
4893                 /* Segment is terminated when we see gap or when
4894                  * we are at the end of all the queue. */
4895                 if (!skb ||
4896                     after(TCP_SKB_CB(skb)->seq, end) ||
4897                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4898                         tcp_collapse(sk, &tp->out_of_order_queue,
4899                                      head, skb, start, end);
4900                         head = skb;
4901                         if (!skb)
4902                                 break;
4903                         /* Start new segment */
4904                         start = TCP_SKB_CB(skb)->seq;
4905                         end = TCP_SKB_CB(skb)->end_seq;
4906                 } else {
4907                         if (before(TCP_SKB_CB(skb)->seq, start))
4908                                 start = TCP_SKB_CB(skb)->seq;
4909                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4910                                 end = TCP_SKB_CB(skb)->end_seq;
4911                 }
4912         }
4913 }
4914
4915 /*
4916  * Purge the out-of-order queue.
4917  * Return true if queue was pruned.
4918  */
4919 static int tcp_prune_ofo_queue(struct sock *sk)
4920 {
4921         struct tcp_sock *tp = tcp_sk(sk);
4922         int res = 0;
4923
4924         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4925                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4926                 __skb_queue_purge(&tp->out_of_order_queue);
4927
4928                 /* Reset SACK state.  A conforming SACK implementation will
4929                  * do the same at a timeout based retransmit.  When a connection
4930                  * is in a sad state like this, we care only about integrity
4931                  * of the connection not performance.
4932                  */
4933                 if (tp->rx_opt.sack_ok)
4934                         tcp_sack_reset(&tp->rx_opt);
4935                 sk_mem_reclaim(sk);
4936                 res = 1;
4937         }
4938         return res;
4939 }
4940
4941 /* Reduce allocated memory if we can, trying to get
4942  * the socket within its memory limits again.
4943  *
4944  * Return less than zero if we should start dropping frames
4945  * until the socket owning process reads some of the data
4946  * to stabilize the situation.
4947  */
4948 static int tcp_prune_queue(struct sock *sk)
4949 {
4950         struct tcp_sock *tp = tcp_sk(sk);
4951
4952         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4953
4954         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4955
4956         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4957                 tcp_clamp_window(sk);
4958         else if (tcp_memory_pressure)
4959                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4960
4961         tcp_collapse_ofo_queue(sk);
4962         if (!skb_queue_empty(&sk->sk_receive_queue))
4963                 tcp_collapse(sk, &sk->sk_receive_queue,
4964                              skb_peek(&sk->sk_receive_queue),
4965                              NULL,
4966                              tp->copied_seq, tp->rcv_nxt);
4967         sk_mem_reclaim(sk);
4968
4969         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4970                 return 0;
4971
4972         /* Collapsing did not help, destructive actions follow.
4973          * This must not ever occur. */
4974
4975         tcp_prune_ofo_queue(sk);
4976
4977         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4978                 return 0;
4979
4980         /* If we are really being abused, tell the caller to silently
4981          * drop receive data on the floor.  It will get retransmitted
4982          * and hopefully then we'll have sufficient space.
4983          */
4984         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4985
4986         /* Massive buffer overcommit. */
4987         tp->pred_flags = 0;
4988         return -1;
4989 }
4990
4991 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4992  * As additional protections, we do not touch cwnd in retransmission phases,
4993  * and if application hit its sndbuf limit recently.
4994  */
4995 void tcp_cwnd_application_limited(struct sock *sk)
4996 {
4997         struct tcp_sock *tp = tcp_sk(sk);
4998
4999         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5000             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5001                 /* Limited by application or receiver window. */
5002                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5003                 u32 win_used = max(tp->snd_cwnd_used, init_win);
5004                 if (win_used < tp->snd_cwnd) {
5005                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
5006                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5007                 }
5008                 tp->snd_cwnd_used = 0;
5009         }
5010         tp->snd_cwnd_stamp = tcp_time_stamp;
5011 }
5012
5013 static int tcp_should_expand_sndbuf(const struct sock *sk)
5014 {
5015         const struct tcp_sock *tp = tcp_sk(sk);
5016
5017         /* If the user specified a specific send buffer setting, do
5018          * not modify it.
5019          */
5020         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5021                 return 0;
5022
5023         /* If we are under global TCP memory pressure, do not expand.  */
5024         if (tcp_memory_pressure)
5025                 return 0;
5026
5027         /* If we are under soft global TCP memory pressure, do not expand.  */
5028         if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
5029                 return 0;
5030
5031         /* If we filled the congestion window, do not expand.  */
5032         if (tp->packets_out >= tp->snd_cwnd)
5033                 return 0;
5034
5035         return 1;
5036 }
5037
5038 /* When incoming ACK allowed to free some skb from write_queue,
5039  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5040  * on the exit from tcp input handler.
5041  *
5042  * PROBLEM: sndbuf expansion does not work well with largesend.
5043  */
5044 static void tcp_new_space(struct sock *sk)
5045 {
5046         struct tcp_sock *tp = tcp_sk(sk);
5047
5048         if (tcp_should_expand_sndbuf(sk)) {
5049                 int sndmem = SKB_TRUESIZE(max_t(u32,
5050                                                 tp->rx_opt.mss_clamp,
5051                                                 tp->mss_cache) +
5052                                           MAX_TCP_HEADER);
5053                 int demanded = max_t(unsigned int, tp->snd_cwnd,
5054                                      tp->reordering + 1);
5055                 sndmem *= 2 * demanded;
5056                 if (sndmem > sk->sk_sndbuf)
5057                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5058                 tp->snd_cwnd_stamp = tcp_time_stamp;
5059         }
5060
5061         sk->sk_write_space(sk);
5062 }
5063
5064 static void tcp_check_space(struct sock *sk)
5065 {
5066         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5067                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5068                 if (sk->sk_socket &&
5069                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5070                         tcp_new_space(sk);
5071         }
5072 }
5073
5074 static inline void tcp_data_snd_check(struct sock *sk)
5075 {
5076         tcp_push_pending_frames(sk);
5077         tcp_check_space(sk);
5078 }
5079
5080 /*
5081  * Check if sending an ack is needed.
5082  */
5083 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5084 {
5085         struct tcp_sock *tp = tcp_sk(sk);
5086
5087             /* More than one full frame received... */
5088         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5089              /* ... and right edge of window advances far enough.
5090               * (tcp_recvmsg() will send ACK otherwise). Or...
5091               */
5092              __tcp_select_window(sk) >= tp->rcv_wnd) ||
5093             /* We ACK each frame or... */
5094             tcp_in_quickack_mode(sk) ||
5095             /* We have out of order data. */
5096             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5097                 /* Then ack it now */
5098                 tcp_send_ack(sk);
5099         } else {
5100                 /* Else, send delayed ack. */
5101                 tcp_send_delayed_ack(sk);
5102         }
5103 }
5104
5105 static inline void tcp_ack_snd_check(struct sock *sk)
5106 {
5107         if (!inet_csk_ack_scheduled(sk)) {
5108                 /* We sent a data segment already. */
5109                 return;
5110         }
5111         __tcp_ack_snd_check(sk, 1);
5112 }
5113
5114 /*
5115  *      This routine is only called when we have urgent data
5116  *      signaled. Its the 'slow' part of tcp_urg. It could be
5117  *      moved inline now as tcp_urg is only called from one
5118  *      place. We handle URGent data wrong. We have to - as
5119  *      BSD still doesn't use the correction from RFC961.
5120  *      For 1003.1g we should support a new option TCP_STDURG to permit
5121  *      either form (or just set the sysctl tcp_stdurg).
5122  */
5123
5124 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5125 {
5126         struct tcp_sock *tp = tcp_sk(sk);
5127         u32 ptr = ntohs(th->urg_ptr);
5128
5129         if (ptr && !sysctl_tcp_stdurg)
5130                 ptr--;
5131         ptr += ntohl(th->seq);
5132
5133         /* Ignore urgent data that we've already seen and read. */
5134         if (after(tp->copied_seq, ptr))
5135                 return;
5136
5137         /* Do not replay urg ptr.
5138          *
5139          * NOTE: interesting situation not covered by specs.
5140          * Misbehaving sender may send urg ptr, pointing to segment,
5141          * which we already have in ofo queue. We are not able to fetch
5142          * such data and will stay in TCP_URG_NOTYET until will be eaten
5143          * by recvmsg(). Seems, we are not obliged to handle such wicked
5144          * situations. But it is worth to think about possibility of some
5145          * DoSes using some hypothetical application level deadlock.
5146          */
5147         if (before(ptr, tp->rcv_nxt))
5148                 return;
5149
5150         /* Do we already have a newer (or duplicate) urgent pointer? */
5151         if (tp->urg_data && !after(ptr, tp->urg_seq))
5152                 return;
5153
5154         /* Tell the world about our new urgent pointer. */
5155         sk_send_sigurg(sk);
5156
5157         /* We may be adding urgent data when the last byte read was
5158          * urgent. To do this requires some care. We cannot just ignore
5159          * tp->copied_seq since we would read the last urgent byte again
5160          * as data, nor can we alter copied_seq until this data arrives
5161          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5162          *
5163          * NOTE. Double Dutch. Rendering to plain English: author of comment
5164          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5165          * and expect that both A and B disappear from stream. This is _wrong_.
5166          * Though this happens in BSD with high probability, this is occasional.
5167          * Any application relying on this is buggy. Note also, that fix "works"
5168          * only in this artificial test. Insert some normal data between A and B and we will
5169          * decline of BSD again. Verdict: it is better to remove to trap
5170          * buggy users.
5171          */
5172         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5173             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5174                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5175                 tp->copied_seq++;
5176                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5177                         __skb_unlink(skb, &sk->sk_receive_queue);
5178                         __kfree_skb(skb);
5179                 }
5180         }
5181
5182         tp->urg_data = TCP_URG_NOTYET;
5183         tp->urg_seq = ptr;
5184
5185         /* Disable header prediction. */
5186         tp->pred_flags = 0;
5187 }
5188
5189 /* This is the 'fast' part of urgent handling. */
5190 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5191 {
5192         struct tcp_sock *tp = tcp_sk(sk);
5193
5194         /* Check if we get a new urgent pointer - normally not. */
5195         if (th->urg)
5196                 tcp_check_urg(sk, th);
5197
5198         /* Do we wait for any urgent data? - normally not... */
5199         if (tp->urg_data == TCP_URG_NOTYET) {
5200                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5201                           th->syn;
5202
5203                 /* Is the urgent pointer pointing into this packet? */
5204                 if (ptr < skb->len) {
5205                         u8 tmp;
5206                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5207                                 BUG();
5208                         tp->urg_data = TCP_URG_VALID | tmp;
5209                         if (!sock_flag(sk, SOCK_DEAD))
5210                                 sk->sk_data_ready(sk, 0);
5211                 }
5212         }
5213 }
5214
5215 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5216 {
5217         struct tcp_sock *tp = tcp_sk(sk);
5218         int chunk = skb->len - hlen;
5219         int err;
5220
5221         local_bh_enable();
5222         if (skb_csum_unnecessary(skb))
5223                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5224         else
5225                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5226                                                        tp->ucopy.iov);
5227
5228         if (!err) {
5229                 tp->ucopy.len -= chunk;
5230                 tp->copied_seq += chunk;
5231                 tcp_rcv_space_adjust(sk);
5232         }
5233
5234         local_bh_disable();
5235         return err;
5236 }
5237
5238 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5239                                             struct sk_buff *skb)
5240 {
5241         __sum16 result;
5242
5243         if (sock_owned_by_user(sk)) {
5244                 local_bh_enable();
5245                 result = __tcp_checksum_complete(skb);
5246                 local_bh_disable();
5247         } else {
5248                 result = __tcp_checksum_complete(skb);
5249         }
5250         return result;
5251 }
5252
5253 static inline int tcp_checksum_complete_user(struct sock *sk,
5254                                              struct sk_buff *skb)
5255 {
5256         return !skb_csum_unnecessary(skb) &&
5257                __tcp_checksum_complete_user(sk, skb);
5258 }
5259
5260 #ifdef CONFIG_NET_DMA
5261 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5262                                   int hlen)
5263 {
5264         struct tcp_sock *tp = tcp_sk(sk);
5265         int chunk = skb->len - hlen;
5266         int dma_cookie;
5267         int copied_early = 0;
5268
5269         if (tp->ucopy.wakeup)
5270                 return 0;
5271
5272         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5273                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5274
5275         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5276
5277                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5278                                                          skb, hlen,
5279                                                          tp->ucopy.iov, chunk,
5280                                                          tp->ucopy.pinned_list);
5281
5282                 if (dma_cookie < 0)
5283                         goto out;
5284
5285                 tp->ucopy.dma_cookie = dma_cookie;
5286                 copied_early = 1;
5287
5288                 tp->ucopy.len -= chunk;
5289                 tp->copied_seq += chunk;
5290                 tcp_rcv_space_adjust(sk);
5291
5292                 if ((tp->ucopy.len == 0) ||
5293                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5294                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5295                         tp->ucopy.wakeup = 1;
5296                         sk->sk_data_ready(sk, 0);
5297                 }
5298         } else if (chunk > 0) {
5299                 tp->ucopy.wakeup = 1;
5300                 sk->sk_data_ready(sk, 0);
5301         }
5302 out:
5303         return copied_early;
5304 }
5305 #endif /* CONFIG_NET_DMA */
5306
5307 /* Does PAWS and seqno based validation of an incoming segment, flags will
5308  * play significant role here.
5309  */
5310 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5311                                   const struct tcphdr *th, int syn_inerr)
5312 {
5313         const u8 *hash_location;
5314         struct tcp_sock *tp = tcp_sk(sk);
5315
5316         /* RFC1323: H1. Apply PAWS check first. */
5317         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5318             tp->rx_opt.saw_tstamp &&
5319             tcp_paws_discard(sk, skb)) {
5320                 if (!th->rst) {
5321                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5322                         tcp_send_dupack(sk, skb);
5323                         goto discard;
5324                 }
5325                 /* Reset is accepted even if it did not pass PAWS. */
5326         }
5327
5328         /* Step 1: check sequence number */
5329         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5330                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5331                  * (RST) segments are validated by checking their SEQ-fields."
5332                  * And page 69: "If an incoming segment is not acceptable,
5333                  * an acknowledgment should be sent in reply (unless the RST
5334                  * bit is set, if so drop the segment and return)".
5335                  */
5336                 if (!th->rst) {
5337                         if (th->syn)
5338                                 goto syn_challenge;
5339                         tcp_send_dupack(sk, skb);
5340                 }
5341                 goto discard;
5342         }
5343
5344         /* Step 2: check RST bit */
5345         if (th->rst) {
5346                 /* RFC 5961 3.2 :
5347                  * If sequence number exactly matches RCV.NXT, then
5348                  *     RESET the connection
5349                  * else
5350                  *     Send a challenge ACK
5351                  */
5352                 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5353                         tcp_reset(sk);
5354                 else
5355                         tcp_send_challenge_ack(sk);
5356                 goto discard;
5357         }
5358
5359         /* step 3: check security and precedence [ignored] */
5360
5361         /* step 4: Check for a SYN
5362          * RFC 5691 4.2 : Send a challenge ack
5363          */
5364         if (th->syn) {
5365 syn_challenge:
5366                 if (syn_inerr)
5367                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5368                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5369                 tcp_send_challenge_ack(sk);
5370                 goto discard;
5371         }
5372
5373         return true;
5374
5375 discard:
5376         __kfree_skb(skb);
5377         return false;
5378 }
5379
5380 /*
5381  *      TCP receive function for the ESTABLISHED state.
5382  *
5383  *      It is split into a fast path and a slow path. The fast path is
5384  *      disabled when:
5385  *      - A zero window was announced from us - zero window probing
5386  *        is only handled properly in the slow path.
5387  *      - Out of order segments arrived.
5388  *      - Urgent data is expected.
5389  *      - There is no buffer space left
5390  *      - Unexpected TCP flags/window values/header lengths are received
5391  *        (detected by checking the TCP header against pred_flags)
5392  *      - Data is sent in both directions. Fast path only supports pure senders
5393  *        or pure receivers (this means either the sequence number or the ack
5394  *        value must stay constant)
5395  *      - Unexpected TCP option.
5396  *
5397  *      When these conditions are not satisfied it drops into a standard
5398  *      receive procedure patterned after RFC793 to handle all cases.
5399  *      The first three cases are guaranteed by proper pred_flags setting,
5400  *      the rest is checked inline. Fast processing is turned on in
5401  *      tcp_data_queue when everything is OK.
5402  */
5403 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5404                         const struct tcphdr *th, unsigned int len)
5405 {
5406         struct tcp_sock *tp = tcp_sk(sk);
5407
5408         /*
5409          *      Header prediction.
5410          *      The code loosely follows the one in the famous
5411          *      "30 instruction TCP receive" Van Jacobson mail.
5412          *
5413          *      Van's trick is to deposit buffers into socket queue
5414          *      on a device interrupt, to call tcp_recv function
5415          *      on the receive process context and checksum and copy
5416          *      the buffer to user space. smart...
5417          *
5418          *      Our current scheme is not silly either but we take the
5419          *      extra cost of the net_bh soft interrupt processing...
5420          *      We do checksum and copy also but from device to kernel.
5421          */
5422
5423         tp->rx_opt.saw_tstamp = 0;
5424
5425         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5426          *      if header_prediction is to be made
5427          *      'S' will always be tp->tcp_header_len >> 2
5428          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5429          *  turn it off (when there are holes in the receive
5430          *       space for instance)
5431          *      PSH flag is ignored.
5432          */
5433
5434         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5435             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5436             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5437                 int tcp_header_len = tp->tcp_header_len;
5438
5439                 /* Timestamp header prediction: tcp_header_len
5440                  * is automatically equal to th->doff*4 due to pred_flags
5441                  * match.
5442                  */
5443
5444                 /* Check timestamp */
5445                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5446                         /* No? Slow path! */
5447                         if (!tcp_parse_aligned_timestamp(tp, th))
5448                                 goto slow_path;
5449
5450                         /* If PAWS failed, check it more carefully in slow path */
5451                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5452                                 goto slow_path;
5453
5454                         /* DO NOT update ts_recent here, if checksum fails
5455                          * and timestamp was corrupted part, it will result
5456                          * in a hung connection since we will drop all
5457                          * future packets due to the PAWS test.
5458                          */
5459                 }
5460
5461                 if (len <= tcp_header_len) {
5462                         /* Bulk data transfer: sender */
5463                         if (len == tcp_header_len) {
5464                                 /* Predicted packet is in window by definition.
5465                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5466                                  * Hence, check seq<=rcv_wup reduces to:
5467                                  */
5468                                 if (tcp_header_len ==
5469                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5470                                     tp->rcv_nxt == tp->rcv_wup)
5471                                         tcp_store_ts_recent(tp);
5472
5473                                 /* We know that such packets are checksummed
5474                                  * on entry.
5475                                  */
5476                                 tcp_ack(sk, skb, 0);
5477                                 __kfree_skb(skb);
5478                                 tcp_data_snd_check(sk);
5479                                 return 0;
5480                         } else { /* Header too small */
5481                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5482                                 goto discard;
5483                         }
5484                 } else {
5485                         int eaten = 0;
5486                         int copied_early = 0;
5487
5488                         if (tp->copied_seq == tp->rcv_nxt &&
5489                             len - tcp_header_len <= tp->ucopy.len) {
5490 #ifdef CONFIG_NET_DMA
5491                                 if (tp->ucopy.task == current &&
5492                                     sock_owned_by_user(sk) &&
5493                                     tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5494                                         copied_early = 1;
5495                                         eaten = 1;
5496                                 }
5497 #endif
5498                                 if (tp->ucopy.task == current &&
5499                                     sock_owned_by_user(sk) && !copied_early) {
5500                                         __set_current_state(TASK_RUNNING);
5501
5502                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5503                                                 eaten = 1;
5504                                 }
5505                                 if (eaten) {
5506                                         /* Predicted packet is in window by definition.
5507                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5508                                          * Hence, check seq<=rcv_wup reduces to:
5509                                          */
5510                                         if (tcp_header_len ==
5511                                             (sizeof(struct tcphdr) +
5512                                              TCPOLEN_TSTAMP_ALIGNED) &&
5513                                             tp->rcv_nxt == tp->rcv_wup)
5514                                                 tcp_store_ts_recent(tp);
5515
5516                                         tcp_rcv_rtt_measure_ts(sk, skb);
5517
5518                                         __skb_pull(skb, tcp_header_len);
5519                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5520                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5521                                 }
5522                                 if (copied_early)
5523                                         tcp_cleanup_rbuf(sk, skb->len);
5524                         }
5525                         if (!eaten) {
5526                                 if (tcp_checksum_complete_user(sk, skb))
5527                                         goto csum_error;
5528
5529                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5530                                         goto step5;
5531
5532                                 /* Predicted packet is in window by definition.
5533                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5534                                  * Hence, check seq<=rcv_wup reduces to:
5535                                  */
5536                                 if (tcp_header_len ==
5537                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5538                                     tp->rcv_nxt == tp->rcv_wup)
5539                                         tcp_store_ts_recent(tp);
5540
5541                                 tcp_rcv_rtt_measure_ts(sk, skb);
5542
5543                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5544
5545                                 /* Bulk data transfer: receiver */
5546                                 __skb_pull(skb, tcp_header_len);
5547                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5548                                 skb_set_owner_r(skb, sk);
5549                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5550                         }
5551
5552                         tcp_event_data_recv(sk, skb);
5553
5554                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5555                                 /* Well, only one small jumplet in fast path... */
5556                                 tcp_ack(sk, skb, FLAG_DATA);
5557                                 tcp_data_snd_check(sk);
5558                                 if (!inet_csk_ack_scheduled(sk))
5559                                         goto no_ack;
5560                         }
5561
5562                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5563                                 __tcp_ack_snd_check(sk, 0);
5564 no_ack:
5565 #ifdef CONFIG_NET_DMA
5566                         if (copied_early)
5567                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5568                         else
5569 #endif
5570                         if (eaten)
5571                                 __kfree_skb(skb);
5572                         else
5573                                 sk->sk_data_ready(sk, 0);
5574                         return 0;
5575                 }
5576         }
5577
5578 slow_path:
5579         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5580                 goto csum_error;
5581
5582         /*
5583          *      Standard slow path.
5584          */
5585
5586         if (!tcp_validate_incoming(sk, skb, th, 1))
5587                 return 0;
5588
5589 step5:
5590         if (th->ack &&
5591             tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5592                 goto discard;
5593
5594         tcp_rcv_rtt_measure_ts(sk, skb);
5595
5596         /* Process urgent data. */
5597         tcp_urg(sk, skb, th);
5598
5599         /* step 7: process the segment text */
5600         tcp_data_queue(sk, skb);
5601
5602         tcp_data_snd_check(sk);
5603         tcp_ack_snd_check(sk);
5604         return 0;
5605
5606 csum_error:
5607         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5608
5609 discard:
5610         __kfree_skb(skb);
5611         return 0;
5612 }
5613 EXPORT_SYMBOL(tcp_rcv_established);
5614
5615 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5616                                          const struct tcphdr *th, unsigned int len)
5617 {
5618         const u8 *hash_location;
5619         struct inet_connection_sock *icsk = inet_csk(sk);
5620         struct tcp_sock *tp = tcp_sk(sk);
5621         struct tcp_cookie_values *cvp = tp->cookie_values;
5622         int saved_clamp = tp->rx_opt.mss_clamp;
5623
5624         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5625
5626         if (th->ack) {
5627                 /* rfc793:
5628                  * "If the state is SYN-SENT then
5629                  *    first check the ACK bit
5630                  *      If the ACK bit is set
5631                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5632                  *        a reset (unless the RST bit is set, if so drop
5633                  *        the segment and return)"
5634                  *
5635                  *  We do not send data with SYN, so that RFC-correct
5636                  *  test reduces to:
5637                  */
5638                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5639                         goto reset_and_undo;
5640
5641                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5642                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5643                              tcp_time_stamp)) {
5644                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5645                         goto reset_and_undo;
5646                 }
5647
5648                 /* Now ACK is acceptable.
5649                  *
5650                  * "If the RST bit is set
5651                  *    If the ACK was acceptable then signal the user "error:
5652                  *    connection reset", drop the segment, enter CLOSED state,
5653                  *    delete TCB, and return."
5654                  */
5655
5656                 if (th->rst) {
5657                         tcp_reset(sk);
5658                         goto discard;
5659                 }
5660
5661                 /* rfc793:
5662                  *   "fifth, if neither of the SYN or RST bits is set then
5663                  *    drop the segment and return."
5664                  *
5665                  *    See note below!
5666                  *                                        --ANK(990513)
5667                  */
5668                 if (!th->syn)
5669                         goto discard_and_undo;
5670
5671                 /* rfc793:
5672                  *   "If the SYN bit is on ...
5673                  *    are acceptable then ...
5674                  *    (our SYN has been ACKed), change the connection
5675                  *    state to ESTABLISHED..."
5676                  */
5677
5678                 TCP_ECN_rcv_synack(tp, th);
5679
5680                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5681                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5682
5683                 /* Ok.. it's good. Set up sequence numbers and
5684                  * move to established.
5685                  */
5686                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5687                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5688
5689                 /* RFC1323: The window in SYN & SYN/ACK segments is
5690                  * never scaled.
5691                  */
5692                 tp->snd_wnd = ntohs(th->window);
5693                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5694
5695                 if (!tp->rx_opt.wscale_ok) {
5696                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5697                         tp->window_clamp = min(tp->window_clamp, 65535U);
5698                 }
5699
5700                 if (tp->rx_opt.saw_tstamp) {
5701                         tp->rx_opt.tstamp_ok       = 1;
5702                         tp->tcp_header_len =
5703                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5704                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5705                         tcp_store_ts_recent(tp);
5706                 } else {
5707                         tp->tcp_header_len = sizeof(struct tcphdr);
5708                 }
5709
5710                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5711                         tcp_enable_fack(tp);
5712
5713                 tcp_mtup_init(sk);
5714                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5715                 tcp_initialize_rcv_mss(sk);
5716
5717                 /* Remember, tcp_poll() does not lock socket!
5718                  * Change state from SYN-SENT only after copied_seq
5719                  * is initialized. */
5720                 tp->copied_seq = tp->rcv_nxt;
5721
5722                 if (cvp != NULL &&
5723                     cvp->cookie_pair_size > 0 &&
5724                     tp->rx_opt.cookie_plus > 0) {
5725                         int cookie_size = tp->rx_opt.cookie_plus
5726                                         - TCPOLEN_COOKIE_BASE;
5727                         int cookie_pair_size = cookie_size
5728                                              + cvp->cookie_desired;
5729
5730                         /* A cookie extension option was sent and returned.
5731                          * Note that each incoming SYNACK replaces the
5732                          * Responder cookie.  The initial exchange is most
5733                          * fragile, as protection against spoofing relies
5734                          * entirely upon the sequence and timestamp (above).
5735                          * This replacement strategy allows the correct pair to
5736                          * pass through, while any others will be filtered via
5737                          * Responder verification later.
5738                          */
5739                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5740                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5741                                        hash_location, cookie_size);
5742                                 cvp->cookie_pair_size = cookie_pair_size;
5743                         }
5744                 }
5745
5746                 smp_mb();
5747                 tcp_set_state(sk, TCP_ESTABLISHED);
5748
5749                 security_inet_conn_established(sk, skb);
5750
5751                 /* Make sure socket is routed, for correct metrics.  */
5752                 icsk->icsk_af_ops->rebuild_header(sk);
5753
5754                 tcp_init_metrics(sk);
5755
5756                 tcp_init_congestion_control(sk);
5757
5758                 /* Prevent spurious tcp_cwnd_restart() on first data
5759                  * packet.
5760                  */
5761                 tp->lsndtime = tcp_time_stamp;
5762
5763                 tcp_init_buffer_space(sk);
5764
5765                 if (sock_flag(sk, SOCK_KEEPOPEN))
5766                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5767
5768                 if (!tp->rx_opt.snd_wscale)
5769                         __tcp_fast_path_on(tp, tp->snd_wnd);
5770                 else
5771                         tp->pred_flags = 0;
5772
5773                 if (!sock_flag(sk, SOCK_DEAD)) {
5774                         sk->sk_state_change(sk);
5775                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5776                 }
5777
5778                 if (sk->sk_write_pending ||
5779                     icsk->icsk_accept_queue.rskq_defer_accept ||
5780                     icsk->icsk_ack.pingpong) {
5781                         /* Save one ACK. Data will be ready after
5782                          * several ticks, if write_pending is set.
5783                          *
5784                          * It may be deleted, but with this feature tcpdumps
5785                          * look so _wonderfully_ clever, that I was not able
5786                          * to stand against the temptation 8)     --ANK
5787                          */
5788                         inet_csk_schedule_ack(sk);
5789                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5790                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5791                         tcp_incr_quickack(sk);
5792                         tcp_enter_quickack_mode(sk);
5793                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5794                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5795
5796 discard:
5797                         __kfree_skb(skb);
5798                         return 0;
5799                 } else {
5800                         tcp_send_ack(sk);
5801                 }
5802                 return -1;
5803         }
5804
5805         /* No ACK in the segment */
5806
5807         if (th->rst) {
5808                 /* rfc793:
5809                  * "If the RST bit is set
5810                  *
5811                  *      Otherwise (no ACK) drop the segment and return."
5812                  */
5813
5814                 goto discard_and_undo;
5815         }
5816
5817         /* PAWS check. */
5818         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5819             tcp_paws_reject(&tp->rx_opt, 0))
5820                 goto discard_and_undo;
5821
5822         if (th->syn) {
5823                 /* We see SYN without ACK. It is attempt of
5824                  * simultaneous connect with crossed SYNs.
5825                  * Particularly, it can be connect to self.
5826                  */
5827                 tcp_set_state(sk, TCP_SYN_RECV);
5828
5829                 if (tp->rx_opt.saw_tstamp) {
5830                         tp->rx_opt.tstamp_ok = 1;
5831                         tcp_store_ts_recent(tp);
5832                         tp->tcp_header_len =
5833                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5834                 } else {
5835                         tp->tcp_header_len = sizeof(struct tcphdr);
5836                 }
5837
5838                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5839                 tp->copied_seq = tp->rcv_nxt;
5840                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5841
5842                 /* RFC1323: The window in SYN & SYN/ACK segments is
5843                  * never scaled.
5844                  */
5845                 tp->snd_wnd    = ntohs(th->window);
5846                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5847                 tp->max_window = tp->snd_wnd;
5848
5849                 TCP_ECN_rcv_syn(tp, th);
5850
5851                 tcp_mtup_init(sk);
5852                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5853                 tcp_initialize_rcv_mss(sk);
5854
5855                 tcp_send_synack(sk);
5856 #if 0
5857                 /* Note, we could accept data and URG from this segment.
5858                  * There are no obstacles to make this.
5859                  *
5860                  * However, if we ignore data in ACKless segments sometimes,
5861                  * we have no reasons to accept it sometimes.
5862                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5863                  * is not flawless. So, discard packet for sanity.
5864                  * Uncomment this return to process the data.
5865                  */
5866                 return -1;
5867 #else
5868                 goto discard;
5869 #endif
5870         }
5871         /* "fifth, if neither of the SYN or RST bits is set then
5872          * drop the segment and return."
5873          */
5874
5875 discard_and_undo:
5876         tcp_clear_options(&tp->rx_opt);
5877         tp->rx_opt.mss_clamp = saved_clamp;
5878         goto discard;
5879
5880 reset_and_undo:
5881         tcp_clear_options(&tp->rx_opt);
5882         tp->rx_opt.mss_clamp = saved_clamp;
5883         return 1;
5884 }
5885
5886 /*
5887  *      This function implements the receiving procedure of RFC 793 for
5888  *      all states except ESTABLISHED and TIME_WAIT.
5889  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5890  *      address independent.
5891  */
5892
5893 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5894                           const struct tcphdr *th, unsigned int len)
5895 {
5896         struct tcp_sock *tp = tcp_sk(sk);
5897         struct inet_connection_sock *icsk = inet_csk(sk);
5898         int queued = 0;
5899
5900         tp->rx_opt.saw_tstamp = 0;
5901
5902         switch (sk->sk_state) {
5903         case TCP_CLOSE:
5904                 goto discard;
5905
5906         case TCP_LISTEN:
5907                 if (th->ack)
5908                         return 1;
5909
5910                 if (th->rst)
5911                         goto discard;
5912
5913                 if (th->syn) {
5914                         if (th->fin)
5915                                 goto discard;
5916                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5917                                 return 1;
5918
5919                         /* Now we have several options: In theory there is
5920                          * nothing else in the frame. KA9Q has an option to
5921                          * send data with the syn, BSD accepts data with the
5922                          * syn up to the [to be] advertised window and
5923                          * Solaris 2.1 gives you a protocol error. For now
5924                          * we just ignore it, that fits the spec precisely
5925                          * and avoids incompatibilities. It would be nice in
5926                          * future to drop through and process the data.
5927                          *
5928                          * Now that TTCP is starting to be used we ought to
5929                          * queue this data.
5930                          * But, this leaves one open to an easy denial of
5931                          * service attack, and SYN cookies can't defend
5932                          * against this problem. So, we drop the data
5933                          * in the interest of security over speed unless
5934                          * it's still in use.
5935                          */
5936                         kfree_skb(skb);
5937                         return 0;
5938                 }
5939                 goto discard;
5940
5941         case TCP_SYN_SENT:
5942                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5943                 if (queued >= 0)
5944                         return queued;
5945
5946                 /* Do step6 onward by hand. */
5947                 tcp_urg(sk, skb, th);
5948                 __kfree_skb(skb);
5949                 tcp_data_snd_check(sk);
5950                 return 0;
5951         }
5952
5953         if (!tcp_validate_incoming(sk, skb, th, 0))
5954                 return 0;
5955
5956         /* step 5: check the ACK field */
5957         if (th->ack) {
5958                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5959                                                   FLAG_UPDATE_TS_RECENT) > 0;
5960
5961                 switch (sk->sk_state) {
5962                 case TCP_SYN_RECV:
5963                         if (acceptable) {
5964                                 tp->copied_seq = tp->rcv_nxt;
5965                                 smp_mb();
5966                                 tcp_set_state(sk, TCP_ESTABLISHED);
5967                                 sk->sk_state_change(sk);
5968
5969                                 /* Note, that this wakeup is only for marginal
5970                                  * crossed SYN case. Passively open sockets
5971                                  * are not waked up, because sk->sk_sleep ==
5972                                  * NULL and sk->sk_socket == NULL.
5973                                  */
5974                                 if (sk->sk_socket)
5975                                         sk_wake_async(sk,
5976                                                       SOCK_WAKE_IO, POLL_OUT);
5977
5978                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5979                                 tp->snd_wnd = ntohs(th->window) <<
5980                                               tp->rx_opt.snd_wscale;
5981                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5982
5983                                 if (tp->rx_opt.tstamp_ok)
5984                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5985
5986                                 /* Make sure socket is routed, for
5987                                  * correct metrics.
5988                                  */
5989                                 icsk->icsk_af_ops->rebuild_header(sk);
5990
5991                                 tcp_init_metrics(sk);
5992
5993                                 tcp_init_congestion_control(sk);
5994
5995                                 /* Prevent spurious tcp_cwnd_restart() on
5996                                  * first data packet.
5997                                  */
5998                                 tp->lsndtime = tcp_time_stamp;
5999
6000                                 tcp_mtup_init(sk);
6001                                 tcp_initialize_rcv_mss(sk);
6002                                 tcp_init_buffer_space(sk);
6003                                 tcp_fast_path_on(tp);
6004                         } else {
6005                                 return 1;
6006                         }
6007                         break;
6008
6009                 case TCP_FIN_WAIT1:
6010                         if (tp->snd_una == tp->write_seq) {
6011                                 tcp_set_state(sk, TCP_FIN_WAIT2);
6012                                 sk->sk_shutdown |= SEND_SHUTDOWN;
6013                                 dst_confirm(__sk_dst_get(sk));
6014
6015                                 if (!sock_flag(sk, SOCK_DEAD))
6016                                         /* Wake up lingering close() */
6017                                         sk->sk_state_change(sk);
6018                                 else {
6019                                         int tmo;
6020
6021                                         if (tp->linger2 < 0 ||
6022                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6023                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6024                                                 tcp_done(sk);
6025                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6026                                                 return 1;
6027                                         }
6028
6029                                         tmo = tcp_fin_time(sk);
6030                                         if (tmo > TCP_TIMEWAIT_LEN) {
6031                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6032                                         } else if (th->fin || sock_owned_by_user(sk)) {
6033                                                 /* Bad case. We could lose such FIN otherwise.
6034                                                  * It is not a big problem, but it looks confusing
6035                                                  * and not so rare event. We still can lose it now,
6036                                                  * if it spins in bh_lock_sock(), but it is really
6037                                                  * marginal case.
6038                                                  */
6039                                                 inet_csk_reset_keepalive_timer(sk, tmo);
6040                                         } else {
6041                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6042                                                 goto discard;
6043                                         }
6044                                 }
6045                         }
6046                         break;
6047
6048                 case TCP_CLOSING:
6049                         if (tp->snd_una == tp->write_seq) {
6050                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6051                                 goto discard;
6052                         }
6053                         break;
6054
6055                 case TCP_LAST_ACK:
6056                         if (tp->snd_una == tp->write_seq) {
6057                                 tcp_update_metrics(sk);
6058                                 tcp_done(sk);
6059                                 goto discard;
6060                         }
6061                         break;
6062                 }
6063         } else
6064                 goto discard;
6065
6066         /* step 6: check the URG bit */
6067         tcp_urg(sk, skb, th);
6068
6069         /* step 7: process the segment text */
6070         switch (sk->sk_state) {
6071         case TCP_CLOSE_WAIT:
6072         case TCP_CLOSING:
6073         case TCP_LAST_ACK:
6074                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6075                         break;
6076         case TCP_FIN_WAIT1:
6077         case TCP_FIN_WAIT2:
6078                 /* RFC 793 says to queue data in these states,
6079                  * RFC 1122 says we MUST send a reset.
6080                  * BSD 4.4 also does reset.
6081                  */
6082                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6083                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6084                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6085                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6086                                 tcp_reset(sk);
6087                                 return 1;
6088                         }
6089                 }
6090                 /* Fall through */
6091         case TCP_ESTABLISHED:
6092                 tcp_data_queue(sk, skb);
6093                 queued = 1;
6094                 break;
6095         }
6096
6097         /* tcp_data could move socket to TIME-WAIT */
6098         if (sk->sk_state != TCP_CLOSE) {
6099                 tcp_data_snd_check(sk);
6100                 tcp_ack_snd_check(sk);
6101         }
6102
6103         if (!queued) {
6104 discard:
6105                 __kfree_skb(skb);
6106         }
6107         return 0;
6108 }
6109 EXPORT_SYMBOL(tcp_rcv_state_process);