Merge branch 'for-3.3-rc' of git://gitorious.org/linux-omap-dss2/linux into fbdev...
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
110 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
113 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
114
115 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
119 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129         struct inet_connection_sock *icsk = inet_csk(sk);
130         const unsigned int lss = icsk->icsk_ack.last_seg_size;
131         unsigned int len;
132
133         icsk->icsk_ack.last_seg_size = 0;
134
135         /* skb->len may jitter because of SACKs, even if peer
136          * sends good full-sized frames.
137          */
138         len = skb_shinfo(skb)->gso_size ? : skb->len;
139         if (len >= icsk->icsk_ack.rcv_mss) {
140                 icsk->icsk_ack.rcv_mss = len;
141         } else {
142                 /* Otherwise, we make more careful check taking into account,
143                  * that SACKs block is variable.
144                  *
145                  * "len" is invariant segment length, including TCP header.
146                  */
147                 len += skb->data - skb_transport_header(skb);
148                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149                     /* If PSH is not set, packet should be
150                      * full sized, provided peer TCP is not badly broken.
151                      * This observation (if it is correct 8)) allows
152                      * to handle super-low mtu links fairly.
153                      */
154                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156                         /* Subtract also invariant (if peer is RFC compliant),
157                          * tcp header plus fixed timestamp option length.
158                          * Resulting "len" is MSS free of SACK jitter.
159                          */
160                         len -= tcp_sk(sk)->tcp_header_len;
161                         icsk->icsk_ack.last_seg_size = len;
162                         if (len == lss) {
163                                 icsk->icsk_ack.rcv_mss = len;
164                                 return;
165                         }
166                 }
167                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170         }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175         struct inet_connection_sock *icsk = inet_csk(sk);
176         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178         if (quickacks == 0)
179                 quickacks = 2;
180         if (quickacks > icsk->icsk_ack.quick)
181                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186         struct inet_connection_sock *icsk = inet_csk(sk);
187         tcp_incr_quickack(sk);
188         icsk->icsk_ack.pingpong = 0;
189         icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195
196 static inline int tcp_in_quickack_mode(const struct sock *sk)
197 {
198         const struct inet_connection_sock *icsk = inet_csk(sk);
199         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
200 }
201
202 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
203 {
204         if (tp->ecn_flags & TCP_ECN_OK)
205                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
206 }
207
208 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
209 {
210         if (tcp_hdr(skb)->cwr)
211                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213
214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
215 {
216         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217 }
218
219 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
220 {
221         if (!(tp->ecn_flags & TCP_ECN_OK))
222                 return;
223
224         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225         case INET_ECN_NOT_ECT:
226                 /* Funny extension: if ECT is not set on a segment,
227                  * and we already seen ECT on a previous segment,
228                  * it is probably a retransmit.
229                  */
230                 if (tp->ecn_flags & TCP_ECN_SEEN)
231                         tcp_enter_quickack_mode((struct sock *)tp);
232                 break;
233         case INET_ECN_CE:
234                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
235                 /* fallinto */
236         default:
237                 tp->ecn_flags |= TCP_ECN_SEEN;
238         }
239 }
240
241 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
242 {
243         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
244                 tp->ecn_flags &= ~TCP_ECN_OK;
245 }
246
247 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
250                 tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252
253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
254 {
255         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
256                 return 1;
257         return 0;
258 }
259
260 /* Buffer size and advertised window tuning.
261  *
262  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
263  */
264
265 static void tcp_fixup_sndbuf(struct sock *sk)
266 {
267         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
268
269         sndmem *= TCP_INIT_CWND;
270         if (sk->sk_sndbuf < sndmem)
271                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
272 }
273
274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
275  *
276  * All tcp_full_space() is split to two parts: "network" buffer, allocated
277  * forward and advertised in receiver window (tp->rcv_wnd) and
278  * "application buffer", required to isolate scheduling/application
279  * latencies from network.
280  * window_clamp is maximal advertised window. It can be less than
281  * tcp_full_space(), in this case tcp_full_space() - window_clamp
282  * is reserved for "application" buffer. The less window_clamp is
283  * the smoother our behaviour from viewpoint of network, but the lower
284  * throughput and the higher sensitivity of the connection to losses. 8)
285  *
286  * rcv_ssthresh is more strict window_clamp used at "slow start"
287  * phase to predict further behaviour of this connection.
288  * It is used for two goals:
289  * - to enforce header prediction at sender, even when application
290  *   requires some significant "application buffer". It is check #1.
291  * - to prevent pruning of receive queue because of misprediction
292  *   of receiver window. Check #2.
293  *
294  * The scheme does not work when sender sends good segments opening
295  * window and then starts to feed us spaghetti. But it should work
296  * in common situations. Otherwise, we have to rely on queue collapsing.
297  */
298
299 /* Slow part of check#2. */
300 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
301 {
302         struct tcp_sock *tp = tcp_sk(sk);
303         /* Optimize this! */
304         int truesize = tcp_win_from_space(skb->truesize) >> 1;
305         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
306
307         while (tp->rcv_ssthresh <= window) {
308                 if (truesize <= skb->len)
309                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
310
311                 truesize >>= 1;
312                 window >>= 1;
313         }
314         return 0;
315 }
316
317 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
318 {
319         struct tcp_sock *tp = tcp_sk(sk);
320
321         /* Check #1 */
322         if (tp->rcv_ssthresh < tp->window_clamp &&
323             (int)tp->rcv_ssthresh < tcp_space(sk) &&
324             !sk_under_memory_pressure(sk)) {
325                 int incr;
326
327                 /* Check #2. Increase window, if skb with such overhead
328                  * will fit to rcvbuf in future.
329                  */
330                 if (tcp_win_from_space(skb->truesize) <= skb->len)
331                         incr = 2 * tp->advmss;
332                 else
333                         incr = __tcp_grow_window(sk, skb);
334
335                 if (incr) {
336                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
337                                                tp->window_clamp);
338                         inet_csk(sk)->icsk_ack.quick |= 1;
339                 }
340         }
341 }
342
343 /* 3. Tuning rcvbuf, when connection enters established state. */
344
345 static void tcp_fixup_rcvbuf(struct sock *sk)
346 {
347         u32 mss = tcp_sk(sk)->advmss;
348         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
349         int rcvmem;
350
351         /* Limit to 10 segments if mss <= 1460,
352          * or 14600/mss segments, with a minimum of two segments.
353          */
354         if (mss > 1460)
355                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
356
357         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
358         while (tcp_win_from_space(rcvmem) < mss)
359                 rcvmem += 128;
360
361         rcvmem *= icwnd;
362
363         if (sk->sk_rcvbuf < rcvmem)
364                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
365 }
366
367 /* 4. Try to fixup all. It is made immediately after connection enters
368  *    established state.
369  */
370 static void tcp_init_buffer_space(struct sock *sk)
371 {
372         struct tcp_sock *tp = tcp_sk(sk);
373         int maxwin;
374
375         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
376                 tcp_fixup_rcvbuf(sk);
377         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
378                 tcp_fixup_sndbuf(sk);
379
380         tp->rcvq_space.space = tp->rcv_wnd;
381
382         maxwin = tcp_full_space(sk);
383
384         if (tp->window_clamp >= maxwin) {
385                 tp->window_clamp = maxwin;
386
387                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
388                         tp->window_clamp = max(maxwin -
389                                                (maxwin >> sysctl_tcp_app_win),
390                                                4 * tp->advmss);
391         }
392
393         /* Force reservation of one segment. */
394         if (sysctl_tcp_app_win &&
395             tp->window_clamp > 2 * tp->advmss &&
396             tp->window_clamp + tp->advmss > maxwin)
397                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
398
399         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
400         tp->snd_cwnd_stamp = tcp_time_stamp;
401 }
402
403 /* 5. Recalculate window clamp after socket hit its memory bounds. */
404 static void tcp_clamp_window(struct sock *sk)
405 {
406         struct tcp_sock *tp = tcp_sk(sk);
407         struct inet_connection_sock *icsk = inet_csk(sk);
408
409         icsk->icsk_ack.quick = 0;
410
411         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
412             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
413             !sk_under_memory_pressure(sk) &&
414             sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
415                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
416                                     sysctl_tcp_rmem[2]);
417         }
418         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
419                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
420 }
421
422 /* Initialize RCV_MSS value.
423  * RCV_MSS is an our guess about MSS used by the peer.
424  * We haven't any direct information about the MSS.
425  * It's better to underestimate the RCV_MSS rather than overestimate.
426  * Overestimations make us ACKing less frequently than needed.
427  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
428  */
429 void tcp_initialize_rcv_mss(struct sock *sk)
430 {
431         const struct tcp_sock *tp = tcp_sk(sk);
432         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
433
434         hint = min(hint, tp->rcv_wnd / 2);
435         hint = min(hint, TCP_MSS_DEFAULT);
436         hint = max(hint, TCP_MIN_MSS);
437
438         inet_csk(sk)->icsk_ack.rcv_mss = hint;
439 }
440 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
441
442 /* Receiver "autotuning" code.
443  *
444  * The algorithm for RTT estimation w/o timestamps is based on
445  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
446  * <http://public.lanl.gov/radiant/pubs.html#DRS>
447  *
448  * More detail on this code can be found at
449  * <http://staff.psc.edu/jheffner/>,
450  * though this reference is out of date.  A new paper
451  * is pending.
452  */
453 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
454 {
455         u32 new_sample = tp->rcv_rtt_est.rtt;
456         long m = sample;
457
458         if (m == 0)
459                 m = 1;
460
461         if (new_sample != 0) {
462                 /* If we sample in larger samples in the non-timestamp
463                  * case, we could grossly overestimate the RTT especially
464                  * with chatty applications or bulk transfer apps which
465                  * are stalled on filesystem I/O.
466                  *
467                  * Also, since we are only going for a minimum in the
468                  * non-timestamp case, we do not smooth things out
469                  * else with timestamps disabled convergence takes too
470                  * long.
471                  */
472                 if (!win_dep) {
473                         m -= (new_sample >> 3);
474                         new_sample += m;
475                 } else if (m < new_sample)
476                         new_sample = m << 3;
477         } else {
478                 /* No previous measure. */
479                 new_sample = m << 3;
480         }
481
482         if (tp->rcv_rtt_est.rtt != new_sample)
483                 tp->rcv_rtt_est.rtt = new_sample;
484 }
485
486 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
487 {
488         if (tp->rcv_rtt_est.time == 0)
489                 goto new_measure;
490         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
491                 return;
492         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
493
494 new_measure:
495         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
496         tp->rcv_rtt_est.time = tcp_time_stamp;
497 }
498
499 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
500                                           const struct sk_buff *skb)
501 {
502         struct tcp_sock *tp = tcp_sk(sk);
503         if (tp->rx_opt.rcv_tsecr &&
504             (TCP_SKB_CB(skb)->end_seq -
505              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
506                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
507 }
508
509 /*
510  * This function should be called every time data is copied to user space.
511  * It calculates the appropriate TCP receive buffer space.
512  */
513 void tcp_rcv_space_adjust(struct sock *sk)
514 {
515         struct tcp_sock *tp = tcp_sk(sk);
516         int time;
517         int space;
518
519         if (tp->rcvq_space.time == 0)
520                 goto new_measure;
521
522         time = tcp_time_stamp - tp->rcvq_space.time;
523         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
524                 return;
525
526         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
527
528         space = max(tp->rcvq_space.space, space);
529
530         if (tp->rcvq_space.space != space) {
531                 int rcvmem;
532
533                 tp->rcvq_space.space = space;
534
535                 if (sysctl_tcp_moderate_rcvbuf &&
536                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
537                         int new_clamp = space;
538
539                         /* Receive space grows, normalize in order to
540                          * take into account packet headers and sk_buff
541                          * structure overhead.
542                          */
543                         space /= tp->advmss;
544                         if (!space)
545                                 space = 1;
546                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
547                         while (tcp_win_from_space(rcvmem) < tp->advmss)
548                                 rcvmem += 128;
549                         space *= rcvmem;
550                         space = min(space, sysctl_tcp_rmem[2]);
551                         if (space > sk->sk_rcvbuf) {
552                                 sk->sk_rcvbuf = space;
553
554                                 /* Make the window clamp follow along.  */
555                                 tp->window_clamp = new_clamp;
556                         }
557                 }
558         }
559
560 new_measure:
561         tp->rcvq_space.seq = tp->copied_seq;
562         tp->rcvq_space.time = tcp_time_stamp;
563 }
564
565 /* There is something which you must keep in mind when you analyze the
566  * behavior of the tp->ato delayed ack timeout interval.  When a
567  * connection starts up, we want to ack as quickly as possible.  The
568  * problem is that "good" TCP's do slow start at the beginning of data
569  * transmission.  The means that until we send the first few ACK's the
570  * sender will sit on his end and only queue most of his data, because
571  * he can only send snd_cwnd unacked packets at any given time.  For
572  * each ACK we send, he increments snd_cwnd and transmits more of his
573  * queue.  -DaveM
574  */
575 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
576 {
577         struct tcp_sock *tp = tcp_sk(sk);
578         struct inet_connection_sock *icsk = inet_csk(sk);
579         u32 now;
580
581         inet_csk_schedule_ack(sk);
582
583         tcp_measure_rcv_mss(sk, skb);
584
585         tcp_rcv_rtt_measure(tp);
586
587         now = tcp_time_stamp;
588
589         if (!icsk->icsk_ack.ato) {
590                 /* The _first_ data packet received, initialize
591                  * delayed ACK engine.
592                  */
593                 tcp_incr_quickack(sk);
594                 icsk->icsk_ack.ato = TCP_ATO_MIN;
595         } else {
596                 int m = now - icsk->icsk_ack.lrcvtime;
597
598                 if (m <= TCP_ATO_MIN / 2) {
599                         /* The fastest case is the first. */
600                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
601                 } else if (m < icsk->icsk_ack.ato) {
602                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
603                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
604                                 icsk->icsk_ack.ato = icsk->icsk_rto;
605                 } else if (m > icsk->icsk_rto) {
606                         /* Too long gap. Apparently sender failed to
607                          * restart window, so that we send ACKs quickly.
608                          */
609                         tcp_incr_quickack(sk);
610                         sk_mem_reclaim(sk);
611                 }
612         }
613         icsk->icsk_ack.lrcvtime = now;
614
615         TCP_ECN_check_ce(tp, skb);
616
617         if (skb->len >= 128)
618                 tcp_grow_window(sk, skb);
619 }
620
621 /* Called to compute a smoothed rtt estimate. The data fed to this
622  * routine either comes from timestamps, or from segments that were
623  * known _not_ to have been retransmitted [see Karn/Partridge
624  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
625  * piece by Van Jacobson.
626  * NOTE: the next three routines used to be one big routine.
627  * To save cycles in the RFC 1323 implementation it was better to break
628  * it up into three procedures. -- erics
629  */
630 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
631 {
632         struct tcp_sock *tp = tcp_sk(sk);
633         long m = mrtt; /* RTT */
634
635         /*      The following amusing code comes from Jacobson's
636          *      article in SIGCOMM '88.  Note that rtt and mdev
637          *      are scaled versions of rtt and mean deviation.
638          *      This is designed to be as fast as possible
639          *      m stands for "measurement".
640          *
641          *      On a 1990 paper the rto value is changed to:
642          *      RTO = rtt + 4 * mdev
643          *
644          * Funny. This algorithm seems to be very broken.
645          * These formulae increase RTO, when it should be decreased, increase
646          * too slowly, when it should be increased quickly, decrease too quickly
647          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
648          * does not matter how to _calculate_ it. Seems, it was trap
649          * that VJ failed to avoid. 8)
650          */
651         if (m == 0)
652                 m = 1;
653         if (tp->srtt != 0) {
654                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
655                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
656                 if (m < 0) {
657                         m = -m;         /* m is now abs(error) */
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                         /* This is similar to one of Eifel findings.
660                          * Eifel blocks mdev updates when rtt decreases.
661                          * This solution is a bit different: we use finer gain
662                          * for mdev in this case (alpha*beta).
663                          * Like Eifel it also prevents growth of rto,
664                          * but also it limits too fast rto decreases,
665                          * happening in pure Eifel.
666                          */
667                         if (m > 0)
668                                 m >>= 3;
669                 } else {
670                         m -= (tp->mdev >> 2);   /* similar update on mdev */
671                 }
672                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
673                 if (tp->mdev > tp->mdev_max) {
674                         tp->mdev_max = tp->mdev;
675                         if (tp->mdev_max > tp->rttvar)
676                                 tp->rttvar = tp->mdev_max;
677                 }
678                 if (after(tp->snd_una, tp->rtt_seq)) {
679                         if (tp->mdev_max < tp->rttvar)
680                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
681                         tp->rtt_seq = tp->snd_nxt;
682                         tp->mdev_max = tcp_rto_min(sk);
683                 }
684         } else {
685                 /* no previous measure. */
686                 tp->srtt = m << 3;      /* take the measured time to be rtt */
687                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
688                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
689                 tp->rtt_seq = tp->snd_nxt;
690         }
691 }
692
693 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
694  * routine referred to above.
695  */
696 static inline void tcp_set_rto(struct sock *sk)
697 {
698         const struct tcp_sock *tp = tcp_sk(sk);
699         /* Old crap is replaced with new one. 8)
700          *
701          * More seriously:
702          * 1. If rtt variance happened to be less 50msec, it is hallucination.
703          *    It cannot be less due to utterly erratic ACK generation made
704          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
705          *    to do with delayed acks, because at cwnd>2 true delack timeout
706          *    is invisible. Actually, Linux-2.4 also generates erratic
707          *    ACKs in some circumstances.
708          */
709         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
710
711         /* 2. Fixups made earlier cannot be right.
712          *    If we do not estimate RTO correctly without them,
713          *    all the algo is pure shit and should be replaced
714          *    with correct one. It is exactly, which we pretend to do.
715          */
716
717         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
718          * guarantees that rto is higher.
719          */
720         tcp_bound_rto(sk);
721 }
722
723 /* Save metrics learned by this TCP session.
724    This function is called only, when TCP finishes successfully
725    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
726  */
727 void tcp_update_metrics(struct sock *sk)
728 {
729         struct tcp_sock *tp = tcp_sk(sk);
730         struct dst_entry *dst = __sk_dst_get(sk);
731
732         if (sysctl_tcp_nometrics_save)
733                 return;
734
735         dst_confirm(dst);
736
737         if (dst && (dst->flags & DST_HOST)) {
738                 const struct inet_connection_sock *icsk = inet_csk(sk);
739                 int m;
740                 unsigned long rtt;
741
742                 if (icsk->icsk_backoff || !tp->srtt) {
743                         /* This session failed to estimate rtt. Why?
744                          * Probably, no packets returned in time.
745                          * Reset our results.
746                          */
747                         if (!(dst_metric_locked(dst, RTAX_RTT)))
748                                 dst_metric_set(dst, RTAX_RTT, 0);
749                         return;
750                 }
751
752                 rtt = dst_metric_rtt(dst, RTAX_RTT);
753                 m = rtt - tp->srtt;
754
755                 /* If newly calculated rtt larger than stored one,
756                  * store new one. Otherwise, use EWMA. Remember,
757                  * rtt overestimation is always better than underestimation.
758                  */
759                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
760                         if (m <= 0)
761                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
762                         else
763                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
764                 }
765
766                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
767                         unsigned long var;
768                         if (m < 0)
769                                 m = -m;
770
771                         /* Scale deviation to rttvar fixed point */
772                         m >>= 1;
773                         if (m < tp->mdev)
774                                 m = tp->mdev;
775
776                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
777                         if (m >= var)
778                                 var = m;
779                         else
780                                 var -= (var - m) >> 2;
781
782                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
783                 }
784
785                 if (tcp_in_initial_slowstart(tp)) {
786                         /* Slow start still did not finish. */
787                         if (dst_metric(dst, RTAX_SSTHRESH) &&
788                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
790                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
791                         if (!dst_metric_locked(dst, RTAX_CWND) &&
792                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
793                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
794                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
795                            icsk->icsk_ca_state == TCP_CA_Open) {
796                         /* Cong. avoidance phase, cwnd is reliable. */
797                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
798                                 dst_metric_set(dst, RTAX_SSTHRESH,
799                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
800                         if (!dst_metric_locked(dst, RTAX_CWND))
801                                 dst_metric_set(dst, RTAX_CWND,
802                                                (dst_metric(dst, RTAX_CWND) +
803                                                 tp->snd_cwnd) >> 1);
804                 } else {
805                         /* Else slow start did not finish, cwnd is non-sense,
806                            ssthresh may be also invalid.
807                          */
808                         if (!dst_metric_locked(dst, RTAX_CWND))
809                                 dst_metric_set(dst, RTAX_CWND,
810                                                (dst_metric(dst, RTAX_CWND) +
811                                                 tp->snd_ssthresh) >> 1);
812                         if (dst_metric(dst, RTAX_SSTHRESH) &&
813                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
814                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
815                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
816                 }
817
818                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
819                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
820                             tp->reordering != sysctl_tcp_reordering)
821                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
822                 }
823         }
824 }
825
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829
830         if (!cwnd)
831                 cwnd = TCP_INIT_CWND;
832         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834
835 /* Set slow start threshold and cwnd not falling to slow start */
836 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
837 {
838         struct tcp_sock *tp = tcp_sk(sk);
839         const struct inet_connection_sock *icsk = inet_csk(sk);
840
841         tp->prior_ssthresh = 0;
842         tp->bytes_acked = 0;
843         if (icsk->icsk_ca_state < TCP_CA_CWR) {
844                 tp->undo_marker = 0;
845                 if (set_ssthresh)
846                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
847                 tp->snd_cwnd = min(tp->snd_cwnd,
848                                    tcp_packets_in_flight(tp) + 1U);
849                 tp->snd_cwnd_cnt = 0;
850                 tp->high_seq = tp->snd_nxt;
851                 tp->snd_cwnd_stamp = tcp_time_stamp;
852                 TCP_ECN_queue_cwr(tp);
853
854                 tcp_set_ca_state(sk, TCP_CA_CWR);
855         }
856 }
857
858 /*
859  * Packet counting of FACK is based on in-order assumptions, therefore TCP
860  * disables it when reordering is detected
861  */
862 static void tcp_disable_fack(struct tcp_sock *tp)
863 {
864         /* RFC3517 uses different metric in lost marker => reset on change */
865         if (tcp_is_fack(tp))
866                 tp->lost_skb_hint = NULL;
867         tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
868 }
869
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873         tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
874 }
875
876 /* Initialize metrics on socket. */
877
878 static void tcp_init_metrics(struct sock *sk)
879 {
880         struct tcp_sock *tp = tcp_sk(sk);
881         struct dst_entry *dst = __sk_dst_get(sk);
882
883         if (dst == NULL)
884                 goto reset;
885
886         dst_confirm(dst);
887
888         if (dst_metric_locked(dst, RTAX_CWND))
889                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
890         if (dst_metric(dst, RTAX_SSTHRESH)) {
891                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
892                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
893                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
894         } else {
895                 /* ssthresh may have been reduced unnecessarily during.
896                  * 3WHS. Restore it back to its initial default.
897                  */
898                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
899         }
900         if (dst_metric(dst, RTAX_REORDERING) &&
901             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
902                 tcp_disable_fack(tp);
903                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
904         }
905
906         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
907                 goto reset;
908
909         /* Initial rtt is determined from SYN,SYN-ACK.
910          * The segment is small and rtt may appear much
911          * less than real one. Use per-dst memory
912          * to make it more realistic.
913          *
914          * A bit of theory. RTT is time passed after "normal" sized packet
915          * is sent until it is ACKed. In normal circumstances sending small
916          * packets force peer to delay ACKs and calculation is correct too.
917          * The algorithm is adaptive and, provided we follow specs, it
918          * NEVER underestimate RTT. BUT! If peer tries to make some clever
919          * tricks sort of "quick acks" for time long enough to decrease RTT
920          * to low value, and then abruptly stops to do it and starts to delay
921          * ACKs, wait for troubles.
922          */
923         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
924                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
925                 tp->rtt_seq = tp->snd_nxt;
926         }
927         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
928                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
929                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930         }
931         tcp_set_rto(sk);
932 reset:
933         if (tp->srtt == 0) {
934                 /* RFC2988bis: We've failed to get a valid RTT sample from
935                  * 3WHS. This is most likely due to retransmission,
936                  * including spurious one. Reset the RTO back to 3secs
937                  * from the more aggressive 1sec to avoid more spurious
938                  * retransmission.
939                  */
940                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
941                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
942         }
943         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
944          * retransmitted. In light of RFC2988bis' more aggressive 1sec
945          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
946          * retransmission has occurred.
947          */
948         if (tp->total_retrans > 1)
949                 tp->snd_cwnd = 1;
950         else
951                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
952         tp->snd_cwnd_stamp = tcp_time_stamp;
953 }
954
955 static void tcp_update_reordering(struct sock *sk, const int metric,
956                                   const int ts)
957 {
958         struct tcp_sock *tp = tcp_sk(sk);
959         if (metric > tp->reordering) {
960                 int mib_idx;
961
962                 tp->reordering = min(TCP_MAX_REORDERING, metric);
963
964                 /* This exciting event is worth to be remembered. 8) */
965                 if (ts)
966                         mib_idx = LINUX_MIB_TCPTSREORDER;
967                 else if (tcp_is_reno(tp))
968                         mib_idx = LINUX_MIB_TCPRENOREORDER;
969                 else if (tcp_is_fack(tp))
970                         mib_idx = LINUX_MIB_TCPFACKREORDER;
971                 else
972                         mib_idx = LINUX_MIB_TCPSACKREORDER;
973
974                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
975 #if FASTRETRANS_DEBUG > 1
976                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
977                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
978                        tp->reordering,
979                        tp->fackets_out,
980                        tp->sacked_out,
981                        tp->undo_marker ? tp->undo_retrans : 0);
982 #endif
983                 tcp_disable_fack(tp);
984         }
985 }
986
987 /* This must be called before lost_out is incremented */
988 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
989 {
990         if ((tp->retransmit_skb_hint == NULL) ||
991             before(TCP_SKB_CB(skb)->seq,
992                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
993                 tp->retransmit_skb_hint = skb;
994
995         if (!tp->lost_out ||
996             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
997                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
998 }
999
1000 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1001 {
1002         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003                 tcp_verify_retransmit_hint(tp, skb);
1004
1005                 tp->lost_out += tcp_skb_pcount(skb);
1006                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007         }
1008 }
1009
1010 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1011                                             struct sk_buff *skb)
1012 {
1013         tcp_verify_retransmit_hint(tp, skb);
1014
1015         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1016                 tp->lost_out += tcp_skb_pcount(skb);
1017                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018         }
1019 }
1020
1021 /* This procedure tags the retransmission queue when SACKs arrive.
1022  *
1023  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1024  * Packets in queue with these bits set are counted in variables
1025  * sacked_out, retrans_out and lost_out, correspondingly.
1026  *
1027  * Valid combinations are:
1028  * Tag  InFlight        Description
1029  * 0    1               - orig segment is in flight.
1030  * S    0               - nothing flies, orig reached receiver.
1031  * L    0               - nothing flies, orig lost by net.
1032  * R    2               - both orig and retransmit are in flight.
1033  * L|R  1               - orig is lost, retransmit is in flight.
1034  * S|R  1               - orig reached receiver, retrans is still in flight.
1035  * (L|S|R is logically valid, it could occur when L|R is sacked,
1036  *  but it is equivalent to plain S and code short-curcuits it to S.
1037  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1038  *
1039  * These 6 states form finite state machine, controlled by the following events:
1040  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1041  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1042  * 3. Loss detection event of two flavors:
1043  *      A. Scoreboard estimator decided the packet is lost.
1044  *         A'. Reno "three dupacks" marks head of queue lost.
1045  *         A''. Its FACK modification, head until snd.fack is lost.
1046  *      B. SACK arrives sacking SND.NXT at the moment, when the
1047  *         segment was retransmitted.
1048  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1049  *
1050  * It is pleasant to note, that state diagram turns out to be commutative,
1051  * so that we are allowed not to be bothered by order of our actions,
1052  * when multiple events arrive simultaneously. (see the function below).
1053  *
1054  * Reordering detection.
1055  * --------------------
1056  * Reordering metric is maximal distance, which a packet can be displaced
1057  * in packet stream. With SACKs we can estimate it:
1058  *
1059  * 1. SACK fills old hole and the corresponding segment was not
1060  *    ever retransmitted -> reordering. Alas, we cannot use it
1061  *    when segment was retransmitted.
1062  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1063  *    for retransmitted and already SACKed segment -> reordering..
1064  * Both of these heuristics are not used in Loss state, when we cannot
1065  * account for retransmits accurately.
1066  *
1067  * SACK block validation.
1068  * ----------------------
1069  *
1070  * SACK block range validation checks that the received SACK block fits to
1071  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1072  * Note that SND.UNA is not included to the range though being valid because
1073  * it means that the receiver is rather inconsistent with itself reporting
1074  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1075  * perfectly valid, however, in light of RFC2018 which explicitly states
1076  * that "SACK block MUST reflect the newest segment.  Even if the newest
1077  * segment is going to be discarded ...", not that it looks very clever
1078  * in case of head skb. Due to potentional receiver driven attacks, we
1079  * choose to avoid immediate execution of a walk in write queue due to
1080  * reneging and defer head skb's loss recovery to standard loss recovery
1081  * procedure that will eventually trigger (nothing forbids us doing this).
1082  *
1083  * Implements also blockage to start_seq wrap-around. Problem lies in the
1084  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1085  * there's no guarantee that it will be before snd_nxt (n). The problem
1086  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1087  * wrap (s_w):
1088  *
1089  *         <- outs wnd ->                          <- wrapzone ->
1090  *         u     e      n                         u_w   e_w  s n_w
1091  *         |     |      |                          |     |   |  |
1092  * |<------------+------+----- TCP seqno space --------------+---------->|
1093  * ...-- <2^31 ->|                                           |<--------...
1094  * ...---- >2^31 ------>|                                    |<--------...
1095  *
1096  * Current code wouldn't be vulnerable but it's better still to discard such
1097  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1098  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1099  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1100  * equal to the ideal case (infinite seqno space without wrap caused issues).
1101  *
1102  * With D-SACK the lower bound is extended to cover sequence space below
1103  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1104  * again, D-SACK block must not to go across snd_una (for the same reason as
1105  * for the normal SACK blocks, explained above). But there all simplicity
1106  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1107  * fully below undo_marker they do not affect behavior in anyway and can
1108  * therefore be safely ignored. In rare cases (which are more or less
1109  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1110  * fragmentation and packet reordering past skb's retransmission. To consider
1111  * them correctly, the acceptable range must be extended even more though
1112  * the exact amount is rather hard to quantify. However, tp->max_window can
1113  * be used as an exaggerated estimate.
1114  */
1115 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1116                                   u32 start_seq, u32 end_seq)
1117 {
1118         /* Too far in future, or reversed (interpretation is ambiguous) */
1119         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1120                 return 0;
1121
1122         /* Nasty start_seq wrap-around check (see comments above) */
1123         if (!before(start_seq, tp->snd_nxt))
1124                 return 0;
1125
1126         /* In outstanding window? ...This is valid exit for D-SACKs too.
1127          * start_seq == snd_una is non-sensical (see comments above)
1128          */
1129         if (after(start_seq, tp->snd_una))
1130                 return 1;
1131
1132         if (!is_dsack || !tp->undo_marker)
1133                 return 0;
1134
1135         /* ...Then it's D-SACK, and must reside below snd_una completely */
1136         if (after(end_seq, tp->snd_una))
1137                 return 0;
1138
1139         if (!before(start_seq, tp->undo_marker))
1140                 return 1;
1141
1142         /* Too old */
1143         if (!after(end_seq, tp->undo_marker))
1144                 return 0;
1145
1146         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1147          *   start_seq < undo_marker and end_seq >= undo_marker.
1148          */
1149         return !before(start_seq, end_seq - tp->max_window);
1150 }
1151
1152 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1153  * Event "B". Later note: FACK people cheated me again 8), we have to account
1154  * for reordering! Ugly, but should help.
1155  *
1156  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1157  * less than what is now known to be received by the other end (derived from
1158  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1159  * retransmitted skbs to avoid some costly processing per ACKs.
1160  */
1161 static void tcp_mark_lost_retrans(struct sock *sk)
1162 {
1163         const struct inet_connection_sock *icsk = inet_csk(sk);
1164         struct tcp_sock *tp = tcp_sk(sk);
1165         struct sk_buff *skb;
1166         int cnt = 0;
1167         u32 new_low_seq = tp->snd_nxt;
1168         u32 received_upto = tcp_highest_sack_seq(tp);
1169
1170         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1171             !after(received_upto, tp->lost_retrans_low) ||
1172             icsk->icsk_ca_state != TCP_CA_Recovery)
1173                 return;
1174
1175         tcp_for_write_queue(skb, sk) {
1176                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1177
1178                 if (skb == tcp_send_head(sk))
1179                         break;
1180                 if (cnt == tp->retrans_out)
1181                         break;
1182                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1183                         continue;
1184
1185                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1186                         continue;
1187
1188                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1189                  * constraint here (see above) but figuring out that at
1190                  * least tp->reordering SACK blocks reside between ack_seq
1191                  * and received_upto is not easy task to do cheaply with
1192                  * the available datastructures.
1193                  *
1194                  * Whether FACK should check here for tp->reordering segs
1195                  * in-between one could argue for either way (it would be
1196                  * rather simple to implement as we could count fack_count
1197                  * during the walk and do tp->fackets_out - fack_count).
1198                  */
1199                 if (after(received_upto, ack_seq)) {
1200                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1201                         tp->retrans_out -= tcp_skb_pcount(skb);
1202
1203                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1204                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1205                 } else {
1206                         if (before(ack_seq, new_low_seq))
1207                                 new_low_seq = ack_seq;
1208                         cnt += tcp_skb_pcount(skb);
1209                 }
1210         }
1211
1212         if (tp->retrans_out)
1213                 tp->lost_retrans_low = new_low_seq;
1214 }
1215
1216 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1217                            struct tcp_sack_block_wire *sp, int num_sacks,
1218                            u32 prior_snd_una)
1219 {
1220         struct tcp_sock *tp = tcp_sk(sk);
1221         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1222         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1223         int dup_sack = 0;
1224
1225         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1226                 dup_sack = 1;
1227                 tcp_dsack_seen(tp);
1228                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1229         } else if (num_sacks > 1) {
1230                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1231                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1232
1233                 if (!after(end_seq_0, end_seq_1) &&
1234                     !before(start_seq_0, start_seq_1)) {
1235                         dup_sack = 1;
1236                         tcp_dsack_seen(tp);
1237                         NET_INC_STATS_BH(sock_net(sk),
1238                                         LINUX_MIB_TCPDSACKOFORECV);
1239                 }
1240         }
1241
1242         /* D-SACK for already forgotten data... Do dumb counting. */
1243         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1244             !after(end_seq_0, prior_snd_una) &&
1245             after(end_seq_0, tp->undo_marker))
1246                 tp->undo_retrans--;
1247
1248         return dup_sack;
1249 }
1250
1251 struct tcp_sacktag_state {
1252         int reord;
1253         int fack_count;
1254         int flag;
1255 };
1256
1257 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1258  * the incoming SACK may not exactly match but we can find smaller MSS
1259  * aligned portion of it that matches. Therefore we might need to fragment
1260  * which may fail and creates some hassle (caller must handle error case
1261  * returns).
1262  *
1263  * FIXME: this could be merged to shift decision code
1264  */
1265 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1266                                  u32 start_seq, u32 end_seq)
1267 {
1268         int in_sack, err;
1269         unsigned int pkt_len;
1270         unsigned int mss;
1271
1272         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1273                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1274
1275         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1276             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1277                 mss = tcp_skb_mss(skb);
1278                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1279
1280                 if (!in_sack) {
1281                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1282                         if (pkt_len < mss)
1283                                 pkt_len = mss;
1284                 } else {
1285                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1286                         if (pkt_len < mss)
1287                                 return -EINVAL;
1288                 }
1289
1290                 /* Round if necessary so that SACKs cover only full MSSes
1291                  * and/or the remaining small portion (if present)
1292                  */
1293                 if (pkt_len > mss) {
1294                         unsigned int new_len = (pkt_len / mss) * mss;
1295                         if (!in_sack && new_len < pkt_len) {
1296                                 new_len += mss;
1297                                 if (new_len > skb->len)
1298                                         return 0;
1299                         }
1300                         pkt_len = new_len;
1301                 }
1302                 err = tcp_fragment(sk, skb, pkt_len, mss);
1303                 if (err < 0)
1304                         return err;
1305         }
1306
1307         return in_sack;
1308 }
1309
1310 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1311 static u8 tcp_sacktag_one(struct sock *sk,
1312                           struct tcp_sacktag_state *state, u8 sacked,
1313                           u32 start_seq, u32 end_seq,
1314                           int dup_sack, int pcount)
1315 {
1316         struct tcp_sock *tp = tcp_sk(sk);
1317         int fack_count = state->fack_count;
1318
1319         /* Account D-SACK for retransmitted packet. */
1320         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1321                 if (tp->undo_marker && tp->undo_retrans &&
1322                     after(end_seq, tp->undo_marker))
1323                         tp->undo_retrans--;
1324                 if (sacked & TCPCB_SACKED_ACKED)
1325                         state->reord = min(fack_count, state->reord);
1326         }
1327
1328         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1329         if (!after(end_seq, tp->snd_una))
1330                 return sacked;
1331
1332         if (!(sacked & TCPCB_SACKED_ACKED)) {
1333                 if (sacked & TCPCB_SACKED_RETRANS) {
1334                         /* If the segment is not tagged as lost,
1335                          * we do not clear RETRANS, believing
1336                          * that retransmission is still in flight.
1337                          */
1338                         if (sacked & TCPCB_LOST) {
1339                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1340                                 tp->lost_out -= pcount;
1341                                 tp->retrans_out -= pcount;
1342                         }
1343                 } else {
1344                         if (!(sacked & TCPCB_RETRANS)) {
1345                                 /* New sack for not retransmitted frame,
1346                                  * which was in hole. It is reordering.
1347                                  */
1348                                 if (before(start_seq,
1349                                            tcp_highest_sack_seq(tp)))
1350                                         state->reord = min(fack_count,
1351                                                            state->reord);
1352
1353                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1354                                 if (!after(end_seq, tp->frto_highmark))
1355                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1356                         }
1357
1358                         if (sacked & TCPCB_LOST) {
1359                                 sacked &= ~TCPCB_LOST;
1360                                 tp->lost_out -= pcount;
1361                         }
1362                 }
1363
1364                 sacked |= TCPCB_SACKED_ACKED;
1365                 state->flag |= FLAG_DATA_SACKED;
1366                 tp->sacked_out += pcount;
1367
1368                 fack_count += pcount;
1369
1370                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1371                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1372                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1373                         tp->lost_cnt_hint += pcount;
1374
1375                 if (fack_count > tp->fackets_out)
1376                         tp->fackets_out = fack_count;
1377         }
1378
1379         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1380          * frames and clear it. undo_retrans is decreased above, L|R frames
1381          * are accounted above as well.
1382          */
1383         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1384                 sacked &= ~TCPCB_SACKED_RETRANS;
1385                 tp->retrans_out -= pcount;
1386         }
1387
1388         return sacked;
1389 }
1390
1391 /* Shift newly-SACKed bytes from this skb to the immediately previous
1392  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1393  */
1394 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1395                            struct tcp_sacktag_state *state,
1396                            unsigned int pcount, int shifted, int mss,
1397                            int dup_sack)
1398 {
1399         struct tcp_sock *tp = tcp_sk(sk);
1400         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1401         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1402         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1403
1404         BUG_ON(!pcount);
1405
1406         /* Adjust hint for FACK. Non-FACK is handled in tcp_sacktag_one(). */
1407         if (tcp_is_fack(tp) && (skb == tp->lost_skb_hint))
1408                 tp->lost_cnt_hint += pcount;
1409
1410         TCP_SKB_CB(prev)->end_seq += shifted;
1411         TCP_SKB_CB(skb)->seq += shifted;
1412
1413         skb_shinfo(prev)->gso_segs += pcount;
1414         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1415         skb_shinfo(skb)->gso_segs -= pcount;
1416
1417         /* When we're adding to gso_segs == 1, gso_size will be zero,
1418          * in theory this shouldn't be necessary but as long as DSACK
1419          * code can come after this skb later on it's better to keep
1420          * setting gso_size to something.
1421          */
1422         if (!skb_shinfo(prev)->gso_size) {
1423                 skb_shinfo(prev)->gso_size = mss;
1424                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1425         }
1426
1427         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1428         if (skb_shinfo(skb)->gso_segs <= 1) {
1429                 skb_shinfo(skb)->gso_size = 0;
1430                 skb_shinfo(skb)->gso_type = 0;
1431         }
1432
1433         /* Adjust counters and hints for the newly sacked sequence range but
1434          * discard the return value since prev is already marked.
1435          */
1436         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1437                         start_seq, end_seq, dup_sack, pcount);
1438
1439         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1440         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1441
1442         if (skb->len > 0) {
1443                 BUG_ON(!tcp_skb_pcount(skb));
1444                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1445                 return 0;
1446         }
1447
1448         /* Whole SKB was eaten :-) */
1449
1450         if (skb == tp->retransmit_skb_hint)
1451                 tp->retransmit_skb_hint = prev;
1452         if (skb == tp->scoreboard_skb_hint)
1453                 tp->scoreboard_skb_hint = prev;
1454         if (skb == tp->lost_skb_hint) {
1455                 tp->lost_skb_hint = prev;
1456                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1457         }
1458
1459         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1460         if (skb == tcp_highest_sack(sk))
1461                 tcp_advance_highest_sack(sk, skb);
1462
1463         tcp_unlink_write_queue(skb, sk);
1464         sk_wmem_free_skb(sk, skb);
1465
1466         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1467
1468         return 1;
1469 }
1470
1471 /* I wish gso_size would have a bit more sane initialization than
1472  * something-or-zero which complicates things
1473  */
1474 static int tcp_skb_seglen(const struct sk_buff *skb)
1475 {
1476         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1477 }
1478
1479 /* Shifting pages past head area doesn't work */
1480 static int skb_can_shift(const struct sk_buff *skb)
1481 {
1482         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1483 }
1484
1485 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1486  * skb.
1487  */
1488 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1489                                           struct tcp_sacktag_state *state,
1490                                           u32 start_seq, u32 end_seq,
1491                                           int dup_sack)
1492 {
1493         struct tcp_sock *tp = tcp_sk(sk);
1494         struct sk_buff *prev;
1495         int mss;
1496         int pcount = 0;
1497         int len;
1498         int in_sack;
1499
1500         if (!sk_can_gso(sk))
1501                 goto fallback;
1502
1503         /* Normally R but no L won't result in plain S */
1504         if (!dup_sack &&
1505             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1506                 goto fallback;
1507         if (!skb_can_shift(skb))
1508                 goto fallback;
1509         /* This frame is about to be dropped (was ACKed). */
1510         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1511                 goto fallback;
1512
1513         /* Can only happen with delayed DSACK + discard craziness */
1514         if (unlikely(skb == tcp_write_queue_head(sk)))
1515                 goto fallback;
1516         prev = tcp_write_queue_prev(sk, skb);
1517
1518         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1519                 goto fallback;
1520
1521         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1522                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1523
1524         if (in_sack) {
1525                 len = skb->len;
1526                 pcount = tcp_skb_pcount(skb);
1527                 mss = tcp_skb_seglen(skb);
1528
1529                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1530                  * drop this restriction as unnecessary
1531                  */
1532                 if (mss != tcp_skb_seglen(prev))
1533                         goto fallback;
1534         } else {
1535                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1536                         goto noop;
1537                 /* CHECKME: This is non-MSS split case only?, this will
1538                  * cause skipped skbs due to advancing loop btw, original
1539                  * has that feature too
1540                  */
1541                 if (tcp_skb_pcount(skb) <= 1)
1542                         goto noop;
1543
1544                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1545                 if (!in_sack) {
1546                         /* TODO: head merge to next could be attempted here
1547                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1548                          * though it might not be worth of the additional hassle
1549                          *
1550                          * ...we can probably just fallback to what was done
1551                          * previously. We could try merging non-SACKed ones
1552                          * as well but it probably isn't going to buy off
1553                          * because later SACKs might again split them, and
1554                          * it would make skb timestamp tracking considerably
1555                          * harder problem.
1556                          */
1557                         goto fallback;
1558                 }
1559
1560                 len = end_seq - TCP_SKB_CB(skb)->seq;
1561                 BUG_ON(len < 0);
1562                 BUG_ON(len > skb->len);
1563
1564                 /* MSS boundaries should be honoured or else pcount will
1565                  * severely break even though it makes things bit trickier.
1566                  * Optimize common case to avoid most of the divides
1567                  */
1568                 mss = tcp_skb_mss(skb);
1569
1570                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1571                  * drop this restriction as unnecessary
1572                  */
1573                 if (mss != tcp_skb_seglen(prev))
1574                         goto fallback;
1575
1576                 if (len == mss) {
1577                         pcount = 1;
1578                 } else if (len < mss) {
1579                         goto noop;
1580                 } else {
1581                         pcount = len / mss;
1582                         len = pcount * mss;
1583                 }
1584         }
1585
1586         if (!skb_shift(prev, skb, len))
1587                 goto fallback;
1588         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1589                 goto out;
1590
1591         /* Hole filled allows collapsing with the next as well, this is very
1592          * useful when hole on every nth skb pattern happens
1593          */
1594         if (prev == tcp_write_queue_tail(sk))
1595                 goto out;
1596         skb = tcp_write_queue_next(sk, prev);
1597
1598         if (!skb_can_shift(skb) ||
1599             (skb == tcp_send_head(sk)) ||
1600             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1601             (mss != tcp_skb_seglen(skb)))
1602                 goto out;
1603
1604         len = skb->len;
1605         if (skb_shift(prev, skb, len)) {
1606                 pcount += tcp_skb_pcount(skb);
1607                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1608         }
1609
1610 out:
1611         state->fack_count += pcount;
1612         return prev;
1613
1614 noop:
1615         return skb;
1616
1617 fallback:
1618         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1619         return NULL;
1620 }
1621
1622 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1623                                         struct tcp_sack_block *next_dup,
1624                                         struct tcp_sacktag_state *state,
1625                                         u32 start_seq, u32 end_seq,
1626                                         int dup_sack_in)
1627 {
1628         struct tcp_sock *tp = tcp_sk(sk);
1629         struct sk_buff *tmp;
1630
1631         tcp_for_write_queue_from(skb, sk) {
1632                 int in_sack = 0;
1633                 int dup_sack = dup_sack_in;
1634
1635                 if (skb == tcp_send_head(sk))
1636                         break;
1637
1638                 /* queue is in-order => we can short-circuit the walk early */
1639                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1640                         break;
1641
1642                 if ((next_dup != NULL) &&
1643                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1644                         in_sack = tcp_match_skb_to_sack(sk, skb,
1645                                                         next_dup->start_seq,
1646                                                         next_dup->end_seq);
1647                         if (in_sack > 0)
1648                                 dup_sack = 1;
1649                 }
1650
1651                 /* skb reference here is a bit tricky to get right, since
1652                  * shifting can eat and free both this skb and the next,
1653                  * so not even _safe variant of the loop is enough.
1654                  */
1655                 if (in_sack <= 0) {
1656                         tmp = tcp_shift_skb_data(sk, skb, state,
1657                                                  start_seq, end_seq, dup_sack);
1658                         if (tmp != NULL) {
1659                                 if (tmp != skb) {
1660                                         skb = tmp;
1661                                         continue;
1662                                 }
1663
1664                                 in_sack = 0;
1665                         } else {
1666                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1667                                                                 start_seq,
1668                                                                 end_seq);
1669                         }
1670                 }
1671
1672                 if (unlikely(in_sack < 0))
1673                         break;
1674
1675                 if (in_sack) {
1676                         TCP_SKB_CB(skb)->sacked =
1677                                 tcp_sacktag_one(sk,
1678                                                 state,
1679                                                 TCP_SKB_CB(skb)->sacked,
1680                                                 TCP_SKB_CB(skb)->seq,
1681                                                 TCP_SKB_CB(skb)->end_seq,
1682                                                 dup_sack,
1683                                                 tcp_skb_pcount(skb));
1684
1685                         if (!before(TCP_SKB_CB(skb)->seq,
1686                                     tcp_highest_sack_seq(tp)))
1687                                 tcp_advance_highest_sack(sk, skb);
1688                 }
1689
1690                 state->fack_count += tcp_skb_pcount(skb);
1691         }
1692         return skb;
1693 }
1694
1695 /* Avoid all extra work that is being done by sacktag while walking in
1696  * a normal way
1697  */
1698 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1699                                         struct tcp_sacktag_state *state,
1700                                         u32 skip_to_seq)
1701 {
1702         tcp_for_write_queue_from(skb, sk) {
1703                 if (skb == tcp_send_head(sk))
1704                         break;
1705
1706                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1707                         break;
1708
1709                 state->fack_count += tcp_skb_pcount(skb);
1710         }
1711         return skb;
1712 }
1713
1714 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1715                                                 struct sock *sk,
1716                                                 struct tcp_sack_block *next_dup,
1717                                                 struct tcp_sacktag_state *state,
1718                                                 u32 skip_to_seq)
1719 {
1720         if (next_dup == NULL)
1721                 return skb;
1722
1723         if (before(next_dup->start_seq, skip_to_seq)) {
1724                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1725                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1726                                        next_dup->start_seq, next_dup->end_seq,
1727                                        1);
1728         }
1729
1730         return skb;
1731 }
1732
1733 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1734 {
1735         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1736 }
1737
1738 static int
1739 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1740                         u32 prior_snd_una)
1741 {
1742         const struct inet_connection_sock *icsk = inet_csk(sk);
1743         struct tcp_sock *tp = tcp_sk(sk);
1744         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1745                                     TCP_SKB_CB(ack_skb)->sacked);
1746         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1747         struct tcp_sack_block sp[TCP_NUM_SACKS];
1748         struct tcp_sack_block *cache;
1749         struct tcp_sacktag_state state;
1750         struct sk_buff *skb;
1751         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1752         int used_sacks;
1753         int found_dup_sack = 0;
1754         int i, j;
1755         int first_sack_index;
1756
1757         state.flag = 0;
1758         state.reord = tp->packets_out;
1759
1760         if (!tp->sacked_out) {
1761                 if (WARN_ON(tp->fackets_out))
1762                         tp->fackets_out = 0;
1763                 tcp_highest_sack_reset(sk);
1764         }
1765
1766         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1767                                          num_sacks, prior_snd_una);
1768         if (found_dup_sack)
1769                 state.flag |= FLAG_DSACKING_ACK;
1770
1771         /* Eliminate too old ACKs, but take into
1772          * account more or less fresh ones, they can
1773          * contain valid SACK info.
1774          */
1775         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1776                 return 0;
1777
1778         if (!tp->packets_out)
1779                 goto out;
1780
1781         used_sacks = 0;
1782         first_sack_index = 0;
1783         for (i = 0; i < num_sacks; i++) {
1784                 int dup_sack = !i && found_dup_sack;
1785
1786                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1787                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1788
1789                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1790                                             sp[used_sacks].start_seq,
1791                                             sp[used_sacks].end_seq)) {
1792                         int mib_idx;
1793
1794                         if (dup_sack) {
1795                                 if (!tp->undo_marker)
1796                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1797                                 else
1798                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1799                         } else {
1800                                 /* Don't count olds caused by ACK reordering */
1801                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1802                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1803                                         continue;
1804                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1805                         }
1806
1807                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1808                         if (i == 0)
1809                                 first_sack_index = -1;
1810                         continue;
1811                 }
1812
1813                 /* Ignore very old stuff early */
1814                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1815                         continue;
1816
1817                 used_sacks++;
1818         }
1819
1820         /* order SACK blocks to allow in order walk of the retrans queue */
1821         for (i = used_sacks - 1; i > 0; i--) {
1822                 for (j = 0; j < i; j++) {
1823                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1824                                 swap(sp[j], sp[j + 1]);
1825
1826                                 /* Track where the first SACK block goes to */
1827                                 if (j == first_sack_index)
1828                                         first_sack_index = j + 1;
1829                         }
1830                 }
1831         }
1832
1833         skb = tcp_write_queue_head(sk);
1834         state.fack_count = 0;
1835         i = 0;
1836
1837         if (!tp->sacked_out) {
1838                 /* It's already past, so skip checking against it */
1839                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1840         } else {
1841                 cache = tp->recv_sack_cache;
1842                 /* Skip empty blocks in at head of the cache */
1843                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1844                        !cache->end_seq)
1845                         cache++;
1846         }
1847
1848         while (i < used_sacks) {
1849                 u32 start_seq = sp[i].start_seq;
1850                 u32 end_seq = sp[i].end_seq;
1851                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1852                 struct tcp_sack_block *next_dup = NULL;
1853
1854                 if (found_dup_sack && ((i + 1) == first_sack_index))
1855                         next_dup = &sp[i + 1];
1856
1857                 /* Skip too early cached blocks */
1858                 while (tcp_sack_cache_ok(tp, cache) &&
1859                        !before(start_seq, cache->end_seq))
1860                         cache++;
1861
1862                 /* Can skip some work by looking recv_sack_cache? */
1863                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1864                     after(end_seq, cache->start_seq)) {
1865
1866                         /* Head todo? */
1867                         if (before(start_seq, cache->start_seq)) {
1868                                 skb = tcp_sacktag_skip(skb, sk, &state,
1869                                                        start_seq);
1870                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1871                                                        &state,
1872                                                        start_seq,
1873                                                        cache->start_seq,
1874                                                        dup_sack);
1875                         }
1876
1877                         /* Rest of the block already fully processed? */
1878                         if (!after(end_seq, cache->end_seq))
1879                                 goto advance_sp;
1880
1881                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1882                                                        &state,
1883                                                        cache->end_seq);
1884
1885                         /* ...tail remains todo... */
1886                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1887                                 /* ...but better entrypoint exists! */
1888                                 skb = tcp_highest_sack(sk);
1889                                 if (skb == NULL)
1890                                         break;
1891                                 state.fack_count = tp->fackets_out;
1892                                 cache++;
1893                                 goto walk;
1894                         }
1895
1896                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1897                         /* Check overlap against next cached too (past this one already) */
1898                         cache++;
1899                         continue;
1900                 }
1901
1902                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1903                         skb = tcp_highest_sack(sk);
1904                         if (skb == NULL)
1905                                 break;
1906                         state.fack_count = tp->fackets_out;
1907                 }
1908                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1909
1910 walk:
1911                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1912                                        start_seq, end_seq, dup_sack);
1913
1914 advance_sp:
1915                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1916                  * due to in-order walk
1917                  */
1918                 if (after(end_seq, tp->frto_highmark))
1919                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1920
1921                 i++;
1922         }
1923
1924         /* Clear the head of the cache sack blocks so we can skip it next time */
1925         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1926                 tp->recv_sack_cache[i].start_seq = 0;
1927                 tp->recv_sack_cache[i].end_seq = 0;
1928         }
1929         for (j = 0; j < used_sacks; j++)
1930                 tp->recv_sack_cache[i++] = sp[j];
1931
1932         tcp_mark_lost_retrans(sk);
1933
1934         tcp_verify_left_out(tp);
1935
1936         if ((state.reord < tp->fackets_out) &&
1937             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1938             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1939                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1940
1941 out:
1942
1943 #if FASTRETRANS_DEBUG > 0
1944         WARN_ON((int)tp->sacked_out < 0);
1945         WARN_ON((int)tp->lost_out < 0);
1946         WARN_ON((int)tp->retrans_out < 0);
1947         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1948 #endif
1949         return state.flag;
1950 }
1951
1952 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1953  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1954  */
1955 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1956 {
1957         u32 holes;
1958
1959         holes = max(tp->lost_out, 1U);
1960         holes = min(holes, tp->packets_out);
1961
1962         if ((tp->sacked_out + holes) > tp->packets_out) {
1963                 tp->sacked_out = tp->packets_out - holes;
1964                 return 1;
1965         }
1966         return 0;
1967 }
1968
1969 /* If we receive more dupacks than we expected counting segments
1970  * in assumption of absent reordering, interpret this as reordering.
1971  * The only another reason could be bug in receiver TCP.
1972  */
1973 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1974 {
1975         struct tcp_sock *tp = tcp_sk(sk);
1976         if (tcp_limit_reno_sacked(tp))
1977                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1978 }
1979
1980 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1981
1982 static void tcp_add_reno_sack(struct sock *sk)
1983 {
1984         struct tcp_sock *tp = tcp_sk(sk);
1985         tp->sacked_out++;
1986         tcp_check_reno_reordering(sk, 0);
1987         tcp_verify_left_out(tp);
1988 }
1989
1990 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1991
1992 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1993 {
1994         struct tcp_sock *tp = tcp_sk(sk);
1995
1996         if (acked > 0) {
1997                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1998                 if (acked - 1 >= tp->sacked_out)
1999                         tp->sacked_out = 0;
2000                 else
2001                         tp->sacked_out -= acked - 1;
2002         }
2003         tcp_check_reno_reordering(sk, acked);
2004         tcp_verify_left_out(tp);
2005 }
2006
2007 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2008 {
2009         tp->sacked_out = 0;
2010 }
2011
2012 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2013 {
2014         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2015 }
2016
2017 /* F-RTO can only be used if TCP has never retransmitted anything other than
2018  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2019  */
2020 int tcp_use_frto(struct sock *sk)
2021 {
2022         const struct tcp_sock *tp = tcp_sk(sk);
2023         const struct inet_connection_sock *icsk = inet_csk(sk);
2024         struct sk_buff *skb;
2025
2026         if (!sysctl_tcp_frto)
2027                 return 0;
2028
2029         /* MTU probe and F-RTO won't really play nicely along currently */
2030         if (icsk->icsk_mtup.probe_size)
2031                 return 0;
2032
2033         if (tcp_is_sackfrto(tp))
2034                 return 1;
2035
2036         /* Avoid expensive walking of rexmit queue if possible */
2037         if (tp->retrans_out > 1)
2038                 return 0;
2039
2040         skb = tcp_write_queue_head(sk);
2041         if (tcp_skb_is_last(sk, skb))
2042                 return 1;
2043         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2044         tcp_for_write_queue_from(skb, sk) {
2045                 if (skb == tcp_send_head(sk))
2046                         break;
2047                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2048                         return 0;
2049                 /* Short-circuit when first non-SACKed skb has been checked */
2050                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2051                         break;
2052         }
2053         return 1;
2054 }
2055
2056 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2057  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2058  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2059  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2060  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2061  * bits are handled if the Loss state is really to be entered (in
2062  * tcp_enter_frto_loss).
2063  *
2064  * Do like tcp_enter_loss() would; when RTO expires the second time it
2065  * does:
2066  *  "Reduce ssthresh if it has not yet been made inside this window."
2067  */
2068 void tcp_enter_frto(struct sock *sk)
2069 {
2070         const struct inet_connection_sock *icsk = inet_csk(sk);
2071         struct tcp_sock *tp = tcp_sk(sk);
2072         struct sk_buff *skb;
2073
2074         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2075             tp->snd_una == tp->high_seq ||
2076             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2077              !icsk->icsk_retransmits)) {
2078                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2079                 /* Our state is too optimistic in ssthresh() call because cwnd
2080                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2081                  * recovery has not yet completed. Pattern would be this: RTO,
2082                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2083                  * up here twice).
2084                  * RFC4138 should be more specific on what to do, even though
2085                  * RTO is quite unlikely to occur after the first Cumulative ACK
2086                  * due to back-off and complexity of triggering events ...
2087                  */
2088                 if (tp->frto_counter) {
2089                         u32 stored_cwnd;
2090                         stored_cwnd = tp->snd_cwnd;
2091                         tp->snd_cwnd = 2;
2092                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2093                         tp->snd_cwnd = stored_cwnd;
2094                 } else {
2095                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2096                 }
2097                 /* ... in theory, cong.control module could do "any tricks" in
2098                  * ssthresh(), which means that ca_state, lost bits and lost_out
2099                  * counter would have to be faked before the call occurs. We
2100                  * consider that too expensive, unlikely and hacky, so modules
2101                  * using these in ssthresh() must deal these incompatibility
2102                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2103                  */
2104                 tcp_ca_event(sk, CA_EVENT_FRTO);
2105         }
2106
2107         tp->undo_marker = tp->snd_una;
2108         tp->undo_retrans = 0;
2109
2110         skb = tcp_write_queue_head(sk);
2111         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2112                 tp->undo_marker = 0;
2113         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2114                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2115                 tp->retrans_out -= tcp_skb_pcount(skb);
2116         }
2117         tcp_verify_left_out(tp);
2118
2119         /* Too bad if TCP was application limited */
2120         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2121
2122         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2123          * The last condition is necessary at least in tp->frto_counter case.
2124          */
2125         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2126             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2127             after(tp->high_seq, tp->snd_una)) {
2128                 tp->frto_highmark = tp->high_seq;
2129         } else {
2130                 tp->frto_highmark = tp->snd_nxt;
2131         }
2132         tcp_set_ca_state(sk, TCP_CA_Disorder);
2133         tp->high_seq = tp->snd_nxt;
2134         tp->frto_counter = 1;
2135 }
2136
2137 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2138  * which indicates that we should follow the traditional RTO recovery,
2139  * i.e. mark everything lost and do go-back-N retransmission.
2140  */
2141 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2142 {
2143         struct tcp_sock *tp = tcp_sk(sk);
2144         struct sk_buff *skb;
2145
2146         tp->lost_out = 0;
2147         tp->retrans_out = 0;
2148         if (tcp_is_reno(tp))
2149                 tcp_reset_reno_sack(tp);
2150
2151         tcp_for_write_queue(skb, sk) {
2152                 if (skb == tcp_send_head(sk))
2153                         break;
2154
2155                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2156                 /*
2157                  * Count the retransmission made on RTO correctly (only when
2158                  * waiting for the first ACK and did not get it)...
2159                  */
2160                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2161                         /* For some reason this R-bit might get cleared? */
2162                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2163                                 tp->retrans_out += tcp_skb_pcount(skb);
2164                         /* ...enter this if branch just for the first segment */
2165                         flag |= FLAG_DATA_ACKED;
2166                 } else {
2167                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2168                                 tp->undo_marker = 0;
2169                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2170                 }
2171
2172                 /* Marking forward transmissions that were made after RTO lost
2173                  * can cause unnecessary retransmissions in some scenarios,
2174                  * SACK blocks will mitigate that in some but not in all cases.
2175                  * We used to not mark them but it was causing break-ups with
2176                  * receivers that do only in-order receival.
2177                  *
2178                  * TODO: we could detect presence of such receiver and select
2179                  * different behavior per flow.
2180                  */
2181                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2182                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2183                         tp->lost_out += tcp_skb_pcount(skb);
2184                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2185                 }
2186         }
2187         tcp_verify_left_out(tp);
2188
2189         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2190         tp->snd_cwnd_cnt = 0;
2191         tp->snd_cwnd_stamp = tcp_time_stamp;
2192         tp->frto_counter = 0;
2193         tp->bytes_acked = 0;
2194
2195         tp->reordering = min_t(unsigned int, tp->reordering,
2196                                sysctl_tcp_reordering);
2197         tcp_set_ca_state(sk, TCP_CA_Loss);
2198         tp->high_seq = tp->snd_nxt;
2199         TCP_ECN_queue_cwr(tp);
2200
2201         tcp_clear_all_retrans_hints(tp);
2202 }
2203
2204 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2205 {
2206         tp->retrans_out = 0;
2207         tp->lost_out = 0;
2208
2209         tp->undo_marker = 0;
2210         tp->undo_retrans = 0;
2211 }
2212
2213 void tcp_clear_retrans(struct tcp_sock *tp)
2214 {
2215         tcp_clear_retrans_partial(tp);
2216
2217         tp->fackets_out = 0;
2218         tp->sacked_out = 0;
2219 }
2220
2221 /* Enter Loss state. If "how" is not zero, forget all SACK information
2222  * and reset tags completely, otherwise preserve SACKs. If receiver
2223  * dropped its ofo queue, we will know this due to reneging detection.
2224  */
2225 void tcp_enter_loss(struct sock *sk, int how)
2226 {
2227         const struct inet_connection_sock *icsk = inet_csk(sk);
2228         struct tcp_sock *tp = tcp_sk(sk);
2229         struct sk_buff *skb;
2230
2231         /* Reduce ssthresh if it has not yet been made inside this window. */
2232         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2233             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2234                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2235                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2236                 tcp_ca_event(sk, CA_EVENT_LOSS);
2237         }
2238         tp->snd_cwnd       = 1;
2239         tp->snd_cwnd_cnt   = 0;
2240         tp->snd_cwnd_stamp = tcp_time_stamp;
2241
2242         tp->bytes_acked = 0;
2243         tcp_clear_retrans_partial(tp);
2244
2245         if (tcp_is_reno(tp))
2246                 tcp_reset_reno_sack(tp);
2247
2248         if (!how) {
2249                 /* Push undo marker, if it was plain RTO and nothing
2250                  * was retransmitted. */
2251                 tp->undo_marker = tp->snd_una;
2252         } else {
2253                 tp->sacked_out = 0;
2254                 tp->fackets_out = 0;
2255         }
2256         tcp_clear_all_retrans_hints(tp);
2257
2258         tcp_for_write_queue(skb, sk) {
2259                 if (skb == tcp_send_head(sk))
2260                         break;
2261
2262                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2263                         tp->undo_marker = 0;
2264                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2265                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2266                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2267                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2268                         tp->lost_out += tcp_skb_pcount(skb);
2269                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2270                 }
2271         }
2272         tcp_verify_left_out(tp);
2273
2274         tp->reordering = min_t(unsigned int, tp->reordering,
2275                                sysctl_tcp_reordering);
2276         tcp_set_ca_state(sk, TCP_CA_Loss);
2277         tp->high_seq = tp->snd_nxt;
2278         TCP_ECN_queue_cwr(tp);
2279         /* Abort F-RTO algorithm if one is in progress */
2280         tp->frto_counter = 0;
2281 }
2282
2283 /* If ACK arrived pointing to a remembered SACK, it means that our
2284  * remembered SACKs do not reflect real state of receiver i.e.
2285  * receiver _host_ is heavily congested (or buggy).
2286  *
2287  * Do processing similar to RTO timeout.
2288  */
2289 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2290 {
2291         if (flag & FLAG_SACK_RENEGING) {
2292                 struct inet_connection_sock *icsk = inet_csk(sk);
2293                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2294
2295                 tcp_enter_loss(sk, 1);
2296                 icsk->icsk_retransmits++;
2297                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2298                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2299                                           icsk->icsk_rto, TCP_RTO_MAX);
2300                 return 1;
2301         }
2302         return 0;
2303 }
2304
2305 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2306 {
2307         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2308 }
2309
2310 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2311  * counter when SACK is enabled (without SACK, sacked_out is used for
2312  * that purpose).
2313  *
2314  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2315  * segments up to the highest received SACK block so far and holes in
2316  * between them.
2317  *
2318  * With reordering, holes may still be in flight, so RFC3517 recovery
2319  * uses pure sacked_out (total number of SACKed segments) even though
2320  * it violates the RFC that uses duplicate ACKs, often these are equal
2321  * but when e.g. out-of-window ACKs or packet duplication occurs,
2322  * they differ. Since neither occurs due to loss, TCP should really
2323  * ignore them.
2324  */
2325 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2326 {
2327         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2328 }
2329
2330 static inline int tcp_skb_timedout(const struct sock *sk,
2331                                    const struct sk_buff *skb)
2332 {
2333         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2334 }
2335
2336 static inline int tcp_head_timedout(const struct sock *sk)
2337 {
2338         const struct tcp_sock *tp = tcp_sk(sk);
2339
2340         return tp->packets_out &&
2341                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2342 }
2343
2344 /* Linux NewReno/SACK/FACK/ECN state machine.
2345  * --------------------------------------
2346  *
2347  * "Open"       Normal state, no dubious events, fast path.
2348  * "Disorder"   In all the respects it is "Open",
2349  *              but requires a bit more attention. It is entered when
2350  *              we see some SACKs or dupacks. It is split of "Open"
2351  *              mainly to move some processing from fast path to slow one.
2352  * "CWR"        CWND was reduced due to some Congestion Notification event.
2353  *              It can be ECN, ICMP source quench, local device congestion.
2354  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2355  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2356  *
2357  * tcp_fastretrans_alert() is entered:
2358  * - each incoming ACK, if state is not "Open"
2359  * - when arrived ACK is unusual, namely:
2360  *      * SACK
2361  *      * Duplicate ACK.
2362  *      * ECN ECE.
2363  *
2364  * Counting packets in flight is pretty simple.
2365  *
2366  *      in_flight = packets_out - left_out + retrans_out
2367  *
2368  *      packets_out is SND.NXT-SND.UNA counted in packets.
2369  *
2370  *      retrans_out is number of retransmitted segments.
2371  *
2372  *      left_out is number of segments left network, but not ACKed yet.
2373  *
2374  *              left_out = sacked_out + lost_out
2375  *
2376  *     sacked_out: Packets, which arrived to receiver out of order
2377  *                 and hence not ACKed. With SACKs this number is simply
2378  *                 amount of SACKed data. Even without SACKs
2379  *                 it is easy to give pretty reliable estimate of this number,
2380  *                 counting duplicate ACKs.
2381  *
2382  *       lost_out: Packets lost by network. TCP has no explicit
2383  *                 "loss notification" feedback from network (for now).
2384  *                 It means that this number can be only _guessed_.
2385  *                 Actually, it is the heuristics to predict lossage that
2386  *                 distinguishes different algorithms.
2387  *
2388  *      F.e. after RTO, when all the queue is considered as lost,
2389  *      lost_out = packets_out and in_flight = retrans_out.
2390  *
2391  *              Essentially, we have now two algorithms counting
2392  *              lost packets.
2393  *
2394  *              FACK: It is the simplest heuristics. As soon as we decided
2395  *              that something is lost, we decide that _all_ not SACKed
2396  *              packets until the most forward SACK are lost. I.e.
2397  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2398  *              It is absolutely correct estimate, if network does not reorder
2399  *              packets. And it loses any connection to reality when reordering
2400  *              takes place. We use FACK by default until reordering
2401  *              is suspected on the path to this destination.
2402  *
2403  *              NewReno: when Recovery is entered, we assume that one segment
2404  *              is lost (classic Reno). While we are in Recovery and
2405  *              a partial ACK arrives, we assume that one more packet
2406  *              is lost (NewReno). This heuristics are the same in NewReno
2407  *              and SACK.
2408  *
2409  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2410  *  deflation etc. CWND is real congestion window, never inflated, changes
2411  *  only according to classic VJ rules.
2412  *
2413  * Really tricky (and requiring careful tuning) part of algorithm
2414  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2415  * The first determines the moment _when_ we should reduce CWND and,
2416  * hence, slow down forward transmission. In fact, it determines the moment
2417  * when we decide that hole is caused by loss, rather than by a reorder.
2418  *
2419  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2420  * holes, caused by lost packets.
2421  *
2422  * And the most logically complicated part of algorithm is undo
2423  * heuristics. We detect false retransmits due to both too early
2424  * fast retransmit (reordering) and underestimated RTO, analyzing
2425  * timestamps and D-SACKs. When we detect that some segments were
2426  * retransmitted by mistake and CWND reduction was wrong, we undo
2427  * window reduction and abort recovery phase. This logic is hidden
2428  * inside several functions named tcp_try_undo_<something>.
2429  */
2430
2431 /* This function decides, when we should leave Disordered state
2432  * and enter Recovery phase, reducing congestion window.
2433  *
2434  * Main question: may we further continue forward transmission
2435  * with the same cwnd?
2436  */
2437 static int tcp_time_to_recover(struct sock *sk)
2438 {
2439         struct tcp_sock *tp = tcp_sk(sk);
2440         __u32 packets_out;
2441
2442         /* Do not perform any recovery during F-RTO algorithm */
2443         if (tp->frto_counter)
2444                 return 0;
2445
2446         /* Trick#1: The loss is proven. */
2447         if (tp->lost_out)
2448                 return 1;
2449
2450         /* Not-A-Trick#2 : Classic rule... */
2451         if (tcp_dupack_heuristics(tp) > tp->reordering)
2452                 return 1;
2453
2454         /* Trick#3 : when we use RFC2988 timer restart, fast
2455          * retransmit can be triggered by timeout of queue head.
2456          */
2457         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2458                 return 1;
2459
2460         /* Trick#4: It is still not OK... But will it be useful to delay
2461          * recovery more?
2462          */
2463         packets_out = tp->packets_out;
2464         if (packets_out <= tp->reordering &&
2465             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2466             !tcp_may_send_now(sk)) {
2467                 /* We have nothing to send. This connection is limited
2468                  * either by receiver window or by application.
2469                  */
2470                 return 1;
2471         }
2472
2473         /* If a thin stream is detected, retransmit after first
2474          * received dupack. Employ only if SACK is supported in order
2475          * to avoid possible corner-case series of spurious retransmissions
2476          * Use only if there are no unsent data.
2477          */
2478         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2479             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2480             tcp_is_sack(tp) && !tcp_send_head(sk))
2481                 return 1;
2482
2483         return 0;
2484 }
2485
2486 /* New heuristics: it is possible only after we switched to restart timer
2487  * each time when something is ACKed. Hence, we can detect timed out packets
2488  * during fast retransmit without falling to slow start.
2489  *
2490  * Usefulness of this as is very questionable, since we should know which of
2491  * the segments is the next to timeout which is relatively expensive to find
2492  * in general case unless we add some data structure just for that. The
2493  * current approach certainly won't find the right one too often and when it
2494  * finally does find _something_ it usually marks large part of the window
2495  * right away (because a retransmission with a larger timestamp blocks the
2496  * loop from advancing). -ij
2497  */
2498 static void tcp_timeout_skbs(struct sock *sk)
2499 {
2500         struct tcp_sock *tp = tcp_sk(sk);
2501         struct sk_buff *skb;
2502
2503         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2504                 return;
2505
2506         skb = tp->scoreboard_skb_hint;
2507         if (tp->scoreboard_skb_hint == NULL)
2508                 skb = tcp_write_queue_head(sk);
2509
2510         tcp_for_write_queue_from(skb, sk) {
2511                 if (skb == tcp_send_head(sk))
2512                         break;
2513                 if (!tcp_skb_timedout(sk, skb))
2514                         break;
2515
2516                 tcp_skb_mark_lost(tp, skb);
2517         }
2518
2519         tp->scoreboard_skb_hint = skb;
2520
2521         tcp_verify_left_out(tp);
2522 }
2523
2524 /* Detect loss in event "A" above by marking head of queue up as lost.
2525  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2526  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2527  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2528  * the maximum SACKed segments to pass before reaching this limit.
2529  */
2530 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2531 {
2532         struct tcp_sock *tp = tcp_sk(sk);
2533         struct sk_buff *skb;
2534         int cnt, oldcnt;
2535         int err;
2536         unsigned int mss;
2537         /* Use SACK to deduce losses of new sequences sent during recovery */
2538         const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2539
2540         WARN_ON(packets > tp->packets_out);
2541         if (tp->lost_skb_hint) {
2542                 skb = tp->lost_skb_hint;
2543                 cnt = tp->lost_cnt_hint;
2544                 /* Head already handled? */
2545                 if (mark_head && skb != tcp_write_queue_head(sk))
2546                         return;
2547         } else {
2548                 skb = tcp_write_queue_head(sk);
2549                 cnt = 0;
2550         }
2551
2552         tcp_for_write_queue_from(skb, sk) {
2553                 if (skb == tcp_send_head(sk))
2554                         break;
2555                 /* TODO: do this better */
2556                 /* this is not the most efficient way to do this... */
2557                 tp->lost_skb_hint = skb;
2558                 tp->lost_cnt_hint = cnt;
2559
2560                 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2561                         break;
2562
2563                 oldcnt = cnt;
2564                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2565                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2566                         cnt += tcp_skb_pcount(skb);
2567
2568                 if (cnt > packets) {
2569                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2570                             (oldcnt >= packets))
2571                                 break;
2572
2573                         mss = skb_shinfo(skb)->gso_size;
2574                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2575                         if (err < 0)
2576                                 break;
2577                         cnt = packets;
2578                 }
2579
2580                 tcp_skb_mark_lost(tp, skb);
2581
2582                 if (mark_head)
2583                         break;
2584         }
2585         tcp_verify_left_out(tp);
2586 }
2587
2588 /* Account newly detected lost packet(s) */
2589
2590 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2591 {
2592         struct tcp_sock *tp = tcp_sk(sk);
2593
2594         if (tcp_is_reno(tp)) {
2595                 tcp_mark_head_lost(sk, 1, 1);
2596         } else if (tcp_is_fack(tp)) {
2597                 int lost = tp->fackets_out - tp->reordering;
2598                 if (lost <= 0)
2599                         lost = 1;
2600                 tcp_mark_head_lost(sk, lost, 0);
2601         } else {
2602                 int sacked_upto = tp->sacked_out - tp->reordering;
2603                 if (sacked_upto >= 0)
2604                         tcp_mark_head_lost(sk, sacked_upto, 0);
2605                 else if (fast_rexmit)
2606                         tcp_mark_head_lost(sk, 1, 1);
2607         }
2608
2609         tcp_timeout_skbs(sk);
2610 }
2611
2612 /* CWND moderation, preventing bursts due to too big ACKs
2613  * in dubious situations.
2614  */
2615 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2616 {
2617         tp->snd_cwnd = min(tp->snd_cwnd,
2618                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2619         tp->snd_cwnd_stamp = tcp_time_stamp;
2620 }
2621
2622 /* Lower bound on congestion window is slow start threshold
2623  * unless congestion avoidance choice decides to overide it.
2624  */
2625 static inline u32 tcp_cwnd_min(const struct sock *sk)
2626 {
2627         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2628
2629         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2630 }
2631
2632 /* Decrease cwnd each second ack. */
2633 static void tcp_cwnd_down(struct sock *sk, int flag)
2634 {
2635         struct tcp_sock *tp = tcp_sk(sk);
2636         int decr = tp->snd_cwnd_cnt + 1;
2637
2638         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2639             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2640                 tp->snd_cwnd_cnt = decr & 1;
2641                 decr >>= 1;
2642
2643                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2644                         tp->snd_cwnd -= decr;
2645
2646                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2647                 tp->snd_cwnd_stamp = tcp_time_stamp;
2648         }
2649 }
2650
2651 /* Nothing was retransmitted or returned timestamp is less
2652  * than timestamp of the first retransmission.
2653  */
2654 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2655 {
2656         return !tp->retrans_stamp ||
2657                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2658                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2659 }
2660
2661 /* Undo procedures. */
2662
2663 #if FASTRETRANS_DEBUG > 1
2664 static void DBGUNDO(struct sock *sk, const char *msg)
2665 {
2666         struct tcp_sock *tp = tcp_sk(sk);
2667         struct inet_sock *inet = inet_sk(sk);
2668
2669         if (sk->sk_family == AF_INET) {
2670                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2671                        msg,
2672                        &inet->inet_daddr, ntohs(inet->inet_dport),
2673                        tp->snd_cwnd, tcp_left_out(tp),
2674                        tp->snd_ssthresh, tp->prior_ssthresh,
2675                        tp->packets_out);
2676         }
2677 #if IS_ENABLED(CONFIG_IPV6)
2678         else if (sk->sk_family == AF_INET6) {
2679                 struct ipv6_pinfo *np = inet6_sk(sk);
2680                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2681                        msg,
2682                        &np->daddr, ntohs(inet->inet_dport),
2683                        tp->snd_cwnd, tcp_left_out(tp),
2684                        tp->snd_ssthresh, tp->prior_ssthresh,
2685                        tp->packets_out);
2686         }
2687 #endif
2688 }
2689 #else
2690 #define DBGUNDO(x...) do { } while (0)
2691 #endif
2692
2693 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2694 {
2695         struct tcp_sock *tp = tcp_sk(sk);
2696
2697         if (tp->prior_ssthresh) {
2698                 const struct inet_connection_sock *icsk = inet_csk(sk);
2699
2700                 if (icsk->icsk_ca_ops->undo_cwnd)
2701                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2702                 else
2703                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2704
2705                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2706                         tp->snd_ssthresh = tp->prior_ssthresh;
2707                         TCP_ECN_withdraw_cwr(tp);
2708                 }
2709         } else {
2710                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2711         }
2712         tp->snd_cwnd_stamp = tcp_time_stamp;
2713 }
2714
2715 static inline int tcp_may_undo(const struct tcp_sock *tp)
2716 {
2717         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2718 }
2719
2720 /* People celebrate: "We love our President!" */
2721 static int tcp_try_undo_recovery(struct sock *sk)
2722 {
2723         struct tcp_sock *tp = tcp_sk(sk);
2724
2725         if (tcp_may_undo(tp)) {
2726                 int mib_idx;
2727
2728                 /* Happy end! We did not retransmit anything
2729                  * or our original transmission succeeded.
2730                  */
2731                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2732                 tcp_undo_cwr(sk, true);
2733                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2734                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2735                 else
2736                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2737
2738                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2739                 tp->undo_marker = 0;
2740         }
2741         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2742                 /* Hold old state until something *above* high_seq
2743                  * is ACKed. For Reno it is MUST to prevent false
2744                  * fast retransmits (RFC2582). SACK TCP is safe. */
2745                 tcp_moderate_cwnd(tp);
2746                 return 1;
2747         }
2748         tcp_set_ca_state(sk, TCP_CA_Open);
2749         return 0;
2750 }
2751
2752 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2753 static void tcp_try_undo_dsack(struct sock *sk)
2754 {
2755         struct tcp_sock *tp = tcp_sk(sk);
2756
2757         if (tp->undo_marker && !tp->undo_retrans) {
2758                 DBGUNDO(sk, "D-SACK");
2759                 tcp_undo_cwr(sk, true);
2760                 tp->undo_marker = 0;
2761                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2762         }
2763 }
2764
2765 /* We can clear retrans_stamp when there are no retransmissions in the
2766  * window. It would seem that it is trivially available for us in
2767  * tp->retrans_out, however, that kind of assumptions doesn't consider
2768  * what will happen if errors occur when sending retransmission for the
2769  * second time. ...It could the that such segment has only
2770  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2771  * the head skb is enough except for some reneging corner cases that
2772  * are not worth the effort.
2773  *
2774  * Main reason for all this complexity is the fact that connection dying
2775  * time now depends on the validity of the retrans_stamp, in particular,
2776  * that successive retransmissions of a segment must not advance
2777  * retrans_stamp under any conditions.
2778  */
2779 static int tcp_any_retrans_done(const struct sock *sk)
2780 {
2781         const struct tcp_sock *tp = tcp_sk(sk);
2782         struct sk_buff *skb;
2783
2784         if (tp->retrans_out)
2785                 return 1;
2786
2787         skb = tcp_write_queue_head(sk);
2788         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2789                 return 1;
2790
2791         return 0;
2792 }
2793
2794 /* Undo during fast recovery after partial ACK. */
2795
2796 static int tcp_try_undo_partial(struct sock *sk, int acked)
2797 {
2798         struct tcp_sock *tp = tcp_sk(sk);
2799         /* Partial ACK arrived. Force Hoe's retransmit. */
2800         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2801
2802         if (tcp_may_undo(tp)) {
2803                 /* Plain luck! Hole if filled with delayed
2804                  * packet, rather than with a retransmit.
2805                  */
2806                 if (!tcp_any_retrans_done(sk))
2807                         tp->retrans_stamp = 0;
2808
2809                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2810
2811                 DBGUNDO(sk, "Hoe");
2812                 tcp_undo_cwr(sk, false);
2813                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2814
2815                 /* So... Do not make Hoe's retransmit yet.
2816                  * If the first packet was delayed, the rest
2817                  * ones are most probably delayed as well.
2818                  */
2819                 failed = 0;
2820         }
2821         return failed;
2822 }
2823
2824 /* Undo during loss recovery after partial ACK. */
2825 static int tcp_try_undo_loss(struct sock *sk)
2826 {
2827         struct tcp_sock *tp = tcp_sk(sk);
2828
2829         if (tcp_may_undo(tp)) {
2830                 struct sk_buff *skb;
2831                 tcp_for_write_queue(skb, sk) {
2832                         if (skb == tcp_send_head(sk))
2833                                 break;
2834                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2835                 }
2836
2837                 tcp_clear_all_retrans_hints(tp);
2838
2839                 DBGUNDO(sk, "partial loss");
2840                 tp->lost_out = 0;
2841                 tcp_undo_cwr(sk, true);
2842                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2843                 inet_csk(sk)->icsk_retransmits = 0;
2844                 tp->undo_marker = 0;
2845                 if (tcp_is_sack(tp))
2846                         tcp_set_ca_state(sk, TCP_CA_Open);
2847                 return 1;
2848         }
2849         return 0;
2850 }
2851
2852 static inline void tcp_complete_cwr(struct sock *sk)
2853 {
2854         struct tcp_sock *tp = tcp_sk(sk);
2855
2856         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2857         if (tp->undo_marker) {
2858                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2859                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2860                 else /* PRR */
2861                         tp->snd_cwnd = tp->snd_ssthresh;
2862                 tp->snd_cwnd_stamp = tcp_time_stamp;
2863         }
2864         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2865 }
2866
2867 static void tcp_try_keep_open(struct sock *sk)
2868 {
2869         struct tcp_sock *tp = tcp_sk(sk);
2870         int state = TCP_CA_Open;
2871
2872         if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2873                 state = TCP_CA_Disorder;
2874
2875         if (inet_csk(sk)->icsk_ca_state != state) {
2876                 tcp_set_ca_state(sk, state);
2877                 tp->high_seq = tp->snd_nxt;
2878         }
2879 }
2880
2881 static void tcp_try_to_open(struct sock *sk, int flag)
2882 {
2883         struct tcp_sock *tp = tcp_sk(sk);
2884
2885         tcp_verify_left_out(tp);
2886
2887         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2888                 tp->retrans_stamp = 0;
2889
2890         if (flag & FLAG_ECE)
2891                 tcp_enter_cwr(sk, 1);
2892
2893         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2894                 tcp_try_keep_open(sk);
2895                 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2896                         tcp_moderate_cwnd(tp);
2897         } else {
2898                 tcp_cwnd_down(sk, flag);
2899         }
2900 }
2901
2902 static void tcp_mtup_probe_failed(struct sock *sk)
2903 {
2904         struct inet_connection_sock *icsk = inet_csk(sk);
2905
2906         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2907         icsk->icsk_mtup.probe_size = 0;
2908 }
2909
2910 static void tcp_mtup_probe_success(struct sock *sk)
2911 {
2912         struct tcp_sock *tp = tcp_sk(sk);
2913         struct inet_connection_sock *icsk = inet_csk(sk);
2914
2915         /* FIXME: breaks with very large cwnd */
2916         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2917         tp->snd_cwnd = tp->snd_cwnd *
2918                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2919                        icsk->icsk_mtup.probe_size;
2920         tp->snd_cwnd_cnt = 0;
2921         tp->snd_cwnd_stamp = tcp_time_stamp;
2922         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2923
2924         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2925         icsk->icsk_mtup.probe_size = 0;
2926         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2927 }
2928
2929 /* Do a simple retransmit without using the backoff mechanisms in
2930  * tcp_timer. This is used for path mtu discovery.
2931  * The socket is already locked here.
2932  */
2933 void tcp_simple_retransmit(struct sock *sk)
2934 {
2935         const struct inet_connection_sock *icsk = inet_csk(sk);
2936         struct tcp_sock *tp = tcp_sk(sk);
2937         struct sk_buff *skb;
2938         unsigned int mss = tcp_current_mss(sk);
2939         u32 prior_lost = tp->lost_out;
2940
2941         tcp_for_write_queue(skb, sk) {
2942                 if (skb == tcp_send_head(sk))
2943                         break;
2944                 if (tcp_skb_seglen(skb) > mss &&
2945                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2946                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2947                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2948                                 tp->retrans_out -= tcp_skb_pcount(skb);
2949                         }
2950                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2951                 }
2952         }
2953
2954         tcp_clear_retrans_hints_partial(tp);
2955
2956         if (prior_lost == tp->lost_out)
2957                 return;
2958
2959         if (tcp_is_reno(tp))
2960                 tcp_limit_reno_sacked(tp);
2961
2962         tcp_verify_left_out(tp);
2963
2964         /* Don't muck with the congestion window here.
2965          * Reason is that we do not increase amount of _data_
2966          * in network, but units changed and effective
2967          * cwnd/ssthresh really reduced now.
2968          */
2969         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2970                 tp->high_seq = tp->snd_nxt;
2971                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2972                 tp->prior_ssthresh = 0;
2973                 tp->undo_marker = 0;
2974                 tcp_set_ca_state(sk, TCP_CA_Loss);
2975         }
2976         tcp_xmit_retransmit_queue(sk);
2977 }
2978 EXPORT_SYMBOL(tcp_simple_retransmit);
2979
2980 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2981  * (proportional rate reduction with slow start reduction bound) as described in
2982  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2983  * It computes the number of packets to send (sndcnt) based on packets newly
2984  * delivered:
2985  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2986  *      cwnd reductions across a full RTT.
2987  *   2) If packets in flight is lower than ssthresh (such as due to excess
2988  *      losses and/or application stalls), do not perform any further cwnd
2989  *      reductions, but instead slow start up to ssthresh.
2990  */
2991 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2992                                         int fast_rexmit, int flag)
2993 {
2994         struct tcp_sock *tp = tcp_sk(sk);
2995         int sndcnt = 0;
2996         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2997
2998         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2999                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3000                                tp->prior_cwnd - 1;
3001                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3002         } else {
3003                 sndcnt = min_t(int, delta,
3004                                max_t(int, tp->prr_delivered - tp->prr_out,
3005                                      newly_acked_sacked) + 1);
3006         }
3007
3008         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3009         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3010 }
3011
3012 /* Process an event, which can update packets-in-flight not trivially.
3013  * Main goal of this function is to calculate new estimate for left_out,
3014  * taking into account both packets sitting in receiver's buffer and
3015  * packets lost by network.
3016  *
3017  * Besides that it does CWND reduction, when packet loss is detected
3018  * and changes state of machine.
3019  *
3020  * It does _not_ decide what to send, it is made in function
3021  * tcp_xmit_retransmit_queue().
3022  */
3023 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3024                                   int newly_acked_sacked, bool is_dupack,
3025                                   int flag)
3026 {
3027         struct inet_connection_sock *icsk = inet_csk(sk);
3028         struct tcp_sock *tp = tcp_sk(sk);
3029         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3030                                     (tcp_fackets_out(tp) > tp->reordering));
3031         int fast_rexmit = 0, mib_idx;
3032
3033         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3034                 tp->sacked_out = 0;
3035         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3036                 tp->fackets_out = 0;
3037
3038         /* Now state machine starts.
3039          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3040         if (flag & FLAG_ECE)
3041                 tp->prior_ssthresh = 0;
3042
3043         /* B. In all the states check for reneging SACKs. */
3044         if (tcp_check_sack_reneging(sk, flag))
3045                 return;
3046
3047         /* C. Check consistency of the current state. */
3048         tcp_verify_left_out(tp);
3049
3050         /* D. Check state exit conditions. State can be terminated
3051          *    when high_seq is ACKed. */
3052         if (icsk->icsk_ca_state == TCP_CA_Open) {
3053                 WARN_ON(tp->retrans_out != 0);
3054                 tp->retrans_stamp = 0;
3055         } else if (!before(tp->snd_una, tp->high_seq)) {
3056                 switch (icsk->icsk_ca_state) {
3057                 case TCP_CA_Loss:
3058                         icsk->icsk_retransmits = 0;
3059                         if (tcp_try_undo_recovery(sk))
3060                                 return;
3061                         break;
3062
3063                 case TCP_CA_CWR:
3064                         /* CWR is to be held something *above* high_seq
3065                          * is ACKed for CWR bit to reach receiver. */
3066                         if (tp->snd_una != tp->high_seq) {
3067                                 tcp_complete_cwr(sk);
3068                                 tcp_set_ca_state(sk, TCP_CA_Open);
3069                         }
3070                         break;
3071
3072                 case TCP_CA_Recovery:
3073                         if (tcp_is_reno(tp))
3074                                 tcp_reset_reno_sack(tp);
3075                         if (tcp_try_undo_recovery(sk))
3076                                 return;
3077                         tcp_complete_cwr(sk);
3078                         break;
3079                 }
3080         }
3081
3082         /* E. Process state. */
3083         switch (icsk->icsk_ca_state) {
3084         case TCP_CA_Recovery:
3085                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3086                         if (tcp_is_reno(tp) && is_dupack)
3087                                 tcp_add_reno_sack(sk);
3088                 } else
3089                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3090                 break;
3091         case TCP_CA_Loss:
3092                 if (flag & FLAG_DATA_ACKED)
3093                         icsk->icsk_retransmits = 0;
3094                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3095                         tcp_reset_reno_sack(tp);
3096                 if (!tcp_try_undo_loss(sk)) {
3097                         tcp_moderate_cwnd(tp);
3098                         tcp_xmit_retransmit_queue(sk);
3099                         return;
3100                 }
3101                 if (icsk->icsk_ca_state != TCP_CA_Open)
3102                         return;
3103                 /* Loss is undone; fall through to processing in Open state. */
3104         default:
3105                 if (tcp_is_reno(tp)) {
3106                         if (flag & FLAG_SND_UNA_ADVANCED)
3107                                 tcp_reset_reno_sack(tp);
3108                         if (is_dupack)
3109                                 tcp_add_reno_sack(sk);
3110                 }
3111
3112                 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3113                         tcp_try_undo_dsack(sk);
3114
3115                 if (!tcp_time_to_recover(sk)) {
3116                         tcp_try_to_open(sk, flag);
3117                         return;
3118                 }
3119
3120                 /* MTU probe failure: don't reduce cwnd */
3121                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3122                     icsk->icsk_mtup.probe_size &&
3123                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3124                         tcp_mtup_probe_failed(sk);
3125                         /* Restores the reduction we did in tcp_mtup_probe() */
3126                         tp->snd_cwnd++;
3127                         tcp_simple_retransmit(sk);
3128                         return;
3129                 }
3130
3131                 /* Otherwise enter Recovery state */
3132
3133                 if (tcp_is_reno(tp))
3134                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3135                 else
3136                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3137
3138                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3139
3140                 tp->high_seq = tp->snd_nxt;
3141                 tp->prior_ssthresh = 0;
3142                 tp->undo_marker = tp->snd_una;
3143                 tp->undo_retrans = tp->retrans_out;
3144
3145                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3146                         if (!(flag & FLAG_ECE))
3147                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3148                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3149                         TCP_ECN_queue_cwr(tp);
3150                 }
3151
3152                 tp->bytes_acked = 0;
3153                 tp->snd_cwnd_cnt = 0;
3154                 tp->prior_cwnd = tp->snd_cwnd;
3155                 tp->prr_delivered = 0;
3156                 tp->prr_out = 0;
3157                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3158                 fast_rexmit = 1;
3159         }
3160
3161         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3162                 tcp_update_scoreboard(sk, fast_rexmit);
3163         tp->prr_delivered += newly_acked_sacked;
3164         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3165         tcp_xmit_retransmit_queue(sk);
3166 }
3167
3168 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3169 {
3170         tcp_rtt_estimator(sk, seq_rtt);
3171         tcp_set_rto(sk);
3172         inet_csk(sk)->icsk_backoff = 0;
3173 }
3174 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3175
3176 /* Read draft-ietf-tcplw-high-performance before mucking
3177  * with this code. (Supersedes RFC1323)
3178  */
3179 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3180 {
3181         /* RTTM Rule: A TSecr value received in a segment is used to
3182          * update the averaged RTT measurement only if the segment
3183          * acknowledges some new data, i.e., only if it advances the
3184          * left edge of the send window.
3185          *
3186          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3187          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3188          *
3189          * Changed: reset backoff as soon as we see the first valid sample.
3190          * If we do not, we get strongly overestimated rto. With timestamps
3191          * samples are accepted even from very old segments: f.e., when rtt=1
3192          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3193          * answer arrives rto becomes 120 seconds! If at least one of segments
3194          * in window is lost... Voila.                          --ANK (010210)
3195          */
3196         struct tcp_sock *tp = tcp_sk(sk);
3197
3198         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3199 }
3200
3201 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3202 {
3203         /* We don't have a timestamp. Can only use
3204          * packets that are not retransmitted to determine
3205          * rtt estimates. Also, we must not reset the
3206          * backoff for rto until we get a non-retransmitted
3207          * packet. This allows us to deal with a situation
3208          * where the network delay has increased suddenly.
3209          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3210          */
3211
3212         if (flag & FLAG_RETRANS_DATA_ACKED)
3213                 return;
3214
3215         tcp_valid_rtt_meas(sk, seq_rtt);
3216 }
3217
3218 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3219                                       const s32 seq_rtt)
3220 {
3221         const struct tcp_sock *tp = tcp_sk(sk);
3222         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3223         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3224                 tcp_ack_saw_tstamp(sk, flag);
3225         else if (seq_rtt >= 0)
3226                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3227 }
3228
3229 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3230 {
3231         const struct inet_connection_sock *icsk = inet_csk(sk);
3232         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3233         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3234 }
3235
3236 /* Restart timer after forward progress on connection.
3237  * RFC2988 recommends to restart timer to now+rto.
3238  */
3239 static void tcp_rearm_rto(struct sock *sk)
3240 {
3241         const struct tcp_sock *tp = tcp_sk(sk);
3242
3243         if (!tp->packets_out) {
3244                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3245         } else {
3246                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3247                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3248         }
3249 }
3250
3251 /* If we get here, the whole TSO packet has not been acked. */
3252 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3253 {
3254         struct tcp_sock *tp = tcp_sk(sk);
3255         u32 packets_acked;
3256
3257         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3258
3259         packets_acked = tcp_skb_pcount(skb);
3260         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3261                 return 0;
3262         packets_acked -= tcp_skb_pcount(skb);
3263
3264         if (packets_acked) {
3265                 BUG_ON(tcp_skb_pcount(skb) == 0);
3266                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3267         }
3268
3269         return packets_acked;
3270 }
3271
3272 /* Remove acknowledged frames from the retransmission queue. If our packet
3273  * is before the ack sequence we can discard it as it's confirmed to have
3274  * arrived at the other end.
3275  */
3276 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3277                                u32 prior_snd_una)
3278 {
3279         struct tcp_sock *tp = tcp_sk(sk);
3280         const struct inet_connection_sock *icsk = inet_csk(sk);
3281         struct sk_buff *skb;
3282         u32 now = tcp_time_stamp;
3283         int fully_acked = 1;
3284         int flag = 0;
3285         u32 pkts_acked = 0;
3286         u32 reord = tp->packets_out;
3287         u32 prior_sacked = tp->sacked_out;
3288         s32 seq_rtt = -1;
3289         s32 ca_seq_rtt = -1;
3290         ktime_t last_ackt = net_invalid_timestamp();
3291
3292         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3293                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3294                 u32 acked_pcount;
3295                 u8 sacked = scb->sacked;
3296
3297                 /* Determine how many packets and what bytes were acked, tso and else */
3298                 if (after(scb->end_seq, tp->snd_una)) {
3299                         if (tcp_skb_pcount(skb) == 1 ||
3300                             !after(tp->snd_una, scb->seq))
3301                                 break;
3302
3303                         acked_pcount = tcp_tso_acked(sk, skb);
3304                         if (!acked_pcount)
3305                                 break;
3306
3307                         fully_acked = 0;
3308                 } else {
3309                         acked_pcount = tcp_skb_pcount(skb);
3310                 }
3311
3312                 if (sacked & TCPCB_RETRANS) {
3313                         if (sacked & TCPCB_SACKED_RETRANS)
3314                                 tp->retrans_out -= acked_pcount;
3315                         flag |= FLAG_RETRANS_DATA_ACKED;
3316                         ca_seq_rtt = -1;
3317                         seq_rtt = -1;
3318                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3319                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3320                 } else {
3321                         ca_seq_rtt = now - scb->when;
3322                         last_ackt = skb->tstamp;
3323                         if (seq_rtt < 0) {
3324                                 seq_rtt = ca_seq_rtt;
3325                         }
3326                         if (!(sacked & TCPCB_SACKED_ACKED))
3327                                 reord = min(pkts_acked, reord);
3328                 }
3329
3330                 if (sacked & TCPCB_SACKED_ACKED)
3331                         tp->sacked_out -= acked_pcount;
3332                 if (sacked & TCPCB_LOST)
3333                         tp->lost_out -= acked_pcount;
3334
3335                 tp->packets_out -= acked_pcount;
3336                 pkts_acked += acked_pcount;
3337
3338                 /* Initial outgoing SYN's get put onto the write_queue
3339                  * just like anything else we transmit.  It is not
3340                  * true data, and if we misinform our callers that
3341                  * this ACK acks real data, we will erroneously exit
3342                  * connection startup slow start one packet too
3343                  * quickly.  This is severely frowned upon behavior.
3344                  */
3345                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3346                         flag |= FLAG_DATA_ACKED;
3347                 } else {
3348                         flag |= FLAG_SYN_ACKED;
3349                         tp->retrans_stamp = 0;
3350                 }
3351
3352                 if (!fully_acked)
3353                         break;
3354
3355                 tcp_unlink_write_queue(skb, sk);
3356                 sk_wmem_free_skb(sk, skb);
3357                 tp->scoreboard_skb_hint = NULL;
3358                 if (skb == tp->retransmit_skb_hint)
3359                         tp->retransmit_skb_hint = NULL;
3360                 if (skb == tp->lost_skb_hint)
3361                         tp->lost_skb_hint = NULL;
3362         }
3363
3364         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3365                 tp->snd_up = tp->snd_una;
3366
3367         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3368                 flag |= FLAG_SACK_RENEGING;
3369
3370         if (flag & FLAG_ACKED) {
3371                 const struct tcp_congestion_ops *ca_ops
3372                         = inet_csk(sk)->icsk_ca_ops;
3373
3374                 if (unlikely(icsk->icsk_mtup.probe_size &&
3375                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3376                         tcp_mtup_probe_success(sk);
3377                 }
3378
3379                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3380                 tcp_rearm_rto(sk);
3381
3382                 if (tcp_is_reno(tp)) {
3383                         tcp_remove_reno_sacks(sk, pkts_acked);
3384                 } else {
3385                         int delta;
3386
3387                         /* Non-retransmitted hole got filled? That's reordering */
3388                         if (reord < prior_fackets)
3389                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3390
3391                         delta = tcp_is_fack(tp) ? pkts_acked :
3392                                                   prior_sacked - tp->sacked_out;
3393                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3394                 }
3395
3396                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3397
3398                 if (ca_ops->pkts_acked) {
3399                         s32 rtt_us = -1;
3400
3401                         /* Is the ACK triggering packet unambiguous? */
3402                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3403                                 /* High resolution needed and available? */
3404                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3405                                     !ktime_equal(last_ackt,
3406                                                  net_invalid_timestamp()))
3407                                         rtt_us = ktime_us_delta(ktime_get_real(),
3408                                                                 last_ackt);
3409                                 else if (ca_seq_rtt >= 0)
3410                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3411                         }
3412
3413                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3414                 }
3415         }
3416
3417 #if FASTRETRANS_DEBUG > 0
3418         WARN_ON((int)tp->sacked_out < 0);
3419         WARN_ON((int)tp->lost_out < 0);
3420         WARN_ON((int)tp->retrans_out < 0);
3421         if (!tp->packets_out && tcp_is_sack(tp)) {
3422                 icsk = inet_csk(sk);
3423                 if (tp->lost_out) {
3424                         printk(KERN_DEBUG "Leak l=%u %d\n",
3425                                tp->lost_out, icsk->icsk_ca_state);
3426                         tp->lost_out = 0;
3427                 }
3428                 if (tp->sacked_out) {
3429                         printk(KERN_DEBUG "Leak s=%u %d\n",
3430                                tp->sacked_out, icsk->icsk_ca_state);
3431                         tp->sacked_out = 0;
3432                 }
3433                 if (tp->retrans_out) {
3434                         printk(KERN_DEBUG "Leak r=%u %d\n",
3435                                tp->retrans_out, icsk->icsk_ca_state);
3436                         tp->retrans_out = 0;
3437                 }
3438         }
3439 #endif
3440         return flag;
3441 }
3442
3443 static void tcp_ack_probe(struct sock *sk)
3444 {
3445         const struct tcp_sock *tp = tcp_sk(sk);
3446         struct inet_connection_sock *icsk = inet_csk(sk);
3447
3448         /* Was it a usable window open? */
3449
3450         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3451                 icsk->icsk_backoff = 0;
3452                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3453                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3454                  * This function is not for random using!
3455                  */
3456         } else {
3457                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3458                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3459                                           TCP_RTO_MAX);
3460         }
3461 }
3462
3463 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3464 {
3465         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3466                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3467 }
3468
3469 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3470 {
3471         const struct tcp_sock *tp = tcp_sk(sk);
3472         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3473                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3474 }
3475
3476 /* Check that window update is acceptable.
3477  * The function assumes that snd_una<=ack<=snd_next.
3478  */
3479 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3480                                         const u32 ack, const u32 ack_seq,
3481                                         const u32 nwin)
3482 {
3483         return  after(ack, tp->snd_una) ||
3484                 after(ack_seq, tp->snd_wl1) ||
3485                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3486 }
3487
3488 /* Update our send window.
3489  *
3490  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3491  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3492  */
3493 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3494                                  u32 ack_seq)
3495 {
3496         struct tcp_sock *tp = tcp_sk(sk);
3497         int flag = 0;
3498         u32 nwin = ntohs(tcp_hdr(skb)->window);
3499
3500         if (likely(!tcp_hdr(skb)->syn))
3501                 nwin <<= tp->rx_opt.snd_wscale;
3502
3503         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3504                 flag |= FLAG_WIN_UPDATE;
3505                 tcp_update_wl(tp, ack_seq);
3506
3507                 if (tp->snd_wnd != nwin) {
3508                         tp->snd_wnd = nwin;
3509
3510                         /* Note, it is the only place, where
3511                          * fast path is recovered for sending TCP.
3512                          */
3513                         tp->pred_flags = 0;
3514                         tcp_fast_path_check(sk);
3515
3516                         if (nwin > tp->max_window) {
3517                                 tp->max_window = nwin;
3518                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3519                         }
3520                 }
3521         }
3522
3523         tp->snd_una = ack;
3524
3525         return flag;
3526 }
3527
3528 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3529  * continue in congestion avoidance.
3530  */
3531 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3532 {
3533         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3534         tp->snd_cwnd_cnt = 0;
3535         tp->bytes_acked = 0;
3536         TCP_ECN_queue_cwr(tp);
3537         tcp_moderate_cwnd(tp);
3538 }
3539
3540 /* A conservative spurious RTO response algorithm: reduce cwnd using
3541  * rate halving and continue in congestion avoidance.
3542  */
3543 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3544 {
3545         tcp_enter_cwr(sk, 0);
3546 }
3547
3548 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3549 {
3550         if (flag & FLAG_ECE)
3551                 tcp_ratehalving_spur_to_response(sk);
3552         else
3553                 tcp_undo_cwr(sk, true);
3554 }
3555
3556 /* F-RTO spurious RTO detection algorithm (RFC4138)
3557  *
3558  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3559  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3560  * window (but not to or beyond highest sequence sent before RTO):
3561  *   On First ACK,  send two new segments out.
3562  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3563  *                  algorithm is not part of the F-RTO detection algorithm
3564  *                  given in RFC4138 but can be selected separately).
3565  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3566  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3567  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3568  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3569  *
3570  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3571  * original window even after we transmit two new data segments.
3572  *
3573  * SACK version:
3574  *   on first step, wait until first cumulative ACK arrives, then move to
3575  *   the second step. In second step, the next ACK decides.
3576  *
3577  * F-RTO is implemented (mainly) in four functions:
3578  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3579  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3580  *     called when tcp_use_frto() showed green light
3581  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3582  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3583  *     to prove that the RTO is indeed spurious. It transfers the control
3584  *     from F-RTO to the conventional RTO recovery
3585  */
3586 static int tcp_process_frto(struct sock *sk, int flag)
3587 {
3588         struct tcp_sock *tp = tcp_sk(sk);
3589
3590         tcp_verify_left_out(tp);
3591
3592         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3593         if (flag & FLAG_DATA_ACKED)
3594                 inet_csk(sk)->icsk_retransmits = 0;
3595
3596         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3597             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3598                 tp->undo_marker = 0;
3599
3600         if (!before(tp->snd_una, tp->frto_highmark)) {
3601                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3602                 return 1;
3603         }
3604
3605         if (!tcp_is_sackfrto(tp)) {
3606                 /* RFC4138 shortcoming in step 2; should also have case c):
3607                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3608                  * data, winupdate
3609                  */
3610                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3611                         return 1;
3612
3613                 if (!(flag & FLAG_DATA_ACKED)) {
3614                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3615                                             flag);
3616                         return 1;
3617                 }
3618         } else {
3619                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3620                         /* Prevent sending of new data. */
3621                         tp->snd_cwnd = min(tp->snd_cwnd,
3622                                            tcp_packets_in_flight(tp));
3623                         return 1;
3624                 }
3625
3626                 if ((tp->frto_counter >= 2) &&
3627                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3628                      ((flag & FLAG_DATA_SACKED) &&
3629                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3630                         /* RFC4138 shortcoming (see comment above) */
3631                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3632                             (flag & FLAG_NOT_DUP))
3633                                 return 1;
3634
3635                         tcp_enter_frto_loss(sk, 3, flag);
3636                         return 1;
3637                 }
3638         }
3639
3640         if (tp->frto_counter == 1) {
3641                 /* tcp_may_send_now needs to see updated state */
3642                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3643                 tp->frto_counter = 2;
3644
3645                 if (!tcp_may_send_now(sk))
3646                         tcp_enter_frto_loss(sk, 2, flag);
3647
3648                 return 1;
3649         } else {
3650                 switch (sysctl_tcp_frto_response) {
3651                 case 2:
3652                         tcp_undo_spur_to_response(sk, flag);
3653                         break;
3654                 case 1:
3655                         tcp_conservative_spur_to_response(tp);
3656                         break;
3657                 default:
3658                         tcp_ratehalving_spur_to_response(sk);
3659                         break;
3660                 }
3661                 tp->frto_counter = 0;
3662                 tp->undo_marker = 0;
3663                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3664         }
3665         return 0;
3666 }
3667
3668 /* This routine deals with incoming acks, but not outgoing ones. */
3669 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3670 {
3671         struct inet_connection_sock *icsk = inet_csk(sk);
3672         struct tcp_sock *tp = tcp_sk(sk);
3673         u32 prior_snd_una = tp->snd_una;
3674         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3675         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3676         bool is_dupack = false;
3677         u32 prior_in_flight;
3678         u32 prior_fackets;
3679         int prior_packets;
3680         int prior_sacked = tp->sacked_out;
3681         int pkts_acked = 0;
3682         int newly_acked_sacked = 0;
3683         int frto_cwnd = 0;
3684
3685         /* If the ack is older than previous acks
3686          * then we can probably ignore it.
3687          */
3688         if (before(ack, prior_snd_una))
3689                 goto old_ack;
3690
3691         /* If the ack includes data we haven't sent yet, discard
3692          * this segment (RFC793 Section 3.9).
3693          */
3694         if (after(ack, tp->snd_nxt))
3695                 goto invalid_ack;
3696
3697         if (after(ack, prior_snd_una))
3698                 flag |= FLAG_SND_UNA_ADVANCED;
3699
3700         if (sysctl_tcp_abc) {
3701                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3702                         tp->bytes_acked += ack - prior_snd_una;
3703                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3704                         /* we assume just one segment left network */
3705                         tp->bytes_acked += min(ack - prior_snd_una,
3706                                                tp->mss_cache);
3707         }
3708
3709         prior_fackets = tp->fackets_out;
3710         prior_in_flight = tcp_packets_in_flight(tp);
3711
3712         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3713                 /* Window is constant, pure forward advance.
3714                  * No more checks are required.
3715                  * Note, we use the fact that SND.UNA>=SND.WL2.
3716                  */
3717                 tcp_update_wl(tp, ack_seq);
3718                 tp->snd_una = ack;
3719                 flag |= FLAG_WIN_UPDATE;
3720
3721                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3722
3723                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3724         } else {
3725                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3726                         flag |= FLAG_DATA;
3727                 else
3728                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3729
3730                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3731
3732                 if (TCP_SKB_CB(skb)->sacked)
3733                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3734
3735                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3736                         flag |= FLAG_ECE;
3737
3738                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3739         }
3740
3741         /* We passed data and got it acked, remove any soft error
3742          * log. Something worked...
3743          */
3744         sk->sk_err_soft = 0;
3745         icsk->icsk_probes_out = 0;
3746         tp->rcv_tstamp = tcp_time_stamp;
3747         prior_packets = tp->packets_out;
3748         if (!prior_packets)
3749                 goto no_queue;
3750
3751         /* See if we can take anything off of the retransmit queue. */
3752         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3753
3754         pkts_acked = prior_packets - tp->packets_out;
3755         newly_acked_sacked = (prior_packets - prior_sacked) -
3756                              (tp->packets_out - tp->sacked_out);
3757
3758         if (tp->frto_counter)
3759                 frto_cwnd = tcp_process_frto(sk, flag);
3760         /* Guarantee sacktag reordering detection against wrap-arounds */
3761         if (before(tp->frto_highmark, tp->snd_una))
3762                 tp->frto_highmark = 0;
3763
3764         if (tcp_ack_is_dubious(sk, flag)) {
3765                 /* Advance CWND, if state allows this. */
3766                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3767                     tcp_may_raise_cwnd(sk, flag))
3768                         tcp_cong_avoid(sk, ack, prior_in_flight);
3769                 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3770                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3771                                       is_dupack, flag);
3772         } else {
3773                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3774                         tcp_cong_avoid(sk, ack, prior_in_flight);
3775         }
3776
3777         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3778                 dst_confirm(__sk_dst_get(sk));
3779
3780         return 1;
3781
3782 no_queue:
3783         /* If data was DSACKed, see if we can undo a cwnd reduction. */
3784         if (flag & FLAG_DSACKING_ACK)
3785                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3786                                       is_dupack, flag);
3787         /* If this ack opens up a zero window, clear backoff.  It was
3788          * being used to time the probes, and is probably far higher than
3789          * it needs to be for normal retransmission.
3790          */
3791         if (tcp_send_head(sk))
3792                 tcp_ack_probe(sk);
3793         return 1;
3794
3795 invalid_ack:
3796         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3797         return -1;
3798
3799 old_ack:
3800         /* If data was SACKed, tag it and see if we should send more data.
3801          * If data was DSACKed, see if we can undo a cwnd reduction.
3802          */
3803         if (TCP_SKB_CB(skb)->sacked) {
3804                 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3805                 newly_acked_sacked = tp->sacked_out - prior_sacked;
3806                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3807                                       is_dupack, flag);
3808         }
3809
3810         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3811         return 0;
3812 }
3813
3814 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3815  * But, this can also be called on packets in the established flow when
3816  * the fast version below fails.
3817  */
3818 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3819                        const u8 **hvpp, int estab)
3820 {
3821         const unsigned char *ptr;
3822         const struct tcphdr *th = tcp_hdr(skb);
3823         int length = (th->doff * 4) - sizeof(struct tcphdr);
3824
3825         ptr = (const unsigned char *)(th + 1);
3826         opt_rx->saw_tstamp = 0;
3827
3828         while (length > 0) {
3829                 int opcode = *ptr++;
3830                 int opsize;
3831
3832                 switch (opcode) {
3833                 case TCPOPT_EOL:
3834                         return;
3835                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3836                         length--;
3837                         continue;
3838                 default:
3839                         opsize = *ptr++;
3840                         if (opsize < 2) /* "silly options" */
3841                                 return;
3842                         if (opsize > length)
3843                                 return; /* don't parse partial options */
3844                         switch (opcode) {
3845                         case TCPOPT_MSS:
3846                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3847                                         u16 in_mss = get_unaligned_be16(ptr);
3848                                         if (in_mss) {
3849                                                 if (opt_rx->user_mss &&
3850                                                     opt_rx->user_mss < in_mss)
3851                                                         in_mss = opt_rx->user_mss;
3852                                                 opt_rx->mss_clamp = in_mss;
3853                                         }
3854                                 }
3855                                 break;
3856                         case TCPOPT_WINDOW:
3857                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3858                                     !estab && sysctl_tcp_window_scaling) {
3859                                         __u8 snd_wscale = *(__u8 *)ptr;
3860                                         opt_rx->wscale_ok = 1;
3861                                         if (snd_wscale > 14) {
3862                                                 if (net_ratelimit())
3863                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3864                                                                "scaling value %d >14 received.\n",
3865                                                                snd_wscale);
3866                                                 snd_wscale = 14;
3867                                         }
3868                                         opt_rx->snd_wscale = snd_wscale;
3869                                 }
3870                                 break;
3871                         case TCPOPT_TIMESTAMP:
3872                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3873                                     ((estab && opt_rx->tstamp_ok) ||
3874                                      (!estab && sysctl_tcp_timestamps))) {
3875                                         opt_rx->saw_tstamp = 1;
3876                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3877                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3878                                 }
3879                                 break;
3880                         case TCPOPT_SACK_PERM:
3881                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3882                                     !estab && sysctl_tcp_sack) {
3883                                         opt_rx->sack_ok = TCP_SACK_SEEN;
3884                                         tcp_sack_reset(opt_rx);
3885                                 }
3886                                 break;
3887
3888                         case TCPOPT_SACK:
3889                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3890                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3891                                    opt_rx->sack_ok) {
3892                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3893                                 }
3894                                 break;
3895 #ifdef CONFIG_TCP_MD5SIG
3896                         case TCPOPT_MD5SIG:
3897                                 /*
3898                                  * The MD5 Hash has already been
3899                                  * checked (see tcp_v{4,6}_do_rcv()).
3900                                  */
3901                                 break;
3902 #endif
3903                         case TCPOPT_COOKIE:
3904                                 /* This option is variable length.
3905                                  */
3906                                 switch (opsize) {
3907                                 case TCPOLEN_COOKIE_BASE:
3908                                         /* not yet implemented */
3909                                         break;
3910                                 case TCPOLEN_COOKIE_PAIR:
3911                                         /* not yet implemented */
3912                                         break;
3913                                 case TCPOLEN_COOKIE_MIN+0:
3914                                 case TCPOLEN_COOKIE_MIN+2:
3915                                 case TCPOLEN_COOKIE_MIN+4:
3916                                 case TCPOLEN_COOKIE_MIN+6:
3917                                 case TCPOLEN_COOKIE_MAX:
3918                                         /* 16-bit multiple */
3919                                         opt_rx->cookie_plus = opsize;
3920                                         *hvpp = ptr;
3921                                         break;
3922                                 default:
3923                                         /* ignore option */
3924                                         break;
3925                                 }
3926                                 break;
3927                         }
3928
3929                         ptr += opsize-2;
3930                         length -= opsize;
3931                 }
3932         }
3933 }
3934 EXPORT_SYMBOL(tcp_parse_options);
3935
3936 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3937 {
3938         const __be32 *ptr = (const __be32 *)(th + 1);
3939
3940         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3941                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3942                 tp->rx_opt.saw_tstamp = 1;
3943                 ++ptr;
3944                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3945                 ++ptr;
3946                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3947                 return 1;
3948         }
3949         return 0;
3950 }
3951
3952 /* Fast parse options. This hopes to only see timestamps.
3953  * If it is wrong it falls back on tcp_parse_options().
3954  */
3955 static int tcp_fast_parse_options(const struct sk_buff *skb,
3956                                   const struct tcphdr *th,
3957                                   struct tcp_sock *tp, const u8 **hvpp)
3958 {
3959         /* In the spirit of fast parsing, compare doff directly to constant
3960          * values.  Because equality is used, short doff can be ignored here.
3961          */
3962         if (th->doff == (sizeof(*th) / 4)) {
3963                 tp->rx_opt.saw_tstamp = 0;
3964                 return 0;
3965         } else if (tp->rx_opt.tstamp_ok &&
3966                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3967                 if (tcp_parse_aligned_timestamp(tp, th))
3968                         return 1;
3969         }
3970         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3971         return 1;
3972 }
3973
3974 #ifdef CONFIG_TCP_MD5SIG
3975 /*
3976  * Parse MD5 Signature option
3977  */
3978 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3979 {
3980         int length = (th->doff << 2) - sizeof(*th);
3981         const u8 *ptr = (const u8 *)(th + 1);
3982
3983         /* If the TCP option is too short, we can short cut */
3984         if (length < TCPOLEN_MD5SIG)
3985                 return NULL;
3986
3987         while (length > 0) {
3988                 int opcode = *ptr++;
3989                 int opsize;
3990
3991                 switch(opcode) {
3992                 case TCPOPT_EOL:
3993                         return NULL;
3994                 case TCPOPT_NOP:
3995                         length--;
3996                         continue;
3997                 default:
3998                         opsize = *ptr++;
3999                         if (opsize < 2 || opsize > length)
4000                                 return NULL;
4001                         if (opcode == TCPOPT_MD5SIG)
4002                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4003                 }
4004                 ptr += opsize - 2;
4005                 length -= opsize;
4006         }
4007         return NULL;
4008 }
4009 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4010 #endif
4011
4012 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4013 {
4014         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4015         tp->rx_opt.ts_recent_stamp = get_seconds();
4016 }
4017
4018 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4019 {
4020         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4021                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4022                  * extra check below makes sure this can only happen
4023                  * for pure ACK frames.  -DaveM
4024                  *
4025                  * Not only, also it occurs for expired timestamps.
4026                  */
4027
4028                 if (tcp_paws_check(&tp->rx_opt, 0))
4029                         tcp_store_ts_recent(tp);
4030         }
4031 }
4032
4033 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4034  *
4035  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4036  * it can pass through stack. So, the following predicate verifies that
4037  * this segment is not used for anything but congestion avoidance or
4038  * fast retransmit. Moreover, we even are able to eliminate most of such
4039  * second order effects, if we apply some small "replay" window (~RTO)
4040  * to timestamp space.
4041  *
4042  * All these measures still do not guarantee that we reject wrapped ACKs
4043  * on networks with high bandwidth, when sequence space is recycled fastly,
4044  * but it guarantees that such events will be very rare and do not affect
4045  * connection seriously. This doesn't look nice, but alas, PAWS is really
4046  * buggy extension.
4047  *
4048  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4049  * states that events when retransmit arrives after original data are rare.
4050  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4051  * the biggest problem on large power networks even with minor reordering.
4052  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4053  * up to bandwidth of 18Gigabit/sec. 8) ]
4054  */
4055
4056 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4057 {
4058         const struct tcp_sock *tp = tcp_sk(sk);
4059         const struct tcphdr *th = tcp_hdr(skb);
4060         u32 seq = TCP_SKB_CB(skb)->seq;
4061         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4062
4063         return (/* 1. Pure ACK with correct sequence number. */
4064                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4065
4066                 /* 2. ... and duplicate ACK. */
4067                 ack == tp->snd_una &&
4068
4069                 /* 3. ... and does not update window. */
4070                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4071
4072                 /* 4. ... and sits in replay window. */
4073                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4074 }
4075
4076 static inline int tcp_paws_discard(const struct sock *sk,
4077                                    const struct sk_buff *skb)
4078 {
4079         const struct tcp_sock *tp = tcp_sk(sk);
4080
4081         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4082                !tcp_disordered_ack(sk, skb);
4083 }
4084
4085 /* Check segment sequence number for validity.
4086  *
4087  * Segment controls are considered valid, if the segment
4088  * fits to the window after truncation to the window. Acceptability
4089  * of data (and SYN, FIN, of course) is checked separately.
4090  * See tcp_data_queue(), for example.
4091  *
4092  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4093  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4094  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4095  * (borrowed from freebsd)
4096  */
4097
4098 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4099 {
4100         return  !before(end_seq, tp->rcv_wup) &&
4101                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4102 }
4103
4104 /* When we get a reset we do this. */
4105 static void tcp_reset(struct sock *sk)
4106 {
4107         /* We want the right error as BSD sees it (and indeed as we do). */
4108         switch (sk->sk_state) {
4109         case TCP_SYN_SENT:
4110                 sk->sk_err = ECONNREFUSED;
4111                 break;
4112         case TCP_CLOSE_WAIT:
4113                 sk->sk_err = EPIPE;
4114                 break;
4115         case TCP_CLOSE:
4116                 return;
4117         default:
4118                 sk->sk_err = ECONNRESET;
4119         }
4120         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4121         smp_wmb();
4122
4123         if (!sock_flag(sk, SOCK_DEAD))
4124                 sk->sk_error_report(sk);
4125
4126         tcp_done(sk);
4127 }
4128
4129 /*
4130  *      Process the FIN bit. This now behaves as it is supposed to work
4131  *      and the FIN takes effect when it is validly part of sequence
4132  *      space. Not before when we get holes.
4133  *
4134  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4135  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4136  *      TIME-WAIT)
4137  *
4138  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4139  *      close and we go into CLOSING (and later onto TIME-WAIT)
4140  *
4141  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4142  */
4143 static void tcp_fin(struct sock *sk)
4144 {
4145         struct tcp_sock *tp = tcp_sk(sk);
4146
4147         inet_csk_schedule_ack(sk);
4148
4149         sk->sk_shutdown |= RCV_SHUTDOWN;
4150         sock_set_flag(sk, SOCK_DONE);
4151
4152         switch (sk->sk_state) {
4153         case TCP_SYN_RECV:
4154         case TCP_ESTABLISHED:
4155                 /* Move to CLOSE_WAIT */
4156                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4157                 inet_csk(sk)->icsk_ack.pingpong = 1;
4158                 break;
4159
4160         case TCP_CLOSE_WAIT:
4161         case TCP_CLOSING:
4162                 /* Received a retransmission of the FIN, do
4163                  * nothing.
4164                  */
4165                 break;
4166         case TCP_LAST_ACK:
4167                 /* RFC793: Remain in the LAST-ACK state. */
4168                 break;
4169
4170         case TCP_FIN_WAIT1:
4171                 /* This case occurs when a simultaneous close
4172                  * happens, we must ack the received FIN and
4173                  * enter the CLOSING state.
4174                  */
4175                 tcp_send_ack(sk);
4176                 tcp_set_state(sk, TCP_CLOSING);
4177                 break;
4178         case TCP_FIN_WAIT2:
4179                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4180                 tcp_send_ack(sk);
4181                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4182                 break;
4183         default:
4184                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4185                  * cases we should never reach this piece of code.
4186                  */
4187                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4188                        __func__, sk->sk_state);
4189                 break;
4190         }
4191
4192         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4193          * Probably, we should reset in this case. For now drop them.
4194          */
4195         __skb_queue_purge(&tp->out_of_order_queue);
4196         if (tcp_is_sack(tp))
4197                 tcp_sack_reset(&tp->rx_opt);
4198         sk_mem_reclaim(sk);
4199
4200         if (!sock_flag(sk, SOCK_DEAD)) {
4201                 sk->sk_state_change(sk);
4202
4203                 /* Do not send POLL_HUP for half duplex close. */
4204                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4205                     sk->sk_state == TCP_CLOSE)
4206                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4207                 else
4208                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4209         }
4210 }
4211
4212 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4213                                   u32 end_seq)
4214 {
4215         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4216                 if (before(seq, sp->start_seq))
4217                         sp->start_seq = seq;
4218                 if (after(end_seq, sp->end_seq))
4219                         sp->end_seq = end_seq;
4220                 return 1;
4221         }
4222         return 0;
4223 }
4224
4225 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4226 {
4227         struct tcp_sock *tp = tcp_sk(sk);
4228
4229         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4230                 int mib_idx;
4231
4232                 if (before(seq, tp->rcv_nxt))
4233                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4234                 else
4235                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4236
4237                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4238
4239                 tp->rx_opt.dsack = 1;
4240                 tp->duplicate_sack[0].start_seq = seq;
4241                 tp->duplicate_sack[0].end_seq = end_seq;
4242         }
4243 }
4244
4245 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4246 {
4247         struct tcp_sock *tp = tcp_sk(sk);
4248
4249         if (!tp->rx_opt.dsack)
4250                 tcp_dsack_set(sk, seq, end_seq);
4251         else
4252                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4253 }
4254
4255 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4256 {
4257         struct tcp_sock *tp = tcp_sk(sk);
4258
4259         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4260             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4261                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4262                 tcp_enter_quickack_mode(sk);
4263
4264                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4265                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4266
4267                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4268                                 end_seq = tp->rcv_nxt;
4269                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4270                 }
4271         }
4272
4273         tcp_send_ack(sk);
4274 }
4275
4276 /* These routines update the SACK block as out-of-order packets arrive or
4277  * in-order packets close up the sequence space.
4278  */
4279 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4280 {
4281         int this_sack;
4282         struct tcp_sack_block *sp = &tp->selective_acks[0];
4283         struct tcp_sack_block *swalk = sp + 1;
4284
4285         /* See if the recent change to the first SACK eats into
4286          * or hits the sequence space of other SACK blocks, if so coalesce.
4287          */
4288         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4289                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4290                         int i;
4291
4292                         /* Zap SWALK, by moving every further SACK up by one slot.
4293                          * Decrease num_sacks.
4294                          */
4295                         tp->rx_opt.num_sacks--;
4296                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4297                                 sp[i] = sp[i + 1];
4298                         continue;
4299                 }
4300                 this_sack++, swalk++;
4301         }
4302 }
4303
4304 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4305 {
4306         struct tcp_sock *tp = tcp_sk(sk);
4307         struct tcp_sack_block *sp = &tp->selective_acks[0];
4308         int cur_sacks = tp->rx_opt.num_sacks;
4309         int this_sack;
4310
4311         if (!cur_sacks)
4312                 goto new_sack;
4313
4314         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4315                 if (tcp_sack_extend(sp, seq, end_seq)) {
4316                         /* Rotate this_sack to the first one. */
4317                         for (; this_sack > 0; this_sack--, sp--)
4318                                 swap(*sp, *(sp - 1));
4319                         if (cur_sacks > 1)
4320                                 tcp_sack_maybe_coalesce(tp);
4321                         return;
4322                 }
4323         }
4324
4325         /* Could not find an adjacent existing SACK, build a new one,
4326          * put it at the front, and shift everyone else down.  We
4327          * always know there is at least one SACK present already here.
4328          *
4329          * If the sack array is full, forget about the last one.
4330          */
4331         if (this_sack >= TCP_NUM_SACKS) {
4332                 this_sack--;
4333                 tp->rx_opt.num_sacks--;
4334                 sp--;
4335         }
4336         for (; this_sack > 0; this_sack--, sp--)
4337                 *sp = *(sp - 1);
4338
4339 new_sack:
4340         /* Build the new head SACK, and we're done. */
4341         sp->start_seq = seq;
4342         sp->end_seq = end_seq;
4343         tp->rx_opt.num_sacks++;
4344 }
4345
4346 /* RCV.NXT advances, some SACKs should be eaten. */
4347
4348 static void tcp_sack_remove(struct tcp_sock *tp)
4349 {
4350         struct tcp_sack_block *sp = &tp->selective_acks[0];
4351         int num_sacks = tp->rx_opt.num_sacks;
4352         int this_sack;
4353
4354         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4355         if (skb_queue_empty(&tp->out_of_order_queue)) {
4356                 tp->rx_opt.num_sacks = 0;
4357                 return;
4358         }
4359
4360         for (this_sack = 0; this_sack < num_sacks;) {
4361                 /* Check if the start of the sack is covered by RCV.NXT. */
4362                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4363                         int i;
4364
4365                         /* RCV.NXT must cover all the block! */
4366                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4367
4368                         /* Zap this SACK, by moving forward any other SACKS. */
4369                         for (i=this_sack+1; i < num_sacks; i++)
4370                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4371                         num_sacks--;
4372                         continue;
4373                 }
4374                 this_sack++;
4375                 sp++;
4376         }
4377         tp->rx_opt.num_sacks = num_sacks;
4378 }
4379
4380 /* This one checks to see if we can put data from the
4381  * out_of_order queue into the receive_queue.
4382  */
4383 static void tcp_ofo_queue(struct sock *sk)
4384 {
4385         struct tcp_sock *tp = tcp_sk(sk);
4386         __u32 dsack_high = tp->rcv_nxt;
4387         struct sk_buff *skb;
4388
4389         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4390                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4391                         break;
4392
4393                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4394                         __u32 dsack = dsack_high;
4395                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4396                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4397                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4398                 }
4399
4400                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4401                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4402                         __skb_unlink(skb, &tp->out_of_order_queue);
4403                         __kfree_skb(skb);
4404                         continue;
4405                 }
4406                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4407                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4408                            TCP_SKB_CB(skb)->end_seq);
4409
4410                 __skb_unlink(skb, &tp->out_of_order_queue);
4411                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4412                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4413                 if (tcp_hdr(skb)->fin)
4414                         tcp_fin(sk);
4415         }
4416 }
4417
4418 static int tcp_prune_ofo_queue(struct sock *sk);
4419 static int tcp_prune_queue(struct sock *sk);
4420
4421 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4422 {
4423         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4424             !sk_rmem_schedule(sk, size)) {
4425
4426                 if (tcp_prune_queue(sk) < 0)
4427                         return -1;
4428
4429                 if (!sk_rmem_schedule(sk, size)) {
4430                         if (!tcp_prune_ofo_queue(sk))
4431                                 return -1;
4432
4433                         if (!sk_rmem_schedule(sk, size))
4434                                 return -1;
4435                 }
4436         }
4437         return 0;
4438 }
4439
4440 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4441 {
4442         const struct tcphdr *th = tcp_hdr(skb);
4443         struct tcp_sock *tp = tcp_sk(sk);
4444         int eaten = -1;
4445
4446         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4447                 goto drop;
4448
4449         skb_dst_drop(skb);
4450         __skb_pull(skb, th->doff * 4);
4451
4452         TCP_ECN_accept_cwr(tp, skb);
4453
4454         tp->rx_opt.dsack = 0;
4455
4456         /*  Queue data for delivery to the user.
4457          *  Packets in sequence go to the receive queue.
4458          *  Out of sequence packets to the out_of_order_queue.
4459          */
4460         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4461                 if (tcp_receive_window(tp) == 0)
4462                         goto out_of_window;
4463
4464                 /* Ok. In sequence. In window. */
4465                 if (tp->ucopy.task == current &&
4466                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4467                     sock_owned_by_user(sk) && !tp->urg_data) {
4468                         int chunk = min_t(unsigned int, skb->len,
4469                                           tp->ucopy.len);
4470
4471                         __set_current_state(TASK_RUNNING);
4472
4473                         local_bh_enable();
4474                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4475                                 tp->ucopy.len -= chunk;
4476                                 tp->copied_seq += chunk;
4477                                 eaten = (chunk == skb->len);
4478                                 tcp_rcv_space_adjust(sk);
4479                         }
4480                         local_bh_disable();
4481                 }
4482
4483                 if (eaten <= 0) {
4484 queue_and_out:
4485                         if (eaten < 0 &&
4486                             tcp_try_rmem_schedule(sk, skb->truesize))
4487                                 goto drop;
4488
4489                         skb_set_owner_r(skb, sk);
4490                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4491                 }
4492                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4493                 if (skb->len)
4494                         tcp_event_data_recv(sk, skb);
4495                 if (th->fin)
4496                         tcp_fin(sk);
4497
4498                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4499                         tcp_ofo_queue(sk);
4500
4501                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4502                          * gap in queue is filled.
4503                          */
4504                         if (skb_queue_empty(&tp->out_of_order_queue))
4505                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4506                 }
4507
4508                 if (tp->rx_opt.num_sacks)
4509                         tcp_sack_remove(tp);
4510
4511                 tcp_fast_path_check(sk);
4512
4513                 if (eaten > 0)
4514                         __kfree_skb(skb);
4515                 else if (!sock_flag(sk, SOCK_DEAD))
4516                         sk->sk_data_ready(sk, 0);
4517                 return;
4518         }
4519
4520         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4521                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4522                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4523                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4524
4525 out_of_window:
4526                 tcp_enter_quickack_mode(sk);
4527                 inet_csk_schedule_ack(sk);
4528 drop:
4529                 __kfree_skb(skb);
4530                 return;
4531         }
4532
4533         /* Out of window. F.e. zero window probe. */
4534         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4535                 goto out_of_window;
4536
4537         tcp_enter_quickack_mode(sk);
4538
4539         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4540                 /* Partial packet, seq < rcv_next < end_seq */
4541                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4542                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4543                            TCP_SKB_CB(skb)->end_seq);
4544
4545                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4546
4547                 /* If window is closed, drop tail of packet. But after
4548                  * remembering D-SACK for its head made in previous line.
4549                  */
4550                 if (!tcp_receive_window(tp))
4551                         goto out_of_window;
4552                 goto queue_and_out;
4553         }
4554
4555         TCP_ECN_check_ce(tp, skb);
4556
4557         if (tcp_try_rmem_schedule(sk, skb->truesize))
4558                 goto drop;
4559
4560         /* Disable header prediction. */
4561         tp->pred_flags = 0;
4562         inet_csk_schedule_ack(sk);
4563
4564         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4565                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4566
4567         skb_set_owner_r(skb, sk);
4568
4569         if (!skb_peek(&tp->out_of_order_queue)) {
4570                 /* Initial out of order segment, build 1 SACK. */
4571                 if (tcp_is_sack(tp)) {
4572                         tp->rx_opt.num_sacks = 1;
4573                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4574                         tp->selective_acks[0].end_seq =
4575                                                 TCP_SKB_CB(skb)->end_seq;
4576                 }
4577                 __skb_queue_head(&tp->out_of_order_queue, skb);
4578         } else {
4579                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4580                 u32 seq = TCP_SKB_CB(skb)->seq;
4581                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4582
4583                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4584                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4585
4586                         if (!tp->rx_opt.num_sacks ||
4587                             tp->selective_acks[0].end_seq != seq)
4588                                 goto add_sack;
4589
4590                         /* Common case: data arrive in order after hole. */
4591                         tp->selective_acks[0].end_seq = end_seq;
4592                         return;
4593                 }
4594
4595                 /* Find place to insert this segment. */
4596                 while (1) {
4597                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4598                                 break;
4599                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4600                                 skb1 = NULL;
4601                                 break;
4602                         }
4603                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4604                 }
4605
4606                 /* Do skb overlap to previous one? */
4607                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4608                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4609                                 /* All the bits are present. Drop. */
4610                                 __kfree_skb(skb);
4611                                 tcp_dsack_set(sk, seq, end_seq);
4612                                 goto add_sack;
4613                         }
4614                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4615                                 /* Partial overlap. */
4616                                 tcp_dsack_set(sk, seq,
4617                                               TCP_SKB_CB(skb1)->end_seq);
4618                         } else {
4619                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4620                                                        skb1))
4621                                         skb1 = NULL;
4622                                 else
4623                                         skb1 = skb_queue_prev(
4624                                                 &tp->out_of_order_queue,
4625                                                 skb1);
4626                         }
4627                 }
4628                 if (!skb1)
4629                         __skb_queue_head(&tp->out_of_order_queue, skb);
4630                 else
4631                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4632
4633                 /* And clean segments covered by new one as whole. */
4634                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4635                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4636
4637                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4638                                 break;
4639                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4640                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4641                                                  end_seq);
4642                                 break;
4643                         }
4644                         __skb_unlink(skb1, &tp->out_of_order_queue);
4645                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4646                                          TCP_SKB_CB(skb1)->end_seq);
4647                         __kfree_skb(skb1);
4648                 }
4649
4650 add_sack:
4651                 if (tcp_is_sack(tp))
4652                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4653         }
4654 }
4655
4656 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4657                                         struct sk_buff_head *list)
4658 {
4659         struct sk_buff *next = NULL;
4660
4661         if (!skb_queue_is_last(list, skb))
4662                 next = skb_queue_next(list, skb);
4663
4664         __skb_unlink(skb, list);
4665         __kfree_skb(skb);
4666         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4667
4668         return next;
4669 }
4670
4671 /* Collapse contiguous sequence of skbs head..tail with
4672  * sequence numbers start..end.
4673  *
4674  * If tail is NULL, this means until the end of the list.
4675  *
4676  * Segments with FIN/SYN are not collapsed (only because this
4677  * simplifies code)
4678  */
4679 static void
4680 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4681              struct sk_buff *head, struct sk_buff *tail,
4682              u32 start, u32 end)
4683 {
4684         struct sk_buff *skb, *n;
4685         bool end_of_skbs;
4686
4687         /* First, check that queue is collapsible and find
4688          * the point where collapsing can be useful. */
4689         skb = head;
4690 restart:
4691         end_of_skbs = true;
4692         skb_queue_walk_from_safe(list, skb, n) {
4693                 if (skb == tail)
4694                         break;
4695                 /* No new bits? It is possible on ofo queue. */
4696                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4697                         skb = tcp_collapse_one(sk, skb, list);
4698                         if (!skb)
4699                                 break;
4700                         goto restart;
4701                 }
4702
4703                 /* The first skb to collapse is:
4704                  * - not SYN/FIN and
4705                  * - bloated or contains data before "start" or
4706                  *   overlaps to the next one.
4707                  */
4708                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4709                     (tcp_win_from_space(skb->truesize) > skb->len ||
4710                      before(TCP_SKB_CB(skb)->seq, start))) {
4711                         end_of_skbs = false;
4712                         break;
4713                 }
4714
4715                 if (!skb_queue_is_last(list, skb)) {
4716                         struct sk_buff *next = skb_queue_next(list, skb);
4717                         if (next != tail &&
4718                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4719                                 end_of_skbs = false;
4720                                 break;
4721                         }
4722                 }
4723
4724                 /* Decided to skip this, advance start seq. */
4725                 start = TCP_SKB_CB(skb)->end_seq;
4726         }
4727         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4728                 return;
4729
4730         while (before(start, end)) {
4731                 struct sk_buff *nskb;
4732                 unsigned int header = skb_headroom(skb);
4733                 int copy = SKB_MAX_ORDER(header, 0);
4734
4735                 /* Too big header? This can happen with IPv6. */
4736                 if (copy < 0)
4737                         return;
4738                 if (end - start < copy)
4739                         copy = end - start;
4740                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4741                 if (!nskb)
4742                         return;
4743
4744                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4745                 skb_set_network_header(nskb, (skb_network_header(skb) -
4746                                               skb->head));
4747                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4748                                                 skb->head));
4749                 skb_reserve(nskb, header);
4750                 memcpy(nskb->head, skb->head, header);
4751                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4752                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4753                 __skb_queue_before(list, skb, nskb);
4754                 skb_set_owner_r(nskb, sk);
4755
4756                 /* Copy data, releasing collapsed skbs. */
4757                 while (copy > 0) {
4758                         int offset = start - TCP_SKB_CB(skb)->seq;
4759                         int size = TCP_SKB_CB(skb)->end_seq - start;
4760
4761                         BUG_ON(offset < 0);
4762                         if (size > 0) {
4763                                 size = min(copy, size);
4764                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4765                                         BUG();
4766                                 TCP_SKB_CB(nskb)->end_seq += size;
4767                                 copy -= size;
4768                                 start += size;
4769                         }
4770                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4771                                 skb = tcp_collapse_one(sk, skb, list);
4772                                 if (!skb ||
4773                                     skb == tail ||
4774                                     tcp_hdr(skb)->syn ||
4775                                     tcp_hdr(skb)->fin)
4776                                         return;
4777                         }
4778                 }
4779         }
4780 }
4781
4782 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4783  * and tcp_collapse() them until all the queue is collapsed.
4784  */
4785 static void tcp_collapse_ofo_queue(struct sock *sk)
4786 {
4787         struct tcp_sock *tp = tcp_sk(sk);
4788         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4789         struct sk_buff *head;
4790         u32 start, end;
4791
4792         if (skb == NULL)
4793                 return;
4794
4795         start = TCP_SKB_CB(skb)->seq;
4796         end = TCP_SKB_CB(skb)->end_seq;
4797         head = skb;
4798
4799         for (;;) {
4800                 struct sk_buff *next = NULL;
4801
4802                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4803                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4804                 skb = next;
4805
4806                 /* Segment is terminated when we see gap or when
4807                  * we are at the end of all the queue. */
4808                 if (!skb ||
4809                     after(TCP_SKB_CB(skb)->seq, end) ||
4810                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4811                         tcp_collapse(sk, &tp->out_of_order_queue,
4812                                      head, skb, start, end);
4813                         head = skb;
4814                         if (!skb)
4815                                 break;
4816                         /* Start new segment */
4817                         start = TCP_SKB_CB(skb)->seq;
4818                         end = TCP_SKB_CB(skb)->end_seq;
4819                 } else {
4820                         if (before(TCP_SKB_CB(skb)->seq, start))
4821                                 start = TCP_SKB_CB(skb)->seq;
4822                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4823                                 end = TCP_SKB_CB(skb)->end_seq;
4824                 }
4825         }
4826 }
4827
4828 /*
4829  * Purge the out-of-order queue.
4830  * Return true if queue was pruned.
4831  */
4832 static int tcp_prune_ofo_queue(struct sock *sk)
4833 {
4834         struct tcp_sock *tp = tcp_sk(sk);
4835         int res = 0;
4836
4837         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4838                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4839                 __skb_queue_purge(&tp->out_of_order_queue);
4840
4841                 /* Reset SACK state.  A conforming SACK implementation will
4842                  * do the same at a timeout based retransmit.  When a connection
4843                  * is in a sad state like this, we care only about integrity
4844                  * of the connection not performance.
4845                  */
4846                 if (tp->rx_opt.sack_ok)
4847                         tcp_sack_reset(&tp->rx_opt);
4848                 sk_mem_reclaim(sk);
4849                 res = 1;
4850         }
4851         return res;
4852 }
4853
4854 /* Reduce allocated memory if we can, trying to get
4855  * the socket within its memory limits again.
4856  *
4857  * Return less than zero if we should start dropping frames
4858  * until the socket owning process reads some of the data
4859  * to stabilize the situation.
4860  */
4861 static int tcp_prune_queue(struct sock *sk)
4862 {
4863         struct tcp_sock *tp = tcp_sk(sk);
4864
4865         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4866
4867         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4868
4869         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4870                 tcp_clamp_window(sk);
4871         else if (sk_under_memory_pressure(sk))
4872                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4873
4874         tcp_collapse_ofo_queue(sk);
4875         if (!skb_queue_empty(&sk->sk_receive_queue))
4876                 tcp_collapse(sk, &sk->sk_receive_queue,
4877                              skb_peek(&sk->sk_receive_queue),
4878                              NULL,
4879                              tp->copied_seq, tp->rcv_nxt);
4880         sk_mem_reclaim(sk);
4881
4882         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4883                 return 0;
4884
4885         /* Collapsing did not help, destructive actions follow.
4886          * This must not ever occur. */
4887
4888         tcp_prune_ofo_queue(sk);
4889
4890         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4891                 return 0;
4892
4893         /* If we are really being abused, tell the caller to silently
4894          * drop receive data on the floor.  It will get retransmitted
4895          * and hopefully then we'll have sufficient space.
4896          */
4897         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4898
4899         /* Massive buffer overcommit. */
4900         tp->pred_flags = 0;
4901         return -1;
4902 }
4903
4904 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4905  * As additional protections, we do not touch cwnd in retransmission phases,
4906  * and if application hit its sndbuf limit recently.
4907  */
4908 void tcp_cwnd_application_limited(struct sock *sk)
4909 {
4910         struct tcp_sock *tp = tcp_sk(sk);
4911
4912         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4913             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4914                 /* Limited by application or receiver window. */
4915                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4916                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4917                 if (win_used < tp->snd_cwnd) {
4918                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4919                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4920                 }
4921                 tp->snd_cwnd_used = 0;
4922         }
4923         tp->snd_cwnd_stamp = tcp_time_stamp;
4924 }
4925
4926 static int tcp_should_expand_sndbuf(const struct sock *sk)
4927 {
4928         const struct tcp_sock *tp = tcp_sk(sk);
4929
4930         /* If the user specified a specific send buffer setting, do
4931          * not modify it.
4932          */
4933         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4934                 return 0;
4935
4936         /* If we are under global TCP memory pressure, do not expand.  */
4937         if (sk_under_memory_pressure(sk))
4938                 return 0;
4939
4940         /* If we are under soft global TCP memory pressure, do not expand.  */
4941         if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4942                 return 0;
4943
4944         /* If we filled the congestion window, do not expand.  */
4945         if (tp->packets_out >= tp->snd_cwnd)
4946                 return 0;
4947
4948         return 1;
4949 }
4950
4951 /* When incoming ACK allowed to free some skb from write_queue,
4952  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4953  * on the exit from tcp input handler.
4954  *
4955  * PROBLEM: sndbuf expansion does not work well with largesend.
4956  */
4957 static void tcp_new_space(struct sock *sk)
4958 {
4959         struct tcp_sock *tp = tcp_sk(sk);
4960
4961         if (tcp_should_expand_sndbuf(sk)) {
4962                 int sndmem = SKB_TRUESIZE(max_t(u32,
4963                                                 tp->rx_opt.mss_clamp,
4964                                                 tp->mss_cache) +
4965                                           MAX_TCP_HEADER);
4966                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4967                                      tp->reordering + 1);
4968                 sndmem *= 2 * demanded;
4969                 if (sndmem > sk->sk_sndbuf)
4970                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4971                 tp->snd_cwnd_stamp = tcp_time_stamp;
4972         }
4973
4974         sk->sk_write_space(sk);
4975 }
4976
4977 static void tcp_check_space(struct sock *sk)
4978 {
4979         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4980                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4981                 if (sk->sk_socket &&
4982                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4983                         tcp_new_space(sk);
4984         }
4985 }
4986
4987 static inline void tcp_data_snd_check(struct sock *sk)
4988 {
4989         tcp_push_pending_frames(sk);
4990         tcp_check_space(sk);
4991 }
4992
4993 /*
4994  * Check if sending an ack is needed.
4995  */
4996 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4997 {
4998         struct tcp_sock *tp = tcp_sk(sk);
4999
5000             /* More than one full frame received... */
5001         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5002              /* ... and right edge of window advances far enough.
5003               * (tcp_recvmsg() will send ACK otherwise). Or...
5004               */
5005              __tcp_select_window(sk) >= tp->rcv_wnd) ||
5006             /* We ACK each frame or... */
5007             tcp_in_quickack_mode(sk) ||
5008             /* We have out of order data. */
5009             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5010                 /* Then ack it now */
5011                 tcp_send_ack(sk);
5012         } else {
5013                 /* Else, send delayed ack. */
5014                 tcp_send_delayed_ack(sk);
5015         }
5016 }
5017
5018 static inline void tcp_ack_snd_check(struct sock *sk)
5019 {
5020         if (!inet_csk_ack_scheduled(sk)) {
5021                 /* We sent a data segment already. */
5022                 return;
5023         }
5024         __tcp_ack_snd_check(sk, 1);
5025 }
5026
5027 /*
5028  *      This routine is only called when we have urgent data
5029  *      signaled. Its the 'slow' part of tcp_urg. It could be
5030  *      moved inline now as tcp_urg is only called from one
5031  *      place. We handle URGent data wrong. We have to - as
5032  *      BSD still doesn't use the correction from RFC961.
5033  *      For 1003.1g we should support a new option TCP_STDURG to permit
5034  *      either form (or just set the sysctl tcp_stdurg).
5035  */
5036
5037 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5038 {
5039         struct tcp_sock *tp = tcp_sk(sk);
5040         u32 ptr = ntohs(th->urg_ptr);
5041
5042         if (ptr && !sysctl_tcp_stdurg)
5043                 ptr--;
5044         ptr += ntohl(th->seq);
5045
5046         /* Ignore urgent data that we've already seen and read. */
5047         if (after(tp->copied_seq, ptr))
5048                 return;
5049
5050         /* Do not replay urg ptr.
5051          *
5052          * NOTE: interesting situation not covered by specs.
5053          * Misbehaving sender may send urg ptr, pointing to segment,
5054          * which we already have in ofo queue. We are not able to fetch
5055          * such data and will stay in TCP_URG_NOTYET until will be eaten
5056          * by recvmsg(). Seems, we are not obliged to handle such wicked
5057          * situations. But it is worth to think about possibility of some
5058          * DoSes using some hypothetical application level deadlock.
5059          */
5060         if (before(ptr, tp->rcv_nxt))
5061                 return;
5062
5063         /* Do we already have a newer (or duplicate) urgent pointer? */
5064         if (tp->urg_data && !after(ptr, tp->urg_seq))
5065                 return;
5066
5067         /* Tell the world about our new urgent pointer. */
5068         sk_send_sigurg(sk);
5069
5070         /* We may be adding urgent data when the last byte read was
5071          * urgent. To do this requires some care. We cannot just ignore
5072          * tp->copied_seq since we would read the last urgent byte again
5073          * as data, nor can we alter copied_seq until this data arrives
5074          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5075          *
5076          * NOTE. Double Dutch. Rendering to plain English: author of comment
5077          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5078          * and expect that both A and B disappear from stream. This is _wrong_.
5079          * Though this happens in BSD with high probability, this is occasional.
5080          * Any application relying on this is buggy. Note also, that fix "works"
5081          * only in this artificial test. Insert some normal data between A and B and we will
5082          * decline of BSD again. Verdict: it is better to remove to trap
5083          * buggy users.
5084          */
5085         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5086             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5087                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5088                 tp->copied_seq++;
5089                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5090                         __skb_unlink(skb, &sk->sk_receive_queue);
5091                         __kfree_skb(skb);
5092                 }
5093         }
5094
5095         tp->urg_data = TCP_URG_NOTYET;
5096         tp->urg_seq = ptr;
5097
5098         /* Disable header prediction. */
5099         tp->pred_flags = 0;
5100 }
5101
5102 /* This is the 'fast' part of urgent handling. */
5103 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5104 {
5105         struct tcp_sock *tp = tcp_sk(sk);
5106
5107         /* Check if we get a new urgent pointer - normally not. */
5108         if (th->urg)
5109                 tcp_check_urg(sk, th);
5110
5111         /* Do we wait for any urgent data? - normally not... */
5112         if (tp->urg_data == TCP_URG_NOTYET) {
5113                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5114                           th->syn;
5115
5116                 /* Is the urgent pointer pointing into this packet? */
5117                 if (ptr < skb->len) {
5118                         u8 tmp;
5119                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5120                                 BUG();
5121                         tp->urg_data = TCP_URG_VALID | tmp;
5122                         if (!sock_flag(sk, SOCK_DEAD))
5123                                 sk->sk_data_ready(sk, 0);
5124                 }
5125         }
5126 }
5127
5128 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5129 {
5130         struct tcp_sock *tp = tcp_sk(sk);
5131         int chunk = skb->len - hlen;
5132         int err;
5133
5134         local_bh_enable();
5135         if (skb_csum_unnecessary(skb))
5136                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5137         else
5138                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5139                                                        tp->ucopy.iov);
5140
5141         if (!err) {
5142                 tp->ucopy.len -= chunk;
5143                 tp->copied_seq += chunk;
5144                 tcp_rcv_space_adjust(sk);
5145         }
5146
5147         local_bh_disable();
5148         return err;
5149 }
5150
5151 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5152                                             struct sk_buff *skb)
5153 {
5154         __sum16 result;
5155
5156         if (sock_owned_by_user(sk)) {
5157                 local_bh_enable();
5158                 result = __tcp_checksum_complete(skb);
5159                 local_bh_disable();
5160         } else {
5161                 result = __tcp_checksum_complete(skb);
5162         }
5163         return result;
5164 }
5165
5166 static inline int tcp_checksum_complete_user(struct sock *sk,
5167                                              struct sk_buff *skb)
5168 {
5169         return !skb_csum_unnecessary(skb) &&
5170                __tcp_checksum_complete_user(sk, skb);
5171 }
5172
5173 #ifdef CONFIG_NET_DMA
5174 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5175                                   int hlen)
5176 {
5177         struct tcp_sock *tp = tcp_sk(sk);
5178         int chunk = skb->len - hlen;
5179         int dma_cookie;
5180         int copied_early = 0;
5181
5182         if (tp->ucopy.wakeup)
5183                 return 0;
5184
5185         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5186                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5187
5188         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5189
5190                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5191                                                          skb, hlen,
5192                                                          tp->ucopy.iov, chunk,
5193                                                          tp->ucopy.pinned_list);
5194
5195                 if (dma_cookie < 0)
5196                         goto out;
5197
5198                 tp->ucopy.dma_cookie = dma_cookie;
5199                 copied_early = 1;
5200
5201                 tp->ucopy.len -= chunk;
5202                 tp->copied_seq += chunk;
5203                 tcp_rcv_space_adjust(sk);
5204
5205                 if ((tp->ucopy.len == 0) ||
5206                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5207                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5208                         tp->ucopy.wakeup = 1;
5209                         sk->sk_data_ready(sk, 0);
5210                 }
5211         } else if (chunk > 0) {
5212                 tp->ucopy.wakeup = 1;
5213                 sk->sk_data_ready(sk, 0);
5214         }
5215 out:
5216         return copied_early;
5217 }
5218 #endif /* CONFIG_NET_DMA */
5219
5220 /* Does PAWS and seqno based validation of an incoming segment, flags will
5221  * play significant role here.
5222  */
5223 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5224                               const struct tcphdr *th, int syn_inerr)
5225 {
5226         const u8 *hash_location;
5227         struct tcp_sock *tp = tcp_sk(sk);
5228
5229         /* RFC1323: H1. Apply PAWS check first. */
5230         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5231             tp->rx_opt.saw_tstamp &&
5232             tcp_paws_discard(sk, skb)) {
5233                 if (!th->rst) {
5234                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5235                         tcp_send_dupack(sk, skb);
5236                         goto discard;
5237                 }
5238                 /* Reset is accepted even if it did not pass PAWS. */
5239         }
5240
5241         /* Step 1: check sequence number */
5242         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5243                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5244                  * (RST) segments are validated by checking their SEQ-fields."
5245                  * And page 69: "If an incoming segment is not acceptable,
5246                  * an acknowledgment should be sent in reply (unless the RST
5247                  * bit is set, if so drop the segment and return)".
5248                  */
5249                 if (!th->rst)
5250                         tcp_send_dupack(sk, skb);
5251                 goto discard;
5252         }
5253
5254         /* Step 2: check RST bit */
5255         if (th->rst) {
5256                 tcp_reset(sk);
5257                 goto discard;
5258         }
5259
5260         /* ts_recent update must be made after we are sure that the packet
5261          * is in window.
5262          */
5263         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5264
5265         /* step 3: check security and precedence [ignored] */
5266
5267         /* step 4: Check for a SYN in window. */
5268         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5269                 if (syn_inerr)
5270                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5271                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5272                 tcp_reset(sk);
5273                 return -1;
5274         }
5275
5276         return 1;
5277
5278 discard:
5279         __kfree_skb(skb);
5280         return 0;
5281 }
5282
5283 /*
5284  *      TCP receive function for the ESTABLISHED state.
5285  *
5286  *      It is split into a fast path and a slow path. The fast path is
5287  *      disabled when:
5288  *      - A zero window was announced from us - zero window probing
5289  *        is only handled properly in the slow path.
5290  *      - Out of order segments arrived.
5291  *      - Urgent data is expected.
5292  *      - There is no buffer space left
5293  *      - Unexpected TCP flags/window values/header lengths are received
5294  *        (detected by checking the TCP header against pred_flags)
5295  *      - Data is sent in both directions. Fast path only supports pure senders
5296  *        or pure receivers (this means either the sequence number or the ack
5297  *        value must stay constant)
5298  *      - Unexpected TCP option.
5299  *
5300  *      When these conditions are not satisfied it drops into a standard
5301  *      receive procedure patterned after RFC793 to handle all cases.
5302  *      The first three cases are guaranteed by proper pred_flags setting,
5303  *      the rest is checked inline. Fast processing is turned on in
5304  *      tcp_data_queue when everything is OK.
5305  */
5306 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5307                         const struct tcphdr *th, unsigned int len)
5308 {
5309         struct tcp_sock *tp = tcp_sk(sk);
5310         int res;
5311
5312         /*
5313          *      Header prediction.
5314          *      The code loosely follows the one in the famous
5315          *      "30 instruction TCP receive" Van Jacobson mail.
5316          *
5317          *      Van's trick is to deposit buffers into socket queue
5318          *      on a device interrupt, to call tcp_recv function
5319          *      on the receive process context and checksum and copy
5320          *      the buffer to user space. smart...
5321          *
5322          *      Our current scheme is not silly either but we take the
5323          *      extra cost of the net_bh soft interrupt processing...
5324          *      We do checksum and copy also but from device to kernel.
5325          */
5326
5327         tp->rx_opt.saw_tstamp = 0;
5328
5329         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5330          *      if header_prediction is to be made
5331          *      'S' will always be tp->tcp_header_len >> 2
5332          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5333          *  turn it off (when there are holes in the receive
5334          *       space for instance)
5335          *      PSH flag is ignored.
5336          */
5337
5338         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5339             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5340             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5341                 int tcp_header_len = tp->tcp_header_len;
5342
5343                 /* Timestamp header prediction: tcp_header_len
5344                  * is automatically equal to th->doff*4 due to pred_flags
5345                  * match.
5346                  */
5347
5348                 /* Check timestamp */
5349                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5350                         /* No? Slow path! */
5351                         if (!tcp_parse_aligned_timestamp(tp, th))
5352                                 goto slow_path;
5353
5354                         /* If PAWS failed, check it more carefully in slow path */
5355                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5356                                 goto slow_path;
5357
5358                         /* DO NOT update ts_recent here, if checksum fails
5359                          * and timestamp was corrupted part, it will result
5360                          * in a hung connection since we will drop all
5361                          * future packets due to the PAWS test.
5362                          */
5363                 }
5364
5365                 if (len <= tcp_header_len) {
5366                         /* Bulk data transfer: sender */
5367                         if (len == tcp_header_len) {
5368                                 /* Predicted packet is in window by definition.
5369                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5370                                  * Hence, check seq<=rcv_wup reduces to:
5371                                  */
5372                                 if (tcp_header_len ==
5373                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5374                                     tp->rcv_nxt == tp->rcv_wup)
5375                                         tcp_store_ts_recent(tp);
5376
5377                                 /* We know that such packets are checksummed
5378                                  * on entry.
5379                                  */
5380                                 tcp_ack(sk, skb, 0);
5381                                 __kfree_skb(skb);
5382                                 tcp_data_snd_check(sk);
5383                                 return 0;
5384                         } else { /* Header too small */
5385                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5386                                 goto discard;
5387                         }
5388                 } else {
5389                         int eaten = 0;
5390                         int copied_early = 0;
5391
5392                         if (tp->copied_seq == tp->rcv_nxt &&
5393                             len - tcp_header_len <= tp->ucopy.len) {
5394 #ifdef CONFIG_NET_DMA
5395                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5396                                         copied_early = 1;
5397                                         eaten = 1;
5398                                 }
5399 #endif
5400                                 if (tp->ucopy.task == current &&
5401                                     sock_owned_by_user(sk) && !copied_early) {
5402                                         __set_current_state(TASK_RUNNING);
5403
5404                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5405                                                 eaten = 1;
5406                                 }
5407                                 if (eaten) {
5408                                         /* Predicted packet is in window by definition.
5409                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5410                                          * Hence, check seq<=rcv_wup reduces to:
5411                                          */
5412                                         if (tcp_header_len ==
5413                                             (sizeof(struct tcphdr) +
5414                                              TCPOLEN_TSTAMP_ALIGNED) &&
5415                                             tp->rcv_nxt == tp->rcv_wup)
5416                                                 tcp_store_ts_recent(tp);
5417
5418                                         tcp_rcv_rtt_measure_ts(sk, skb);
5419
5420                                         __skb_pull(skb, tcp_header_len);
5421                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5422                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5423                                 }
5424                                 if (copied_early)
5425                                         tcp_cleanup_rbuf(sk, skb->len);
5426                         }
5427                         if (!eaten) {
5428                                 if (tcp_checksum_complete_user(sk, skb))
5429                                         goto csum_error;
5430
5431                                 /* Predicted packet is in window by definition.
5432                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5433                                  * Hence, check seq<=rcv_wup reduces to:
5434                                  */
5435                                 if (tcp_header_len ==
5436                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5437                                     tp->rcv_nxt == tp->rcv_wup)
5438                                         tcp_store_ts_recent(tp);
5439
5440                                 tcp_rcv_rtt_measure_ts(sk, skb);
5441
5442                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5443                                         goto step5;
5444
5445                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5446
5447                                 /* Bulk data transfer: receiver */
5448                                 __skb_pull(skb, tcp_header_len);
5449                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5450                                 skb_set_owner_r(skb, sk);
5451                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5452                         }
5453
5454                         tcp_event_data_recv(sk, skb);
5455
5456                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5457                                 /* Well, only one small jumplet in fast path... */
5458                                 tcp_ack(sk, skb, FLAG_DATA);
5459                                 tcp_data_snd_check(sk);
5460                                 if (!inet_csk_ack_scheduled(sk))
5461                                         goto no_ack;
5462                         }
5463
5464                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5465                                 __tcp_ack_snd_check(sk, 0);
5466 no_ack:
5467 #ifdef CONFIG_NET_DMA
5468                         if (copied_early)
5469                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5470                         else
5471 #endif
5472                         if (eaten)
5473                                 __kfree_skb(skb);
5474                         else
5475                                 sk->sk_data_ready(sk, 0);
5476                         return 0;
5477                 }
5478         }
5479
5480 slow_path:
5481         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5482                 goto csum_error;
5483
5484         /*
5485          *      Standard slow path.
5486          */
5487
5488         res = tcp_validate_incoming(sk, skb, th, 1);
5489         if (res <= 0)
5490                 return -res;
5491
5492 step5:
5493         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5494                 goto discard;
5495
5496         tcp_rcv_rtt_measure_ts(sk, skb);
5497
5498         /* Process urgent data. */
5499         tcp_urg(sk, skb, th);
5500
5501         /* step 7: process the segment text */
5502         tcp_data_queue(sk, skb);
5503
5504         tcp_data_snd_check(sk);
5505         tcp_ack_snd_check(sk);
5506         return 0;
5507
5508 csum_error:
5509         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5510
5511 discard:
5512         __kfree_skb(skb);
5513         return 0;
5514 }
5515 EXPORT_SYMBOL(tcp_rcv_established);
5516
5517 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5518                                          const struct tcphdr *th, unsigned int len)
5519 {
5520         const u8 *hash_location;
5521         struct inet_connection_sock *icsk = inet_csk(sk);
5522         struct tcp_sock *tp = tcp_sk(sk);
5523         struct tcp_cookie_values *cvp = tp->cookie_values;
5524         int saved_clamp = tp->rx_opt.mss_clamp;
5525
5526         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5527
5528         if (th->ack) {
5529                 /* rfc793:
5530                  * "If the state is SYN-SENT then
5531                  *    first check the ACK bit
5532                  *      If the ACK bit is set
5533                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5534                  *        a reset (unless the RST bit is set, if so drop
5535                  *        the segment and return)"
5536                  *
5537                  *  We do not send data with SYN, so that RFC-correct
5538                  *  test reduces to:
5539                  */
5540                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5541                         goto reset_and_undo;
5542
5543                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5544                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5545                              tcp_time_stamp)) {
5546                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5547                         goto reset_and_undo;
5548                 }
5549
5550                 /* Now ACK is acceptable.
5551                  *
5552                  * "If the RST bit is set
5553                  *    If the ACK was acceptable then signal the user "error:
5554                  *    connection reset", drop the segment, enter CLOSED state,
5555                  *    delete TCB, and return."
5556                  */
5557
5558                 if (th->rst) {
5559                         tcp_reset(sk);
5560                         goto discard;
5561                 }
5562
5563                 /* rfc793:
5564                  *   "fifth, if neither of the SYN or RST bits is set then
5565                  *    drop the segment and return."
5566                  *
5567                  *    See note below!
5568                  *                                        --ANK(990513)
5569                  */
5570                 if (!th->syn)
5571                         goto discard_and_undo;
5572
5573                 /* rfc793:
5574                  *   "If the SYN bit is on ...
5575                  *    are acceptable then ...
5576                  *    (our SYN has been ACKed), change the connection
5577                  *    state to ESTABLISHED..."
5578                  */
5579
5580                 TCP_ECN_rcv_synack(tp, th);
5581
5582                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5583                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5584
5585                 /* Ok.. it's good. Set up sequence numbers and
5586                  * move to established.
5587                  */
5588                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5589                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5590
5591                 /* RFC1323: The window in SYN & SYN/ACK segments is
5592                  * never scaled.
5593                  */
5594                 tp->snd_wnd = ntohs(th->window);
5595                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5596
5597                 if (!tp->rx_opt.wscale_ok) {
5598                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5599                         tp->window_clamp = min(tp->window_clamp, 65535U);
5600                 }
5601
5602                 if (tp->rx_opt.saw_tstamp) {
5603                         tp->rx_opt.tstamp_ok       = 1;
5604                         tp->tcp_header_len =
5605                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5606                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5607                         tcp_store_ts_recent(tp);
5608                 } else {
5609                         tp->tcp_header_len = sizeof(struct tcphdr);
5610                 }
5611
5612                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5613                         tcp_enable_fack(tp);
5614
5615                 tcp_mtup_init(sk);
5616                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5617                 tcp_initialize_rcv_mss(sk);
5618
5619                 /* Remember, tcp_poll() does not lock socket!
5620                  * Change state from SYN-SENT only after copied_seq
5621                  * is initialized. */
5622                 tp->copied_seq = tp->rcv_nxt;
5623
5624                 if (cvp != NULL &&
5625                     cvp->cookie_pair_size > 0 &&
5626                     tp->rx_opt.cookie_plus > 0) {
5627                         int cookie_size = tp->rx_opt.cookie_plus
5628                                         - TCPOLEN_COOKIE_BASE;
5629                         int cookie_pair_size = cookie_size
5630                                              + cvp->cookie_desired;
5631
5632                         /* A cookie extension option was sent and returned.
5633                          * Note that each incoming SYNACK replaces the
5634                          * Responder cookie.  The initial exchange is most
5635                          * fragile, as protection against spoofing relies
5636                          * entirely upon the sequence and timestamp (above).
5637                          * This replacement strategy allows the correct pair to
5638                          * pass through, while any others will be filtered via
5639                          * Responder verification later.
5640                          */
5641                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5642                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5643                                        hash_location, cookie_size);
5644                                 cvp->cookie_pair_size = cookie_pair_size;
5645                         }
5646                 }
5647
5648                 smp_mb();
5649                 tcp_set_state(sk, TCP_ESTABLISHED);
5650
5651                 security_inet_conn_established(sk, skb);
5652
5653                 /* Make sure socket is routed, for correct metrics.  */
5654                 icsk->icsk_af_ops->rebuild_header(sk);
5655
5656                 tcp_init_metrics(sk);
5657
5658                 tcp_init_congestion_control(sk);
5659
5660                 /* Prevent spurious tcp_cwnd_restart() on first data
5661                  * packet.
5662                  */
5663                 tp->lsndtime = tcp_time_stamp;
5664
5665                 tcp_init_buffer_space(sk);
5666
5667                 if (sock_flag(sk, SOCK_KEEPOPEN))
5668                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5669
5670                 if (!tp->rx_opt.snd_wscale)
5671                         __tcp_fast_path_on(tp, tp->snd_wnd);
5672                 else
5673                         tp->pred_flags = 0;
5674
5675                 if (!sock_flag(sk, SOCK_DEAD)) {
5676                         sk->sk_state_change(sk);
5677                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5678                 }
5679
5680                 if (sk->sk_write_pending ||
5681                     icsk->icsk_accept_queue.rskq_defer_accept ||
5682                     icsk->icsk_ack.pingpong) {
5683                         /* Save one ACK. Data will be ready after
5684                          * several ticks, if write_pending is set.
5685                          *
5686                          * It may be deleted, but with this feature tcpdumps
5687                          * look so _wonderfully_ clever, that I was not able
5688                          * to stand against the temptation 8)     --ANK
5689                          */
5690                         inet_csk_schedule_ack(sk);
5691                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5692                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5693                         tcp_incr_quickack(sk);
5694                         tcp_enter_quickack_mode(sk);
5695                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5696                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5697
5698 discard:
5699                         __kfree_skb(skb);
5700                         return 0;
5701                 } else {
5702                         tcp_send_ack(sk);
5703                 }
5704                 return -1;
5705         }
5706
5707         /* No ACK in the segment */
5708
5709         if (th->rst) {
5710                 /* rfc793:
5711                  * "If the RST bit is set
5712                  *
5713                  *      Otherwise (no ACK) drop the segment and return."
5714                  */
5715
5716                 goto discard_and_undo;
5717         }
5718
5719         /* PAWS check. */
5720         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5721             tcp_paws_reject(&tp->rx_opt, 0))
5722                 goto discard_and_undo;
5723
5724         if (th->syn) {
5725                 /* We see SYN without ACK. It is attempt of
5726                  * simultaneous connect with crossed SYNs.
5727                  * Particularly, it can be connect to self.
5728                  */
5729                 tcp_set_state(sk, TCP_SYN_RECV);
5730
5731                 if (tp->rx_opt.saw_tstamp) {
5732                         tp->rx_opt.tstamp_ok = 1;
5733                         tcp_store_ts_recent(tp);
5734                         tp->tcp_header_len =
5735                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5736                 } else {
5737                         tp->tcp_header_len = sizeof(struct tcphdr);
5738                 }
5739
5740                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5741                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5742
5743                 /* RFC1323: The window in SYN & SYN/ACK segments is
5744                  * never scaled.
5745                  */
5746                 tp->snd_wnd    = ntohs(th->window);
5747                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5748                 tp->max_window = tp->snd_wnd;
5749
5750                 TCP_ECN_rcv_syn(tp, th);
5751
5752                 tcp_mtup_init(sk);
5753                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5754                 tcp_initialize_rcv_mss(sk);
5755
5756                 tcp_send_synack(sk);
5757 #if 0
5758                 /* Note, we could accept data and URG from this segment.
5759                  * There are no obstacles to make this.
5760                  *
5761                  * However, if we ignore data in ACKless segments sometimes,
5762                  * we have no reasons to accept it sometimes.
5763                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5764                  * is not flawless. So, discard packet for sanity.
5765                  * Uncomment this return to process the data.
5766                  */
5767                 return -1;
5768 #else
5769                 goto discard;
5770 #endif
5771         }
5772         /* "fifth, if neither of the SYN or RST bits is set then
5773          * drop the segment and return."
5774          */
5775
5776 discard_and_undo:
5777         tcp_clear_options(&tp->rx_opt);
5778         tp->rx_opt.mss_clamp = saved_clamp;
5779         goto discard;
5780
5781 reset_and_undo:
5782         tcp_clear_options(&tp->rx_opt);
5783         tp->rx_opt.mss_clamp = saved_clamp;
5784         return 1;
5785 }
5786
5787 /*
5788  *      This function implements the receiving procedure of RFC 793 for
5789  *      all states except ESTABLISHED and TIME_WAIT.
5790  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5791  *      address independent.
5792  */
5793
5794 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5795                           const struct tcphdr *th, unsigned int len)
5796 {
5797         struct tcp_sock *tp = tcp_sk(sk);
5798         struct inet_connection_sock *icsk = inet_csk(sk);
5799         int queued = 0;
5800         int res;
5801
5802         tp->rx_opt.saw_tstamp = 0;
5803
5804         switch (sk->sk_state) {
5805         case TCP_CLOSE:
5806                 goto discard;
5807
5808         case TCP_LISTEN:
5809                 if (th->ack)
5810                         return 1;
5811
5812                 if (th->rst)
5813                         goto discard;
5814
5815                 if (th->syn) {
5816                         if (th->fin)
5817                                 goto discard;
5818                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5819                                 return 1;
5820
5821                         /* Now we have several options: In theory there is
5822                          * nothing else in the frame. KA9Q has an option to
5823                          * send data with the syn, BSD accepts data with the
5824                          * syn up to the [to be] advertised window and
5825                          * Solaris 2.1 gives you a protocol error. For now
5826                          * we just ignore it, that fits the spec precisely
5827                          * and avoids incompatibilities. It would be nice in
5828                          * future to drop through and process the data.
5829                          *
5830                          * Now that TTCP is starting to be used we ought to
5831                          * queue this data.
5832                          * But, this leaves one open to an easy denial of
5833                          * service attack, and SYN cookies can't defend
5834                          * against this problem. So, we drop the data
5835                          * in the interest of security over speed unless
5836                          * it's still in use.
5837                          */
5838                         kfree_skb(skb);
5839                         return 0;
5840                 }
5841                 goto discard;
5842
5843         case TCP_SYN_SENT:
5844                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5845                 if (queued >= 0)
5846                         return queued;
5847
5848                 /* Do step6 onward by hand. */
5849                 tcp_urg(sk, skb, th);
5850                 __kfree_skb(skb);
5851                 tcp_data_snd_check(sk);
5852                 return 0;
5853         }
5854
5855         res = tcp_validate_incoming(sk, skb, th, 0);
5856         if (res <= 0)
5857                 return -res;
5858
5859         /* step 5: check the ACK field */
5860         if (th->ack) {
5861                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5862
5863                 switch (sk->sk_state) {
5864                 case TCP_SYN_RECV:
5865                         if (acceptable) {
5866                                 tp->copied_seq = tp->rcv_nxt;
5867                                 smp_mb();
5868                                 tcp_set_state(sk, TCP_ESTABLISHED);
5869                                 sk->sk_state_change(sk);
5870
5871                                 /* Note, that this wakeup is only for marginal
5872                                  * crossed SYN case. Passively open sockets
5873                                  * are not waked up, because sk->sk_sleep ==
5874                                  * NULL and sk->sk_socket == NULL.
5875                                  */
5876                                 if (sk->sk_socket)
5877                                         sk_wake_async(sk,
5878                                                       SOCK_WAKE_IO, POLL_OUT);
5879
5880                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5881                                 tp->snd_wnd = ntohs(th->window) <<
5882                                               tp->rx_opt.snd_wscale;
5883                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5884
5885                                 if (tp->rx_opt.tstamp_ok)
5886                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5887
5888                                 /* Make sure socket is routed, for
5889                                  * correct metrics.
5890                                  */
5891                                 icsk->icsk_af_ops->rebuild_header(sk);
5892
5893                                 tcp_init_metrics(sk);
5894
5895                                 tcp_init_congestion_control(sk);
5896
5897                                 /* Prevent spurious tcp_cwnd_restart() on
5898                                  * first data packet.
5899                                  */
5900                                 tp->lsndtime = tcp_time_stamp;
5901
5902                                 tcp_mtup_init(sk);
5903                                 tcp_initialize_rcv_mss(sk);
5904                                 tcp_init_buffer_space(sk);
5905                                 tcp_fast_path_on(tp);
5906                         } else {
5907                                 return 1;
5908                         }
5909                         break;
5910
5911                 case TCP_FIN_WAIT1:
5912                         if (tp->snd_una == tp->write_seq) {
5913                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5914                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5915                                 dst_confirm(__sk_dst_get(sk));
5916
5917                                 if (!sock_flag(sk, SOCK_DEAD))
5918                                         /* Wake up lingering close() */
5919                                         sk->sk_state_change(sk);
5920                                 else {
5921                                         int tmo;
5922
5923                                         if (tp->linger2 < 0 ||
5924                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5925                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5926                                                 tcp_done(sk);
5927                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5928                                                 return 1;
5929                                         }
5930
5931                                         tmo = tcp_fin_time(sk);
5932                                         if (tmo > TCP_TIMEWAIT_LEN) {
5933                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5934                                         } else if (th->fin || sock_owned_by_user(sk)) {
5935                                                 /* Bad case. We could lose such FIN otherwise.
5936                                                  * It is not a big problem, but it looks confusing
5937                                                  * and not so rare event. We still can lose it now,
5938                                                  * if it spins in bh_lock_sock(), but it is really
5939                                                  * marginal case.
5940                                                  */
5941                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5942                                         } else {
5943                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5944                                                 goto discard;
5945                                         }
5946                                 }
5947                         }
5948                         break;
5949
5950                 case TCP_CLOSING:
5951                         if (tp->snd_una == tp->write_seq) {
5952                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5953                                 goto discard;
5954                         }
5955                         break;
5956
5957                 case TCP_LAST_ACK:
5958                         if (tp->snd_una == tp->write_seq) {
5959                                 tcp_update_metrics(sk);
5960                                 tcp_done(sk);
5961                                 goto discard;
5962                         }
5963                         break;
5964                 }
5965         } else
5966                 goto discard;
5967
5968         /* step 6: check the URG bit */
5969         tcp_urg(sk, skb, th);
5970
5971         /* step 7: process the segment text */
5972         switch (sk->sk_state) {
5973         case TCP_CLOSE_WAIT:
5974         case TCP_CLOSING:
5975         case TCP_LAST_ACK:
5976                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5977                         break;
5978         case TCP_FIN_WAIT1:
5979         case TCP_FIN_WAIT2:
5980                 /* RFC 793 says to queue data in these states,
5981                  * RFC 1122 says we MUST send a reset.
5982                  * BSD 4.4 also does reset.
5983                  */
5984                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5985                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5986                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5987                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5988                                 tcp_reset(sk);
5989                                 return 1;
5990                         }
5991                 }
5992                 /* Fall through */
5993         case TCP_ESTABLISHED:
5994                 tcp_data_queue(sk, skb);
5995                 queued = 1;
5996                 break;
5997         }
5998
5999         /* tcp_data could move socket to TIME-WAIT */
6000         if (sk->sk_state != TCP_CLOSE) {
6001                 tcp_data_snd_check(sk);
6002                 tcp_ack_snd_check(sk);
6003         }
6004
6005         if (!queued) {
6006 discard:
6007                 __kfree_skb(skb);
6008         }
6009         return 0;
6010 }
6011 EXPORT_SYMBOL(tcp_rcv_state_process);