2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
96 int sysctl_tcp_thin_dupack __read_mostly;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 /* Adapt the MSS value used to make delayed ack decision to the
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 icsk->icsk_ack.last_seg_size = 0;
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
139 len = skb_shinfo(skb)->gso_size ? : skb->len;
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
146 * "len" is invariant segment length, including TCP header.
148 len += skb->data - skb_transport_header(skb);
149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
164 icsk->icsk_ack.rcv_mss = len;
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
174 static void tcp_incr_quickack(struct sock *sk)
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 static void tcp_enter_quickack_mode(struct sock *sk)
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 if (!(tp->ecn_flags & TCP_ECN_OK))
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
235 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
238 tp->ecn_flags |= TCP_ECN_SEEN;
242 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
244 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
245 tp->ecn_flags &= ~TCP_ECN_OK;
248 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
250 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
251 tp->ecn_flags &= ~TCP_ECN_OK;
254 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
256 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 /* Buffer size and advertised window tuning.
263 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
266 static void tcp_fixup_sndbuf(struct sock *sk)
268 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
270 sndmem *= TCP_INIT_CWND;
271 if (sk->sk_sndbuf < sndmem)
272 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
275 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277 * All tcp_full_space() is split to two parts: "network" buffer, allocated
278 * forward and advertised in receiver window (tp->rcv_wnd) and
279 * "application buffer", required to isolate scheduling/application
280 * latencies from network.
281 * window_clamp is maximal advertised window. It can be less than
282 * tcp_full_space(), in this case tcp_full_space() - window_clamp
283 * is reserved for "application" buffer. The less window_clamp is
284 * the smoother our behaviour from viewpoint of network, but the lower
285 * throughput and the higher sensitivity of the connection to losses. 8)
287 * rcv_ssthresh is more strict window_clamp used at "slow start"
288 * phase to predict further behaviour of this connection.
289 * It is used for two goals:
290 * - to enforce header prediction at sender, even when application
291 * requires some significant "application buffer". It is check #1.
292 * - to prevent pruning of receive queue because of misprediction
293 * of receiver window. Check #2.
295 * The scheme does not work when sender sends good segments opening
296 * window and then starts to feed us spaghetti. But it should work
297 * in common situations. Otherwise, we have to rely on queue collapsing.
300 /* Slow part of check#2. */
301 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
303 struct tcp_sock *tp = tcp_sk(sk);
305 int truesize = tcp_win_from_space(skb->truesize) >> 1;
306 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
308 while (tp->rcv_ssthresh <= window) {
309 if (truesize <= skb->len)
310 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
318 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
320 struct tcp_sock *tp = tcp_sk(sk);
323 if (tp->rcv_ssthresh < tp->window_clamp &&
324 (int)tp->rcv_ssthresh < tcp_space(sk) &&
325 !tcp_memory_pressure) {
328 /* Check #2. Increase window, if skb with such overhead
329 * will fit to rcvbuf in future.
331 if (tcp_win_from_space(skb->truesize) <= skb->len)
332 incr = 2 * tp->advmss;
334 incr = __tcp_grow_window(sk, skb);
337 incr = max_t(int, incr, 2 * skb->len);
338 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
340 inet_csk(sk)->icsk_ack.quick |= 1;
345 /* 3. Tuning rcvbuf, when connection enters established state. */
347 static void tcp_fixup_rcvbuf(struct sock *sk)
349 u32 mss = tcp_sk(sk)->advmss;
350 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
353 /* Limit to 10 segments if mss <= 1460,
354 * or 14600/mss segments, with a minimum of two segments.
357 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
359 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
360 while (tcp_win_from_space(rcvmem) < mss)
365 if (sk->sk_rcvbuf < rcvmem)
366 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
369 /* 4. Try to fixup all. It is made immediately after connection enters
372 static void tcp_init_buffer_space(struct sock *sk)
374 struct tcp_sock *tp = tcp_sk(sk);
377 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
378 tcp_fixup_rcvbuf(sk);
379 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
380 tcp_fixup_sndbuf(sk);
382 tp->rcvq_space.space = tp->rcv_wnd;
384 maxwin = tcp_full_space(sk);
386 if (tp->window_clamp >= maxwin) {
387 tp->window_clamp = maxwin;
389 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
390 tp->window_clamp = max(maxwin -
391 (maxwin >> sysctl_tcp_app_win),
395 /* Force reservation of one segment. */
396 if (sysctl_tcp_app_win &&
397 tp->window_clamp > 2 * tp->advmss &&
398 tp->window_clamp + tp->advmss > maxwin)
399 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
401 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
402 tp->snd_cwnd_stamp = tcp_time_stamp;
405 /* 5. Recalculate window clamp after socket hit its memory bounds. */
406 static void tcp_clamp_window(struct sock *sk)
408 struct tcp_sock *tp = tcp_sk(sk);
409 struct inet_connection_sock *icsk = inet_csk(sk);
411 icsk->icsk_ack.quick = 0;
413 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
414 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
415 !tcp_memory_pressure &&
416 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
417 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
420 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
421 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
424 /* Initialize RCV_MSS value.
425 * RCV_MSS is an our guess about MSS used by the peer.
426 * We haven't any direct information about the MSS.
427 * It's better to underestimate the RCV_MSS rather than overestimate.
428 * Overestimations make us ACKing less frequently than needed.
429 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
431 void tcp_initialize_rcv_mss(struct sock *sk)
433 const struct tcp_sock *tp = tcp_sk(sk);
434 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
436 hint = min(hint, tp->rcv_wnd / 2);
437 hint = min(hint, TCP_MSS_DEFAULT);
438 hint = max(hint, TCP_MIN_MSS);
440 inet_csk(sk)->icsk_ack.rcv_mss = hint;
442 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
444 /* Receiver "autotuning" code.
446 * The algorithm for RTT estimation w/o timestamps is based on
447 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
448 * <http://public.lanl.gov/radiant/pubs.html#DRS>
450 * More detail on this code can be found at
451 * <http://staff.psc.edu/jheffner/>,
452 * though this reference is out of date. A new paper
455 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
457 u32 new_sample = tp->rcv_rtt_est.rtt;
463 if (new_sample != 0) {
464 /* If we sample in larger samples in the non-timestamp
465 * case, we could grossly overestimate the RTT especially
466 * with chatty applications or bulk transfer apps which
467 * are stalled on filesystem I/O.
469 * Also, since we are only going for a minimum in the
470 * non-timestamp case, we do not smooth things out
471 * else with timestamps disabled convergence takes too
475 m -= (new_sample >> 3);
483 /* No previous measure. */
487 if (tp->rcv_rtt_est.rtt != new_sample)
488 tp->rcv_rtt_est.rtt = new_sample;
491 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
493 if (tp->rcv_rtt_est.time == 0)
495 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
497 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
500 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
501 tp->rcv_rtt_est.time = tcp_time_stamp;
504 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
505 const struct sk_buff *skb)
507 struct tcp_sock *tp = tcp_sk(sk);
508 if (tp->rx_opt.rcv_tsecr &&
509 (TCP_SKB_CB(skb)->end_seq -
510 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
511 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
515 * This function should be called every time data is copied to user space.
516 * It calculates the appropriate TCP receive buffer space.
518 void tcp_rcv_space_adjust(struct sock *sk)
520 struct tcp_sock *tp = tcp_sk(sk);
524 if (tp->rcvq_space.time == 0)
527 time = tcp_time_stamp - tp->rcvq_space.time;
528 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
531 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
533 space = max(tp->rcvq_space.space, space);
535 if (tp->rcvq_space.space != space) {
538 tp->rcvq_space.space = space;
540 if (sysctl_tcp_moderate_rcvbuf &&
541 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
542 int new_clamp = space;
544 /* Receive space grows, normalize in order to
545 * take into account packet headers and sk_buff
546 * structure overhead.
551 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
552 while (tcp_win_from_space(rcvmem) < tp->advmss)
555 space = min(space, sysctl_tcp_rmem[2]);
556 if (space > sk->sk_rcvbuf) {
557 sk->sk_rcvbuf = space;
559 /* Make the window clamp follow along. */
560 tp->window_clamp = new_clamp;
566 tp->rcvq_space.seq = tp->copied_seq;
567 tp->rcvq_space.time = tcp_time_stamp;
570 /* There is something which you must keep in mind when you analyze the
571 * behavior of the tp->ato delayed ack timeout interval. When a
572 * connection starts up, we want to ack as quickly as possible. The
573 * problem is that "good" TCP's do slow start at the beginning of data
574 * transmission. The means that until we send the first few ACK's the
575 * sender will sit on his end and only queue most of his data, because
576 * he can only send snd_cwnd unacked packets at any given time. For
577 * each ACK we send, he increments snd_cwnd and transmits more of his
580 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
582 struct tcp_sock *tp = tcp_sk(sk);
583 struct inet_connection_sock *icsk = inet_csk(sk);
586 inet_csk_schedule_ack(sk);
588 tcp_measure_rcv_mss(sk, skb);
590 tcp_rcv_rtt_measure(tp);
592 now = tcp_time_stamp;
594 if (!icsk->icsk_ack.ato) {
595 /* The _first_ data packet received, initialize
596 * delayed ACK engine.
598 tcp_incr_quickack(sk);
599 icsk->icsk_ack.ato = TCP_ATO_MIN;
601 int m = now - icsk->icsk_ack.lrcvtime;
603 if (m <= TCP_ATO_MIN / 2) {
604 /* The fastest case is the first. */
605 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
606 } else if (m < icsk->icsk_ack.ato) {
607 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
608 if (icsk->icsk_ack.ato > icsk->icsk_rto)
609 icsk->icsk_ack.ato = icsk->icsk_rto;
610 } else if (m > icsk->icsk_rto) {
611 /* Too long gap. Apparently sender failed to
612 * restart window, so that we send ACKs quickly.
614 tcp_incr_quickack(sk);
618 icsk->icsk_ack.lrcvtime = now;
620 TCP_ECN_check_ce(tp, skb);
623 tcp_grow_window(sk, skb);
626 /* Called to compute a smoothed rtt estimate. The data fed to this
627 * routine either comes from timestamps, or from segments that were
628 * known _not_ to have been retransmitted [see Karn/Partridge
629 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
630 * piece by Van Jacobson.
631 * NOTE: the next three routines used to be one big routine.
632 * To save cycles in the RFC 1323 implementation it was better to break
633 * it up into three procedures. -- erics
635 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
637 struct tcp_sock *tp = tcp_sk(sk);
638 long m = mrtt; /* RTT */
640 /* The following amusing code comes from Jacobson's
641 * article in SIGCOMM '88. Note that rtt and mdev
642 * are scaled versions of rtt and mean deviation.
643 * This is designed to be as fast as possible
644 * m stands for "measurement".
646 * On a 1990 paper the rto value is changed to:
647 * RTO = rtt + 4 * mdev
649 * Funny. This algorithm seems to be very broken.
650 * These formulae increase RTO, when it should be decreased, increase
651 * too slowly, when it should be increased quickly, decrease too quickly
652 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
653 * does not matter how to _calculate_ it. Seems, it was trap
654 * that VJ failed to avoid. 8)
659 m -= (tp->srtt >> 3); /* m is now error in rtt est */
660 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
662 m = -m; /* m is now abs(error) */
663 m -= (tp->mdev >> 2); /* similar update on mdev */
664 /* This is similar to one of Eifel findings.
665 * Eifel blocks mdev updates when rtt decreases.
666 * This solution is a bit different: we use finer gain
667 * for mdev in this case (alpha*beta).
668 * Like Eifel it also prevents growth of rto,
669 * but also it limits too fast rto decreases,
670 * happening in pure Eifel.
675 m -= (tp->mdev >> 2); /* similar update on mdev */
677 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
678 if (tp->mdev > tp->mdev_max) {
679 tp->mdev_max = tp->mdev;
680 if (tp->mdev_max > tp->rttvar)
681 tp->rttvar = tp->mdev_max;
683 if (after(tp->snd_una, tp->rtt_seq)) {
684 if (tp->mdev_max < tp->rttvar)
685 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
686 tp->rtt_seq = tp->snd_nxt;
687 tp->mdev_max = tcp_rto_min(sk);
690 /* no previous measure. */
691 tp->srtt = m << 3; /* take the measured time to be rtt */
692 tp->mdev = m << 1; /* make sure rto = 3*rtt */
693 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
694 tp->rtt_seq = tp->snd_nxt;
698 /* Calculate rto without backoff. This is the second half of Van Jacobson's
699 * routine referred to above.
701 static inline void tcp_set_rto(struct sock *sk)
703 const struct tcp_sock *tp = tcp_sk(sk);
704 /* Old crap is replaced with new one. 8)
707 * 1. If rtt variance happened to be less 50msec, it is hallucination.
708 * It cannot be less due to utterly erratic ACK generation made
709 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
710 * to do with delayed acks, because at cwnd>2 true delack timeout
711 * is invisible. Actually, Linux-2.4 also generates erratic
712 * ACKs in some circumstances.
714 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
716 /* 2. Fixups made earlier cannot be right.
717 * If we do not estimate RTO correctly without them,
718 * all the algo is pure shit and should be replaced
719 * with correct one. It is exactly, which we pretend to do.
722 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
723 * guarantees that rto is higher.
728 /* Save metrics learned by this TCP session.
729 This function is called only, when TCP finishes successfully
730 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
732 void tcp_update_metrics(struct sock *sk)
734 struct tcp_sock *tp = tcp_sk(sk);
735 struct dst_entry *dst = __sk_dst_get(sk);
737 if (sysctl_tcp_nometrics_save)
742 if (dst && (dst->flags & DST_HOST)) {
743 const struct inet_connection_sock *icsk = inet_csk(sk);
747 if (icsk->icsk_backoff || !tp->srtt) {
748 /* This session failed to estimate rtt. Why?
749 * Probably, no packets returned in time.
752 if (!(dst_metric_locked(dst, RTAX_RTT)))
753 dst_metric_set(dst, RTAX_RTT, 0);
757 rtt = dst_metric_rtt(dst, RTAX_RTT);
760 /* If newly calculated rtt larger than stored one,
761 * store new one. Otherwise, use EWMA. Remember,
762 * rtt overestimation is always better than underestimation.
764 if (!(dst_metric_locked(dst, RTAX_RTT))) {
766 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
768 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
771 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
776 /* Scale deviation to rttvar fixed point */
781 var = dst_metric_rtt(dst, RTAX_RTTVAR);
785 var -= (var - m) >> 2;
787 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
790 if (tcp_in_initial_slowstart(tp)) {
791 /* Slow start still did not finish. */
792 if (dst_metric(dst, RTAX_SSTHRESH) &&
793 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
794 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
795 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
796 if (!dst_metric_locked(dst, RTAX_CWND) &&
797 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
798 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
799 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
800 icsk->icsk_ca_state == TCP_CA_Open) {
801 /* Cong. avoidance phase, cwnd is reliable. */
802 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
803 dst_metric_set(dst, RTAX_SSTHRESH,
804 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
805 if (!dst_metric_locked(dst, RTAX_CWND))
806 dst_metric_set(dst, RTAX_CWND,
807 (dst_metric(dst, RTAX_CWND) +
810 /* Else slow start did not finish, cwnd is non-sense,
811 ssthresh may be also invalid.
813 if (!dst_metric_locked(dst, RTAX_CWND))
814 dst_metric_set(dst, RTAX_CWND,
815 (dst_metric(dst, RTAX_CWND) +
816 tp->snd_ssthresh) >> 1);
817 if (dst_metric(dst, RTAX_SSTHRESH) &&
818 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
819 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
820 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
823 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
824 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
825 tp->reordering != sysctl_tcp_reordering)
826 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
831 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
833 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
836 cwnd = TCP_INIT_CWND;
837 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
840 /* Set slow start threshold and cwnd not falling to slow start */
841 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
843 struct tcp_sock *tp = tcp_sk(sk);
844 const struct inet_connection_sock *icsk = inet_csk(sk);
846 tp->prior_ssthresh = 0;
848 if (icsk->icsk_ca_state < TCP_CA_CWR) {
851 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
852 tp->snd_cwnd = min(tp->snd_cwnd,
853 tcp_packets_in_flight(tp) + 1U);
854 tp->snd_cwnd_cnt = 0;
855 tp->high_seq = tp->snd_nxt;
856 tp->snd_cwnd_stamp = tcp_time_stamp;
857 TCP_ECN_queue_cwr(tp);
859 tcp_set_ca_state(sk, TCP_CA_CWR);
864 * Packet counting of FACK is based on in-order assumptions, therefore TCP
865 * disables it when reordering is detected
867 static void tcp_disable_fack(struct tcp_sock *tp)
869 /* RFC3517 uses different metric in lost marker => reset on change */
871 tp->lost_skb_hint = NULL;
872 tp->rx_opt.sack_ok &= ~2;
875 /* Take a notice that peer is sending D-SACKs */
876 static void tcp_dsack_seen(struct tcp_sock *tp)
878 tp->rx_opt.sack_ok |= 4;
881 /* Initialize metrics on socket. */
883 static void tcp_init_metrics(struct sock *sk)
885 struct tcp_sock *tp = tcp_sk(sk);
886 struct dst_entry *dst = __sk_dst_get(sk);
893 if (dst_metric_locked(dst, RTAX_CWND))
894 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
895 if (dst_metric(dst, RTAX_SSTHRESH)) {
896 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
897 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
898 tp->snd_ssthresh = tp->snd_cwnd_clamp;
900 /* ssthresh may have been reduced unnecessarily during.
901 * 3WHS. Restore it back to its initial default.
903 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
905 if (dst_metric(dst, RTAX_REORDERING) &&
906 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
907 tcp_disable_fack(tp);
908 tp->reordering = dst_metric(dst, RTAX_REORDERING);
911 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
914 /* Initial rtt is determined from SYN,SYN-ACK.
915 * The segment is small and rtt may appear much
916 * less than real one. Use per-dst memory
917 * to make it more realistic.
919 * A bit of theory. RTT is time passed after "normal" sized packet
920 * is sent until it is ACKed. In normal circumstances sending small
921 * packets force peer to delay ACKs and calculation is correct too.
922 * The algorithm is adaptive and, provided we follow specs, it
923 * NEVER underestimate RTT. BUT! If peer tries to make some clever
924 * tricks sort of "quick acks" for time long enough to decrease RTT
925 * to low value, and then abruptly stops to do it and starts to delay
926 * ACKs, wait for troubles.
928 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
929 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
930 tp->rtt_seq = tp->snd_nxt;
932 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
933 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
934 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
939 /* RFC2988bis: We've failed to get a valid RTT sample from
940 * 3WHS. This is most likely due to retransmission,
941 * including spurious one. Reset the RTO back to 3secs
942 * from the more aggressive 1sec to avoid more spurious
945 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
946 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
948 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
949 * retransmitted. In light of RFC2988bis' more aggressive 1sec
950 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
951 * retransmission has occurred.
953 if (tp->total_retrans > 1)
956 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
957 tp->snd_cwnd_stamp = tcp_time_stamp;
960 static void tcp_update_reordering(struct sock *sk, const int metric,
963 struct tcp_sock *tp = tcp_sk(sk);
964 if (metric > tp->reordering) {
967 tp->reordering = min(TCP_MAX_REORDERING, metric);
969 /* This exciting event is worth to be remembered. 8) */
971 mib_idx = LINUX_MIB_TCPTSREORDER;
972 else if (tcp_is_reno(tp))
973 mib_idx = LINUX_MIB_TCPRENOREORDER;
974 else if (tcp_is_fack(tp))
975 mib_idx = LINUX_MIB_TCPFACKREORDER;
977 mib_idx = LINUX_MIB_TCPSACKREORDER;
979 NET_INC_STATS_BH(sock_net(sk), mib_idx);
980 #if FASTRETRANS_DEBUG > 1
981 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
982 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
986 tp->undo_marker ? tp->undo_retrans : 0);
988 tcp_disable_fack(tp);
992 /* This must be called before lost_out is incremented */
993 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
995 if ((tp->retransmit_skb_hint == NULL) ||
996 before(TCP_SKB_CB(skb)->seq,
997 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
998 tp->retransmit_skb_hint = skb;
1000 if (!tp->lost_out ||
1001 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1002 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1005 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1007 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1008 tcp_verify_retransmit_hint(tp, skb);
1010 tp->lost_out += tcp_skb_pcount(skb);
1011 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1015 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1016 struct sk_buff *skb)
1018 tcp_verify_retransmit_hint(tp, skb);
1020 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1021 tp->lost_out += tcp_skb_pcount(skb);
1022 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1026 /* This procedure tags the retransmission queue when SACKs arrive.
1028 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1029 * Packets in queue with these bits set are counted in variables
1030 * sacked_out, retrans_out and lost_out, correspondingly.
1032 * Valid combinations are:
1033 * Tag InFlight Description
1034 * 0 1 - orig segment is in flight.
1035 * S 0 - nothing flies, orig reached receiver.
1036 * L 0 - nothing flies, orig lost by net.
1037 * R 2 - both orig and retransmit are in flight.
1038 * L|R 1 - orig is lost, retransmit is in flight.
1039 * S|R 1 - orig reached receiver, retrans is still in flight.
1040 * (L|S|R is logically valid, it could occur when L|R is sacked,
1041 * but it is equivalent to plain S and code short-curcuits it to S.
1042 * L|S is logically invalid, it would mean -1 packet in flight 8))
1044 * These 6 states form finite state machine, controlled by the following events:
1045 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1046 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1047 * 3. Loss detection event of one of three flavors:
1048 * A. Scoreboard estimator decided the packet is lost.
1049 * A'. Reno "three dupacks" marks head of queue lost.
1050 * A''. Its FACK modfication, head until snd.fack is lost.
1051 * B. SACK arrives sacking data transmitted after never retransmitted
1052 * hole was sent out.
1053 * C. SACK arrives sacking SND.NXT at the moment, when the
1054 * segment was retransmitted.
1055 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1057 * It is pleasant to note, that state diagram turns out to be commutative,
1058 * so that we are allowed not to be bothered by order of our actions,
1059 * when multiple events arrive simultaneously. (see the function below).
1061 * Reordering detection.
1062 * --------------------
1063 * Reordering metric is maximal distance, which a packet can be displaced
1064 * in packet stream. With SACKs we can estimate it:
1066 * 1. SACK fills old hole and the corresponding segment was not
1067 * ever retransmitted -> reordering. Alas, we cannot use it
1068 * when segment was retransmitted.
1069 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1070 * for retransmitted and already SACKed segment -> reordering..
1071 * Both of these heuristics are not used in Loss state, when we cannot
1072 * account for retransmits accurately.
1074 * SACK block validation.
1075 * ----------------------
1077 * SACK block range validation checks that the received SACK block fits to
1078 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1079 * Note that SND.UNA is not included to the range though being valid because
1080 * it means that the receiver is rather inconsistent with itself reporting
1081 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1082 * perfectly valid, however, in light of RFC2018 which explicitly states
1083 * that "SACK block MUST reflect the newest segment. Even if the newest
1084 * segment is going to be discarded ...", not that it looks very clever
1085 * in case of head skb. Due to potentional receiver driven attacks, we
1086 * choose to avoid immediate execution of a walk in write queue due to
1087 * reneging and defer head skb's loss recovery to standard loss recovery
1088 * procedure that will eventually trigger (nothing forbids us doing this).
1090 * Implements also blockage to start_seq wrap-around. Problem lies in the
1091 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1092 * there's no guarantee that it will be before snd_nxt (n). The problem
1093 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1096 * <- outs wnd -> <- wrapzone ->
1097 * u e n u_w e_w s n_w
1099 * |<------------+------+----- TCP seqno space --------------+---------->|
1100 * ...-- <2^31 ->| |<--------...
1101 * ...---- >2^31 ------>| |<--------...
1103 * Current code wouldn't be vulnerable but it's better still to discard such
1104 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1105 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1106 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1107 * equal to the ideal case (infinite seqno space without wrap caused issues).
1109 * With D-SACK the lower bound is extended to cover sequence space below
1110 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1111 * again, D-SACK block must not to go across snd_una (for the same reason as
1112 * for the normal SACK blocks, explained above). But there all simplicity
1113 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1114 * fully below undo_marker they do not affect behavior in anyway and can
1115 * therefore be safely ignored. In rare cases (which are more or less
1116 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1117 * fragmentation and packet reordering past skb's retransmission. To consider
1118 * them correctly, the acceptable range must be extended even more though
1119 * the exact amount is rather hard to quantify. However, tp->max_window can
1120 * be used as an exaggerated estimate.
1122 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1123 u32 start_seq, u32 end_seq)
1125 /* Too far in future, or reversed (interpretation is ambiguous) */
1126 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1129 /* Nasty start_seq wrap-around check (see comments above) */
1130 if (!before(start_seq, tp->snd_nxt))
1133 /* In outstanding window? ...This is valid exit for D-SACKs too.
1134 * start_seq == snd_una is non-sensical (see comments above)
1136 if (after(start_seq, tp->snd_una))
1139 if (!is_dsack || !tp->undo_marker)
1142 /* ...Then it's D-SACK, and must reside below snd_una completely */
1143 if (after(end_seq, tp->snd_una))
1146 if (!before(start_seq, tp->undo_marker))
1150 if (!after(end_seq, tp->undo_marker))
1153 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1154 * start_seq < undo_marker and end_seq >= undo_marker.
1156 return !before(start_seq, end_seq - tp->max_window);
1159 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1160 * Event "C". Later note: FACK people cheated me again 8), we have to account
1161 * for reordering! Ugly, but should help.
1163 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1164 * less than what is now known to be received by the other end (derived from
1165 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1166 * retransmitted skbs to avoid some costly processing per ACKs.
1168 static void tcp_mark_lost_retrans(struct sock *sk)
1170 const struct inet_connection_sock *icsk = inet_csk(sk);
1171 struct tcp_sock *tp = tcp_sk(sk);
1172 struct sk_buff *skb;
1174 u32 new_low_seq = tp->snd_nxt;
1175 u32 received_upto = tcp_highest_sack_seq(tp);
1177 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1178 !after(received_upto, tp->lost_retrans_low) ||
1179 icsk->icsk_ca_state != TCP_CA_Recovery)
1182 tcp_for_write_queue(skb, sk) {
1183 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1185 if (skb == tcp_send_head(sk))
1187 if (cnt == tp->retrans_out)
1189 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1192 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1195 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1196 * constraint here (see above) but figuring out that at
1197 * least tp->reordering SACK blocks reside between ack_seq
1198 * and received_upto is not easy task to do cheaply with
1199 * the available datastructures.
1201 * Whether FACK should check here for tp->reordering segs
1202 * in-between one could argue for either way (it would be
1203 * rather simple to implement as we could count fack_count
1204 * during the walk and do tp->fackets_out - fack_count).
1206 if (after(received_upto, ack_seq)) {
1207 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1208 tp->retrans_out -= tcp_skb_pcount(skb);
1210 tcp_skb_mark_lost_uncond_verify(tp, skb);
1211 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1213 if (before(ack_seq, new_low_seq))
1214 new_low_seq = ack_seq;
1215 cnt += tcp_skb_pcount(skb);
1219 if (tp->retrans_out)
1220 tp->lost_retrans_low = new_low_seq;
1223 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1224 struct tcp_sack_block_wire *sp, int num_sacks,
1227 struct tcp_sock *tp = tcp_sk(sk);
1228 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1229 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1232 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1235 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1236 } else if (num_sacks > 1) {
1237 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1238 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1240 if (!after(end_seq_0, end_seq_1) &&
1241 !before(start_seq_0, start_seq_1)) {
1244 NET_INC_STATS_BH(sock_net(sk),
1245 LINUX_MIB_TCPDSACKOFORECV);
1249 /* D-SACK for already forgotten data... Do dumb counting. */
1250 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1251 !after(end_seq_0, prior_snd_una) &&
1252 after(end_seq_0, tp->undo_marker))
1258 struct tcp_sacktag_state {
1264 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1265 * the incoming SACK may not exactly match but we can find smaller MSS
1266 * aligned portion of it that matches. Therefore we might need to fragment
1267 * which may fail and creates some hassle (caller must handle error case
1270 * FIXME: this could be merged to shift decision code
1272 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1273 u32 start_seq, u32 end_seq)
1276 unsigned int pkt_len;
1279 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1280 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1282 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1283 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1284 mss = tcp_skb_mss(skb);
1285 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1288 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1292 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1297 /* Round if necessary so that SACKs cover only full MSSes
1298 * and/or the remaining small portion (if present)
1300 if (pkt_len > mss) {
1301 unsigned int new_len = (pkt_len / mss) * mss;
1302 if (!in_sack && new_len < pkt_len) {
1304 if (new_len > skb->len)
1309 err = tcp_fragment(sk, skb, pkt_len, mss);
1317 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1318 static u8 tcp_sacktag_one(struct sock *sk,
1319 struct tcp_sacktag_state *state, u8 sacked,
1320 u32 start_seq, u32 end_seq,
1321 int dup_sack, int pcount)
1323 struct tcp_sock *tp = tcp_sk(sk);
1324 int fack_count = state->fack_count;
1326 /* Account D-SACK for retransmitted packet. */
1327 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1328 if (tp->undo_marker && tp->undo_retrans &&
1329 after(end_seq, tp->undo_marker))
1331 if (sacked & TCPCB_SACKED_ACKED)
1332 state->reord = min(fack_count, state->reord);
1335 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1336 if (!after(end_seq, tp->snd_una))
1339 if (!(sacked & TCPCB_SACKED_ACKED)) {
1340 if (sacked & TCPCB_SACKED_RETRANS) {
1341 /* If the segment is not tagged as lost,
1342 * we do not clear RETRANS, believing
1343 * that retransmission is still in flight.
1345 if (sacked & TCPCB_LOST) {
1346 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1347 tp->lost_out -= pcount;
1348 tp->retrans_out -= pcount;
1351 if (!(sacked & TCPCB_RETRANS)) {
1352 /* New sack for not retransmitted frame,
1353 * which was in hole. It is reordering.
1355 if (before(start_seq,
1356 tcp_highest_sack_seq(tp)))
1357 state->reord = min(fack_count,
1360 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1361 if (!after(end_seq, tp->frto_highmark))
1362 state->flag |= FLAG_ONLY_ORIG_SACKED;
1365 if (sacked & TCPCB_LOST) {
1366 sacked &= ~TCPCB_LOST;
1367 tp->lost_out -= pcount;
1371 sacked |= TCPCB_SACKED_ACKED;
1372 state->flag |= FLAG_DATA_SACKED;
1373 tp->sacked_out += pcount;
1375 fack_count += pcount;
1377 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1378 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1379 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1380 tp->lost_cnt_hint += pcount;
1382 if (fack_count > tp->fackets_out)
1383 tp->fackets_out = fack_count;
1386 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1387 * frames and clear it. undo_retrans is decreased above, L|R frames
1388 * are accounted above as well.
1390 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1391 sacked &= ~TCPCB_SACKED_RETRANS;
1392 tp->retrans_out -= pcount;
1398 /* Shift newly-SACKed bytes from this skb to the immediately previous
1399 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1401 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1402 struct tcp_sacktag_state *state,
1403 unsigned int pcount, int shifted, int mss,
1406 struct tcp_sock *tp = tcp_sk(sk);
1407 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1408 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1409 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1413 /* Adjust counters and hints for the newly sacked sequence
1414 * range but discard the return value since prev is already
1415 * marked. We must tag the range first because the seq
1416 * advancement below implicitly advances
1417 * tcp_highest_sack_seq() when skb is highest_sack.
1419 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1420 start_seq, end_seq, dup_sack, pcount);
1422 if (skb == tp->lost_skb_hint)
1423 tp->lost_cnt_hint += pcount;
1425 TCP_SKB_CB(prev)->end_seq += shifted;
1426 TCP_SKB_CB(skb)->seq += shifted;
1428 skb_shinfo(prev)->gso_segs += pcount;
1429 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1430 skb_shinfo(skb)->gso_segs -= pcount;
1432 /* When we're adding to gso_segs == 1, gso_size will be zero,
1433 * in theory this shouldn't be necessary but as long as DSACK
1434 * code can come after this skb later on it's better to keep
1435 * setting gso_size to something.
1437 if (!skb_shinfo(prev)->gso_size) {
1438 skb_shinfo(prev)->gso_size = mss;
1439 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1442 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1443 if (skb_shinfo(skb)->gso_segs <= 1) {
1444 skb_shinfo(skb)->gso_size = 0;
1445 skb_shinfo(skb)->gso_type = 0;
1448 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1449 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1452 BUG_ON(!tcp_skb_pcount(skb));
1453 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1457 /* Whole SKB was eaten :-) */
1459 if (skb == tp->retransmit_skb_hint)
1460 tp->retransmit_skb_hint = prev;
1461 if (skb == tp->scoreboard_skb_hint)
1462 tp->scoreboard_skb_hint = prev;
1463 if (skb == tp->lost_skb_hint) {
1464 tp->lost_skb_hint = prev;
1465 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1468 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1469 if (skb == tcp_highest_sack(sk))
1470 tcp_advance_highest_sack(sk, skb);
1472 tcp_unlink_write_queue(skb, sk);
1473 sk_wmem_free_skb(sk, skb);
1475 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1480 /* I wish gso_size would have a bit more sane initialization than
1481 * something-or-zero which complicates things
1483 static int tcp_skb_seglen(const struct sk_buff *skb)
1485 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1488 /* Shifting pages past head area doesn't work */
1489 static int skb_can_shift(const struct sk_buff *skb)
1491 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1494 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1497 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1498 struct tcp_sacktag_state *state,
1499 u32 start_seq, u32 end_seq,
1502 struct tcp_sock *tp = tcp_sk(sk);
1503 struct sk_buff *prev;
1509 if (!sk_can_gso(sk))
1512 /* Normally R but no L won't result in plain S */
1514 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1516 if (!skb_can_shift(skb))
1518 /* This frame is about to be dropped (was ACKed). */
1519 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1522 /* Can only happen with delayed DSACK + discard craziness */
1523 if (unlikely(skb == tcp_write_queue_head(sk)))
1525 prev = tcp_write_queue_prev(sk, skb);
1527 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1530 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1531 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1535 pcount = tcp_skb_pcount(skb);
1536 mss = tcp_skb_seglen(skb);
1538 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1539 * drop this restriction as unnecessary
1541 if (mss != tcp_skb_seglen(prev))
1544 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1546 /* CHECKME: This is non-MSS split case only?, this will
1547 * cause skipped skbs due to advancing loop btw, original
1548 * has that feature too
1550 if (tcp_skb_pcount(skb) <= 1)
1553 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1555 /* TODO: head merge to next could be attempted here
1556 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1557 * though it might not be worth of the additional hassle
1559 * ...we can probably just fallback to what was done
1560 * previously. We could try merging non-SACKed ones
1561 * as well but it probably isn't going to buy off
1562 * because later SACKs might again split them, and
1563 * it would make skb timestamp tracking considerably
1569 len = end_seq - TCP_SKB_CB(skb)->seq;
1571 BUG_ON(len > skb->len);
1573 /* MSS boundaries should be honoured or else pcount will
1574 * severely break even though it makes things bit trickier.
1575 * Optimize common case to avoid most of the divides
1577 mss = tcp_skb_mss(skb);
1579 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1580 * drop this restriction as unnecessary
1582 if (mss != tcp_skb_seglen(prev))
1587 } else if (len < mss) {
1595 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1596 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1599 if (!skb_shift(prev, skb, len))
1601 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1604 /* Hole filled allows collapsing with the next as well, this is very
1605 * useful when hole on every nth skb pattern happens
1607 if (prev == tcp_write_queue_tail(sk))
1609 skb = tcp_write_queue_next(sk, prev);
1611 if (!skb_can_shift(skb) ||
1612 (skb == tcp_send_head(sk)) ||
1613 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1614 (mss != tcp_skb_seglen(skb)))
1618 if (skb_shift(prev, skb, len)) {
1619 pcount += tcp_skb_pcount(skb);
1620 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1624 state->fack_count += pcount;
1631 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1635 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1636 struct tcp_sack_block *next_dup,
1637 struct tcp_sacktag_state *state,
1638 u32 start_seq, u32 end_seq,
1641 struct tcp_sock *tp = tcp_sk(sk);
1642 struct sk_buff *tmp;
1644 tcp_for_write_queue_from(skb, sk) {
1646 int dup_sack = dup_sack_in;
1648 if (skb == tcp_send_head(sk))
1651 /* queue is in-order => we can short-circuit the walk early */
1652 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1655 if ((next_dup != NULL) &&
1656 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1657 in_sack = tcp_match_skb_to_sack(sk, skb,
1658 next_dup->start_seq,
1664 /* skb reference here is a bit tricky to get right, since
1665 * shifting can eat and free both this skb and the next,
1666 * so not even _safe variant of the loop is enough.
1669 tmp = tcp_shift_skb_data(sk, skb, state,
1670 start_seq, end_seq, dup_sack);
1679 in_sack = tcp_match_skb_to_sack(sk, skb,
1685 if (unlikely(in_sack < 0))
1689 TCP_SKB_CB(skb)->sacked =
1692 TCP_SKB_CB(skb)->sacked,
1693 TCP_SKB_CB(skb)->seq,
1694 TCP_SKB_CB(skb)->end_seq,
1696 tcp_skb_pcount(skb));
1698 if (!before(TCP_SKB_CB(skb)->seq,
1699 tcp_highest_sack_seq(tp)))
1700 tcp_advance_highest_sack(sk, skb);
1703 state->fack_count += tcp_skb_pcount(skb);
1708 /* Avoid all extra work that is being done by sacktag while walking in
1711 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1712 struct tcp_sacktag_state *state,
1715 tcp_for_write_queue_from(skb, sk) {
1716 if (skb == tcp_send_head(sk))
1719 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1722 state->fack_count += tcp_skb_pcount(skb);
1727 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1729 struct tcp_sack_block *next_dup,
1730 struct tcp_sacktag_state *state,
1733 if (next_dup == NULL)
1736 if (before(next_dup->start_seq, skip_to_seq)) {
1737 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1738 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1739 next_dup->start_seq, next_dup->end_seq,
1746 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1748 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1752 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1755 const struct inet_connection_sock *icsk = inet_csk(sk);
1756 struct tcp_sock *tp = tcp_sk(sk);
1757 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1758 TCP_SKB_CB(ack_skb)->sacked);
1759 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1760 struct tcp_sack_block sp[TCP_NUM_SACKS];
1761 struct tcp_sack_block *cache;
1762 struct tcp_sacktag_state state;
1763 struct sk_buff *skb;
1764 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1766 int found_dup_sack = 0;
1768 int first_sack_index;
1771 state.reord = tp->packets_out;
1773 if (!tp->sacked_out) {
1774 if (WARN_ON(tp->fackets_out))
1775 tp->fackets_out = 0;
1776 tcp_highest_sack_reset(sk);
1779 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1780 num_sacks, prior_snd_una);
1782 state.flag |= FLAG_DSACKING_ACK;
1784 /* Eliminate too old ACKs, but take into
1785 * account more or less fresh ones, they can
1786 * contain valid SACK info.
1788 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1791 if (!tp->packets_out)
1795 first_sack_index = 0;
1796 for (i = 0; i < num_sacks; i++) {
1797 int dup_sack = !i && found_dup_sack;
1799 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1800 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1802 if (!tcp_is_sackblock_valid(tp, dup_sack,
1803 sp[used_sacks].start_seq,
1804 sp[used_sacks].end_seq)) {
1808 if (!tp->undo_marker)
1809 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1811 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1813 /* Don't count olds caused by ACK reordering */
1814 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1815 !after(sp[used_sacks].end_seq, tp->snd_una))
1817 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1820 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1822 first_sack_index = -1;
1826 /* Ignore very old stuff early */
1827 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1833 /* order SACK blocks to allow in order walk of the retrans queue */
1834 for (i = used_sacks - 1; i > 0; i--) {
1835 for (j = 0; j < i; j++) {
1836 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1837 swap(sp[j], sp[j + 1]);
1839 /* Track where the first SACK block goes to */
1840 if (j == first_sack_index)
1841 first_sack_index = j + 1;
1846 skb = tcp_write_queue_head(sk);
1847 state.fack_count = 0;
1850 if (!tp->sacked_out) {
1851 /* It's already past, so skip checking against it */
1852 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1854 cache = tp->recv_sack_cache;
1855 /* Skip empty blocks in at head of the cache */
1856 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1861 while (i < used_sacks) {
1862 u32 start_seq = sp[i].start_seq;
1863 u32 end_seq = sp[i].end_seq;
1864 int dup_sack = (found_dup_sack && (i == first_sack_index));
1865 struct tcp_sack_block *next_dup = NULL;
1867 if (found_dup_sack && ((i + 1) == first_sack_index))
1868 next_dup = &sp[i + 1];
1870 /* Event "B" in the comment above. */
1871 if (after(end_seq, tp->high_seq))
1872 state.flag |= FLAG_DATA_LOST;
1874 /* Skip too early cached blocks */
1875 while (tcp_sack_cache_ok(tp, cache) &&
1876 !before(start_seq, cache->end_seq))
1879 /* Can skip some work by looking recv_sack_cache? */
1880 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1881 after(end_seq, cache->start_seq)) {
1884 if (before(start_seq, cache->start_seq)) {
1885 skb = tcp_sacktag_skip(skb, sk, &state,
1887 skb = tcp_sacktag_walk(skb, sk, next_dup,
1894 /* Rest of the block already fully processed? */
1895 if (!after(end_seq, cache->end_seq))
1898 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1902 /* ...tail remains todo... */
1903 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1904 /* ...but better entrypoint exists! */
1905 skb = tcp_highest_sack(sk);
1908 state.fack_count = tp->fackets_out;
1913 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1914 /* Check overlap against next cached too (past this one already) */
1919 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1920 skb = tcp_highest_sack(sk);
1923 state.fack_count = tp->fackets_out;
1925 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1928 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1929 start_seq, end_seq, dup_sack);
1932 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1933 * due to in-order walk
1935 if (after(end_seq, tp->frto_highmark))
1936 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1941 /* Clear the head of the cache sack blocks so we can skip it next time */
1942 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1943 tp->recv_sack_cache[i].start_seq = 0;
1944 tp->recv_sack_cache[i].end_seq = 0;
1946 for (j = 0; j < used_sacks; j++)
1947 tp->recv_sack_cache[i++] = sp[j];
1949 tcp_mark_lost_retrans(sk);
1951 tcp_verify_left_out(tp);
1953 if ((state.reord < tp->fackets_out) &&
1954 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1955 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1956 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1960 #if FASTRETRANS_DEBUG > 0
1961 WARN_ON((int)tp->sacked_out < 0);
1962 WARN_ON((int)tp->lost_out < 0);
1963 WARN_ON((int)tp->retrans_out < 0);
1964 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1969 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1970 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1972 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1976 holes = max(tp->lost_out, 1U);
1977 holes = min(holes, tp->packets_out);
1979 if ((tp->sacked_out + holes) > tp->packets_out) {
1980 tp->sacked_out = tp->packets_out - holes;
1986 /* If we receive more dupacks than we expected counting segments
1987 * in assumption of absent reordering, interpret this as reordering.
1988 * The only another reason could be bug in receiver TCP.
1990 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1992 struct tcp_sock *tp = tcp_sk(sk);
1993 if (tcp_limit_reno_sacked(tp))
1994 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1997 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1999 static void tcp_add_reno_sack(struct sock *sk)
2001 struct tcp_sock *tp = tcp_sk(sk);
2003 tcp_check_reno_reordering(sk, 0);
2004 tcp_verify_left_out(tp);
2007 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2009 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2011 struct tcp_sock *tp = tcp_sk(sk);
2014 /* One ACK acked hole. The rest eat duplicate ACKs. */
2015 if (acked - 1 >= tp->sacked_out)
2018 tp->sacked_out -= acked - 1;
2020 tcp_check_reno_reordering(sk, acked);
2021 tcp_verify_left_out(tp);
2024 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2029 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2031 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2034 /* F-RTO can only be used if TCP has never retransmitted anything other than
2035 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2037 int tcp_use_frto(struct sock *sk)
2039 const struct tcp_sock *tp = tcp_sk(sk);
2040 const struct inet_connection_sock *icsk = inet_csk(sk);
2041 struct sk_buff *skb;
2043 if (!sysctl_tcp_frto)
2046 /* MTU probe and F-RTO won't really play nicely along currently */
2047 if (icsk->icsk_mtup.probe_size)
2050 if (tcp_is_sackfrto(tp))
2053 /* Avoid expensive walking of rexmit queue if possible */
2054 if (tp->retrans_out > 1)
2057 skb = tcp_write_queue_head(sk);
2058 if (tcp_skb_is_last(sk, skb))
2060 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2061 tcp_for_write_queue_from(skb, sk) {
2062 if (skb == tcp_send_head(sk))
2064 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2066 /* Short-circuit when first non-SACKed skb has been checked */
2067 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2073 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2074 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2075 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2076 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2077 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2078 * bits are handled if the Loss state is really to be entered (in
2079 * tcp_enter_frto_loss).
2081 * Do like tcp_enter_loss() would; when RTO expires the second time it
2083 * "Reduce ssthresh if it has not yet been made inside this window."
2085 void tcp_enter_frto(struct sock *sk)
2087 const struct inet_connection_sock *icsk = inet_csk(sk);
2088 struct tcp_sock *tp = tcp_sk(sk);
2089 struct sk_buff *skb;
2091 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2092 tp->snd_una == tp->high_seq ||
2093 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2094 !icsk->icsk_retransmits)) {
2095 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2096 /* Our state is too optimistic in ssthresh() call because cwnd
2097 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2098 * recovery has not yet completed. Pattern would be this: RTO,
2099 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2101 * RFC4138 should be more specific on what to do, even though
2102 * RTO is quite unlikely to occur after the first Cumulative ACK
2103 * due to back-off and complexity of triggering events ...
2105 if (tp->frto_counter) {
2107 stored_cwnd = tp->snd_cwnd;
2109 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110 tp->snd_cwnd = stored_cwnd;
2112 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2114 /* ... in theory, cong.control module could do "any tricks" in
2115 * ssthresh(), which means that ca_state, lost bits and lost_out
2116 * counter would have to be faked before the call occurs. We
2117 * consider that too expensive, unlikely and hacky, so modules
2118 * using these in ssthresh() must deal these incompatibility
2119 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2121 tcp_ca_event(sk, CA_EVENT_FRTO);
2124 tp->undo_marker = tp->snd_una;
2125 tp->undo_retrans = 0;
2127 skb = tcp_write_queue_head(sk);
2128 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2129 tp->undo_marker = 0;
2130 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2131 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2132 tp->retrans_out -= tcp_skb_pcount(skb);
2134 tcp_verify_left_out(tp);
2136 /* Too bad if TCP was application limited */
2137 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2139 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2140 * The last condition is necessary at least in tp->frto_counter case.
2142 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2143 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2144 after(tp->high_seq, tp->snd_una)) {
2145 tp->frto_highmark = tp->high_seq;
2147 tp->frto_highmark = tp->snd_nxt;
2149 tcp_set_ca_state(sk, TCP_CA_Disorder);
2150 tp->high_seq = tp->snd_nxt;
2151 tp->frto_counter = 1;
2154 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2155 * which indicates that we should follow the traditional RTO recovery,
2156 * i.e. mark everything lost and do go-back-N retransmission.
2158 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2160 struct tcp_sock *tp = tcp_sk(sk);
2161 struct sk_buff *skb;
2164 tp->retrans_out = 0;
2165 if (tcp_is_reno(tp))
2166 tcp_reset_reno_sack(tp);
2168 tcp_for_write_queue(skb, sk) {
2169 if (skb == tcp_send_head(sk))
2172 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2174 * Count the retransmission made on RTO correctly (only when
2175 * waiting for the first ACK and did not get it)...
2177 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2178 /* For some reason this R-bit might get cleared? */
2179 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2180 tp->retrans_out += tcp_skb_pcount(skb);
2181 /* ...enter this if branch just for the first segment */
2182 flag |= FLAG_DATA_ACKED;
2184 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2185 tp->undo_marker = 0;
2186 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2189 /* Marking forward transmissions that were made after RTO lost
2190 * can cause unnecessary retransmissions in some scenarios,
2191 * SACK blocks will mitigate that in some but not in all cases.
2192 * We used to not mark them but it was causing break-ups with
2193 * receivers that do only in-order receival.
2195 * TODO: we could detect presence of such receiver and select
2196 * different behavior per flow.
2198 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2199 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2200 tp->lost_out += tcp_skb_pcount(skb);
2201 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2204 tcp_verify_left_out(tp);
2206 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2207 tp->snd_cwnd_cnt = 0;
2208 tp->snd_cwnd_stamp = tcp_time_stamp;
2209 tp->frto_counter = 0;
2210 tp->bytes_acked = 0;
2212 tp->reordering = min_t(unsigned int, tp->reordering,
2213 sysctl_tcp_reordering);
2214 tcp_set_ca_state(sk, TCP_CA_Loss);
2215 tp->high_seq = tp->snd_nxt;
2216 TCP_ECN_queue_cwr(tp);
2218 tcp_clear_all_retrans_hints(tp);
2221 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2223 tp->retrans_out = 0;
2226 tp->undo_marker = 0;
2227 tp->undo_retrans = 0;
2230 void tcp_clear_retrans(struct tcp_sock *tp)
2232 tcp_clear_retrans_partial(tp);
2234 tp->fackets_out = 0;
2238 /* Enter Loss state. If "how" is not zero, forget all SACK information
2239 * and reset tags completely, otherwise preserve SACKs. If receiver
2240 * dropped its ofo queue, we will know this due to reneging detection.
2242 void tcp_enter_loss(struct sock *sk, int how)
2244 const struct inet_connection_sock *icsk = inet_csk(sk);
2245 struct tcp_sock *tp = tcp_sk(sk);
2246 struct sk_buff *skb;
2248 /* Reduce ssthresh if it has not yet been made inside this window. */
2249 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2250 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2251 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2252 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2253 tcp_ca_event(sk, CA_EVENT_LOSS);
2256 tp->snd_cwnd_cnt = 0;
2257 tp->snd_cwnd_stamp = tcp_time_stamp;
2259 tp->bytes_acked = 0;
2260 tcp_clear_retrans_partial(tp);
2262 if (tcp_is_reno(tp))
2263 tcp_reset_reno_sack(tp);
2266 /* Push undo marker, if it was plain RTO and nothing
2267 * was retransmitted. */
2268 tp->undo_marker = tp->snd_una;
2271 tp->fackets_out = 0;
2273 tcp_clear_all_retrans_hints(tp);
2275 tcp_for_write_queue(skb, sk) {
2276 if (skb == tcp_send_head(sk))
2279 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2280 tp->undo_marker = 0;
2281 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2282 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2283 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2284 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2285 tp->lost_out += tcp_skb_pcount(skb);
2286 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2289 tcp_verify_left_out(tp);
2291 tp->reordering = min_t(unsigned int, tp->reordering,
2292 sysctl_tcp_reordering);
2293 tcp_set_ca_state(sk, TCP_CA_Loss);
2294 tp->high_seq = tp->snd_nxt;
2295 TCP_ECN_queue_cwr(tp);
2296 /* Abort F-RTO algorithm if one is in progress */
2297 tp->frto_counter = 0;
2300 /* If ACK arrived pointing to a remembered SACK, it means that our
2301 * remembered SACKs do not reflect real state of receiver i.e.
2302 * receiver _host_ is heavily congested (or buggy).
2304 * Do processing similar to RTO timeout.
2306 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2308 if (flag & FLAG_SACK_RENEGING) {
2309 struct inet_connection_sock *icsk = inet_csk(sk);
2310 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2312 tcp_enter_loss(sk, 1);
2313 icsk->icsk_retransmits++;
2314 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2315 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2316 icsk->icsk_rto, TCP_RTO_MAX);
2322 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2324 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2327 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2328 * counter when SACK is enabled (without SACK, sacked_out is used for
2331 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2332 * segments up to the highest received SACK block so far and holes in
2335 * With reordering, holes may still be in flight, so RFC3517 recovery
2336 * uses pure sacked_out (total number of SACKed segments) even though
2337 * it violates the RFC that uses duplicate ACKs, often these are equal
2338 * but when e.g. out-of-window ACKs or packet duplication occurs,
2339 * they differ. Since neither occurs due to loss, TCP should really
2342 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2344 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2347 static inline int tcp_skb_timedout(const struct sock *sk,
2348 const struct sk_buff *skb)
2350 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2353 static inline int tcp_head_timedout(const struct sock *sk)
2355 const struct tcp_sock *tp = tcp_sk(sk);
2357 return tp->packets_out &&
2358 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2361 /* Linux NewReno/SACK/FACK/ECN state machine.
2362 * --------------------------------------
2364 * "Open" Normal state, no dubious events, fast path.
2365 * "Disorder" In all the respects it is "Open",
2366 * but requires a bit more attention. It is entered when
2367 * we see some SACKs or dupacks. It is split of "Open"
2368 * mainly to move some processing from fast path to slow one.
2369 * "CWR" CWND was reduced due to some Congestion Notification event.
2370 * It can be ECN, ICMP source quench, local device congestion.
2371 * "Recovery" CWND was reduced, we are fast-retransmitting.
2372 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2374 * tcp_fastretrans_alert() is entered:
2375 * - each incoming ACK, if state is not "Open"
2376 * - when arrived ACK is unusual, namely:
2381 * Counting packets in flight is pretty simple.
2383 * in_flight = packets_out - left_out + retrans_out
2385 * packets_out is SND.NXT-SND.UNA counted in packets.
2387 * retrans_out is number of retransmitted segments.
2389 * left_out is number of segments left network, but not ACKed yet.
2391 * left_out = sacked_out + lost_out
2393 * sacked_out: Packets, which arrived to receiver out of order
2394 * and hence not ACKed. With SACKs this number is simply
2395 * amount of SACKed data. Even without SACKs
2396 * it is easy to give pretty reliable estimate of this number,
2397 * counting duplicate ACKs.
2399 * lost_out: Packets lost by network. TCP has no explicit
2400 * "loss notification" feedback from network (for now).
2401 * It means that this number can be only _guessed_.
2402 * Actually, it is the heuristics to predict lossage that
2403 * distinguishes different algorithms.
2405 * F.e. after RTO, when all the queue is considered as lost,
2406 * lost_out = packets_out and in_flight = retrans_out.
2408 * Essentially, we have now two algorithms counting
2411 * FACK: It is the simplest heuristics. As soon as we decided
2412 * that something is lost, we decide that _all_ not SACKed
2413 * packets until the most forward SACK are lost. I.e.
2414 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2415 * It is absolutely correct estimate, if network does not reorder
2416 * packets. And it loses any connection to reality when reordering
2417 * takes place. We use FACK by default until reordering
2418 * is suspected on the path to this destination.
2420 * NewReno: when Recovery is entered, we assume that one segment
2421 * is lost (classic Reno). While we are in Recovery and
2422 * a partial ACK arrives, we assume that one more packet
2423 * is lost (NewReno). This heuristics are the same in NewReno
2426 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2427 * deflation etc. CWND is real congestion window, never inflated, changes
2428 * only according to classic VJ rules.
2430 * Really tricky (and requiring careful tuning) part of algorithm
2431 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2432 * The first determines the moment _when_ we should reduce CWND and,
2433 * hence, slow down forward transmission. In fact, it determines the moment
2434 * when we decide that hole is caused by loss, rather than by a reorder.
2436 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2437 * holes, caused by lost packets.
2439 * And the most logically complicated part of algorithm is undo
2440 * heuristics. We detect false retransmits due to both too early
2441 * fast retransmit (reordering) and underestimated RTO, analyzing
2442 * timestamps and D-SACKs. When we detect that some segments were
2443 * retransmitted by mistake and CWND reduction was wrong, we undo
2444 * window reduction and abort recovery phase. This logic is hidden
2445 * inside several functions named tcp_try_undo_<something>.
2448 /* This function decides, when we should leave Disordered state
2449 * and enter Recovery phase, reducing congestion window.
2451 * Main question: may we further continue forward transmission
2452 * with the same cwnd?
2454 static int tcp_time_to_recover(struct sock *sk)
2456 struct tcp_sock *tp = tcp_sk(sk);
2459 /* Do not perform any recovery during F-RTO algorithm */
2460 if (tp->frto_counter)
2463 /* Trick#1: The loss is proven. */
2467 /* Not-A-Trick#2 : Classic rule... */
2468 if (tcp_dupack_heuristics(tp) > tp->reordering)
2471 /* Trick#3 : when we use RFC2988 timer restart, fast
2472 * retransmit can be triggered by timeout of queue head.
2474 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2477 /* Trick#4: It is still not OK... But will it be useful to delay
2480 packets_out = tp->packets_out;
2481 if (packets_out <= tp->reordering &&
2482 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2483 !tcp_may_send_now(sk)) {
2484 /* We have nothing to send. This connection is limited
2485 * either by receiver window or by application.
2490 /* If a thin stream is detected, retransmit after first
2491 * received dupack. Employ only if SACK is supported in order
2492 * to avoid possible corner-case series of spurious retransmissions
2493 * Use only if there are no unsent data.
2495 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2496 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2497 tcp_is_sack(tp) && !tcp_send_head(sk))
2503 /* New heuristics: it is possible only after we switched to restart timer
2504 * each time when something is ACKed. Hence, we can detect timed out packets
2505 * during fast retransmit without falling to slow start.
2507 * Usefulness of this as is very questionable, since we should know which of
2508 * the segments is the next to timeout which is relatively expensive to find
2509 * in general case unless we add some data structure just for that. The
2510 * current approach certainly won't find the right one too often and when it
2511 * finally does find _something_ it usually marks large part of the window
2512 * right away (because a retransmission with a larger timestamp blocks the
2513 * loop from advancing). -ij
2515 static void tcp_timeout_skbs(struct sock *sk)
2517 struct tcp_sock *tp = tcp_sk(sk);
2518 struct sk_buff *skb;
2520 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2523 skb = tp->scoreboard_skb_hint;
2524 if (tp->scoreboard_skb_hint == NULL)
2525 skb = tcp_write_queue_head(sk);
2527 tcp_for_write_queue_from(skb, sk) {
2528 if (skb == tcp_send_head(sk))
2530 if (!tcp_skb_timedout(sk, skb))
2533 tcp_skb_mark_lost(tp, skb);
2536 tp->scoreboard_skb_hint = skb;
2538 tcp_verify_left_out(tp);
2541 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2542 * is against sacked "cnt", otherwise it's against facked "cnt"
2544 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2546 struct tcp_sock *tp = tcp_sk(sk);
2547 struct sk_buff *skb;
2552 WARN_ON(packets > tp->packets_out);
2553 if (tp->lost_skb_hint) {
2554 skb = tp->lost_skb_hint;
2555 cnt = tp->lost_cnt_hint;
2556 /* Head already handled? */
2557 if (mark_head && skb != tcp_write_queue_head(sk))
2560 skb = tcp_write_queue_head(sk);
2564 tcp_for_write_queue_from(skb, sk) {
2565 if (skb == tcp_send_head(sk))
2567 /* TODO: do this better */
2568 /* this is not the most efficient way to do this... */
2569 tp->lost_skb_hint = skb;
2570 tp->lost_cnt_hint = cnt;
2572 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2576 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2577 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2578 cnt += tcp_skb_pcount(skb);
2580 if (cnt > packets) {
2581 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2582 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2583 (oldcnt >= packets))
2586 mss = skb_shinfo(skb)->gso_size;
2587 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2593 tcp_skb_mark_lost(tp, skb);
2598 tcp_verify_left_out(tp);
2601 /* Account newly detected lost packet(s) */
2603 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2605 struct tcp_sock *tp = tcp_sk(sk);
2607 if (tcp_is_reno(tp)) {
2608 tcp_mark_head_lost(sk, 1, 1);
2609 } else if (tcp_is_fack(tp)) {
2610 int lost = tp->fackets_out - tp->reordering;
2613 tcp_mark_head_lost(sk, lost, 0);
2615 int sacked_upto = tp->sacked_out - tp->reordering;
2616 if (sacked_upto >= 0)
2617 tcp_mark_head_lost(sk, sacked_upto, 0);
2618 else if (fast_rexmit)
2619 tcp_mark_head_lost(sk, 1, 1);
2622 tcp_timeout_skbs(sk);
2625 /* CWND moderation, preventing bursts due to too big ACKs
2626 * in dubious situations.
2628 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2630 tp->snd_cwnd = min(tp->snd_cwnd,
2631 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2632 tp->snd_cwnd_stamp = tcp_time_stamp;
2635 /* Lower bound on congestion window is slow start threshold
2636 * unless congestion avoidance choice decides to overide it.
2638 static inline u32 tcp_cwnd_min(const struct sock *sk)
2640 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2642 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2645 /* Decrease cwnd each second ack. */
2646 static void tcp_cwnd_down(struct sock *sk, int flag)
2648 struct tcp_sock *tp = tcp_sk(sk);
2649 int decr = tp->snd_cwnd_cnt + 1;
2651 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2652 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2653 tp->snd_cwnd_cnt = decr & 1;
2656 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2657 tp->snd_cwnd -= decr;
2659 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2660 tp->snd_cwnd_stamp = tcp_time_stamp;
2664 /* Nothing was retransmitted or returned timestamp is less
2665 * than timestamp of the first retransmission.
2667 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2669 return !tp->retrans_stamp ||
2670 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2671 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2674 /* Undo procedures. */
2676 #if FASTRETRANS_DEBUG > 1
2677 static void DBGUNDO(struct sock *sk, const char *msg)
2679 struct tcp_sock *tp = tcp_sk(sk);
2680 struct inet_sock *inet = inet_sk(sk);
2682 if (sk->sk_family == AF_INET) {
2683 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2685 &inet->inet_daddr, ntohs(inet->inet_dport),
2686 tp->snd_cwnd, tcp_left_out(tp),
2687 tp->snd_ssthresh, tp->prior_ssthresh,
2690 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2691 else if (sk->sk_family == AF_INET6) {
2692 struct ipv6_pinfo *np = inet6_sk(sk);
2693 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2695 &np->daddr, ntohs(inet->inet_dport),
2696 tp->snd_cwnd, tcp_left_out(tp),
2697 tp->snd_ssthresh, tp->prior_ssthresh,
2703 #define DBGUNDO(x...) do { } while (0)
2706 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2708 struct tcp_sock *tp = tcp_sk(sk);
2710 if (tp->prior_ssthresh) {
2711 const struct inet_connection_sock *icsk = inet_csk(sk);
2713 if (icsk->icsk_ca_ops->undo_cwnd)
2714 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2716 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2718 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2719 tp->snd_ssthresh = tp->prior_ssthresh;
2720 TCP_ECN_withdraw_cwr(tp);
2723 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2725 tp->snd_cwnd_stamp = tcp_time_stamp;
2728 static inline int tcp_may_undo(const struct tcp_sock *tp)
2730 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2733 /* People celebrate: "We love our President!" */
2734 static int tcp_try_undo_recovery(struct sock *sk)
2736 struct tcp_sock *tp = tcp_sk(sk);
2738 if (tcp_may_undo(tp)) {
2741 /* Happy end! We did not retransmit anything
2742 * or our original transmission succeeded.
2744 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2745 tcp_undo_cwr(sk, true);
2746 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2747 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2749 mib_idx = LINUX_MIB_TCPFULLUNDO;
2751 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2752 tp->undo_marker = 0;
2754 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2755 /* Hold old state until something *above* high_seq
2756 * is ACKed. For Reno it is MUST to prevent false
2757 * fast retransmits (RFC2582). SACK TCP is safe. */
2758 tcp_moderate_cwnd(tp);
2761 tcp_set_ca_state(sk, TCP_CA_Open);
2765 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2766 static void tcp_try_undo_dsack(struct sock *sk)
2768 struct tcp_sock *tp = tcp_sk(sk);
2770 if (tp->undo_marker && !tp->undo_retrans) {
2771 DBGUNDO(sk, "D-SACK");
2772 tcp_undo_cwr(sk, true);
2773 tp->undo_marker = 0;
2774 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2778 /* We can clear retrans_stamp when there are no retransmissions in the
2779 * window. It would seem that it is trivially available for us in
2780 * tp->retrans_out, however, that kind of assumptions doesn't consider
2781 * what will happen if errors occur when sending retransmission for the
2782 * second time. ...It could the that such segment has only
2783 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2784 * the head skb is enough except for some reneging corner cases that
2785 * are not worth the effort.
2787 * Main reason for all this complexity is the fact that connection dying
2788 * time now depends on the validity of the retrans_stamp, in particular,
2789 * that successive retransmissions of a segment must not advance
2790 * retrans_stamp under any conditions.
2792 static int tcp_any_retrans_done(const struct sock *sk)
2794 const struct tcp_sock *tp = tcp_sk(sk);
2795 struct sk_buff *skb;
2797 if (tp->retrans_out)
2800 skb = tcp_write_queue_head(sk);
2801 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2807 /* Undo during fast recovery after partial ACK. */
2809 static int tcp_try_undo_partial(struct sock *sk, int acked)
2811 struct tcp_sock *tp = tcp_sk(sk);
2812 /* Partial ACK arrived. Force Hoe's retransmit. */
2813 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2815 if (tcp_may_undo(tp)) {
2816 /* Plain luck! Hole if filled with delayed
2817 * packet, rather than with a retransmit.
2819 if (!tcp_any_retrans_done(sk))
2820 tp->retrans_stamp = 0;
2822 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2825 tcp_undo_cwr(sk, false);
2826 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2828 /* So... Do not make Hoe's retransmit yet.
2829 * If the first packet was delayed, the rest
2830 * ones are most probably delayed as well.
2837 /* Undo during loss recovery after partial ACK. */
2838 static int tcp_try_undo_loss(struct sock *sk)
2840 struct tcp_sock *tp = tcp_sk(sk);
2842 if (tcp_may_undo(tp)) {
2843 struct sk_buff *skb;
2844 tcp_for_write_queue(skb, sk) {
2845 if (skb == tcp_send_head(sk))
2847 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2850 tcp_clear_all_retrans_hints(tp);
2852 DBGUNDO(sk, "partial loss");
2854 tcp_undo_cwr(sk, true);
2855 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2856 inet_csk(sk)->icsk_retransmits = 0;
2857 tp->undo_marker = 0;
2858 if (tcp_is_sack(tp))
2859 tcp_set_ca_state(sk, TCP_CA_Open);
2865 static inline void tcp_complete_cwr(struct sock *sk)
2867 struct tcp_sock *tp = tcp_sk(sk);
2869 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2870 if (tp->undo_marker) {
2871 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2872 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2874 tp->snd_cwnd = tp->snd_ssthresh;
2875 tp->snd_cwnd_stamp = tcp_time_stamp;
2877 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2880 static void tcp_try_keep_open(struct sock *sk)
2882 struct tcp_sock *tp = tcp_sk(sk);
2883 int state = TCP_CA_Open;
2885 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2886 state = TCP_CA_Disorder;
2888 if (inet_csk(sk)->icsk_ca_state != state) {
2889 tcp_set_ca_state(sk, state);
2890 tp->high_seq = tp->snd_nxt;
2894 static void tcp_try_to_open(struct sock *sk, int flag)
2896 struct tcp_sock *tp = tcp_sk(sk);
2898 tcp_verify_left_out(tp);
2900 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2901 tp->retrans_stamp = 0;
2903 if (flag & FLAG_ECE)
2904 tcp_enter_cwr(sk, 1);
2906 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2907 tcp_try_keep_open(sk);
2908 tcp_moderate_cwnd(tp);
2910 tcp_cwnd_down(sk, flag);
2914 static void tcp_mtup_probe_failed(struct sock *sk)
2916 struct inet_connection_sock *icsk = inet_csk(sk);
2918 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2919 icsk->icsk_mtup.probe_size = 0;
2922 static void tcp_mtup_probe_success(struct sock *sk)
2924 struct tcp_sock *tp = tcp_sk(sk);
2925 struct inet_connection_sock *icsk = inet_csk(sk);
2927 /* FIXME: breaks with very large cwnd */
2928 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2929 tp->snd_cwnd = tp->snd_cwnd *
2930 tcp_mss_to_mtu(sk, tp->mss_cache) /
2931 icsk->icsk_mtup.probe_size;
2932 tp->snd_cwnd_cnt = 0;
2933 tp->snd_cwnd_stamp = tcp_time_stamp;
2934 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2936 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2937 icsk->icsk_mtup.probe_size = 0;
2938 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2941 /* Do a simple retransmit without using the backoff mechanisms in
2942 * tcp_timer. This is used for path mtu discovery.
2943 * The socket is already locked here.
2945 void tcp_simple_retransmit(struct sock *sk)
2947 const struct inet_connection_sock *icsk = inet_csk(sk);
2948 struct tcp_sock *tp = tcp_sk(sk);
2949 struct sk_buff *skb;
2950 unsigned int mss = tcp_current_mss(sk);
2951 u32 prior_lost = tp->lost_out;
2953 tcp_for_write_queue(skb, sk) {
2954 if (skb == tcp_send_head(sk))
2956 if (tcp_skb_seglen(skb) > mss &&
2957 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2958 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2959 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2960 tp->retrans_out -= tcp_skb_pcount(skb);
2962 tcp_skb_mark_lost_uncond_verify(tp, skb);
2966 tcp_clear_retrans_hints_partial(tp);
2968 if (prior_lost == tp->lost_out)
2971 if (tcp_is_reno(tp))
2972 tcp_limit_reno_sacked(tp);
2974 tcp_verify_left_out(tp);
2976 /* Don't muck with the congestion window here.
2977 * Reason is that we do not increase amount of _data_
2978 * in network, but units changed and effective
2979 * cwnd/ssthresh really reduced now.
2981 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2982 tp->high_seq = tp->snd_nxt;
2983 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2984 tp->prior_ssthresh = 0;
2985 tp->undo_marker = 0;
2986 tcp_set_ca_state(sk, TCP_CA_Loss);
2988 tcp_xmit_retransmit_queue(sk);
2990 EXPORT_SYMBOL(tcp_simple_retransmit);
2992 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2993 * (proportional rate reduction with slow start reduction bound) as described in
2994 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2995 * It computes the number of packets to send (sndcnt) based on packets newly
2997 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2998 * cwnd reductions across a full RTT.
2999 * 2) If packets in flight is lower than ssthresh (such as due to excess
3000 * losses and/or application stalls), do not perform any further cwnd
3001 * reductions, but instead slow start up to ssthresh.
3003 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3004 int fast_rexmit, int flag)
3006 struct tcp_sock *tp = tcp_sk(sk);
3008 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3010 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3011 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3013 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3015 sndcnt = min_t(int, delta,
3016 max_t(int, tp->prr_delivered - tp->prr_out,
3017 newly_acked_sacked) + 1);
3020 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3021 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3024 /* Process an event, which can update packets-in-flight not trivially.
3025 * Main goal of this function is to calculate new estimate for left_out,
3026 * taking into account both packets sitting in receiver's buffer and
3027 * packets lost by network.
3029 * Besides that it does CWND reduction, when packet loss is detected
3030 * and changes state of machine.
3032 * It does _not_ decide what to send, it is made in function
3033 * tcp_xmit_retransmit_queue().
3035 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3036 int newly_acked_sacked, int flag)
3038 struct inet_connection_sock *icsk = inet_csk(sk);
3039 struct tcp_sock *tp = tcp_sk(sk);
3040 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3041 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3042 (tcp_fackets_out(tp) > tp->reordering));
3043 int fast_rexmit = 0, mib_idx;
3045 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3047 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3048 tp->fackets_out = 0;
3050 /* Now state machine starts.
3051 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3052 if (flag & FLAG_ECE)
3053 tp->prior_ssthresh = 0;
3055 /* B. In all the states check for reneging SACKs. */
3056 if (tcp_check_sack_reneging(sk, flag))
3059 /* C. Process data loss notification, provided it is valid. */
3060 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3061 before(tp->snd_una, tp->high_seq) &&
3062 icsk->icsk_ca_state != TCP_CA_Open &&
3063 tp->fackets_out > tp->reordering) {
3064 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3065 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);