tcp: limit payload size of sacked skbs
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_frto_response __read_mostly;
97 int sysctl_tcp_nometrics_save __read_mostly;
98
99 int sysctl_tcp_thin_dupack __read_mostly;
100
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_abc __read_mostly;
103
104 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
105 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
106 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
108 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
109 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
110 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
111 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
112 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
114 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
117 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
118 #define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
119
120 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
125
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128
129 /* Adapt the MSS value used to make delayed ack decision to the
130  * real world.
131  */
132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133 {
134         struct inet_connection_sock *icsk = inet_csk(sk);
135         const unsigned int lss = icsk->icsk_ack.last_seg_size;
136         unsigned int len;
137
138         icsk->icsk_ack.last_seg_size = 0;
139
140         /* skb->len may jitter because of SACKs, even if peer
141          * sends good full-sized frames.
142          */
143         len = skb_shinfo(skb)->gso_size ? : skb->len;
144         if (len >= icsk->icsk_ack.rcv_mss) {
145                 icsk->icsk_ack.rcv_mss = len;
146         } else {
147                 /* Otherwise, we make more careful check taking into account,
148                  * that SACKs block is variable.
149                  *
150                  * "len" is invariant segment length, including TCP header.
151                  */
152                 len += skb->data - skb_transport_header(skb);
153                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154                     /* If PSH is not set, packet should be
155                      * full sized, provided peer TCP is not badly broken.
156                      * This observation (if it is correct 8)) allows
157                      * to handle super-low mtu links fairly.
158                      */
159                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161                         /* Subtract also invariant (if peer is RFC compliant),
162                          * tcp header plus fixed timestamp option length.
163                          * Resulting "len" is MSS free of SACK jitter.
164                          */
165                         len -= tcp_sk(sk)->tcp_header_len;
166                         icsk->icsk_ack.last_seg_size = len;
167                         if (len == lss) {
168                                 icsk->icsk_ack.rcv_mss = len;
169                                 return;
170                         }
171                 }
172                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175         }
176 }
177
178 static void tcp_incr_quickack(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182
183         if (quickacks == 0)
184                 quickacks = 2;
185         if (quickacks > icsk->icsk_ack.quick)
186                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 }
188
189 static void tcp_enter_quickack_mode(struct sock *sk)
190 {
191         struct inet_connection_sock *icsk = inet_csk(sk);
192         tcp_incr_quickack(sk);
193         icsk->icsk_ack.pingpong = 0;
194         icsk->icsk_ack.ato = TCP_ATO_MIN;
195 }
196
197 /* Send ACKs quickly, if "quick" count is not exhausted
198  * and the session is not interactive.
199  */
200
201 static inline int tcp_in_quickack_mode(const struct sock *sk)
202 {
203         const struct inet_connection_sock *icsk = inet_csk(sk);
204         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
205 }
206
207 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
208 {
209         if (tp->ecn_flags & TCP_ECN_OK)
210                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
211 }
212
213 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
214 {
215         if (tcp_hdr(skb)->cwr)
216                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217 }
218
219 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
220 {
221         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223
224 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
225 {
226         if (!(tp->ecn_flags & TCP_ECN_OK))
227                 return;
228
229         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
230         case INET_ECN_NOT_ECT:
231                 /* Funny extension: if ECT is not set on a segment,
232                  * and we already seen ECT on a previous segment,
233                  * it is probably a retransmit.
234                  */
235                 if (tp->ecn_flags & TCP_ECN_SEEN)
236                         tcp_enter_quickack_mode((struct sock *)tp);
237                 break;
238         case INET_ECN_CE:
239                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240                 /* fallinto */
241         default:
242                 tp->ecn_flags |= TCP_ECN_SEEN;
243         }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249                 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255                 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261                 return 1;
262         return 0;
263 }
264
265 /* Buffer size and advertised window tuning.
266  *
267  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268  */
269
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273
274         sndmem *= TCP_INIT_CWND;
275         if (sk->sk_sndbuf < sndmem)
276                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280  *
281  * All tcp_full_space() is split to two parts: "network" buffer, allocated
282  * forward and advertised in receiver window (tp->rcv_wnd) and
283  * "application buffer", required to isolate scheduling/application
284  * latencies from network.
285  * window_clamp is maximal advertised window. It can be less than
286  * tcp_full_space(), in this case tcp_full_space() - window_clamp
287  * is reserved for "application" buffer. The less window_clamp is
288  * the smoother our behaviour from viewpoint of network, but the lower
289  * throughput and the higher sensitivity of the connection to losses. 8)
290  *
291  * rcv_ssthresh is more strict window_clamp used at "slow start"
292  * phase to predict further behaviour of this connection.
293  * It is used for two goals:
294  * - to enforce header prediction at sender, even when application
295  *   requires some significant "application buffer". It is check #1.
296  * - to prevent pruning of receive queue because of misprediction
297  *   of receiver window. Check #2.
298  *
299  * The scheme does not work when sender sends good segments opening
300  * window and then starts to feed us spaghetti. But it should work
301  * in common situations. Otherwise, we have to rely on queue collapsing.
302  */
303
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307         struct tcp_sock *tp = tcp_sk(sk);
308         /* Optimize this! */
309         int truesize = tcp_win_from_space(skb->truesize) >> 1;
310         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311
312         while (tp->rcv_ssthresh <= window) {
313                 if (truesize <= skb->len)
314                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315
316                 truesize >>= 1;
317                 window >>= 1;
318         }
319         return 0;
320 }
321
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324         struct tcp_sock *tp = tcp_sk(sk);
325
326         /* Check #1 */
327         if (tp->rcv_ssthresh < tp->window_clamp &&
328             (int)tp->rcv_ssthresh < tcp_space(sk) &&
329             !tcp_memory_pressure) {
330                 int incr;
331
332                 /* Check #2. Increase window, if skb with such overhead
333                  * will fit to rcvbuf in future.
334                  */
335                 if (tcp_win_from_space(skb->truesize) <= skb->len)
336                         incr = 2 * tp->advmss;
337                 else
338                         incr = __tcp_grow_window(sk, skb);
339
340                 if (incr) {
341                         incr = max_t(int, incr, 2 * skb->len);
342                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343                                                tp->window_clamp);
344                         inet_csk(sk)->icsk_ack.quick |= 1;
345                 }
346         }
347 }
348
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350
351 static void tcp_fixup_rcvbuf(struct sock *sk)
352 {
353         u32 mss = tcp_sk(sk)->advmss;
354         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
355         int rcvmem;
356
357         /* Limit to 10 segments if mss <= 1460,
358          * or 14600/mss segments, with a minimum of two segments.
359          */
360         if (mss > 1460)
361                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
362
363         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
364         while (tcp_win_from_space(rcvmem) < mss)
365                 rcvmem += 128;
366
367         rcvmem *= icwnd;
368
369         if (sk->sk_rcvbuf < rcvmem)
370                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
371 }
372
373 /* 4. Try to fixup all. It is made immediately after connection enters
374  *    established state.
375  */
376 static void tcp_init_buffer_space(struct sock *sk)
377 {
378         struct tcp_sock *tp = tcp_sk(sk);
379         int maxwin;
380
381         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
382                 tcp_fixup_rcvbuf(sk);
383         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
384                 tcp_fixup_sndbuf(sk);
385
386         tp->rcvq_space.space = tp->rcv_wnd;
387
388         maxwin = tcp_full_space(sk);
389
390         if (tp->window_clamp >= maxwin) {
391                 tp->window_clamp = maxwin;
392
393                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
394                         tp->window_clamp = max(maxwin -
395                                                (maxwin >> sysctl_tcp_app_win),
396                                                4 * tp->advmss);
397         }
398
399         /* Force reservation of one segment. */
400         if (sysctl_tcp_app_win &&
401             tp->window_clamp > 2 * tp->advmss &&
402             tp->window_clamp + tp->advmss > maxwin)
403                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
404
405         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
406         tp->snd_cwnd_stamp = tcp_time_stamp;
407 }
408
409 /* 5. Recalculate window clamp after socket hit its memory bounds. */
410 static void tcp_clamp_window(struct sock *sk)
411 {
412         struct tcp_sock *tp = tcp_sk(sk);
413         struct inet_connection_sock *icsk = inet_csk(sk);
414
415         icsk->icsk_ack.quick = 0;
416
417         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
418             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
419             !tcp_memory_pressure &&
420             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
421                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
422                                     sysctl_tcp_rmem[2]);
423         }
424         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
425                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
426 }
427
428 /* Initialize RCV_MSS value.
429  * RCV_MSS is an our guess about MSS used by the peer.
430  * We haven't any direct information about the MSS.
431  * It's better to underestimate the RCV_MSS rather than overestimate.
432  * Overestimations make us ACKing less frequently than needed.
433  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
434  */
435 void tcp_initialize_rcv_mss(struct sock *sk)
436 {
437         const struct tcp_sock *tp = tcp_sk(sk);
438         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
439
440         hint = min(hint, tp->rcv_wnd / 2);
441         hint = min(hint, TCP_MSS_DEFAULT);
442         hint = max(hint, TCP_MIN_MSS);
443
444         inet_csk(sk)->icsk_ack.rcv_mss = hint;
445 }
446 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
447
448 /* Receiver "autotuning" code.
449  *
450  * The algorithm for RTT estimation w/o timestamps is based on
451  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
452  * <http://public.lanl.gov/radiant/pubs.html#DRS>
453  *
454  * More detail on this code can be found at
455  * <http://staff.psc.edu/jheffner/>,
456  * though this reference is out of date.  A new paper
457  * is pending.
458  */
459 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
460 {
461         u32 new_sample = tp->rcv_rtt_est.rtt;
462         long m = sample;
463
464         if (m == 0)
465                 m = 1;
466
467         if (new_sample != 0) {
468                 /* If we sample in larger samples in the non-timestamp
469                  * case, we could grossly overestimate the RTT especially
470                  * with chatty applications or bulk transfer apps which
471                  * are stalled on filesystem I/O.
472                  *
473                  * Also, since we are only going for a minimum in the
474                  * non-timestamp case, we do not smooth things out
475                  * else with timestamps disabled convergence takes too
476                  * long.
477                  */
478                 if (!win_dep) {
479                         m -= (new_sample >> 3);
480                         new_sample += m;
481                 } else {
482                         m <<= 3;
483                         if (m < new_sample)
484                                 new_sample = m;
485                 }
486         } else {
487                 /* No previous measure. */
488                 new_sample = m << 3;
489         }
490
491         if (tp->rcv_rtt_est.rtt != new_sample)
492                 tp->rcv_rtt_est.rtt = new_sample;
493 }
494
495 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
496 {
497         if (tp->rcv_rtt_est.time == 0)
498                 goto new_measure;
499         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
500                 return;
501         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
502
503 new_measure:
504         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
505         tp->rcv_rtt_est.time = tcp_time_stamp;
506 }
507
508 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
509                                           const struct sk_buff *skb)
510 {
511         struct tcp_sock *tp = tcp_sk(sk);
512         if (tp->rx_opt.rcv_tsecr &&
513             (TCP_SKB_CB(skb)->end_seq -
514              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
515                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
516 }
517
518 /*
519  * This function should be called every time data is copied to user space.
520  * It calculates the appropriate TCP receive buffer space.
521  */
522 void tcp_rcv_space_adjust(struct sock *sk)
523 {
524         struct tcp_sock *tp = tcp_sk(sk);
525         int time;
526         int space;
527
528         if (tp->rcvq_space.time == 0)
529                 goto new_measure;
530
531         time = tcp_time_stamp - tp->rcvq_space.time;
532         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
533                 return;
534
535         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
536
537         space = max(tp->rcvq_space.space, space);
538
539         if (tp->rcvq_space.space != space) {
540                 int rcvmem;
541
542                 tp->rcvq_space.space = space;
543
544                 if (sysctl_tcp_moderate_rcvbuf &&
545                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
546                         int new_clamp = space;
547
548                         /* Receive space grows, normalize in order to
549                          * take into account packet headers and sk_buff
550                          * structure overhead.
551                          */
552                         space /= tp->advmss;
553                         if (!space)
554                                 space = 1;
555                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
556                         while (tcp_win_from_space(rcvmem) < tp->advmss)
557                                 rcvmem += 128;
558                         space *= rcvmem;
559                         space = min(space, sysctl_tcp_rmem[2]);
560                         if (space > sk->sk_rcvbuf) {
561                                 sk->sk_rcvbuf = space;
562
563                                 /* Make the window clamp follow along.  */
564                                 tp->window_clamp = new_clamp;
565                         }
566                 }
567         }
568
569 new_measure:
570         tp->rcvq_space.seq = tp->copied_seq;
571         tp->rcvq_space.time = tcp_time_stamp;
572 }
573
574 /* There is something which you must keep in mind when you analyze the
575  * behavior of the tp->ato delayed ack timeout interval.  When a
576  * connection starts up, we want to ack as quickly as possible.  The
577  * problem is that "good" TCP's do slow start at the beginning of data
578  * transmission.  The means that until we send the first few ACK's the
579  * sender will sit on his end and only queue most of his data, because
580  * he can only send snd_cwnd unacked packets at any given time.  For
581  * each ACK we send, he increments snd_cwnd and transmits more of his
582  * queue.  -DaveM
583  */
584 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
585 {
586         struct tcp_sock *tp = tcp_sk(sk);
587         struct inet_connection_sock *icsk = inet_csk(sk);
588         u32 now;
589
590         inet_csk_schedule_ack(sk);
591
592         tcp_measure_rcv_mss(sk, skb);
593
594         tcp_rcv_rtt_measure(tp);
595
596         now = tcp_time_stamp;
597
598         if (!icsk->icsk_ack.ato) {
599                 /* The _first_ data packet received, initialize
600                  * delayed ACK engine.
601                  */
602                 tcp_incr_quickack(sk);
603                 icsk->icsk_ack.ato = TCP_ATO_MIN;
604         } else {
605                 int m = now - icsk->icsk_ack.lrcvtime;
606
607                 if (m <= TCP_ATO_MIN / 2) {
608                         /* The fastest case is the first. */
609                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
610                 } else if (m < icsk->icsk_ack.ato) {
611                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
612                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
613                                 icsk->icsk_ack.ato = icsk->icsk_rto;
614                 } else if (m > icsk->icsk_rto) {
615                         /* Too long gap. Apparently sender failed to
616                          * restart window, so that we send ACKs quickly.
617                          */
618                         tcp_incr_quickack(sk);
619                         sk_mem_reclaim(sk);
620                 }
621         }
622         icsk->icsk_ack.lrcvtime = now;
623
624         TCP_ECN_check_ce(tp, skb);
625
626         if (skb->len >= 128)
627                 tcp_grow_window(sk, skb);
628 }
629
630 /* Called to compute a smoothed rtt estimate. The data fed to this
631  * routine either comes from timestamps, or from segments that were
632  * known _not_ to have been retransmitted [see Karn/Partridge
633  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
634  * piece by Van Jacobson.
635  * NOTE: the next three routines used to be one big routine.
636  * To save cycles in the RFC 1323 implementation it was better to break
637  * it up into three procedures. -- erics
638  */
639 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
640 {
641         struct tcp_sock *tp = tcp_sk(sk);
642         long m = mrtt; /* RTT */
643
644         /*      The following amusing code comes from Jacobson's
645          *      article in SIGCOMM '88.  Note that rtt and mdev
646          *      are scaled versions of rtt and mean deviation.
647          *      This is designed to be as fast as possible
648          *      m stands for "measurement".
649          *
650          *      On a 1990 paper the rto value is changed to:
651          *      RTO = rtt + 4 * mdev
652          *
653          * Funny. This algorithm seems to be very broken.
654          * These formulae increase RTO, when it should be decreased, increase
655          * too slowly, when it should be increased quickly, decrease too quickly
656          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
657          * does not matter how to _calculate_ it. Seems, it was trap
658          * that VJ failed to avoid. 8)
659          */
660         if (m == 0)
661                 m = 1;
662         if (tp->srtt != 0) {
663                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
664                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
665                 if (m < 0) {
666                         m = -m;         /* m is now abs(error) */
667                         m -= (tp->mdev >> 2);   /* similar update on mdev */
668                         /* This is similar to one of Eifel findings.
669                          * Eifel blocks mdev updates when rtt decreases.
670                          * This solution is a bit different: we use finer gain
671                          * for mdev in this case (alpha*beta).
672                          * Like Eifel it also prevents growth of rto,
673                          * but also it limits too fast rto decreases,
674                          * happening in pure Eifel.
675                          */
676                         if (m > 0)
677                                 m >>= 3;
678                 } else {
679                         m -= (tp->mdev >> 2);   /* similar update on mdev */
680                 }
681                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
682                 if (tp->mdev > tp->mdev_max) {
683                         tp->mdev_max = tp->mdev;
684                         if (tp->mdev_max > tp->rttvar)
685                                 tp->rttvar = tp->mdev_max;
686                 }
687                 if (after(tp->snd_una, tp->rtt_seq)) {
688                         if (tp->mdev_max < tp->rttvar)
689                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
690                         tp->rtt_seq = tp->snd_nxt;
691                         tp->mdev_max = tcp_rto_min(sk);
692                 }
693         } else {
694                 /* no previous measure. */
695                 tp->srtt = m << 3;      /* take the measured time to be rtt */
696                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
697                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
698                 tp->rtt_seq = tp->snd_nxt;
699         }
700 }
701
702 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
703  * routine referred to above.
704  */
705 static inline void tcp_set_rto(struct sock *sk)
706 {
707         const struct tcp_sock *tp = tcp_sk(sk);
708         /* Old crap is replaced with new one. 8)
709          *
710          * More seriously:
711          * 1. If rtt variance happened to be less 50msec, it is hallucination.
712          *    It cannot be less due to utterly erratic ACK generation made
713          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
714          *    to do with delayed acks, because at cwnd>2 true delack timeout
715          *    is invisible. Actually, Linux-2.4 also generates erratic
716          *    ACKs in some circumstances.
717          */
718         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
719
720         /* 2. Fixups made earlier cannot be right.
721          *    If we do not estimate RTO correctly without them,
722          *    all the algo is pure shit and should be replaced
723          *    with correct one. It is exactly, which we pretend to do.
724          */
725
726         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
727          * guarantees that rto is higher.
728          */
729         tcp_bound_rto(sk);
730 }
731
732 /* Save metrics learned by this TCP session.
733    This function is called only, when TCP finishes successfully
734    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
735  */
736 void tcp_update_metrics(struct sock *sk)
737 {
738         struct tcp_sock *tp = tcp_sk(sk);
739         struct dst_entry *dst = __sk_dst_get(sk);
740
741         if (sysctl_tcp_nometrics_save)
742                 return;
743
744         dst_confirm(dst);
745
746         if (dst && (dst->flags & DST_HOST)) {
747                 const struct inet_connection_sock *icsk = inet_csk(sk);
748                 int m;
749                 unsigned long rtt;
750
751                 if (icsk->icsk_backoff || !tp->srtt) {
752                         /* This session failed to estimate rtt. Why?
753                          * Probably, no packets returned in time.
754                          * Reset our results.
755                          */
756                         if (!(dst_metric_locked(dst, RTAX_RTT)))
757                                 dst_metric_set(dst, RTAX_RTT, 0);
758                         return;
759                 }
760
761                 rtt = dst_metric_rtt(dst, RTAX_RTT);
762                 m = rtt - tp->srtt;
763
764                 /* If newly calculated rtt larger than stored one,
765                  * store new one. Otherwise, use EWMA. Remember,
766                  * rtt overestimation is always better than underestimation.
767                  */
768                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
769                         if (m <= 0)
770                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
771                         else
772                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
773                 }
774
775                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
776                         unsigned long var;
777                         if (m < 0)
778                                 m = -m;
779
780                         /* Scale deviation to rttvar fixed point */
781                         m >>= 1;
782                         if (m < tp->mdev)
783                                 m = tp->mdev;
784
785                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
786                         if (m >= var)
787                                 var = m;
788                         else
789                                 var -= (var - m) >> 2;
790
791                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
792                 }
793
794                 if (tcp_in_initial_slowstart(tp)) {
795                         /* Slow start still did not finish. */
796                         if (dst_metric(dst, RTAX_SSTHRESH) &&
797                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
798                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
799                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
800                         if (!dst_metric_locked(dst, RTAX_CWND) &&
801                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
802                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
803                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
804                            icsk->icsk_ca_state == TCP_CA_Open) {
805                         /* Cong. avoidance phase, cwnd is reliable. */
806                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
807                                 dst_metric_set(dst, RTAX_SSTHRESH,
808                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
809                         if (!dst_metric_locked(dst, RTAX_CWND))
810                                 dst_metric_set(dst, RTAX_CWND,
811                                                (dst_metric(dst, RTAX_CWND) +
812                                                 tp->snd_cwnd) >> 1);
813                 } else {
814                         /* Else slow start did not finish, cwnd is non-sense,
815                            ssthresh may be also invalid.
816                          */
817                         if (!dst_metric_locked(dst, RTAX_CWND))
818                                 dst_metric_set(dst, RTAX_CWND,
819                                                (dst_metric(dst, RTAX_CWND) +
820                                                 tp->snd_ssthresh) >> 1);
821                         if (dst_metric(dst, RTAX_SSTHRESH) &&
822                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
823                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
824                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
825                 }
826
827                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
828                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
829                             tp->reordering != sysctl_tcp_reordering)
830                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
831                 }
832         }
833 }
834
835 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
836 {
837         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
838
839         if (!cwnd)
840                 cwnd = TCP_INIT_CWND;
841         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
842 }
843
844 /* Set slow start threshold and cwnd not falling to slow start */
845 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
846 {
847         struct tcp_sock *tp = tcp_sk(sk);
848         const struct inet_connection_sock *icsk = inet_csk(sk);
849
850         tp->prior_ssthresh = 0;
851         tp->bytes_acked = 0;
852         if (icsk->icsk_ca_state < TCP_CA_CWR) {
853                 tp->undo_marker = 0;
854                 if (set_ssthresh)
855                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
856                 tp->snd_cwnd = min(tp->snd_cwnd,
857                                    tcp_packets_in_flight(tp) + 1U);
858                 tp->snd_cwnd_cnt = 0;
859                 tp->high_seq = tp->snd_nxt;
860                 tp->snd_cwnd_stamp = tcp_time_stamp;
861                 TCP_ECN_queue_cwr(tp);
862
863                 tcp_set_ca_state(sk, TCP_CA_CWR);
864         }
865 }
866
867 /*
868  * Packet counting of FACK is based on in-order assumptions, therefore TCP
869  * disables it when reordering is detected
870  */
871 static void tcp_disable_fack(struct tcp_sock *tp)
872 {
873         /* RFC3517 uses different metric in lost marker => reset on change */
874         if (tcp_is_fack(tp))
875                 tp->lost_skb_hint = NULL;
876         tp->rx_opt.sack_ok &= ~2;
877 }
878
879 /* Take a notice that peer is sending D-SACKs */
880 static void tcp_dsack_seen(struct tcp_sock *tp)
881 {
882         tp->rx_opt.sack_ok |= 4;
883 }
884
885 /* Initialize metrics on socket. */
886
887 static void tcp_init_metrics(struct sock *sk)
888 {
889         struct tcp_sock *tp = tcp_sk(sk);
890         struct dst_entry *dst = __sk_dst_get(sk);
891
892         if (dst == NULL)
893                 goto reset;
894
895         dst_confirm(dst);
896
897         if (dst_metric_locked(dst, RTAX_CWND))
898                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
899         if (dst_metric(dst, RTAX_SSTHRESH)) {
900                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
901                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
902                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
903         } else {
904                 /* ssthresh may have been reduced unnecessarily during.
905                  * 3WHS. Restore it back to its initial default.
906                  */
907                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
908         }
909         if (dst_metric(dst, RTAX_REORDERING) &&
910             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
911                 tcp_disable_fack(tp);
912                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
913         }
914
915         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
916                 goto reset;
917
918         /* Initial rtt is determined from SYN,SYN-ACK.
919          * The segment is small and rtt may appear much
920          * less than real one. Use per-dst memory
921          * to make it more realistic.
922          *
923          * A bit of theory. RTT is time passed after "normal" sized packet
924          * is sent until it is ACKed. In normal circumstances sending small
925          * packets force peer to delay ACKs and calculation is correct too.
926          * The algorithm is adaptive and, provided we follow specs, it
927          * NEVER underestimate RTT. BUT! If peer tries to make some clever
928          * tricks sort of "quick acks" for time long enough to decrease RTT
929          * to low value, and then abruptly stops to do it and starts to delay
930          * ACKs, wait for troubles.
931          */
932         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
933                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
934                 tp->rtt_seq = tp->snd_nxt;
935         }
936         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
937                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
938                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
939         }
940         tcp_set_rto(sk);
941 reset:
942         if (tp->srtt == 0) {
943                 /* RFC2988bis: We've failed to get a valid RTT sample from
944                  * 3WHS. This is most likely due to retransmission,
945                  * including spurious one. Reset the RTO back to 3secs
946                  * from the more aggressive 1sec to avoid more spurious
947                  * retransmission.
948                  */
949                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
950                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
951         }
952         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
953          * retransmitted. In light of RFC2988bis' more aggressive 1sec
954          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
955          * retransmission has occurred.
956          */
957         if (tp->total_retrans > 1)
958                 tp->snd_cwnd = 1;
959         else
960                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
961         tp->snd_cwnd_stamp = tcp_time_stamp;
962 }
963
964 static void tcp_update_reordering(struct sock *sk, const int metric,
965                                   const int ts)
966 {
967         struct tcp_sock *tp = tcp_sk(sk);
968         if (metric > tp->reordering) {
969                 int mib_idx;
970
971                 tp->reordering = min(TCP_MAX_REORDERING, metric);
972
973                 /* This exciting event is worth to be remembered. 8) */
974                 if (ts)
975                         mib_idx = LINUX_MIB_TCPTSREORDER;
976                 else if (tcp_is_reno(tp))
977                         mib_idx = LINUX_MIB_TCPRENOREORDER;
978                 else if (tcp_is_fack(tp))
979                         mib_idx = LINUX_MIB_TCPFACKREORDER;
980                 else
981                         mib_idx = LINUX_MIB_TCPSACKREORDER;
982
983                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
984 #if FASTRETRANS_DEBUG > 1
985                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
986                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
987                        tp->reordering,
988                        tp->fackets_out,
989                        tp->sacked_out,
990                        tp->undo_marker ? tp->undo_retrans : 0);
991 #endif
992                 tcp_disable_fack(tp);
993         }
994 }
995
996 /* This must be called before lost_out is incremented */
997 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
998 {
999         if ((tp->retransmit_skb_hint == NULL) ||
1000             before(TCP_SKB_CB(skb)->seq,
1001                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1002                 tp->retransmit_skb_hint = skb;
1003
1004         if (!tp->lost_out ||
1005             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1006                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1007 }
1008
1009 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1010 {
1011         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1012                 tcp_verify_retransmit_hint(tp, skb);
1013
1014                 tp->lost_out += tcp_skb_pcount(skb);
1015                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1016         }
1017 }
1018
1019 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1020                                             struct sk_buff *skb)
1021 {
1022         tcp_verify_retransmit_hint(tp, skb);
1023
1024         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1025                 tp->lost_out += tcp_skb_pcount(skb);
1026                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1027         }
1028 }
1029
1030 /* This procedure tags the retransmission queue when SACKs arrive.
1031  *
1032  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1033  * Packets in queue with these bits set are counted in variables
1034  * sacked_out, retrans_out and lost_out, correspondingly.
1035  *
1036  * Valid combinations are:
1037  * Tag  InFlight        Description
1038  * 0    1               - orig segment is in flight.
1039  * S    0               - nothing flies, orig reached receiver.
1040  * L    0               - nothing flies, orig lost by net.
1041  * R    2               - both orig and retransmit are in flight.
1042  * L|R  1               - orig is lost, retransmit is in flight.
1043  * S|R  1               - orig reached receiver, retrans is still in flight.
1044  * (L|S|R is logically valid, it could occur when L|R is sacked,
1045  *  but it is equivalent to plain S and code short-curcuits it to S.
1046  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1047  *
1048  * These 6 states form finite state machine, controlled by the following events:
1049  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1050  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1051  * 3. Loss detection event of one of three flavors:
1052  *      A. Scoreboard estimator decided the packet is lost.
1053  *         A'. Reno "three dupacks" marks head of queue lost.
1054  *         A''. Its FACK modfication, head until snd.fack is lost.
1055  *      B. SACK arrives sacking data transmitted after never retransmitted
1056  *         hole was sent out.
1057  *      C. SACK arrives sacking SND.NXT at the moment, when the
1058  *         segment was retransmitted.
1059  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1060  *
1061  * It is pleasant to note, that state diagram turns out to be commutative,
1062  * so that we are allowed not to be bothered by order of our actions,
1063  * when multiple events arrive simultaneously. (see the function below).
1064  *
1065  * Reordering detection.
1066  * --------------------
1067  * Reordering metric is maximal distance, which a packet can be displaced
1068  * in packet stream. With SACKs we can estimate it:
1069  *
1070  * 1. SACK fills old hole and the corresponding segment was not
1071  *    ever retransmitted -> reordering. Alas, we cannot use it
1072  *    when segment was retransmitted.
1073  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1074  *    for retransmitted and already SACKed segment -> reordering..
1075  * Both of these heuristics are not used in Loss state, when we cannot
1076  * account for retransmits accurately.
1077  *
1078  * SACK block validation.
1079  * ----------------------
1080  *
1081  * SACK block range validation checks that the received SACK block fits to
1082  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1083  * Note that SND.UNA is not included to the range though being valid because
1084  * it means that the receiver is rather inconsistent with itself reporting
1085  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1086  * perfectly valid, however, in light of RFC2018 which explicitly states
1087  * that "SACK block MUST reflect the newest segment.  Even if the newest
1088  * segment is going to be discarded ...", not that it looks very clever
1089  * in case of head skb. Due to potentional receiver driven attacks, we
1090  * choose to avoid immediate execution of a walk in write queue due to
1091  * reneging and defer head skb's loss recovery to standard loss recovery
1092  * procedure that will eventually trigger (nothing forbids us doing this).
1093  *
1094  * Implements also blockage to start_seq wrap-around. Problem lies in the
1095  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1096  * there's no guarantee that it will be before snd_nxt (n). The problem
1097  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1098  * wrap (s_w):
1099  *
1100  *         <- outs wnd ->                          <- wrapzone ->
1101  *         u     e      n                         u_w   e_w  s n_w
1102  *         |     |      |                          |     |   |  |
1103  * |<------------+------+----- TCP seqno space --------------+---------->|
1104  * ...-- <2^31 ->|                                           |<--------...
1105  * ...---- >2^31 ------>|                                    |<--------...
1106  *
1107  * Current code wouldn't be vulnerable but it's better still to discard such
1108  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1109  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1110  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1111  * equal to the ideal case (infinite seqno space without wrap caused issues).
1112  *
1113  * With D-SACK the lower bound is extended to cover sequence space below
1114  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1115  * again, D-SACK block must not to go across snd_una (for the same reason as
1116  * for the normal SACK blocks, explained above). But there all simplicity
1117  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1118  * fully below undo_marker they do not affect behavior in anyway and can
1119  * therefore be safely ignored. In rare cases (which are more or less
1120  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1121  * fragmentation and packet reordering past skb's retransmission. To consider
1122  * them correctly, the acceptable range must be extended even more though
1123  * the exact amount is rather hard to quantify. However, tp->max_window can
1124  * be used as an exaggerated estimate.
1125  */
1126 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1127                                   u32 start_seq, u32 end_seq)
1128 {
1129         /* Too far in future, or reversed (interpretation is ambiguous) */
1130         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1131                 return 0;
1132
1133         /* Nasty start_seq wrap-around check (see comments above) */
1134         if (!before(start_seq, tp->snd_nxt))
1135                 return 0;
1136
1137         /* In outstanding window? ...This is valid exit for D-SACKs too.
1138          * start_seq == snd_una is non-sensical (see comments above)
1139          */
1140         if (after(start_seq, tp->snd_una))
1141                 return 1;
1142
1143         if (!is_dsack || !tp->undo_marker)
1144                 return 0;
1145
1146         /* ...Then it's D-SACK, and must reside below snd_una completely */
1147         if (after(end_seq, tp->snd_una))
1148                 return 0;
1149
1150         if (!before(start_seq, tp->undo_marker))
1151                 return 1;
1152
1153         /* Too old */
1154         if (!after(end_seq, tp->undo_marker))
1155                 return 0;
1156
1157         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1158          *   start_seq < undo_marker and end_seq >= undo_marker.
1159          */
1160         return !before(start_seq, end_seq - tp->max_window);
1161 }
1162
1163 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1164  * Event "C". Later note: FACK people cheated me again 8), we have to account
1165  * for reordering! Ugly, but should help.
1166  *
1167  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1168  * less than what is now known to be received by the other end (derived from
1169  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1170  * retransmitted skbs to avoid some costly processing per ACKs.
1171  */
1172 static void tcp_mark_lost_retrans(struct sock *sk)
1173 {
1174         const struct inet_connection_sock *icsk = inet_csk(sk);
1175         struct tcp_sock *tp = tcp_sk(sk);
1176         struct sk_buff *skb;
1177         int cnt = 0;
1178         u32 new_low_seq = tp->snd_nxt;
1179         u32 received_upto = tcp_highest_sack_seq(tp);
1180
1181         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1182             !after(received_upto, tp->lost_retrans_low) ||
1183             icsk->icsk_ca_state != TCP_CA_Recovery)
1184                 return;
1185
1186         tcp_for_write_queue(skb, sk) {
1187                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1188
1189                 if (skb == tcp_send_head(sk))
1190                         break;
1191                 if (cnt == tp->retrans_out)
1192                         break;
1193                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1194                         continue;
1195
1196                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1197                         continue;
1198
1199                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1200                  * constraint here (see above) but figuring out that at
1201                  * least tp->reordering SACK blocks reside between ack_seq
1202                  * and received_upto is not easy task to do cheaply with
1203                  * the available datastructures.
1204                  *
1205                  * Whether FACK should check here for tp->reordering segs
1206                  * in-between one could argue for either way (it would be
1207                  * rather simple to implement as we could count fack_count
1208                  * during the walk and do tp->fackets_out - fack_count).
1209                  */
1210                 if (after(received_upto, ack_seq)) {
1211                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1212                         tp->retrans_out -= tcp_skb_pcount(skb);
1213
1214                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1215                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1216                 } else {
1217                         if (before(ack_seq, new_low_seq))
1218                                 new_low_seq = ack_seq;
1219                         cnt += tcp_skb_pcount(skb);
1220                 }
1221         }
1222
1223         if (tp->retrans_out)
1224                 tp->lost_retrans_low = new_low_seq;
1225 }
1226
1227 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1228                            struct tcp_sack_block_wire *sp, int num_sacks,
1229                            u32 prior_snd_una)
1230 {
1231         struct tcp_sock *tp = tcp_sk(sk);
1232         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1233         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1234         int dup_sack = 0;
1235
1236         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1237                 dup_sack = 1;
1238                 tcp_dsack_seen(tp);
1239                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1240         } else if (num_sacks > 1) {
1241                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1242                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1243
1244                 if (!after(end_seq_0, end_seq_1) &&
1245                     !before(start_seq_0, start_seq_1)) {
1246                         dup_sack = 1;
1247                         tcp_dsack_seen(tp);
1248                         NET_INC_STATS_BH(sock_net(sk),
1249                                         LINUX_MIB_TCPDSACKOFORECV);
1250                 }
1251         }
1252
1253         /* D-SACK for already forgotten data... Do dumb counting. */
1254         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1255             !after(end_seq_0, prior_snd_una) &&
1256             after(end_seq_0, tp->undo_marker))
1257                 tp->undo_retrans--;
1258
1259         return dup_sack;
1260 }
1261
1262 struct tcp_sacktag_state {
1263         int reord;
1264         int fack_count;
1265         int flag;
1266 };
1267
1268 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1269  * the incoming SACK may not exactly match but we can find smaller MSS
1270  * aligned portion of it that matches. Therefore we might need to fragment
1271  * which may fail and creates some hassle (caller must handle error case
1272  * returns).
1273  *
1274  * FIXME: this could be merged to shift decision code
1275  */
1276 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1277                                  u32 start_seq, u32 end_seq)
1278 {
1279         int in_sack, err;
1280         unsigned int pkt_len;
1281         unsigned int mss;
1282
1283         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1284                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1285
1286         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1287             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1288                 mss = tcp_skb_mss(skb);
1289                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1290
1291                 if (!in_sack) {
1292                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1293                         if (pkt_len < mss)
1294                                 pkt_len = mss;
1295                 } else {
1296                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1297                         if (pkt_len < mss)
1298                                 return -EINVAL;
1299                 }
1300
1301                 /* Round if necessary so that SACKs cover only full MSSes
1302                  * and/or the remaining small portion (if present)
1303                  */
1304                 if (pkt_len > mss) {
1305                         unsigned int new_len = (pkt_len / mss) * mss;
1306                         if (!in_sack && new_len < pkt_len)
1307                                 new_len += mss;
1308                         pkt_len = new_len;
1309                 }
1310
1311                 if (pkt_len >= skb->len && !in_sack)
1312                         return 0;
1313
1314                 err = tcp_fragment(sk, skb, pkt_len, mss);
1315                 if (err < 0)
1316                         return err;
1317         }
1318
1319         return in_sack;
1320 }
1321
1322 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1323 static u8 tcp_sacktag_one(struct sock *sk,
1324                           struct tcp_sacktag_state *state, u8 sacked,
1325                           u32 start_seq, u32 end_seq,
1326                           int dup_sack, int pcount)
1327 {
1328         struct tcp_sock *tp = tcp_sk(sk);
1329         int fack_count = state->fack_count;
1330
1331         /* Account D-SACK for retransmitted packet. */
1332         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1333                 if (tp->undo_marker && tp->undo_retrans &&
1334                     after(end_seq, tp->undo_marker))
1335                         tp->undo_retrans--;
1336                 if (sacked & TCPCB_SACKED_ACKED)
1337                         state->reord = min(fack_count, state->reord);
1338         }
1339
1340         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1341         if (!after(end_seq, tp->snd_una))
1342                 return sacked;
1343
1344         if (!(sacked & TCPCB_SACKED_ACKED)) {
1345                 if (sacked & TCPCB_SACKED_RETRANS) {
1346                         /* If the segment is not tagged as lost,
1347                          * we do not clear RETRANS, believing
1348                          * that retransmission is still in flight.
1349                          */
1350                         if (sacked & TCPCB_LOST) {
1351                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1352                                 tp->lost_out -= pcount;
1353                                 tp->retrans_out -= pcount;
1354                         }
1355                 } else {
1356                         if (!(sacked & TCPCB_RETRANS)) {
1357                                 /* New sack for not retransmitted frame,
1358                                  * which was in hole. It is reordering.
1359                                  */
1360                                 if (before(start_seq,
1361                                            tcp_highest_sack_seq(tp)))
1362                                         state->reord = min(fack_count,
1363                                                            state->reord);
1364
1365                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1366                                 if (!after(end_seq, tp->frto_highmark))
1367                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1368                         }
1369
1370                         if (sacked & TCPCB_LOST) {
1371                                 sacked &= ~TCPCB_LOST;
1372                                 tp->lost_out -= pcount;
1373                         }
1374                 }
1375
1376                 sacked |= TCPCB_SACKED_ACKED;
1377                 state->flag |= FLAG_DATA_SACKED;
1378                 tp->sacked_out += pcount;
1379
1380                 fack_count += pcount;
1381
1382                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1383                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1384                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1385                         tp->lost_cnt_hint += pcount;
1386
1387                 if (fack_count > tp->fackets_out)
1388                         tp->fackets_out = fack_count;
1389         }
1390
1391         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1392          * frames and clear it. undo_retrans is decreased above, L|R frames
1393          * are accounted above as well.
1394          */
1395         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1396                 sacked &= ~TCPCB_SACKED_RETRANS;
1397                 tp->retrans_out -= pcount;
1398         }
1399
1400         return sacked;
1401 }
1402
1403 /* Shift newly-SACKed bytes from this skb to the immediately previous
1404  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1405  */
1406 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1407                            struct tcp_sacktag_state *state,
1408                            unsigned int pcount, int shifted, int mss,
1409                            int dup_sack)
1410 {
1411         struct tcp_sock *tp = tcp_sk(sk);
1412         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1413         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1414         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1415
1416         BUG_ON(!pcount);
1417
1418         /* Adjust counters and hints for the newly sacked sequence
1419          * range but discard the return value since prev is already
1420          * marked. We must tag the range first because the seq
1421          * advancement below implicitly advances
1422          * tcp_highest_sack_seq() when skb is highest_sack.
1423          */
1424         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1425                         start_seq, end_seq, dup_sack, pcount);
1426
1427         if (skb == tp->lost_skb_hint)
1428                 tp->lost_cnt_hint += pcount;
1429
1430         TCP_SKB_CB(prev)->end_seq += shifted;
1431         TCP_SKB_CB(skb)->seq += shifted;
1432
1433         skb_shinfo(prev)->gso_segs += pcount;
1434         WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1435         skb_shinfo(skb)->gso_segs -= pcount;
1436
1437         /* When we're adding to gso_segs == 1, gso_size will be zero,
1438          * in theory this shouldn't be necessary but as long as DSACK
1439          * code can come after this skb later on it's better to keep
1440          * setting gso_size to something.
1441          */
1442         if (!skb_shinfo(prev)->gso_size) {
1443                 skb_shinfo(prev)->gso_size = mss;
1444                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1445         }
1446
1447         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1448         if (skb_shinfo(skb)->gso_segs <= 1) {
1449                 skb_shinfo(skb)->gso_size = 0;
1450                 skb_shinfo(skb)->gso_type = 0;
1451         }
1452
1453         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1454         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1455
1456         if (skb->len > 0) {
1457                 BUG_ON(!tcp_skb_pcount(skb));
1458                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1459                 return 0;
1460         }
1461
1462         /* Whole SKB was eaten :-) */
1463
1464         if (skb == tp->retransmit_skb_hint)
1465                 tp->retransmit_skb_hint = prev;
1466         if (skb == tp->scoreboard_skb_hint)
1467                 tp->scoreboard_skb_hint = prev;
1468         if (skb == tp->lost_skb_hint) {
1469                 tp->lost_skb_hint = prev;
1470                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1471         }
1472
1473         TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1474         if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1475                 TCP_SKB_CB(prev)->end_seq++;
1476
1477         if (skb == tcp_highest_sack(sk))
1478                 tcp_advance_highest_sack(sk, skb);
1479
1480         tcp_unlink_write_queue(skb, sk);
1481         sk_wmem_free_skb(sk, skb);
1482
1483         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1484
1485         return 1;
1486 }
1487
1488 /* I wish gso_size would have a bit more sane initialization than
1489  * something-or-zero which complicates things
1490  */
1491 static int tcp_skb_seglen(const struct sk_buff *skb)
1492 {
1493         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1494 }
1495
1496 /* Shifting pages past head area doesn't work */
1497 static int skb_can_shift(const struct sk_buff *skb)
1498 {
1499         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1500 }
1501
1502 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1503                   int pcount, int shiftlen)
1504 {
1505         /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1506          * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1507          * to make sure not storing more than 65535 * 8 bytes per skb,
1508          * even if current MSS is bigger.
1509          */
1510         if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1511                 return 0;
1512         if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1513                 return 0;
1514         return skb_shift(to, from, shiftlen);
1515 }
1516
1517 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1518  * skb.
1519  */
1520 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1521                                           struct tcp_sacktag_state *state,
1522                                           u32 start_seq, u32 end_seq,
1523                                           int dup_sack)
1524 {
1525         struct tcp_sock *tp = tcp_sk(sk);
1526         struct sk_buff *prev;
1527         int mss;
1528         int next_pcount;
1529         int pcount = 0;
1530         int len;
1531         int in_sack;
1532
1533         if (!sk_can_gso(sk))
1534                 goto fallback;
1535
1536         /* Normally R but no L won't result in plain S */
1537         if (!dup_sack &&
1538             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1539                 goto fallback;
1540         if (!skb_can_shift(skb))
1541                 goto fallback;
1542         /* This frame is about to be dropped (was ACKed). */
1543         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1544                 goto fallback;
1545
1546         /* Can only happen with delayed DSACK + discard craziness */
1547         if (unlikely(skb == tcp_write_queue_head(sk)))
1548                 goto fallback;
1549         prev = tcp_write_queue_prev(sk, skb);
1550
1551         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1552                 goto fallback;
1553
1554         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1555                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1556
1557         if (in_sack) {
1558                 len = skb->len;
1559                 pcount = tcp_skb_pcount(skb);
1560                 mss = tcp_skb_seglen(skb);
1561
1562                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1563                  * drop this restriction as unnecessary
1564                  */
1565                 if (mss != tcp_skb_seglen(prev))
1566                         goto fallback;
1567         } else {
1568                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1569                         goto noop;
1570                 /* CHECKME: This is non-MSS split case only?, this will
1571                  * cause skipped skbs due to advancing loop btw, original
1572                  * has that feature too
1573                  */
1574                 if (tcp_skb_pcount(skb) <= 1)
1575                         goto noop;
1576
1577                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1578                 if (!in_sack) {
1579                         /* TODO: head merge to next could be attempted here
1580                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1581                          * though it might not be worth of the additional hassle
1582                          *
1583                          * ...we can probably just fallback to what was done
1584                          * previously. We could try merging non-SACKed ones
1585                          * as well but it probably isn't going to buy off
1586                          * because later SACKs might again split them, and
1587                          * it would make skb timestamp tracking considerably
1588                          * harder problem.
1589                          */
1590                         goto fallback;
1591                 }
1592
1593                 len = end_seq - TCP_SKB_CB(skb)->seq;
1594                 BUG_ON(len < 0);
1595                 BUG_ON(len > skb->len);
1596
1597                 /* MSS boundaries should be honoured or else pcount will
1598                  * severely break even though it makes things bit trickier.
1599                  * Optimize common case to avoid most of the divides
1600                  */
1601                 mss = tcp_skb_mss(skb);
1602
1603                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1604                  * drop this restriction as unnecessary
1605                  */
1606                 if (mss != tcp_skb_seglen(prev))
1607                         goto fallback;
1608
1609                 if (len == mss) {
1610                         pcount = 1;
1611                 } else if (len < mss) {
1612                         goto noop;
1613                 } else {
1614                         pcount = len / mss;
1615                         len = pcount * mss;
1616                 }
1617         }
1618
1619         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1620         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1621                 goto fallback;
1622
1623         if (!tcp_skb_shift(prev, skb, pcount, len))
1624                 goto fallback;
1625         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1626                 goto out;
1627
1628         /* Hole filled allows collapsing with the next as well, this is very
1629          * useful when hole on every nth skb pattern happens
1630          */
1631         if (prev == tcp_write_queue_tail(sk))
1632                 goto out;
1633         skb = tcp_write_queue_next(sk, prev);
1634
1635         if (!skb_can_shift(skb) ||
1636             (skb == tcp_send_head(sk)) ||
1637             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1638             (mss != tcp_skb_seglen(skb)))
1639                 goto out;
1640
1641         len = skb->len;
1642         next_pcount = tcp_skb_pcount(skb);
1643         if (tcp_skb_shift(prev, skb, next_pcount, len)) {
1644                 pcount += next_pcount;
1645                 tcp_shifted_skb(sk, skb, state, next_pcount, len, mss, 0);
1646         }
1647
1648 out:
1649         state->fack_count += pcount;
1650         return prev;
1651
1652 noop:
1653         return skb;
1654
1655 fallback:
1656         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1657         return NULL;
1658 }
1659
1660 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1661                                         struct tcp_sack_block *next_dup,
1662                                         struct tcp_sacktag_state *state,
1663                                         u32 start_seq, u32 end_seq,
1664                                         int dup_sack_in)
1665 {
1666         struct tcp_sock *tp = tcp_sk(sk);
1667         struct sk_buff *tmp;
1668
1669         tcp_for_write_queue_from(skb, sk) {
1670                 int in_sack = 0;
1671                 int dup_sack = dup_sack_in;
1672
1673                 if (skb == tcp_send_head(sk))
1674                         break;
1675
1676                 /* queue is in-order => we can short-circuit the walk early */
1677                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1678                         break;
1679
1680                 if ((next_dup != NULL) &&
1681                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1682                         in_sack = tcp_match_skb_to_sack(sk, skb,
1683                                                         next_dup->start_seq,
1684                                                         next_dup->end_seq);
1685                         if (in_sack > 0)
1686                                 dup_sack = 1;
1687                 }
1688
1689                 /* skb reference here is a bit tricky to get right, since
1690                  * shifting can eat and free both this skb and the next,
1691                  * so not even _safe variant of the loop is enough.
1692                  */
1693                 if (in_sack <= 0) {
1694                         tmp = tcp_shift_skb_data(sk, skb, state,
1695                                                  start_seq, end_seq, dup_sack);
1696                         if (tmp != NULL) {
1697                                 if (tmp != skb) {
1698                                         skb = tmp;
1699                                         continue;
1700                                 }
1701
1702                                 in_sack = 0;
1703                         } else {
1704                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1705                                                                 start_seq,
1706                                                                 end_seq);
1707                         }
1708                 }
1709
1710                 if (unlikely(in_sack < 0))
1711                         break;
1712
1713                 if (in_sack) {
1714                         TCP_SKB_CB(skb)->sacked =
1715                                 tcp_sacktag_one(sk,
1716                                                 state,
1717                                                 TCP_SKB_CB(skb)->sacked,
1718                                                 TCP_SKB_CB(skb)->seq,
1719                                                 TCP_SKB_CB(skb)->end_seq,
1720                                                 dup_sack,
1721                                                 tcp_skb_pcount(skb));
1722
1723                         if (!before(TCP_SKB_CB(skb)->seq,
1724                                     tcp_highest_sack_seq(tp)))
1725                                 tcp_advance_highest_sack(sk, skb);
1726                 }
1727
1728                 state->fack_count += tcp_skb_pcount(skb);
1729         }
1730         return skb;
1731 }
1732
1733 /* Avoid all extra work that is being done by sacktag while walking in
1734  * a normal way
1735  */
1736 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1737                                         struct tcp_sacktag_state *state,
1738                                         u32 skip_to_seq)
1739 {
1740         tcp_for_write_queue_from(skb, sk) {
1741                 if (skb == tcp_send_head(sk))
1742                         break;
1743
1744                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1745                         break;
1746
1747                 state->fack_count += tcp_skb_pcount(skb);
1748         }
1749         return skb;
1750 }
1751
1752 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1753                                                 struct sock *sk,
1754                                                 struct tcp_sack_block *next_dup,
1755                                                 struct tcp_sacktag_state *state,
1756                                                 u32 skip_to_seq)
1757 {
1758         if (next_dup == NULL)
1759                 return skb;
1760
1761         if (before(next_dup->start_seq, skip_to_seq)) {
1762                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1763                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1764                                        next_dup->start_seq, next_dup->end_seq,
1765                                        1);
1766         }
1767
1768         return skb;
1769 }
1770
1771 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1772 {
1773         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1774 }
1775
1776 static int
1777 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1778                         u32 prior_snd_una)
1779 {
1780         const struct inet_connection_sock *icsk = inet_csk(sk);
1781         struct tcp_sock *tp = tcp_sk(sk);
1782         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1783                                     TCP_SKB_CB(ack_skb)->sacked);
1784         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1785         struct tcp_sack_block sp[TCP_NUM_SACKS];
1786         struct tcp_sack_block *cache;
1787         struct tcp_sacktag_state state;
1788         struct sk_buff *skb;
1789         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1790         int used_sacks;
1791         int found_dup_sack = 0;
1792         int i, j;
1793         int first_sack_index;
1794
1795         state.flag = 0;
1796         state.reord = tp->packets_out;
1797
1798         if (!tp->sacked_out) {
1799                 if (WARN_ON(tp->fackets_out))
1800                         tp->fackets_out = 0;
1801                 tcp_highest_sack_reset(sk);
1802         }
1803
1804         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1805                                          num_sacks, prior_snd_una);
1806         if (found_dup_sack)
1807                 state.flag |= FLAG_DSACKING_ACK;
1808
1809         /* Eliminate too old ACKs, but take into
1810          * account more or less fresh ones, they can
1811          * contain valid SACK info.
1812          */
1813         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1814                 return 0;
1815
1816         if (!tp->packets_out)
1817                 goto out;
1818
1819         used_sacks = 0;
1820         first_sack_index = 0;
1821         for (i = 0; i < num_sacks; i++) {
1822                 int dup_sack = !i && found_dup_sack;
1823
1824                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1825                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1826
1827                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1828                                             sp[used_sacks].start_seq,
1829                                             sp[used_sacks].end_seq)) {
1830                         int mib_idx;
1831
1832                         if (dup_sack) {
1833                                 if (!tp->undo_marker)
1834                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1835                                 else
1836                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1837                         } else {
1838                                 /* Don't count olds caused by ACK reordering */
1839                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1840                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1841                                         continue;
1842                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1843                         }
1844
1845                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1846                         if (i == 0)
1847                                 first_sack_index = -1;
1848                         continue;
1849                 }
1850
1851                 /* Ignore very old stuff early */
1852                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1853                         continue;
1854
1855                 used_sacks++;
1856         }
1857
1858         /* order SACK blocks to allow in order walk of the retrans queue */
1859         for (i = used_sacks - 1; i > 0; i--) {
1860                 for (j = 0; j < i; j++) {
1861                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1862                                 swap(sp[j], sp[j + 1]);
1863
1864                                 /* Track where the first SACK block goes to */
1865                                 if (j == first_sack_index)
1866                                         first_sack_index = j + 1;
1867                         }
1868                 }
1869         }
1870
1871         skb = tcp_write_queue_head(sk);
1872         state.fack_count = 0;
1873         i = 0;
1874
1875         if (!tp->sacked_out) {
1876                 /* It's already past, so skip checking against it */
1877                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1878         } else {
1879                 cache = tp->recv_sack_cache;
1880                 /* Skip empty blocks in at head of the cache */
1881                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1882                        !cache->end_seq)
1883                         cache++;
1884         }
1885
1886         while (i < used_sacks) {
1887                 u32 start_seq = sp[i].start_seq;
1888                 u32 end_seq = sp[i].end_seq;
1889                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1890                 struct tcp_sack_block *next_dup = NULL;
1891
1892                 if (found_dup_sack && ((i + 1) == first_sack_index))
1893                         next_dup = &sp[i + 1];
1894
1895                 /* Event "B" in the comment above. */
1896                 if (after(end_seq, tp->high_seq))
1897                         state.flag |= FLAG_DATA_LOST;
1898
1899                 /* Skip too early cached blocks */
1900                 while (tcp_sack_cache_ok(tp, cache) &&
1901                        !before(start_seq, cache->end_seq))
1902                         cache++;
1903
1904                 /* Can skip some work by looking recv_sack_cache? */
1905                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1906                     after(end_seq, cache->start_seq)) {
1907
1908                         /* Head todo? */
1909                         if (before(start_seq, cache->start_seq)) {
1910                                 skb = tcp_sacktag_skip(skb, sk, &state,
1911                                                        start_seq);
1912                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1913                                                        &state,
1914                                                        start_seq,
1915                                                        cache->start_seq,
1916                                                        dup_sack);
1917                         }
1918
1919                         /* Rest of the block already fully processed? */
1920                         if (!after(end_seq, cache->end_seq))
1921                                 goto advance_sp;
1922
1923                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1924                                                        &state,
1925                                                        cache->end_seq);
1926
1927                         /* ...tail remains todo... */
1928                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1929                                 /* ...but better entrypoint exists! */
1930                                 skb = tcp_highest_sack(sk);
1931                                 if (skb == NULL)
1932                                         break;
1933                                 state.fack_count = tp->fackets_out;
1934                                 cache++;
1935                                 goto walk;
1936                         }
1937
1938                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1939                         /* Check overlap against next cached too (past this one already) */
1940                         cache++;
1941                         continue;
1942                 }
1943
1944                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1945                         skb = tcp_highest_sack(sk);
1946                         if (skb == NULL)
1947                                 break;
1948                         state.fack_count = tp->fackets_out;
1949                 }
1950                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1951
1952 walk:
1953                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1954                                        start_seq, end_seq, dup_sack);
1955
1956 advance_sp:
1957                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1958                  * due to in-order walk
1959                  */
1960                 if (after(end_seq, tp->frto_highmark))
1961                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1962
1963                 i++;
1964         }
1965
1966         /* Clear the head of the cache sack blocks so we can skip it next time */
1967         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1968                 tp->recv_sack_cache[i].start_seq = 0;
1969                 tp->recv_sack_cache[i].end_seq = 0;
1970         }
1971         for (j = 0; j < used_sacks; j++)
1972                 tp->recv_sack_cache[i++] = sp[j];
1973
1974         tcp_mark_lost_retrans(sk);
1975
1976         tcp_verify_left_out(tp);
1977
1978         if ((state.reord < tp->fackets_out) &&
1979             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1980             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1981                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1982
1983 out:
1984
1985 #if FASTRETRANS_DEBUG > 0
1986         WARN_ON((int)tp->sacked_out < 0);
1987         WARN_ON((int)tp->lost_out < 0);
1988         WARN_ON((int)tp->retrans_out < 0);
1989         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1990 #endif
1991         return state.flag;
1992 }
1993
1994 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1995  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1996  */
1997 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1998 {
1999         u32 holes;
2000
2001         holes = max(tp->lost_out, 1U);
2002         holes = min(holes, tp->packets_out);
2003
2004         if ((tp->sacked_out + holes) > tp->packets_out) {
2005                 tp->sacked_out = tp->packets_out - holes;
2006                 return 1;
2007         }
2008         return 0;
2009 }
2010
2011 /* If we receive more dupacks than we expected counting segments
2012  * in assumption of absent reordering, interpret this as reordering.
2013  * The only another reason could be bug in receiver TCP.
2014  */
2015 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2016 {
2017         struct tcp_sock *tp = tcp_sk(sk);
2018         if (tcp_limit_reno_sacked(tp))
2019                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
2020 }
2021
2022 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2023
2024 static void tcp_add_reno_sack(struct sock *sk)
2025 {
2026         struct tcp_sock *tp = tcp_sk(sk);
2027         tp->sacked_out++;
2028         tcp_check_reno_reordering(sk, 0);
2029         tcp_verify_left_out(tp);
2030 }
2031
2032 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2033
2034 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2035 {
2036         struct tcp_sock *tp = tcp_sk(sk);
2037
2038         if (acked > 0) {
2039                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2040                 if (acked - 1 >= tp->sacked_out)
2041                         tp->sacked_out = 0;
2042                 else
2043                         tp->sacked_out -= acked - 1;
2044         }
2045         tcp_check_reno_reordering(sk, acked);
2046         tcp_verify_left_out(tp);
2047 }
2048
2049 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2050 {
2051         tp->sacked_out = 0;
2052 }
2053
2054 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2055 {
2056         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2057 }
2058
2059 /* F-RTO can only be used if TCP has never retransmitted anything other than
2060  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2061  */
2062 int tcp_use_frto(struct sock *sk)
2063 {
2064         const struct tcp_sock *tp = tcp_sk(sk);
2065         const struct inet_connection_sock *icsk = inet_csk(sk);
2066         struct sk_buff *skb;
2067
2068         if (!sysctl_tcp_frto)
2069                 return 0;
2070
2071         /* MTU probe and F-RTO won't really play nicely along currently */
2072         if (icsk->icsk_mtup.probe_size)
2073                 return 0;
2074
2075         if (tcp_is_sackfrto(tp))
2076                 return 1;
2077
2078         /* Avoid expensive walking of rexmit queue if possible */
2079         if (tp->retrans_out > 1)
2080                 return 0;
2081
2082         skb = tcp_write_queue_head(sk);
2083         if (tcp_skb_is_last(sk, skb))
2084                 return 1;
2085         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2086         tcp_for_write_queue_from(skb, sk) {
2087                 if (skb == tcp_send_head(sk))
2088                         break;
2089                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2090                         return 0;
2091                 /* Short-circuit when first non-SACKed skb has been checked */
2092                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2093                         break;
2094         }
2095         return 1;
2096 }
2097
2098 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2099  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2100  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2101  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2102  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2103  * bits are handled if the Loss state is really to be entered (in
2104  * tcp_enter_frto_loss).
2105  *
2106  * Do like tcp_enter_loss() would; when RTO expires the second time it
2107  * does:
2108  *  "Reduce ssthresh if it has not yet been made inside this window."
2109  */
2110 void tcp_enter_frto(struct sock *sk)
2111 {
2112         const struct inet_connection_sock *icsk = inet_csk(sk);
2113         struct tcp_sock *tp = tcp_sk(sk);
2114         struct sk_buff *skb;
2115
2116         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2117             tp->snd_una == tp->high_seq ||
2118             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2119              !icsk->icsk_retransmits)) {
2120                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2121                 /* Our state is too optimistic in ssthresh() call because cwnd
2122                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2123                  * recovery has not yet completed. Pattern would be this: RTO,
2124                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2125                  * up here twice).
2126                  * RFC4138 should be more specific on what to do, even though
2127                  * RTO is quite unlikely to occur after the first Cumulative ACK
2128                  * due to back-off and complexity of triggering events ...
2129                  */
2130                 if (tp->frto_counter) {
2131                         u32 stored_cwnd;
2132                         stored_cwnd = tp->snd_cwnd;
2133                         tp->snd_cwnd = 2;
2134                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2135                         tp->snd_cwnd = stored_cwnd;
2136                 } else {
2137                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2138                 }
2139                 /* ... in theory, cong.control module could do "any tricks" in
2140                  * ssthresh(), which means that ca_state, lost bits and lost_out
2141                  * counter would have to be faked before the call occurs. We
2142                  * consider that too expensive, unlikely and hacky, so modules
2143                  * using these in ssthresh() must deal these incompatibility
2144                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2145                  */
2146                 tcp_ca_event(sk, CA_EVENT_FRTO);
2147         }
2148
2149         tp->undo_marker = tp->snd_una;
2150         tp->undo_retrans = 0;
2151
2152         skb = tcp_write_queue_head(sk);
2153         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2154                 tp->undo_marker = 0;
2155         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2156                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2157                 tp->retrans_out -= tcp_skb_pcount(skb);
2158         }
2159         tcp_verify_left_out(tp);
2160
2161         /* Too bad if TCP was application limited */
2162         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2163
2164         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2165          * The last condition is necessary at least in tp->frto_counter case.
2166          */
2167         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2168             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2169             after(tp->high_seq, tp->snd_una)) {
2170                 tp->frto_highmark = tp->high_seq;
2171         } else {
2172                 tp->frto_highmark = tp->snd_nxt;
2173         }
2174         tcp_set_ca_state(sk, TCP_CA_Disorder);
2175         tp->high_seq = tp->snd_nxt;
2176         tp->frto_counter = 1;
2177 }
2178
2179 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2180  * which indicates that we should follow the traditional RTO recovery,
2181  * i.e. mark everything lost and do go-back-N retransmission.
2182  */
2183 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2184 {
2185         struct tcp_sock *tp = tcp_sk(sk);
2186         struct sk_buff *skb;
2187
2188         tp->lost_out = 0;
2189         tp->retrans_out = 0;
2190         if (tcp_is_reno(tp))
2191                 tcp_reset_reno_sack(tp);
2192
2193         tcp_for_write_queue(skb, sk) {
2194                 if (skb == tcp_send_head(sk))
2195                         break;
2196
2197                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2198                 /*
2199                  * Count the retransmission made on RTO correctly (only when
2200                  * waiting for the first ACK and did not get it)...
2201                  */
2202                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2203                         /* For some reason this R-bit might get cleared? */
2204                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2205                                 tp->retrans_out += tcp_skb_pcount(skb);
2206                         /* ...enter this if branch just for the first segment */
2207                         flag |= FLAG_DATA_ACKED;
2208                 } else {
2209                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2210                                 tp->undo_marker = 0;
2211                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2212                 }
2213
2214                 /* Marking forward transmissions that were made after RTO lost
2215                  * can cause unnecessary retransmissions in some scenarios,
2216                  * SACK blocks will mitigate that in some but not in all cases.
2217                  * We used to not mark them but it was causing break-ups with
2218                  * receivers that do only in-order receival.
2219                  *
2220                  * TODO: we could detect presence of such receiver and select
2221                  * different behavior per flow.
2222                  */
2223                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2224                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2225                         tp->lost_out += tcp_skb_pcount(skb);
2226                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2227                 }
2228         }
2229         tcp_verify_left_out(tp);
2230
2231         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2232         tp->snd_cwnd_cnt = 0;
2233         tp->snd_cwnd_stamp = tcp_time_stamp;
2234         tp->frto_counter = 0;
2235         tp->bytes_acked = 0;
2236
2237         tp->reordering = min_t(unsigned int, tp->reordering,
2238                                sysctl_tcp_reordering);
2239         tcp_set_ca_state(sk, TCP_CA_Loss);
2240         tp->high_seq = tp->snd_nxt;
2241         TCP_ECN_queue_cwr(tp);
2242
2243         tcp_clear_all_retrans_hints(tp);
2244 }
2245
2246 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2247 {
2248         tp->retrans_out = 0;
2249         tp->lost_out = 0;
2250
2251         tp->undo_marker = 0;
2252         tp->undo_retrans = 0;
2253 }
2254
2255 void tcp_clear_retrans(struct tcp_sock *tp)
2256 {
2257         tcp_clear_retrans_partial(tp);
2258
2259         tp->fackets_out = 0;
2260         tp->sacked_out = 0;
2261 }
2262
2263 /* Enter Loss state. If "how" is not zero, forget all SACK information
2264  * and reset tags completely, otherwise preserve SACKs. If receiver
2265  * dropped its ofo queue, we will know this due to reneging detection.
2266  */
2267 void tcp_enter_loss(struct sock *sk, int how)
2268 {
2269         const struct inet_connection_sock *icsk = inet_csk(sk);
2270         struct tcp_sock *tp = tcp_sk(sk);
2271         struct sk_buff *skb;
2272
2273         /* Reduce ssthresh if it has not yet been made inside this window. */
2274         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2275             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2276                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2277                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2278                 tcp_ca_event(sk, CA_EVENT_LOSS);
2279         }
2280         tp->snd_cwnd       = 1;
2281         tp->snd_cwnd_cnt   = 0;
2282         tp->snd_cwnd_stamp = tcp_time_stamp;
2283
2284         tp->bytes_acked = 0;
2285         tcp_clear_retrans_partial(tp);
2286
2287         if (tcp_is_reno(tp))
2288                 tcp_reset_reno_sack(tp);
2289
2290         tp->undo_marker = tp->snd_una;
2291         if (how) {
2292                 tp->sacked_out = 0;
2293                 tp->fackets_out = 0;
2294         }
2295         tcp_clear_all_retrans_hints(tp);
2296
2297         tcp_for_write_queue(skb, sk) {
2298                 if (skb == tcp_send_head(sk))
2299                         break;
2300
2301                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2302                         tp->undo_marker = 0;
2303                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2304                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2305                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2306                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2307                         tp->lost_out += tcp_skb_pcount(skb);
2308                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2309                 }
2310         }
2311         tcp_verify_left_out(tp);
2312
2313         tp->reordering = min_t(unsigned int, tp->reordering,
2314                                sysctl_tcp_reordering);
2315         tcp_set_ca_state(sk, TCP_CA_Loss);
2316         tp->high_seq = tp->snd_nxt;
2317         TCP_ECN_queue_cwr(tp);
2318         /* Abort F-RTO algorithm if one is in progress */
2319         tp->frto_counter = 0;
2320 }
2321
2322 /* If ACK arrived pointing to a remembered SACK, it means that our
2323  * remembered SACKs do not reflect real state of receiver i.e.
2324  * receiver _host_ is heavily congested (or buggy).
2325  *
2326  * Do processing similar to RTO timeout.
2327  */
2328 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2329 {
2330         if (flag & FLAG_SACK_RENEGING) {
2331                 struct inet_connection_sock *icsk = inet_csk(sk);
2332                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2333
2334                 tcp_enter_loss(sk, 1);
2335                 icsk->icsk_retransmits++;
2336                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2337                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2338                                           icsk->icsk_rto, TCP_RTO_MAX);
2339                 return 1;
2340         }
2341         return 0;
2342 }
2343
2344 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2345 {
2346         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2347 }
2348
2349 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2350  * counter when SACK is enabled (without SACK, sacked_out is used for
2351  * that purpose).
2352  *
2353  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2354  * segments up to the highest received SACK block so far and holes in
2355  * between them.
2356  *
2357  * With reordering, holes may still be in flight, so RFC3517 recovery
2358  * uses pure sacked_out (total number of SACKed segments) even though
2359  * it violates the RFC that uses duplicate ACKs, often these are equal
2360  * but when e.g. out-of-window ACKs or packet duplication occurs,
2361  * they differ. Since neither occurs due to loss, TCP should really
2362  * ignore them.
2363  */
2364 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2365 {
2366         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2367 }
2368
2369 static inline int tcp_skb_timedout(const struct sock *sk,
2370                                    const struct sk_buff *skb)
2371 {
2372         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2373 }
2374
2375 static inline int tcp_head_timedout(const struct sock *sk)
2376 {
2377         const struct tcp_sock *tp = tcp_sk(sk);
2378
2379         return tp->packets_out &&
2380                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2381 }
2382
2383 /* Linux NewReno/SACK/FACK/ECN state machine.
2384  * --------------------------------------
2385  *
2386  * "Open"       Normal state, no dubious events, fast path.
2387  * "Disorder"   In all the respects it is "Open",
2388  *              but requires a bit more attention. It is entered when
2389  *              we see some SACKs or dupacks. It is split of "Open"
2390  *              mainly to move some processing from fast path to slow one.
2391  * "CWR"        CWND was reduced due to some Congestion Notification event.
2392  *              It can be ECN, ICMP source quench, local device congestion.
2393  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2394  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2395  *
2396  * tcp_fastretrans_alert() is entered:
2397  * - each incoming ACK, if state is not "Open"
2398  * - when arrived ACK is unusual, namely:
2399  *      * SACK
2400  *      * Duplicate ACK.
2401  *      * ECN ECE.
2402  *
2403  * Counting packets in flight is pretty simple.
2404  *
2405  *      in_flight = packets_out - left_out + retrans_out
2406  *
2407  *      packets_out is SND.NXT-SND.UNA counted in packets.
2408  *
2409  *      retrans_out is number of retransmitted segments.
2410  *
2411  *      left_out is number of segments left network, but not ACKed yet.
2412  *
2413  *              left_out = sacked_out + lost_out
2414  *
2415  *     sacked_out: Packets, which arrived to receiver out of order
2416  *                 and hence not ACKed. With SACKs this number is simply
2417  *                 amount of SACKed data. Even without SACKs
2418  *                 it is easy to give pretty reliable estimate of this number,
2419  *                 counting duplicate ACKs.
2420  *
2421  *       lost_out: Packets lost by network. TCP has no explicit
2422  *                 "loss notification" feedback from network (for now).
2423  *                 It means that this number can be only _guessed_.
2424  *                 Actually, it is the heuristics to predict lossage that
2425  *                 distinguishes different algorithms.
2426  *
2427  *      F.e. after RTO, when all the queue is considered as lost,
2428  *      lost_out = packets_out and in_flight = retrans_out.
2429  *
2430  *              Essentially, we have now two algorithms counting
2431  *              lost packets.
2432  *
2433  *              FACK: It is the simplest heuristics. As soon as we decided
2434  *              that something is lost, we decide that _all_ not SACKed
2435  *              packets until the most forward SACK are lost. I.e.
2436  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2437  *              It is absolutely correct estimate, if network does not reorder
2438  *              packets. And it loses any connection to reality when reordering
2439  *              takes place. We use FACK by default until reordering
2440  *              is suspected on the path to this destination.
2441  *
2442  *              NewReno: when Recovery is entered, we assume that one segment
2443  *              is lost (classic Reno). While we are in Recovery and
2444  *              a partial ACK arrives, we assume that one more packet
2445  *              is lost (NewReno). This heuristics are the same in NewReno
2446  *              and SACK.
2447  *
2448  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2449  *  deflation etc. CWND is real congestion window, never inflated, changes
2450  *  only according to classic VJ rules.
2451  *
2452  * Really tricky (and requiring careful tuning) part of algorithm
2453  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2454  * The first determines the moment _when_ we should reduce CWND and,
2455  * hence, slow down forward transmission. In fact, it determines the moment
2456  * when we decide that hole is caused by loss, rather than by a reorder.
2457  *
2458  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2459  * holes, caused by lost packets.
2460  *
2461  * And the most logically complicated part of algorithm is undo
2462  * heuristics. We detect false retransmits due to both too early
2463  * fast retransmit (reordering) and underestimated RTO, analyzing
2464  * timestamps and D-SACKs. When we detect that some segments were
2465  * retransmitted by mistake and CWND reduction was wrong, we undo
2466  * window reduction and abort recovery phase. This logic is hidden
2467  * inside several functions named tcp_try_undo_<something>.
2468  */
2469
2470 /* This function decides, when we should leave Disordered state
2471  * and enter Recovery phase, reducing congestion window.
2472  *
2473  * Main question: may we further continue forward transmission
2474  * with the same cwnd?
2475  */
2476 static int tcp_time_to_recover(struct sock *sk)
2477 {
2478         struct tcp_sock *tp = tcp_sk(sk);
2479         __u32 packets_out;
2480
2481         /* Do not perform any recovery during F-RTO algorithm */
2482         if (tp->frto_counter)
2483                 return 0;
2484
2485         /* Trick#1: The loss is proven. */
2486         if (tp->lost_out)
2487                 return 1;
2488
2489         /* Not-A-Trick#2 : Classic rule... */
2490         if (tcp_dupack_heuristics(tp) > tp->reordering)
2491                 return 1;
2492
2493         /* Trick#3 : when we use RFC2988 timer restart, fast
2494          * retransmit can be triggered by timeout of queue head.
2495          */
2496         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2497                 return 1;
2498
2499         /* Trick#4: It is still not OK... But will it be useful to delay
2500          * recovery more?
2501          */
2502         packets_out = tp->packets_out;
2503         if (packets_out <= tp->reordering &&
2504             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2505             !tcp_may_send_now(sk)) {
2506                 /* We have nothing to send. This connection is limited
2507                  * either by receiver window or by application.
2508                  */
2509                 return 1;
2510         }
2511
2512         /* If a thin stream is detected, retransmit after first
2513          * received dupack. Employ only if SACK is supported in order
2514          * to avoid possible corner-case series of spurious retransmissions
2515          * Use only if there are no unsent data.
2516          */
2517         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2518             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2519             tcp_is_sack(tp) && !tcp_send_head(sk))
2520                 return 1;
2521
2522         return 0;
2523 }
2524
2525 /* New heuristics: it is possible only after we switched to restart timer
2526  * each time when something is ACKed. Hence, we can detect timed out packets
2527  * during fast retransmit without falling to slow start.
2528  *
2529  * Usefulness of this as is very questionable, since we should know which of
2530  * the segments is the next to timeout which is relatively expensive to find
2531  * in general case unless we add some data structure just for that. The
2532  * current approach certainly won't find the right one too often and when it
2533  * finally does find _something_ it usually marks large part of the window
2534  * right away (because a retransmission with a larger timestamp blocks the
2535  * loop from advancing). -ij
2536  */
2537 static void tcp_timeout_skbs(struct sock *sk)
2538 {
2539         struct tcp_sock *tp = tcp_sk(sk);
2540         struct sk_buff *skb;
2541
2542         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2543                 return;
2544
2545         skb = tp->scoreboard_skb_hint;
2546         if (tp->scoreboard_skb_hint == NULL)
2547                 skb = tcp_write_queue_head(sk);
2548
2549         tcp_for_write_queue_from(skb, sk) {
2550                 if (skb == tcp_send_head(sk))
2551                         break;
2552                 if (!tcp_skb_timedout(sk, skb))
2553                         break;
2554
2555                 tcp_skb_mark_lost(tp, skb);
2556         }
2557
2558         tp->scoreboard_skb_hint = skb;
2559
2560         tcp_verify_left_out(tp);
2561 }
2562
2563 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2564  * is against sacked "cnt", otherwise it's against facked "cnt"
2565  */
2566 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2567 {
2568         struct tcp_sock *tp = tcp_sk(sk);
2569         struct sk_buff *skb;
2570         int cnt, oldcnt;
2571         int err;
2572         unsigned int mss;
2573
2574         WARN_ON(packets > tp->packets_out);
2575         if (tp->lost_skb_hint) {
2576                 skb = tp->lost_skb_hint;
2577                 cnt = tp->lost_cnt_hint;
2578                 /* Head already handled? */
2579                 if (mark_head && skb != tcp_write_queue_head(sk))
2580                         return;
2581         } else {
2582                 skb = tcp_write_queue_head(sk);
2583                 cnt = 0;
2584         }
2585
2586         tcp_for_write_queue_from(skb, sk) {
2587                 if (skb == tcp_send_head(sk))
2588                         break;
2589                 /* TODO: do this better */
2590                 /* this is not the most efficient way to do this... */
2591                 tp->lost_skb_hint = skb;
2592                 tp->lost_cnt_hint = cnt;
2593
2594                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2595                         break;
2596
2597                 oldcnt = cnt;
2598                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2599                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2600                         cnt += tcp_skb_pcount(skb);
2601
2602                 if (cnt > packets) {
2603                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2604                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2605                             (oldcnt >= packets))
2606                                 break;
2607
2608                         mss = skb_shinfo(skb)->gso_size;
2609                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2610                         if (err < 0)
2611                                 break;
2612                         cnt = packets;
2613                 }
2614
2615                 tcp_skb_mark_lost(tp, skb);
2616
2617                 if (mark_head)
2618                         break;
2619         }
2620         tcp_verify_left_out(tp);
2621 }
2622
2623 /* Account newly detected lost packet(s) */
2624
2625 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2626 {
2627         struct tcp_sock *tp = tcp_sk(sk);
2628
2629         if (tcp_is_reno(tp)) {
2630                 tcp_mark_head_lost(sk, 1, 1);
2631         } else if (tcp_is_fack(tp)) {
2632                 int lost = tp->fackets_out - tp->reordering;
2633                 if (lost <= 0)
2634                         lost = 1;
2635                 tcp_mark_head_lost(sk, lost, 0);
2636         } else {
2637                 int sacked_upto = tp->sacked_out - tp->reordering;
2638                 if (sacked_upto >= 0)
2639                         tcp_mark_head_lost(sk, sacked_upto, 0);
2640                 else if (fast_rexmit)
2641                         tcp_mark_head_lost(sk, 1, 1);
2642         }
2643
2644         tcp_timeout_skbs(sk);
2645 }
2646
2647 /* CWND moderation, preventing bursts due to too big ACKs
2648  * in dubious situations.
2649  */
2650 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2651 {
2652         tp->snd_cwnd = min(tp->snd_cwnd,
2653                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2654         tp->snd_cwnd_stamp = tcp_time_stamp;
2655 }
2656
2657 /* Lower bound on congestion window is slow start threshold
2658  * unless congestion avoidance choice decides to overide it.
2659  */
2660 static inline u32 tcp_cwnd_min(const struct sock *sk)
2661 {
2662         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2663
2664         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2665 }
2666
2667 /* Decrease cwnd each second ack. */
2668 static void tcp_cwnd_down(struct sock *sk, int flag)
2669 {
2670         struct tcp_sock *tp = tcp_sk(sk);
2671         int decr = tp->snd_cwnd_cnt + 1;
2672
2673         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2674             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2675                 tp->snd_cwnd_cnt = decr & 1;
2676                 decr >>= 1;
2677
2678                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2679                         tp->snd_cwnd -= decr;
2680
2681                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2682                 tp->snd_cwnd_stamp = tcp_time_stamp;
2683         }
2684 }
2685
2686 /* Nothing was retransmitted or returned timestamp is less
2687  * than timestamp of the first retransmission.
2688  */
2689 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2690 {
2691         return !tp->retrans_stamp ||
2692                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2693                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2694 }
2695
2696 /* Undo procedures. */
2697
2698 #if FASTRETRANS_DEBUG > 1
2699 static void DBGUNDO(struct sock *sk, const char *msg)
2700 {
2701         struct tcp_sock *tp = tcp_sk(sk);
2702         struct inet_sock *inet = inet_sk(sk);
2703
2704         if (sk->sk_family == AF_INET) {
2705                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2706                        msg,
2707                        &inet->inet_daddr, ntohs(inet->inet_dport),
2708                        tp->snd_cwnd, tcp_left_out(tp),
2709                        tp->snd_ssthresh, tp->prior_ssthresh,
2710                        tp->packets_out);
2711         }
2712 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2713         else if (sk->sk_family == AF_INET6) {
2714                 struct ipv6_pinfo *np = inet6_sk(sk);
2715                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2716                        msg,
2717                        &np->daddr, ntohs(inet->inet_dport),
2718                        tp->snd_cwnd, tcp_left_out(tp),
2719                        tp->snd_ssthresh, tp->prior_ssthresh,
2720                        tp->packets_out);
2721         }
2722 #endif
2723 }
2724 #else
2725 #define DBGUNDO(x...) do { } while (0)
2726 #endif
2727
2728 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2729 {
2730         struct tcp_sock *tp = tcp_sk(sk);
2731
2732         if (tp->prior_ssthresh) {
2733                 const struct inet_connection_sock *icsk = inet_csk(sk);
2734
2735                 if (icsk->icsk_ca_ops->undo_cwnd)
2736                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2737                 else
2738                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2739
2740                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2741                         tp->snd_ssthresh = tp->prior_ssthresh;
2742                         TCP_ECN_withdraw_cwr(tp);
2743                 }
2744         } else {
2745                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2746         }
2747         tp->snd_cwnd_stamp = tcp_time_stamp;
2748 }
2749
2750 static inline int tcp_may_undo(const struct tcp_sock *tp)
2751 {
2752         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2753 }
2754
2755 /* People celebrate: "We love our President!" */
2756 static int tcp_try_undo_recovery(struct sock *sk)
2757 {
2758         struct tcp_sock *tp = tcp_sk(sk);
2759
2760         if (tcp_may_undo(tp)) {
2761                 int mib_idx;
2762
2763                 /* Happy end! We did not retransmit anything
2764                  * or our original transmission succeeded.
2765                  */
2766                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2767                 tcp_undo_cwr(sk, true);
2768                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2769                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2770                 else
2771                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2772
2773                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2774                 tp->undo_marker = 0;
2775         }
2776         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2777                 /* Hold old state until something *above* high_seq
2778                  * is ACKed. For Reno it is MUST to prevent false
2779                  * fast retransmits (RFC2582). SACK TCP is safe. */
2780                 tcp_moderate_cwnd(tp);
2781                 return 1;
2782         }
2783         tcp_set_ca_state(sk, TCP_CA_Open);
2784         return 0;
2785 }
2786
2787 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2788 static void tcp_try_undo_dsack(struct sock *sk)
2789 {
2790         struct tcp_sock *tp = tcp_sk(sk);
2791
2792         if (tp->undo_marker && !tp->undo_retrans) {
2793                 DBGUNDO(sk, "D-SACK");
2794                 tcp_undo_cwr(sk, true);
2795                 tp->undo_marker = 0;
2796                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2797         }
2798 }
2799
2800 /* We can clear retrans_stamp when there are no retransmissions in the
2801  * window. It would seem that it is trivially available for us in
2802  * tp->retrans_out, however, that kind of assumptions doesn't consider
2803  * what will happen if errors occur when sending retransmission for the
2804  * second time. ...It could the that such segment has only
2805  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2806  * the head skb is enough except for some reneging corner cases that
2807  * are not worth the effort.
2808  *
2809  * Main reason for all this complexity is the fact that connection dying
2810  * time now depends on the validity of the retrans_stamp, in particular,
2811  * that successive retransmissions of a segment must not advance
2812  * retrans_stamp under any conditions.
2813  */
2814 static int tcp_any_retrans_done(const struct sock *sk)
2815 {
2816         const struct tcp_sock *tp = tcp_sk(sk);
2817         struct sk_buff *skb;
2818
2819         if (tp->retrans_out)
2820                 return 1;
2821
2822         skb = tcp_write_queue_head(sk);
2823         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2824                 return 1;
2825
2826         return 0;
2827 }
2828
2829 /* Undo during fast recovery after partial ACK. */
2830
2831 static int tcp_try_undo_partial(struct sock *sk, int acked)
2832 {
2833         struct tcp_sock *tp = tcp_sk(sk);
2834         /* Partial ACK arrived. Force Hoe's retransmit. */
2835         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2836
2837         if (tcp_may_undo(tp)) {
2838                 /* Plain luck! Hole if filled with delayed
2839                  * packet, rather than with a retransmit.
2840                  */
2841                 if (!tcp_any_retrans_done(sk))
2842                         tp->retrans_stamp = 0;
2843
2844                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2845
2846                 DBGUNDO(sk, "Hoe");
2847                 tcp_undo_cwr(sk, false);
2848                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2849
2850                 /* So... Do not make Hoe's retransmit yet.
2851                  * If the first packet was delayed, the rest
2852                  * ones are most probably delayed as well.
2853                  */
2854                 failed = 0;
2855         }
2856         return failed;
2857 }
2858
2859 /* Undo during loss recovery after partial ACK. */
2860 static int tcp_try_undo_loss(struct sock *sk)
2861 {
2862         struct tcp_sock *tp = tcp_sk(sk);
2863
2864         if (tcp_may_undo(tp)) {
2865                 struct sk_buff *skb;
2866                 tcp_for_write_queue(skb, sk) {
2867                         if (skb == tcp_send_head(sk))
2868                                 break;
2869                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2870                 }
2871
2872                 tcp_clear_all_retrans_hints(tp);
2873
2874                 DBGUNDO(sk, "partial loss");
2875                 tp->lost_out = 0;
2876                 tcp_undo_cwr(sk, true);
2877                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2878                 inet_csk(sk)->icsk_retransmits = 0;
2879                 tp->undo_marker = 0;
2880                 if (tcp_is_sack(tp))
2881                         tcp_set_ca_state(sk, TCP_CA_Open);
2882                 return 1;
2883         }
2884         return 0;
2885 }
2886
2887 static inline void tcp_complete_cwr(struct sock *sk)
2888 {
2889         struct tcp_sock *tp = tcp_sk(sk);
2890
2891         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2892         if (tp->undo_marker) {
2893                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2894                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2895                         tp->snd_cwnd_stamp = tcp_time_stamp;
2896                 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2897                         /* PRR algorithm. */
2898                         tp->snd_cwnd = tp->snd_ssthresh;
2899                         tp->snd_cwnd_stamp = tcp_time_stamp;
2900                 }
2901         }
2902         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2903 }
2904
2905 static void tcp_try_keep_open(struct sock *sk)
2906 {
2907         struct tcp_sock *tp = tcp_sk(sk);
2908         int state = TCP_CA_Open;
2909
2910         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2911                 state = TCP_CA_Disorder;
2912
2913         if (inet_csk(sk)->icsk_ca_state != state) {
2914                 tcp_set_ca_state(sk, state);
2915                 tp->high_seq = tp->snd_nxt;
2916         }
2917 }
2918
2919 static void tcp_try_to_open(struct sock *sk, int flag)
2920 {
2921         struct tcp_sock *tp = tcp_sk(sk);
2922
2923         tcp_verify_left_out(tp);
2924
2925         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2926                 tp->retrans_stamp = 0;
2927
2928         if (flag & FLAG_ECE)
2929                 tcp_enter_cwr(sk, 1);
2930
2931         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2932                 tcp_try_keep_open(sk);
2933                 tcp_moderate_cwnd(tp);
2934         } else {
2935                 tcp_cwnd_down(sk, flag);
2936         }
2937 }
2938
2939 static void tcp_mtup_probe_failed(struct sock *sk)
2940 {
2941         struct inet_connection_sock *icsk = inet_csk(sk);
2942
2943         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2944         icsk->icsk_mtup.probe_size = 0;
2945 }
2946
2947 static void tcp_mtup_probe_success(struct sock *sk)
2948 {
2949         struct tcp_sock *tp = tcp_sk(sk);
2950         struct inet_connection_sock *icsk = inet_csk(sk);
2951
2952         /* FIXME: breaks with very large cwnd */
2953         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2954         tp->snd_cwnd = tp->snd_cwnd *
2955                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2956                        icsk->icsk_mtup.probe_size;
2957         tp->snd_cwnd_cnt = 0;
2958         tp->snd_cwnd_stamp = tcp_time_stamp;
2959         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2960
2961         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2962         icsk->icsk_mtup.probe_size = 0;
2963         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2964 }
2965
2966 /* Do a simple retransmit without using the backoff mechanisms in
2967  * tcp_timer. This is used for path mtu discovery.
2968  * The socket is already locked here.
2969  */
2970 void tcp_simple_retransmit(struct sock *sk)
2971 {
2972         const struct inet_connection_sock *icsk = inet_csk(sk);
2973         struct tcp_sock *tp = tcp_sk(sk);
2974         struct sk_buff *skb;
2975         unsigned int mss = tcp_current_mss(sk);
2976         u32 prior_lost = tp->lost_out;
2977
2978         tcp_for_write_queue(skb, sk) {
2979                 if (skb == tcp_send_head(sk))
2980                         break;
2981                 if (tcp_skb_seglen(skb) > mss &&
2982                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2983                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2984                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2985                                 tp->retrans_out -= tcp_skb_pcount(skb);
2986                         }
2987                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2988                 }
2989         }
2990
2991         tcp_clear_retrans_hints_partial(tp);
2992
2993         if (prior_lost == tp->lost_out)
2994                 return;
2995
2996         if (tcp_is_reno(tp))
2997                 tcp_limit_reno_sacked(tp);
2998
2999         tcp_verify_left_out(tp);
3000
3001         /* Don't muck with the congestion window here.
3002          * Reason is that we do not increase amount of _data_
3003          * in network, but units changed and effective
3004          * cwnd/ssthresh really reduced now.
3005          */
3006         if (icsk->icsk_ca_state != TCP_CA_Loss) {
3007                 tp->high_seq = tp->snd_nxt;
3008                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3009                 tp->prior_ssthresh = 0;
3010                 tp->undo_marker = 0;
3011                 tcp_set_ca_state(sk, TCP_CA_Loss);
3012         }
3013         tcp_xmit_retransmit_queue(sk);
3014 }
3015 EXPORT_SYMBOL(tcp_simple_retransmit);
3016
3017 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
3018  * (proportional rate reduction with slow start reduction bound) as described in
3019  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3020  * It computes the number of packets to send (sndcnt) based on packets newly
3021  * delivered:
3022  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3023  *      cwnd reductions across a full RTT.
3024  *   2) If packets in flight is lower than ssthresh (such as due to excess
3025  *      losses and/or application stalls), do not perform any further cwnd
3026  *      reductions, but instead slow start up to ssthresh.
3027  */
3028 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3029                                         int fast_rexmit, int flag)
3030 {
3031         struct tcp_sock *tp = tcp_sk(sk);
3032         int sndcnt = 0;
3033         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3034
3035         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3036                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3037                                tp->prior_cwnd - 1;
3038                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3039         } else {
3040                 sndcnt = min_t(int, delta,
3041                                max_t(int, tp->prr_delivered - tp->prr_out,
3042                                      newly_acked_sacked) + 1);
3043         }
3044
3045         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3046         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3047 }
3048
3049 /* Process an event, which can update packets-in-flight not trivially.
3050  * Main goal of this function is to calculate new estimate for left_out,
3051  * taking into account both packets sitting in receiver's buffer and
3052  * packets lost by network.
3053  *
3054  * Besides that it does CWND reduction, when packet loss is detected
3055  * and changes state of machine.
3056  *
3057  * It does _not_ decide what to send, it is made in function
3058  * tcp_xmit_retransmit_queue().
3059  */
3060 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3061                                   int newly_acked_sacked, int flag)
3062 {
3063         struct inet_connection_sock *icsk = inet_csk(sk);
3064         struct tcp_sock *tp = tcp_sk(sk);
3065         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3066         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3067                                     (tcp_fackets_out(tp) > tp->reordering));
3068         int fast_rexmit = 0, mib_idx;
3069