Input: joydev - allow binding to button-only devices
[pandora-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly = 2;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_thin_dupack __read_mostly;
93
94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
95 int sysctl_tcp_abc __read_mostly;
96
97 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
98 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
99 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
100 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
101 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
102 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
103 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
104 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
105 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
106 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
107 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
108 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
109 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
110 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
111
112 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
113 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
114 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
115 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
116 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
117
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120
121 /* Adapt the MSS value used to make delayed ack decision to the
122  * real world.
123  */
124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
125 {
126         struct inet_connection_sock *icsk = inet_csk(sk);
127         const unsigned int lss = icsk->icsk_ack.last_seg_size;
128         unsigned int len;
129
130         icsk->icsk_ack.last_seg_size = 0;
131
132         /* skb->len may jitter because of SACKs, even if peer
133          * sends good full-sized frames.
134          */
135         len = skb_shinfo(skb)->gso_size ? : skb->len;
136         if (len >= icsk->icsk_ack.rcv_mss) {
137                 icsk->icsk_ack.rcv_mss = len;
138         } else {
139                 /* Otherwise, we make more careful check taking into account,
140                  * that SACKs block is variable.
141                  *
142                  * "len" is invariant segment length, including TCP header.
143                  */
144                 len += skb->data - skb_transport_header(skb);
145                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
146                     /* If PSH is not set, packet should be
147                      * full sized, provided peer TCP is not badly broken.
148                      * This observation (if it is correct 8)) allows
149                      * to handle super-low mtu links fairly.
150                      */
151                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153                         /* Subtract also invariant (if peer is RFC compliant),
154                          * tcp header plus fixed timestamp option length.
155                          * Resulting "len" is MSS free of SACK jitter.
156                          */
157                         len -= tcp_sk(sk)->tcp_header_len;
158                         icsk->icsk_ack.last_seg_size = len;
159                         if (len == lss) {
160                                 icsk->icsk_ack.rcv_mss = len;
161                                 return;
162                         }
163                 }
164                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167         }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172         struct inet_connection_sock *icsk = inet_csk(sk);
173         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175         if (quickacks == 0)
176                 quickacks = 2;
177         if (quickacks > icsk->icsk_ack.quick)
178                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183         struct inet_connection_sock *icsk = inet_csk(sk);
184         tcp_incr_quickack(sk);
185         icsk->icsk_ack.pingpong = 0;
186         icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195         const struct inet_connection_sock *icsk = inet_csk(sk);
196         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201         if (tp->ecn_flags & TCP_ECN_OK)
202                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207         if (tcp_hdr(skb)->cwr)
208                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218         if (tp->ecn_flags & TCP_ECN_OK) {
219                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221                 /* Funny extension: if ECT is not set on a segment,
222                  * it is surely retransmit. It is not in ECN RFC,
223                  * but Linux follows this rule. */
224                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225                         tcp_enter_quickack_mode((struct sock *)tp);
226         }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232                 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238                 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244                 return 1;
245         return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256                      sizeof(struct sk_buff);
257
258         if (sk->sk_sndbuf < 3 * sndmem)
259                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290         struct tcp_sock *tp = tcp_sk(sk);
291         /* Optimize this! */
292         int truesize = tcp_win_from_space(skb->truesize) >> 1;
293         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294
295         while (tp->rcv_ssthresh <= window) {
296                 if (truesize <= skb->len)
297                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299                 truesize >>= 1;
300                 window >>= 1;
301         }
302         return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
306 {
307         struct tcp_sock *tp = tcp_sk(sk);
308
309         /* Check #1 */
310         if (tp->rcv_ssthresh < tp->window_clamp &&
311             (int)tp->rcv_ssthresh < tcp_space(sk) &&
312             !tcp_memory_pressure) {
313                 int incr;
314
315                 /* Check #2. Increase window, if skb with such overhead
316                  * will fit to rcvbuf in future.
317                  */
318                 if (tcp_win_from_space(skb->truesize) <= skb->len)
319                         incr = 2 * tp->advmss;
320                 else
321                         incr = __tcp_grow_window(sk, skb);
322
323                 if (incr) {
324                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325                                                tp->window_clamp);
326                         inet_csk(sk)->icsk_ack.quick |= 1;
327                 }
328         }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335         struct tcp_sock *tp = tcp_sk(sk);
336         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338         /* Try to select rcvbuf so that 4 mss-sized segments
339          * will fit to window and corresponding skbs will fit to our rcvbuf.
340          * (was 3; 4 is minimum to allow fast retransmit to work.)
341          */
342         while (tcp_win_from_space(rcvmem) < tp->advmss)
343                 rcvmem += 128;
344         if (sk->sk_rcvbuf < 4 * rcvmem)
345                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353         struct tcp_sock *tp = tcp_sk(sk);
354         int maxwin;
355
356         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357                 tcp_fixup_rcvbuf(sk);
358         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359                 tcp_fixup_sndbuf(sk);
360
361         tp->rcvq_space.space = tp->rcv_wnd;
362
363         maxwin = tcp_full_space(sk);
364
365         if (tp->window_clamp >= maxwin) {
366                 tp->window_clamp = maxwin;
367
368                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369                         tp->window_clamp = max(maxwin -
370                                                (maxwin >> sysctl_tcp_app_win),
371                                                4 * tp->advmss);
372         }
373
374         /* Force reservation of one segment. */
375         if (sysctl_tcp_app_win &&
376             tp->window_clamp > 2 * tp->advmss &&
377             tp->window_clamp + tp->advmss > maxwin)
378                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381         tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387         struct tcp_sock *tp = tcp_sk(sk);
388         struct inet_connection_sock *icsk = inet_csk(sk);
389
390         icsk->icsk_ack.quick = 0;
391
392         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394             !tcp_memory_pressure &&
395             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397                                     sysctl_tcp_rmem[2]);
398         }
399         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 }
402
403 /* Initialize RCV_MSS value.
404  * RCV_MSS is an our guess about MSS used by the peer.
405  * We haven't any direct information about the MSS.
406  * It's better to underestimate the RCV_MSS rather than overestimate.
407  * Overestimations make us ACKing less frequently than needed.
408  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409  */
410 void tcp_initialize_rcv_mss(struct sock *sk)
411 {
412         struct tcp_sock *tp = tcp_sk(sk);
413         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414
415         hint = min(hint, tp->rcv_wnd / 2);
416         hint = min(hint, TCP_MSS_DEFAULT);
417         hint = max(hint, TCP_MIN_MSS);
418
419         inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 }
421
422 /* Receiver "autotuning" code.
423  *
424  * The algorithm for RTT estimation w/o timestamps is based on
425  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427  *
428  * More detail on this code can be found at
429  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430  * though this reference is out of date.  A new paper
431  * is pending.
432  */
433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434 {
435         u32 new_sample = tp->rcv_rtt_est.rtt;
436         long m = sample;
437
438         if (m == 0)
439                 m = 1;
440
441         if (new_sample != 0) {
442                 /* If we sample in larger samples in the non-timestamp
443                  * case, we could grossly overestimate the RTT especially
444                  * with chatty applications or bulk transfer apps which
445                  * are stalled on filesystem I/O.
446                  *
447                  * Also, since we are only going for a minimum in the
448                  * non-timestamp case, we do not smooth things out
449                  * else with timestamps disabled convergence takes too
450                  * long.
451                  */
452                 if (!win_dep) {
453                         m -= (new_sample >> 3);
454                         new_sample += m;
455                 } else if (m < new_sample)
456                         new_sample = m << 3;
457         } else {
458                 /* No previous measure. */
459                 new_sample = m << 3;
460         }
461
462         if (tp->rcv_rtt_est.rtt != new_sample)
463                 tp->rcv_rtt_est.rtt = new_sample;
464 }
465
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467 {
468         if (tp->rcv_rtt_est.time == 0)
469                 goto new_measure;
470         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471                 return;
472         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473
474 new_measure:
475         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476         tp->rcv_rtt_est.time = tcp_time_stamp;
477 }
478
479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480                                           const struct sk_buff *skb)
481 {
482         struct tcp_sock *tp = tcp_sk(sk);
483         if (tp->rx_opt.rcv_tsecr &&
484             (TCP_SKB_CB(skb)->end_seq -
485              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 }
488
489 /*
490  * This function should be called every time data is copied to user space.
491  * It calculates the appropriate TCP receive buffer space.
492  */
493 void tcp_rcv_space_adjust(struct sock *sk)
494 {
495         struct tcp_sock *tp = tcp_sk(sk);
496         int time;
497         int space;
498
499         if (tp->rcvq_space.time == 0)
500                 goto new_measure;
501
502         time = tcp_time_stamp - tp->rcvq_space.time;
503         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504                 return;
505
506         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
507
508         space = max(tp->rcvq_space.space, space);
509
510         if (tp->rcvq_space.space != space) {
511                 int rcvmem;
512
513                 tp->rcvq_space.space = space;
514
515                 if (sysctl_tcp_moderate_rcvbuf &&
516                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517                         int new_clamp = space;
518
519                         /* Receive space grows, normalize in order to
520                          * take into account packet headers and sk_buff
521                          * structure overhead.
522                          */
523                         space /= tp->advmss;
524                         if (!space)
525                                 space = 1;
526                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
527                                   16 + sizeof(struct sk_buff));
528                         while (tcp_win_from_space(rcvmem) < tp->advmss)
529                                 rcvmem += 128;
530                         space *= rcvmem;
531                         space = min(space, sysctl_tcp_rmem[2]);
532                         if (space > sk->sk_rcvbuf) {
533                                 sk->sk_rcvbuf = space;
534
535                                 /* Make the window clamp follow along.  */
536                                 tp->window_clamp = new_clamp;
537                         }
538                 }
539         }
540
541 new_measure:
542         tp->rcvq_space.seq = tp->copied_seq;
543         tp->rcvq_space.time = tcp_time_stamp;
544 }
545
546 /* There is something which you must keep in mind when you analyze the
547  * behavior of the tp->ato delayed ack timeout interval.  When a
548  * connection starts up, we want to ack as quickly as possible.  The
549  * problem is that "good" TCP's do slow start at the beginning of data
550  * transmission.  The means that until we send the first few ACK's the
551  * sender will sit on his end and only queue most of his data, because
552  * he can only send snd_cwnd unacked packets at any given time.  For
553  * each ACK we send, he increments snd_cwnd and transmits more of his
554  * queue.  -DaveM
555  */
556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
557 {
558         struct tcp_sock *tp = tcp_sk(sk);
559         struct inet_connection_sock *icsk = inet_csk(sk);
560         u32 now;
561
562         inet_csk_schedule_ack(sk);
563
564         tcp_measure_rcv_mss(sk, skb);
565
566         tcp_rcv_rtt_measure(tp);
567
568         now = tcp_time_stamp;
569
570         if (!icsk->icsk_ack.ato) {
571                 /* The _first_ data packet received, initialize
572                  * delayed ACK engine.
573                  */
574                 tcp_incr_quickack(sk);
575                 icsk->icsk_ack.ato = TCP_ATO_MIN;
576         } else {
577                 int m = now - icsk->icsk_ack.lrcvtime;
578
579                 if (m <= TCP_ATO_MIN / 2) {
580                         /* The fastest case is the first. */
581                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582                 } else if (m < icsk->icsk_ack.ato) {
583                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
585                                 icsk->icsk_ack.ato = icsk->icsk_rto;
586                 } else if (m > icsk->icsk_rto) {
587                         /* Too long gap. Apparently sender failed to
588                          * restart window, so that we send ACKs quickly.
589                          */
590                         tcp_incr_quickack(sk);
591                         sk_mem_reclaim(sk);
592                 }
593         }
594         icsk->icsk_ack.lrcvtime = now;
595
596         TCP_ECN_check_ce(tp, skb);
597
598         if (skb->len >= 128)
599                 tcp_grow_window(sk, skb);
600 }
601
602 /* Called to compute a smoothed rtt estimate. The data fed to this
603  * routine either comes from timestamps, or from segments that were
604  * known _not_ to have been retransmitted [see Karn/Partridge
605  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
606  * piece by Van Jacobson.
607  * NOTE: the next three routines used to be one big routine.
608  * To save cycles in the RFC 1323 implementation it was better to break
609  * it up into three procedures. -- erics
610  */
611 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
612 {
613         struct tcp_sock *tp = tcp_sk(sk);
614         long m = mrtt; /* RTT */
615
616         /*      The following amusing code comes from Jacobson's
617          *      article in SIGCOMM '88.  Note that rtt and mdev
618          *      are scaled versions of rtt and mean deviation.
619          *      This is designed to be as fast as possible
620          *      m stands for "measurement".
621          *
622          *      On a 1990 paper the rto value is changed to:
623          *      RTO = rtt + 4 * mdev
624          *
625          * Funny. This algorithm seems to be very broken.
626          * These formulae increase RTO, when it should be decreased, increase
627          * too slowly, when it should be increased quickly, decrease too quickly
628          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
629          * does not matter how to _calculate_ it. Seems, it was trap
630          * that VJ failed to avoid. 8)
631          */
632         if (m == 0)
633                 m = 1;
634         if (tp->srtt != 0) {
635                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
636                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
637                 if (m < 0) {
638                         m = -m;         /* m is now abs(error) */
639                         m -= (tp->mdev >> 2);   /* similar update on mdev */
640                         /* This is similar to one of Eifel findings.
641                          * Eifel blocks mdev updates when rtt decreases.
642                          * This solution is a bit different: we use finer gain
643                          * for mdev in this case (alpha*beta).
644                          * Like Eifel it also prevents growth of rto,
645                          * but also it limits too fast rto decreases,
646                          * happening in pure Eifel.
647                          */
648                         if (m > 0)
649                                 m >>= 3;
650                 } else {
651                         m -= (tp->mdev >> 2);   /* similar update on mdev */
652                 }
653                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
654                 if (tp->mdev > tp->mdev_max) {
655                         tp->mdev_max = tp->mdev;
656                         if (tp->mdev_max > tp->rttvar)
657                                 tp->rttvar = tp->mdev_max;
658                 }
659                 if (after(tp->snd_una, tp->rtt_seq)) {
660                         if (tp->mdev_max < tp->rttvar)
661                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
662                         tp->rtt_seq = tp->snd_nxt;
663                         tp->mdev_max = tcp_rto_min(sk);
664                 }
665         } else {
666                 /* no previous measure. */
667                 tp->srtt = m << 3;      /* take the measured time to be rtt */
668                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
669                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
670                 tp->rtt_seq = tp->snd_nxt;
671         }
672 }
673
674 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
675  * routine referred to above.
676  */
677 static inline void tcp_set_rto(struct sock *sk)
678 {
679         const struct tcp_sock *tp = tcp_sk(sk);
680         /* Old crap is replaced with new one. 8)
681          *
682          * More seriously:
683          * 1. If rtt variance happened to be less 50msec, it is hallucination.
684          *    It cannot be less due to utterly erratic ACK generation made
685          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
686          *    to do with delayed acks, because at cwnd>2 true delack timeout
687          *    is invisible. Actually, Linux-2.4 also generates erratic
688          *    ACKs in some circumstances.
689          */
690         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
691
692         /* 2. Fixups made earlier cannot be right.
693          *    If we do not estimate RTO correctly without them,
694          *    all the algo is pure shit and should be replaced
695          *    with correct one. It is exactly, which we pretend to do.
696          */
697
698         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
699          * guarantees that rto is higher.
700          */
701         tcp_bound_rto(sk);
702 }
703
704 /* Save metrics learned by this TCP session.
705    This function is called only, when TCP finishes successfully
706    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
707  */
708 void tcp_update_metrics(struct sock *sk)
709 {
710         struct tcp_sock *tp = tcp_sk(sk);
711         struct dst_entry *dst = __sk_dst_get(sk);
712
713         if (sysctl_tcp_nometrics_save)
714                 return;
715
716         dst_confirm(dst);
717
718         if (dst && (dst->flags & DST_HOST)) {
719                 const struct inet_connection_sock *icsk = inet_csk(sk);
720                 int m;
721                 unsigned long rtt;
722
723                 if (icsk->icsk_backoff || !tp->srtt) {
724                         /* This session failed to estimate rtt. Why?
725                          * Probably, no packets returned in time.
726                          * Reset our results.
727                          */
728                         if (!(dst_metric_locked(dst, RTAX_RTT)))
729                                 dst->metrics[RTAX_RTT - 1] = 0;
730                         return;
731                 }
732
733                 rtt = dst_metric_rtt(dst, RTAX_RTT);
734                 m = rtt - tp->srtt;
735
736                 /* If newly calculated rtt larger than stored one,
737                  * store new one. Otherwise, use EWMA. Remember,
738                  * rtt overestimation is always better than underestimation.
739                  */
740                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
741                         if (m <= 0)
742                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
743                         else
744                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
745                 }
746
747                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
748                         unsigned long var;
749                         if (m < 0)
750                                 m = -m;
751
752                         /* Scale deviation to rttvar fixed point */
753                         m >>= 1;
754                         if (m < tp->mdev)
755                                 m = tp->mdev;
756
757                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
758                         if (m >= var)
759                                 var = m;
760                         else
761                                 var -= (var - m) >> 2;
762
763                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
764                 }
765
766                 if (tcp_in_initial_slowstart(tp)) {
767                         /* Slow start still did not finish. */
768                         if (dst_metric(dst, RTAX_SSTHRESH) &&
769                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
770                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
771                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
772                         if (!dst_metric_locked(dst, RTAX_CWND) &&
773                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
774                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
775                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
776                            icsk->icsk_ca_state == TCP_CA_Open) {
777                         /* Cong. avoidance phase, cwnd is reliable. */
778                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
779                                 dst->metrics[RTAX_SSTHRESH-1] =
780                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
781                         if (!dst_metric_locked(dst, RTAX_CWND))
782                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
783                 } else {
784                         /* Else slow start did not finish, cwnd is non-sense,
785                            ssthresh may be also invalid.
786                          */
787                         if (!dst_metric_locked(dst, RTAX_CWND))
788                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
789                         if (dst_metric(dst, RTAX_SSTHRESH) &&
790                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
791                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
792                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
793                 }
794
795                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
796                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
797                             tp->reordering != sysctl_tcp_reordering)
798                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
799                 }
800         }
801 }
802
803 /* Numbers are taken from RFC3390.
804  *
805  * John Heffner states:
806  *
807  *      The RFC specifies a window of no more than 4380 bytes
808  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
809  *      is a bit misleading because they use a clamp at 4380 bytes
810  *      rather than use a multiplier in the relevant range.
811  */
812 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
813 {
814         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
815
816         if (!cwnd) {
817                 if (tp->mss_cache > 1460)
818                         cwnd = 2;
819                 else
820                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
821         }
822         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
823 }
824
825 /* Set slow start threshold and cwnd not falling to slow start */
826 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
827 {
828         struct tcp_sock *tp = tcp_sk(sk);
829         const struct inet_connection_sock *icsk = inet_csk(sk);
830
831         tp->prior_ssthresh = 0;
832         tp->bytes_acked = 0;
833         if (icsk->icsk_ca_state < TCP_CA_CWR) {
834                 tp->undo_marker = 0;
835                 if (set_ssthresh)
836                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
837                 tp->snd_cwnd = min(tp->snd_cwnd,
838                                    tcp_packets_in_flight(tp) + 1U);
839                 tp->snd_cwnd_cnt = 0;
840                 tp->high_seq = tp->snd_nxt;
841                 tp->snd_cwnd_stamp = tcp_time_stamp;
842                 TCP_ECN_queue_cwr(tp);
843
844                 tcp_set_ca_state(sk, TCP_CA_CWR);
845         }
846 }
847
848 /*
849  * Packet counting of FACK is based on in-order assumptions, therefore TCP
850  * disables it when reordering is detected
851  */
852 static void tcp_disable_fack(struct tcp_sock *tp)
853 {
854         /* RFC3517 uses different metric in lost marker => reset on change */
855         if (tcp_is_fack(tp))
856                 tp->lost_skb_hint = NULL;
857         tp->rx_opt.sack_ok &= ~2;
858 }
859
860 /* Take a notice that peer is sending D-SACKs */
861 static void tcp_dsack_seen(struct tcp_sock *tp)
862 {
863         tp->rx_opt.sack_ok |= 4;
864 }
865
866 /* Initialize metrics on socket. */
867
868 static void tcp_init_metrics(struct sock *sk)
869 {
870         struct tcp_sock *tp = tcp_sk(sk);
871         struct dst_entry *dst = __sk_dst_get(sk);
872
873         if (dst == NULL)
874                 goto reset;
875
876         dst_confirm(dst);
877
878         if (dst_metric_locked(dst, RTAX_CWND))
879                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
880         if (dst_metric(dst, RTAX_SSTHRESH)) {
881                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
882                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
883                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
884         }
885         if (dst_metric(dst, RTAX_REORDERING) &&
886             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
887                 tcp_disable_fack(tp);
888                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
889         }
890
891         if (dst_metric(dst, RTAX_RTT) == 0)
892                 goto reset;
893
894         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
895                 goto reset;
896
897         /* Initial rtt is determined from SYN,SYN-ACK.
898          * The segment is small and rtt may appear much
899          * less than real one. Use per-dst memory
900          * to make it more realistic.
901          *
902          * A bit of theory. RTT is time passed after "normal" sized packet
903          * is sent until it is ACKed. In normal circumstances sending small
904          * packets force peer to delay ACKs and calculation is correct too.
905          * The algorithm is adaptive and, provided we follow specs, it
906          * NEVER underestimate RTT. BUT! If peer tries to make some clever
907          * tricks sort of "quick acks" for time long enough to decrease RTT
908          * to low value, and then abruptly stops to do it and starts to delay
909          * ACKs, wait for troubles.
910          */
911         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
912                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
913                 tp->rtt_seq = tp->snd_nxt;
914         }
915         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
916                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
917                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
918         }
919         tcp_set_rto(sk);
920         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
921                 goto reset;
922
923 cwnd:
924         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
925         tp->snd_cwnd_stamp = tcp_time_stamp;
926         return;
927
928 reset:
929         /* Play conservative. If timestamps are not
930          * supported, TCP will fail to recalculate correct
931          * rtt, if initial rto is too small. FORGET ALL AND RESET!
932          */
933         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
934                 tp->srtt = 0;
935                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
936                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
937         }
938         goto cwnd;
939 }
940
941 static void tcp_update_reordering(struct sock *sk, const int metric,
942                                   const int ts)
943 {
944         struct tcp_sock *tp = tcp_sk(sk);
945         if (metric > tp->reordering) {
946                 int mib_idx;
947
948                 tp->reordering = min(TCP_MAX_REORDERING, metric);
949
950                 /* This exciting event is worth to be remembered. 8) */
951                 if (ts)
952                         mib_idx = LINUX_MIB_TCPTSREORDER;
953                 else if (tcp_is_reno(tp))
954                         mib_idx = LINUX_MIB_TCPRENOREORDER;
955                 else if (tcp_is_fack(tp))
956                         mib_idx = LINUX_MIB_TCPFACKREORDER;
957                 else
958                         mib_idx = LINUX_MIB_TCPSACKREORDER;
959
960                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
961 #if FASTRETRANS_DEBUG > 1
962                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
963                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
964                        tp->reordering,
965                        tp->fackets_out,
966                        tp->sacked_out,
967                        tp->undo_marker ? tp->undo_retrans : 0);
968 #endif
969                 tcp_disable_fack(tp);
970         }
971 }
972
973 /* This must be called before lost_out is incremented */
974 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
975 {
976         if ((tp->retransmit_skb_hint == NULL) ||
977             before(TCP_SKB_CB(skb)->seq,
978                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
979                 tp->retransmit_skb_hint = skb;
980
981         if (!tp->lost_out ||
982             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
983                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
984 }
985
986 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
987 {
988         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
989                 tcp_verify_retransmit_hint(tp, skb);
990
991                 tp->lost_out += tcp_skb_pcount(skb);
992                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
993         }
994 }
995
996 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
997                                             struct sk_buff *skb)
998 {
999         tcp_verify_retransmit_hint(tp, skb);
1000
1001         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1002                 tp->lost_out += tcp_skb_pcount(skb);
1003                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1004         }
1005 }
1006
1007 /* This procedure tags the retransmission queue when SACKs arrive.
1008  *
1009  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1010  * Packets in queue with these bits set are counted in variables
1011  * sacked_out, retrans_out and lost_out, correspondingly.
1012  *
1013  * Valid combinations are:
1014  * Tag  InFlight        Description
1015  * 0    1               - orig segment is in flight.
1016  * S    0               - nothing flies, orig reached receiver.
1017  * L    0               - nothing flies, orig lost by net.
1018  * R    2               - both orig and retransmit are in flight.
1019  * L|R  1               - orig is lost, retransmit is in flight.
1020  * S|R  1               - orig reached receiver, retrans is still in flight.
1021  * (L|S|R is logically valid, it could occur when L|R is sacked,
1022  *  but it is equivalent to plain S and code short-curcuits it to S.
1023  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1024  *
1025  * These 6 states form finite state machine, controlled by the following events:
1026  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1027  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1028  * 3. Loss detection event of one of three flavors:
1029  *      A. Scoreboard estimator decided the packet is lost.
1030  *         A'. Reno "three dupacks" marks head of queue lost.
1031  *         A''. Its FACK modfication, head until snd.fack is lost.
1032  *      B. SACK arrives sacking data transmitted after never retransmitted
1033  *         hole was sent out.
1034  *      C. SACK arrives sacking SND.NXT at the moment, when the
1035  *         segment was retransmitted.
1036  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1037  *
1038  * It is pleasant to note, that state diagram turns out to be commutative,
1039  * so that we are allowed not to be bothered by order of our actions,
1040  * when multiple events arrive simultaneously. (see the function below).
1041  *
1042  * Reordering detection.
1043  * --------------------
1044  * Reordering metric is maximal distance, which a packet can be displaced
1045  * in packet stream. With SACKs we can estimate it:
1046  *
1047  * 1. SACK fills old hole and the corresponding segment was not
1048  *    ever retransmitted -> reordering. Alas, we cannot use it
1049  *    when segment was retransmitted.
1050  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1051  *    for retransmitted and already SACKed segment -> reordering..
1052  * Both of these heuristics are not used in Loss state, when we cannot
1053  * account for retransmits accurately.
1054  *
1055  * SACK block validation.
1056  * ----------------------
1057  *
1058  * SACK block range validation checks that the received SACK block fits to
1059  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1060  * Note that SND.UNA is not included to the range though being valid because
1061  * it means that the receiver is rather inconsistent with itself reporting
1062  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1063  * perfectly valid, however, in light of RFC2018 which explicitly states
1064  * that "SACK block MUST reflect the newest segment.  Even if the newest
1065  * segment is going to be discarded ...", not that it looks very clever
1066  * in case of head skb. Due to potentional receiver driven attacks, we
1067  * choose to avoid immediate execution of a walk in write queue due to
1068  * reneging and defer head skb's loss recovery to standard loss recovery
1069  * procedure that will eventually trigger (nothing forbids us doing this).
1070  *
1071  * Implements also blockage to start_seq wrap-around. Problem lies in the
1072  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1073  * there's no guarantee that it will be before snd_nxt (n). The problem
1074  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1075  * wrap (s_w):
1076  *
1077  *         <- outs wnd ->                          <- wrapzone ->
1078  *         u     e      n                         u_w   e_w  s n_w
1079  *         |     |      |                          |     |   |  |
1080  * |<------------+------+----- TCP seqno space --------------+---------->|
1081  * ...-- <2^31 ->|                                           |<--------...
1082  * ...---- >2^31 ------>|                                    |<--------...
1083  *
1084  * Current code wouldn't be vulnerable but it's better still to discard such
1085  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1086  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1087  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1088  * equal to the ideal case (infinite seqno space without wrap caused issues).
1089  *
1090  * With D-SACK the lower bound is extended to cover sequence space below
1091  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1092  * again, D-SACK block must not to go across snd_una (for the same reason as
1093  * for the normal SACK blocks, explained above). But there all simplicity
1094  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1095  * fully below undo_marker they do not affect behavior in anyway and can
1096  * therefore be safely ignored. In rare cases (which are more or less
1097  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1098  * fragmentation and packet reordering past skb's retransmission. To consider
1099  * them correctly, the acceptable range must be extended even more though
1100  * the exact amount is rather hard to quantify. However, tp->max_window can
1101  * be used as an exaggerated estimate.
1102  */
1103 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1104                                   u32 start_seq, u32 end_seq)
1105 {
1106         /* Too far in future, or reversed (interpretation is ambiguous) */
1107         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1108                 return 0;
1109
1110         /* Nasty start_seq wrap-around check (see comments above) */
1111         if (!before(start_seq, tp->snd_nxt))
1112                 return 0;
1113
1114         /* In outstanding window? ...This is valid exit for D-SACKs too.
1115          * start_seq == snd_una is non-sensical (see comments above)
1116          */
1117         if (after(start_seq, tp->snd_una))
1118                 return 1;
1119
1120         if (!is_dsack || !tp->undo_marker)
1121                 return 0;
1122
1123         /* ...Then it's D-SACK, and must reside below snd_una completely */
1124         if (!after(end_seq, tp->snd_una))
1125                 return 0;
1126
1127         if (!before(start_seq, tp->undo_marker))
1128                 return 1;
1129
1130         /* Too old */
1131         if (!after(end_seq, tp->undo_marker))
1132                 return 0;
1133
1134         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1135          *   start_seq < undo_marker and end_seq >= undo_marker.
1136          */
1137         return !before(start_seq, end_seq - tp->max_window);
1138 }
1139
1140 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1141  * Event "C". Later note: FACK people cheated me again 8), we have to account
1142  * for reordering! Ugly, but should help.
1143  *
1144  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1145  * less than what is now known to be received by the other end (derived from
1146  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1147  * retransmitted skbs to avoid some costly processing per ACKs.
1148  */
1149 static void tcp_mark_lost_retrans(struct sock *sk)
1150 {
1151         const struct inet_connection_sock *icsk = inet_csk(sk);
1152         struct tcp_sock *tp = tcp_sk(sk);
1153         struct sk_buff *skb;
1154         int cnt = 0;
1155         u32 new_low_seq = tp->snd_nxt;
1156         u32 received_upto = tcp_highest_sack_seq(tp);
1157
1158         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1159             !after(received_upto, tp->lost_retrans_low) ||
1160             icsk->icsk_ca_state != TCP_CA_Recovery)
1161                 return;
1162
1163         tcp_for_write_queue(skb, sk) {
1164                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1165
1166                 if (skb == tcp_send_head(sk))
1167                         break;
1168                 if (cnt == tp->retrans_out)
1169                         break;
1170                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1171                         continue;
1172
1173                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1174                         continue;
1175
1176                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1177                  * constraint here (see above) but figuring out that at
1178                  * least tp->reordering SACK blocks reside between ack_seq
1179                  * and received_upto is not easy task to do cheaply with
1180                  * the available datastructures.
1181                  *
1182                  * Whether FACK should check here for tp->reordering segs
1183                  * in-between one could argue for either way (it would be
1184                  * rather simple to implement as we could count fack_count
1185                  * during the walk and do tp->fackets_out - fack_count).
1186                  */
1187                 if (after(received_upto, ack_seq)) {
1188                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1189                         tp->retrans_out -= tcp_skb_pcount(skb);
1190
1191                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1192                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1193                 } else {
1194                         if (before(ack_seq, new_low_seq))
1195                                 new_low_seq = ack_seq;
1196                         cnt += tcp_skb_pcount(skb);
1197                 }
1198         }
1199
1200         if (tp->retrans_out)
1201                 tp->lost_retrans_low = new_low_seq;
1202 }
1203
1204 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1205                            struct tcp_sack_block_wire *sp, int num_sacks,
1206                            u32 prior_snd_una)
1207 {
1208         struct tcp_sock *tp = tcp_sk(sk);
1209         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1210         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1211         int dup_sack = 0;
1212
1213         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1214                 dup_sack = 1;
1215                 tcp_dsack_seen(tp);
1216                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1217         } else if (num_sacks > 1) {
1218                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1219                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1220
1221                 if (!after(end_seq_0, end_seq_1) &&
1222                     !before(start_seq_0, start_seq_1)) {
1223                         dup_sack = 1;
1224                         tcp_dsack_seen(tp);
1225                         NET_INC_STATS_BH(sock_net(sk),
1226                                         LINUX_MIB_TCPDSACKOFORECV);
1227                 }
1228         }
1229
1230         /* D-SACK for already forgotten data... Do dumb counting. */
1231         if (dup_sack &&
1232             !after(end_seq_0, prior_snd_una) &&
1233             after(end_seq_0, tp->undo_marker))
1234                 tp->undo_retrans--;
1235
1236         return dup_sack;
1237 }
1238
1239 struct tcp_sacktag_state {
1240         int reord;
1241         int fack_count;
1242         int flag;
1243 };
1244
1245 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1246  * the incoming SACK may not exactly match but we can find smaller MSS
1247  * aligned portion of it that matches. Therefore we might need to fragment
1248  * which may fail and creates some hassle (caller must handle error case
1249  * returns).
1250  *
1251  * FIXME: this could be merged to shift decision code
1252  */
1253 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1254                                  u32 start_seq, u32 end_seq)
1255 {
1256         int in_sack, err;
1257         unsigned int pkt_len;
1258         unsigned int mss;
1259
1260         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1261                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1262
1263         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1264             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1265                 mss = tcp_skb_mss(skb);
1266                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1267
1268                 if (!in_sack) {
1269                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1270                         if (pkt_len < mss)
1271                                 pkt_len = mss;
1272                 } else {
1273                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1274                         if (pkt_len < mss)
1275                                 return -EINVAL;
1276                 }
1277
1278                 /* Round if necessary so that SACKs cover only full MSSes
1279                  * and/or the remaining small portion (if present)
1280                  */
1281                 if (pkt_len > mss) {
1282                         unsigned int new_len = (pkt_len / mss) * mss;
1283                         if (!in_sack && new_len < pkt_len) {
1284                                 new_len += mss;
1285                                 if (new_len > skb->len)
1286                                         return 0;
1287                         }
1288                         pkt_len = new_len;
1289                 }
1290                 err = tcp_fragment(sk, skb, pkt_len, mss);
1291                 if (err < 0)
1292                         return err;
1293         }
1294
1295         return in_sack;
1296 }
1297
1298 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1299                           struct tcp_sacktag_state *state,
1300                           int dup_sack, int pcount)
1301 {
1302         struct tcp_sock *tp = tcp_sk(sk);
1303         u8 sacked = TCP_SKB_CB(skb)->sacked;
1304         int fack_count = state->fack_count;
1305
1306         /* Account D-SACK for retransmitted packet. */
1307         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1308                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1309                         tp->undo_retrans--;
1310                 if (sacked & TCPCB_SACKED_ACKED)
1311                         state->reord = min(fack_count, state->reord);
1312         }
1313
1314         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1315         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1316                 return sacked;
1317
1318         if (!(sacked & TCPCB_SACKED_ACKED)) {
1319                 if (sacked & TCPCB_SACKED_RETRANS) {
1320                         /* If the segment is not tagged as lost,
1321                          * we do not clear RETRANS, believing
1322                          * that retransmission is still in flight.
1323                          */
1324                         if (sacked & TCPCB_LOST) {
1325                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1326                                 tp->lost_out -= pcount;
1327                                 tp->retrans_out -= pcount;
1328                         }
1329                 } else {
1330                         if (!(sacked & TCPCB_RETRANS)) {
1331                                 /* New sack for not retransmitted frame,
1332                                  * which was in hole. It is reordering.
1333                                  */
1334                                 if (before(TCP_SKB_CB(skb)->seq,
1335                                            tcp_highest_sack_seq(tp)))
1336                                         state->reord = min(fack_count,
1337                                                            state->reord);
1338
1339                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1340                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1341                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1342                         }
1343
1344                         if (sacked & TCPCB_LOST) {
1345                                 sacked &= ~TCPCB_LOST;
1346                                 tp->lost_out -= pcount;
1347                         }
1348                 }
1349
1350                 sacked |= TCPCB_SACKED_ACKED;
1351                 state->flag |= FLAG_DATA_SACKED;
1352                 tp->sacked_out += pcount;
1353
1354                 fack_count += pcount;
1355
1356                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1357                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1358                     before(TCP_SKB_CB(skb)->seq,
1359                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1360                         tp->lost_cnt_hint += pcount;
1361
1362                 if (fack_count > tp->fackets_out)
1363                         tp->fackets_out = fack_count;
1364         }
1365
1366         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1367          * frames and clear it. undo_retrans is decreased above, L|R frames
1368          * are accounted above as well.
1369          */
1370         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1371                 sacked &= ~TCPCB_SACKED_RETRANS;
1372                 tp->retrans_out -= pcount;
1373         }
1374
1375         return sacked;
1376 }
1377
1378 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1379                            struct tcp_sacktag_state *state,
1380                            unsigned int pcount, int shifted, int mss,
1381                            int dup_sack)
1382 {
1383         struct tcp_sock *tp = tcp_sk(sk);
1384         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1385
1386         BUG_ON(!pcount);
1387
1388         /* Tweak before seqno plays */
1389         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1390             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1391                 tp->lost_cnt_hint += pcount;
1392
1393         TCP_SKB_CB(prev)->end_seq += shifted;
1394         TCP_SKB_CB(skb)->seq += shifted;
1395
1396         skb_shinfo(prev)->gso_segs += pcount;
1397         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1398         skb_shinfo(skb)->gso_segs -= pcount;
1399
1400         /* When we're adding to gso_segs == 1, gso_size will be zero,
1401          * in theory this shouldn't be necessary but as long as DSACK
1402          * code can come after this skb later on it's better to keep
1403          * setting gso_size to something.
1404          */
1405         if (!skb_shinfo(prev)->gso_size) {
1406                 skb_shinfo(prev)->gso_size = mss;
1407                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1408         }
1409
1410         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1411         if (skb_shinfo(skb)->gso_segs <= 1) {
1412                 skb_shinfo(skb)->gso_size = 0;
1413                 skb_shinfo(skb)->gso_type = 0;
1414         }
1415
1416         /* We discard results */
1417         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1418
1419         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1420         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1421
1422         if (skb->len > 0) {
1423                 BUG_ON(!tcp_skb_pcount(skb));
1424                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1425                 return 0;
1426         }
1427
1428         /* Whole SKB was eaten :-) */
1429
1430         if (skb == tp->retransmit_skb_hint)
1431                 tp->retransmit_skb_hint = prev;
1432         if (skb == tp->scoreboard_skb_hint)
1433                 tp->scoreboard_skb_hint = prev;
1434         if (skb == tp->lost_skb_hint) {
1435                 tp->lost_skb_hint = prev;
1436                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1437         }
1438
1439         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1440         if (skb == tcp_highest_sack(sk))
1441                 tcp_advance_highest_sack(sk, skb);
1442
1443         tcp_unlink_write_queue(skb, sk);
1444         sk_wmem_free_skb(sk, skb);
1445
1446         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1447
1448         return 1;
1449 }
1450
1451 /* I wish gso_size would have a bit more sane initialization than
1452  * something-or-zero which complicates things
1453  */
1454 static int tcp_skb_seglen(struct sk_buff *skb)
1455 {
1456         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1457 }
1458
1459 /* Shifting pages past head area doesn't work */
1460 static int skb_can_shift(struct sk_buff *skb)
1461 {
1462         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1463 }
1464
1465 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1466  * skb.
1467  */
1468 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1469                                           struct tcp_sacktag_state *state,
1470                                           u32 start_seq, u32 end_seq,
1471                                           int dup_sack)
1472 {
1473         struct tcp_sock *tp = tcp_sk(sk);
1474         struct sk_buff *prev;
1475         int mss;
1476         int pcount = 0;
1477         int len;
1478         int in_sack;
1479
1480         if (!sk_can_gso(sk))
1481                 goto fallback;
1482
1483         /* Normally R but no L won't result in plain S */
1484         if (!dup_sack &&
1485             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1486                 goto fallback;
1487         if (!skb_can_shift(skb))
1488                 goto fallback;
1489         /* This frame is about to be dropped (was ACKed). */
1490         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1491                 goto fallback;
1492
1493         /* Can only happen with delayed DSACK + discard craziness */
1494         if (unlikely(skb == tcp_write_queue_head(sk)))
1495                 goto fallback;
1496         prev = tcp_write_queue_prev(sk, skb);
1497
1498         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1499                 goto fallback;
1500
1501         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1502                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1503
1504         if (in_sack) {
1505                 len = skb->len;
1506                 pcount = tcp_skb_pcount(skb);
1507                 mss = tcp_skb_seglen(skb);
1508
1509                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1510                  * drop this restriction as unnecessary
1511                  */
1512                 if (mss != tcp_skb_seglen(prev))
1513                         goto fallback;
1514         } else {
1515                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1516                         goto noop;
1517                 /* CHECKME: This is non-MSS split case only?, this will
1518                  * cause skipped skbs due to advancing loop btw, original
1519                  * has that feature too
1520                  */
1521                 if (tcp_skb_pcount(skb) <= 1)
1522                         goto noop;
1523
1524                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1525                 if (!in_sack) {
1526                         /* TODO: head merge to next could be attempted here
1527                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1528                          * though it might not be worth of the additional hassle
1529                          *
1530                          * ...we can probably just fallback to what was done
1531                          * previously. We could try merging non-SACKed ones
1532                          * as well but it probably isn't going to buy off
1533                          * because later SACKs might again split them, and
1534                          * it would make skb timestamp tracking considerably
1535                          * harder problem.
1536                          */
1537                         goto fallback;
1538                 }
1539
1540                 len = end_seq - TCP_SKB_CB(skb)->seq;
1541                 BUG_ON(len < 0);
1542                 BUG_ON(len > skb->len);
1543
1544                 /* MSS boundaries should be honoured or else pcount will
1545                  * severely break even though it makes things bit trickier.
1546                  * Optimize common case to avoid most of the divides
1547                  */
1548                 mss = tcp_skb_mss(skb);
1549
1550                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1551                  * drop this restriction as unnecessary
1552                  */
1553                 if (mss != tcp_skb_seglen(prev))
1554                         goto fallback;
1555
1556                 if (len == mss) {
1557                         pcount = 1;
1558                 } else if (len < mss) {
1559                         goto noop;
1560                 } else {
1561                         pcount = len / mss;
1562                         len = pcount * mss;
1563                 }
1564         }
1565
1566         if (!skb_shift(prev, skb, len))
1567                 goto fallback;
1568         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1569                 goto out;
1570
1571         /* Hole filled allows collapsing with the next as well, this is very
1572          * useful when hole on every nth skb pattern happens
1573          */
1574         if (prev == tcp_write_queue_tail(sk))
1575                 goto out;
1576         skb = tcp_write_queue_next(sk, prev);
1577
1578         if (!skb_can_shift(skb) ||
1579             (skb == tcp_send_head(sk)) ||
1580             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1581             (mss != tcp_skb_seglen(skb)))
1582                 goto out;
1583
1584         len = skb->len;
1585         if (skb_shift(prev, skb, len)) {
1586                 pcount += tcp_skb_pcount(skb);
1587                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1588         }
1589
1590 out:
1591         state->fack_count += pcount;
1592         return prev;
1593
1594 noop:
1595         return skb;
1596
1597 fallback:
1598         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1599         return NULL;
1600 }
1601
1602 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1603                                         struct tcp_sack_block *next_dup,
1604                                         struct tcp_sacktag_state *state,
1605                                         u32 start_seq, u32 end_seq,
1606                                         int dup_sack_in)
1607 {
1608         struct tcp_sock *tp = tcp_sk(sk);
1609         struct sk_buff *tmp;
1610
1611         tcp_for_write_queue_from(skb, sk) {
1612                 int in_sack = 0;
1613                 int dup_sack = dup_sack_in;
1614
1615                 if (skb == tcp_send_head(sk))
1616                         break;
1617
1618                 /* queue is in-order => we can short-circuit the walk early */
1619                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1620                         break;
1621
1622                 if ((next_dup != NULL) &&
1623                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1624                         in_sack = tcp_match_skb_to_sack(sk, skb,
1625                                                         next_dup->start_seq,
1626                                                         next_dup->end_seq);
1627                         if (in_sack > 0)
1628                                 dup_sack = 1;
1629                 }
1630
1631                 /* skb reference here is a bit tricky to get right, since
1632                  * shifting can eat and free both this skb and the next,
1633                  * so not even _safe variant of the loop is enough.
1634                  */
1635                 if (in_sack <= 0) {
1636                         tmp = tcp_shift_skb_data(sk, skb, state,
1637                                                  start_seq, end_seq, dup_sack);
1638                         if (tmp != NULL) {
1639                                 if (tmp != skb) {
1640                                         skb = tmp;
1641                                         continue;
1642                                 }
1643
1644                                 in_sack = 0;
1645                         } else {
1646                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1647                                                                 start_seq,
1648                                                                 end_seq);
1649                         }
1650                 }
1651
1652                 if (unlikely(in_sack < 0))
1653                         break;
1654
1655                 if (in_sack) {
1656                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1657                                                                   state,
1658                                                                   dup_sack,
1659                                                                   tcp_skb_pcount(skb));
1660
1661                         if (!before(TCP_SKB_CB(skb)->seq,
1662                                     tcp_highest_sack_seq(tp)))
1663                                 tcp_advance_highest_sack(sk, skb);
1664                 }
1665
1666                 state->fack_count += tcp_skb_pcount(skb);
1667         }
1668         return skb;
1669 }
1670
1671 /* Avoid all extra work that is being done by sacktag while walking in
1672  * a normal way
1673  */
1674 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1675                                         struct tcp_sacktag_state *state,
1676                                         u32 skip_to_seq)
1677 {
1678         tcp_for_write_queue_from(skb, sk) {
1679                 if (skb == tcp_send_head(sk))
1680                         break;
1681
1682                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1683                         break;
1684
1685                 state->fack_count += tcp_skb_pcount(skb);
1686         }
1687         return skb;
1688 }
1689
1690 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1691                                                 struct sock *sk,
1692                                                 struct tcp_sack_block *next_dup,
1693                                                 struct tcp_sacktag_state *state,
1694                                                 u32 skip_to_seq)
1695 {
1696         if (next_dup == NULL)
1697                 return skb;
1698
1699         if (before(next_dup->start_seq, skip_to_seq)) {
1700                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1701                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1702                                        next_dup->start_seq, next_dup->end_seq,
1703                                        1);
1704         }
1705
1706         return skb;
1707 }
1708
1709 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1710 {
1711         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1712 }
1713
1714 static int
1715 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1716                         u32 prior_snd_una)
1717 {
1718         const struct inet_connection_sock *icsk = inet_csk(sk);
1719         struct tcp_sock *tp = tcp_sk(sk);
1720         unsigned char *ptr = (skb_transport_header(ack_skb) +
1721                               TCP_SKB_CB(ack_skb)->sacked);
1722         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1723         struct tcp_sack_block sp[TCP_NUM_SACKS];
1724         struct tcp_sack_block *cache;
1725         struct tcp_sacktag_state state;
1726         struct sk_buff *skb;
1727         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1728         int used_sacks;
1729         int found_dup_sack = 0;
1730         int i, j;
1731         int first_sack_index;
1732
1733         state.flag = 0;
1734         state.reord = tp->packets_out;
1735
1736         if (!tp->sacked_out) {
1737                 if (WARN_ON(tp->fackets_out))
1738                         tp->fackets_out = 0;
1739                 tcp_highest_sack_reset(sk);
1740         }
1741
1742         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1743                                          num_sacks, prior_snd_una);
1744         if (found_dup_sack)
1745                 state.flag |= FLAG_DSACKING_ACK;
1746
1747         /* Eliminate too old ACKs, but take into
1748          * account more or less fresh ones, they can
1749          * contain valid SACK info.
1750          */
1751         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1752                 return 0;
1753
1754         if (!tp->packets_out)
1755                 goto out;
1756
1757         used_sacks = 0;
1758         first_sack_index = 0;
1759         for (i = 0; i < num_sacks; i++) {
1760                 int dup_sack = !i && found_dup_sack;
1761
1762                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1763                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1764
1765                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1766                                             sp[used_sacks].start_seq,
1767                                             sp[used_sacks].end_seq)) {
1768                         int mib_idx;
1769
1770                         if (dup_sack) {
1771                                 if (!tp->undo_marker)
1772                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1773                                 else
1774                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1775                         } else {
1776                                 /* Don't count olds caused by ACK reordering */
1777                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1778                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1779                                         continue;
1780                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1781                         }
1782
1783                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1784                         if (i == 0)
1785                                 first_sack_index = -1;
1786                         continue;
1787                 }
1788
1789                 /* Ignore very old stuff early */
1790                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1791                         continue;
1792
1793                 used_sacks++;
1794         }
1795
1796         /* order SACK blocks to allow in order walk of the retrans queue */
1797         for (i = used_sacks - 1; i > 0; i--) {
1798                 for (j = 0; j < i; j++) {
1799                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1800                                 swap(sp[j], sp[j + 1]);
1801
1802                                 /* Track where the first SACK block goes to */
1803                                 if (j == first_sack_index)
1804                                         first_sack_index = j + 1;
1805                         }
1806                 }
1807         }
1808
1809         skb = tcp_write_queue_head(sk);
1810         state.fack_count = 0;
1811         i = 0;
1812
1813         if (!tp->sacked_out) {
1814                 /* It's already past, so skip checking against it */
1815                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1816         } else {
1817                 cache = tp->recv_sack_cache;
1818                 /* Skip empty blocks in at head of the cache */
1819                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1820                        !cache->end_seq)
1821                         cache++;
1822         }
1823
1824         while (i < used_sacks) {
1825                 u32 start_seq = sp[i].start_seq;
1826                 u32 end_seq = sp[i].end_seq;
1827                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1828                 struct tcp_sack_block *next_dup = NULL;
1829
1830                 if (found_dup_sack && ((i + 1) == first_sack_index))
1831                         next_dup = &sp[i + 1];
1832
1833                 /* Event "B" in the comment above. */
1834                 if (after(end_seq, tp->high_seq))
1835                         state.flag |= FLAG_DATA_LOST;
1836
1837                 /* Skip too early cached blocks */
1838                 while (tcp_sack_cache_ok(tp, cache) &&
1839                        !before(start_seq, cache->end_seq))
1840                         cache++;
1841
1842                 /* Can skip some work by looking recv_sack_cache? */
1843                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1844                     after(end_seq, cache->start_seq)) {
1845
1846                         /* Head todo? */
1847                         if (before(start_seq, cache->start_seq)) {
1848                                 skb = tcp_sacktag_skip(skb, sk, &state,
1849                                                        start_seq);
1850                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1851                                                        &state,
1852                                                        start_seq,
1853                                                        cache->start_seq,
1854                                                        dup_sack);
1855                         }
1856
1857                         /* Rest of the block already fully processed? */
1858                         if (!after(end_seq, cache->end_seq))
1859                                 goto advance_sp;
1860
1861                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1862                                                        &state,
1863                                                        cache->end_seq);
1864
1865                         /* ...tail remains todo... */
1866                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1867                                 /* ...but better entrypoint exists! */
1868                                 skb = tcp_highest_sack(sk);
1869                                 if (skb == NULL)
1870                                         break;
1871                                 state.fack_count = tp->fackets_out;
1872                                 cache++;
1873                                 goto walk;
1874                         }
1875
1876                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1877                         /* Check overlap against next cached too (past this one already) */
1878                         cache++;
1879                         continue;
1880                 }
1881
1882                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1883                         skb = tcp_highest_sack(sk);
1884                         if (skb == NULL)
1885                                 break;
1886                         state.fack_count = tp->fackets_out;
1887                 }
1888                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1889
1890 walk:
1891                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1892                                        start_seq, end_seq, dup_sack);
1893
1894 advance_sp:
1895                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1896                  * due to in-order walk
1897                  */
1898                 if (after(end_seq, tp->frto_highmark))
1899                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1900
1901                 i++;
1902         }
1903
1904         /* Clear the head of the cache sack blocks so we can skip it next time */
1905         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1906                 tp->recv_sack_cache[i].start_seq = 0;
1907                 tp->recv_sack_cache[i].end_seq = 0;
1908         }
1909         for (j = 0; j < used_sacks; j++)
1910                 tp->recv_sack_cache[i++] = sp[j];
1911
1912         tcp_mark_lost_retrans(sk);
1913
1914         tcp_verify_left_out(tp);
1915
1916         if ((state.reord < tp->fackets_out) &&
1917             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1918             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1919                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1920
1921 out:
1922
1923 #if FASTRETRANS_DEBUG > 0
1924         WARN_ON((int)tp->sacked_out < 0);
1925         WARN_ON((int)tp->lost_out < 0);
1926         WARN_ON((int)tp->retrans_out < 0);
1927         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1928 #endif
1929         return state.flag;
1930 }
1931
1932 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1933  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1934  */
1935 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1936 {
1937         u32 holes;
1938
1939         holes = max(tp->lost_out, 1U);
1940         holes = min(holes, tp->packets_out);
1941
1942         if ((tp->sacked_out + holes) > tp->packets_out) {
1943                 tp->sacked_out = tp->packets_out - holes;
1944                 return 1;
1945         }
1946         return 0;
1947 }
1948
1949 /* If we receive more dupacks than we expected counting segments
1950  * in assumption of absent reordering, interpret this as reordering.
1951  * The only another reason could be bug in receiver TCP.
1952  */
1953 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1954 {
1955         struct tcp_sock *tp = tcp_sk(sk);
1956         if (tcp_limit_reno_sacked(tp))
1957                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1958 }
1959
1960 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1961
1962 static void tcp_add_reno_sack(struct sock *sk)
1963 {
1964         struct tcp_sock *tp = tcp_sk(sk);
1965         tp->sacked_out++;
1966         tcp_check_reno_reordering(sk, 0);
1967         tcp_verify_left_out(tp);
1968 }
1969
1970 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1971
1972 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1973 {
1974         struct tcp_sock *tp = tcp_sk(sk);
1975
1976         if (acked > 0) {
1977                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1978                 if (acked - 1 >= tp->sacked_out)
1979                         tp->sacked_out = 0;
1980                 else
1981                         tp->sacked_out -= acked - 1;
1982         }
1983         tcp_check_reno_reordering(sk, acked);
1984         tcp_verify_left_out(tp);
1985 }
1986
1987 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1988 {
1989         tp->sacked_out = 0;
1990 }
1991
1992 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1993 {
1994         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1995 }
1996
1997 /* F-RTO can only be used if TCP has never retransmitted anything other than
1998  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1999  */
2000 int tcp_use_frto(struct sock *sk)
2001 {
2002         const struct tcp_sock *tp = tcp_sk(sk);
2003         const struct inet_connection_sock *icsk = inet_csk(sk);
2004         struct sk_buff *skb;
2005
2006         if (!sysctl_tcp_frto)
2007                 return 0;
2008
2009         /* MTU probe and F-RTO won't really play nicely along currently */
2010         if (icsk->icsk_mtup.probe_size)
2011                 return 0;
2012
2013         if (tcp_is_sackfrto(tp))
2014                 return 1;
2015
2016         /* Avoid expensive walking of rexmit queue if possible */
2017         if (tp->retrans_out > 1)
2018                 return 0;
2019
2020         skb = tcp_write_queue_head(sk);
2021         if (tcp_skb_is_last(sk, skb))
2022                 return 1;
2023         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2024         tcp_for_write_queue_from(skb, sk) {
2025                 if (skb == tcp_send_head(sk))
2026                         break;
2027                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2028                         return 0;
2029                 /* Short-circuit when first non-SACKed skb has been checked */
2030                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2031                         break;
2032         }
2033         return 1;
2034 }
2035
2036 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2037  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2038  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2039  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2040  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2041  * bits are handled if the Loss state is really to be entered (in
2042  * tcp_enter_frto_loss).
2043  *
2044  * Do like tcp_enter_loss() would; when RTO expires the second time it
2045  * does:
2046  *  "Reduce ssthresh if it has not yet been made inside this window."
2047  */
2048 void tcp_enter_frto(struct sock *sk)
2049 {
2050         const struct inet_connection_sock *icsk = inet_csk(sk);
2051         struct tcp_sock *tp = tcp_sk(sk);
2052         struct sk_buff *skb;
2053
2054         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2055             tp->snd_una == tp->high_seq ||
2056             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2057              !icsk->icsk_retransmits)) {
2058                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2059                 /* Our state is too optimistic in ssthresh() call because cwnd
2060                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2061                  * recovery has not yet completed. Pattern would be this: RTO,
2062                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2063                  * up here twice).
2064                  * RFC4138 should be more specific on what to do, even though
2065                  * RTO is quite unlikely to occur after the first Cumulative ACK
2066                  * due to back-off and complexity of triggering events ...
2067                  */
2068                 if (tp->frto_counter) {
2069                         u32 stored_cwnd;
2070                         stored_cwnd = tp->snd_cwnd;
2071                         tp->snd_cwnd = 2;
2072                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2073                         tp->snd_cwnd = stored_cwnd;
2074                 } else {
2075                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2076                 }
2077                 /* ... in theory, cong.control module could do "any tricks" in
2078                  * ssthresh(), which means that ca_state, lost bits and lost_out
2079                  * counter would have to be faked before the call occurs. We
2080                  * consider that too expensive, unlikely and hacky, so modules
2081                  * using these in ssthresh() must deal these incompatibility
2082                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2083                  */
2084                 tcp_ca_event(sk, CA_EVENT_FRTO);
2085         }
2086
2087         tp->undo_marker = tp->snd_una;
2088         tp->undo_retrans = 0;
2089
2090         skb = tcp_write_queue_head(sk);
2091         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2092                 tp->undo_marker = 0;
2093         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2094                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2095                 tp->retrans_out -= tcp_skb_pcount(skb);
2096         }
2097         tcp_verify_left_out(tp);
2098
2099         /* Too bad if TCP was application limited */
2100         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2101
2102         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2103          * The last condition is necessary at least in tp->frto_counter case.
2104          */
2105         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2106             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2107             after(tp->high_seq, tp->snd_una)) {
2108                 tp->frto_highmark = tp->high_seq;
2109         } else {
2110                 tp->frto_highmark = tp->snd_nxt;
2111         }
2112         tcp_set_ca_state(sk, TCP_CA_Disorder);
2113         tp->high_seq = tp->snd_nxt;
2114         tp->frto_counter = 1;
2115 }
2116
2117 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2118  * which indicates that we should follow the traditional RTO recovery,
2119  * i.e. mark everything lost and do go-back-N retransmission.
2120  */
2121 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2122 {
2123         struct tcp_sock *tp = tcp_sk(sk);
2124         struct sk_buff *skb;
2125
2126         tp->lost_out = 0;
2127         tp->retrans_out = 0;
2128         if (tcp_is_reno(tp))
2129                 tcp_reset_reno_sack(tp);
2130
2131         tcp_for_write_queue(skb, sk) {
2132                 if (skb == tcp_send_head(sk))
2133                         break;
2134
2135                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2136                 /*
2137                  * Count the retransmission made on RTO correctly (only when
2138                  * waiting for the first ACK and did not get it)...
2139                  */
2140                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2141                         /* For some reason this R-bit might get cleared? */
2142                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2143                                 tp->retrans_out += tcp_skb_pcount(skb);
2144                         /* ...enter this if branch just for the first segment */
2145                         flag |= FLAG_DATA_ACKED;
2146                 } else {
2147                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2148                                 tp->undo_marker = 0;
2149                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2150                 }
2151
2152                 /* Marking forward transmissions that were made after RTO lost
2153                  * can cause unnecessary retransmissions in some scenarios,
2154                  * SACK blocks will mitigate that in some but not in all cases.
2155                  * We used to not mark them but it was causing break-ups with
2156                  * receivers that do only in-order receival.
2157                  *
2158                  * TODO: we could detect presence of such receiver and select
2159                  * different behavior per flow.
2160                  */
2161                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2162                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2163                         tp->lost_out += tcp_skb_pcount(skb);
2164                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2165                 }
2166         }
2167         tcp_verify_left_out(tp);
2168
2169         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2170         tp->snd_cwnd_cnt = 0;
2171         tp->snd_cwnd_stamp = tcp_time_stamp;
2172         tp->frto_counter = 0;
2173         tp->bytes_acked = 0;
2174
2175         tp->reordering = min_t(unsigned int, tp->reordering,
2176                                sysctl_tcp_reordering);
2177         tcp_set_ca_state(sk, TCP_CA_Loss);
2178         tp->high_seq = tp->snd_nxt;
2179         TCP_ECN_queue_cwr(tp);
2180
2181         tcp_clear_all_retrans_hints(tp);
2182 }
2183
2184 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2185 {
2186         tp->retrans_out = 0;
2187         tp->lost_out = 0;
2188
2189         tp->undo_marker = 0;
2190         tp->undo_retrans = 0;
2191 }
2192
2193 void tcp_clear_retrans(struct tcp_sock *tp)
2194 {
2195         tcp_clear_retrans_partial(tp);
2196
2197         tp->fackets_out = 0;
2198         tp->sacked_out = 0;
2199 }
2200
2201 /* Enter Loss state. If "how" is not zero, forget all SACK information
2202  * and reset tags completely, otherwise preserve SACKs. If receiver
2203  * dropped its ofo queue, we will know this due to reneging detection.
2204  */
2205 void tcp_enter_loss(struct sock *sk, int how)
2206 {
2207         const struct inet_connection_sock *icsk = inet_csk(sk);
2208         struct tcp_sock *tp = tcp_sk(sk);
2209         struct sk_buff *skb;
2210
2211         /* Reduce ssthresh if it has not yet been made inside this window. */
2212         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2213             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2214                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2215                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2216                 tcp_ca_event(sk, CA_EVENT_LOSS);
2217         }
2218         tp->snd_cwnd       = 1;
2219         tp->snd_cwnd_cnt   = 0;
2220         tp->snd_cwnd_stamp = tcp_time_stamp;
2221
2222         tp->bytes_acked = 0;
2223         tcp_clear_retrans_partial(tp);
2224
2225         if (tcp_is_reno(tp))
2226                 tcp_reset_reno_sack(tp);
2227
2228         if (!how) {
2229                 /* Push undo marker, if it was plain RTO and nothing
2230                  * was retransmitted. */
2231                 tp->undo_marker = tp->snd_una;
2232         } else {
2233                 tp->sacked_out = 0;
2234                 tp->fackets_out = 0;
2235         }
2236         tcp_clear_all_retrans_hints(tp);
2237
2238         tcp_for_write_queue(skb, sk) {
2239                 if (skb == tcp_send_head(sk))
2240                         break;
2241
2242                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2243                         tp->undo_marker = 0;
2244                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2245                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2246                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2247                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2248                         tp->lost_out += tcp_skb_pcount(skb);
2249                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2250                 }
2251         }
2252         tcp_verify_left_out(tp);
2253
2254         tp->reordering = min_t(unsigned int, tp->reordering,
2255                                sysctl_tcp_reordering);
2256         tcp_set_ca_state(sk, TCP_CA_Loss);
2257         tp->high_seq = tp->snd_nxt;
2258         TCP_ECN_queue_cwr(tp);
2259         /* Abort F-RTO algorithm if one is in progress */
2260         tp->frto_counter = 0;
2261 }
2262
2263 /* If ACK arrived pointing to a remembered SACK, it means that our
2264  * remembered SACKs do not reflect real state of receiver i.e.
2265  * receiver _host_ is heavily congested (or buggy).
2266  *
2267  * Do processing similar to RTO timeout.
2268  */
2269 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2270 {
2271         if (flag & FLAG_SACK_RENEGING) {
2272                 struct inet_connection_sock *icsk = inet_csk(sk);
2273                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2274
2275                 tcp_enter_loss(sk, 1);
2276                 icsk->icsk_retransmits++;
2277                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2278                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2279                                           icsk->icsk_rto, TCP_RTO_MAX);
2280                 return 1;
2281         }
2282         return 0;
2283 }
2284
2285 static inline int tcp_fackets_out(struct tcp_sock *tp)
2286 {
2287         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2288 }
2289
2290 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2291  * counter when SACK is enabled (without SACK, sacked_out is used for
2292  * that purpose).
2293  *
2294  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2295  * segments up to the highest received SACK block so far and holes in
2296  * between them.
2297  *
2298  * With reordering, holes may still be in flight, so RFC3517 recovery
2299  * uses pure sacked_out (total number of SACKed segments) even though
2300  * it violates the RFC that uses duplicate ACKs, often these are equal
2301  * but when e.g. out-of-window ACKs or packet duplication occurs,
2302  * they differ. Since neither occurs due to loss, TCP should really
2303  * ignore them.
2304  */
2305 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2306 {
2307         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2308 }
2309
2310 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2311 {
2312         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2313 }
2314
2315 static inline int tcp_head_timedout(struct sock *sk)
2316 {
2317         struct tcp_sock *tp = tcp_sk(sk);
2318
2319         return tp->packets_out &&
2320                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2321 }
2322
2323 /* Linux NewReno/SACK/FACK/ECN state machine.
2324  * --------------------------------------
2325  *
2326  * "Open"       Normal state, no dubious events, fast path.
2327  * "Disorder"   In all the respects it is "Open",
2328  *              but requires a bit more attention. It is entered when
2329  *              we see some SACKs or dupacks. It is split of "Open"
2330  *              mainly to move some processing from fast path to slow one.
2331  * "CWR"        CWND was reduced due to some Congestion Notification event.
2332  *              It can be ECN, ICMP source quench, local device congestion.
2333  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2334  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2335  *
2336  * tcp_fastretrans_alert() is entered:
2337  * - each incoming ACK, if state is not "Open"
2338  * - when arrived ACK is unusual, namely:
2339  *      * SACK
2340  *      * Duplicate ACK.
2341  *      * ECN ECE.
2342  *
2343  * Counting packets in flight is pretty simple.
2344  *
2345  *      in_flight = packets_out - left_out + retrans_out
2346  *
2347  *      packets_out is SND.NXT-SND.UNA counted in packets.
2348  *
2349  *      retrans_out is number of retransmitted segments.
2350  *
2351  *      left_out is number of segments left network, but not ACKed yet.
2352  *
2353  *              left_out = sacked_out + lost_out
2354  *
2355  *     sacked_out: Packets, which arrived to receiver out of order
2356  *                 and hence not ACKed. With SACKs this number is simply
2357  *                 amount of SACKed data. Even without SACKs
2358  *                 it is easy to give pretty reliable estimate of this number,
2359  *                 counting duplicate ACKs.
2360  *
2361  *       lost_out: Packets lost by network. TCP has no explicit
2362  *                 "loss notification" feedback from network (for now).
2363  *                 It means that this number can be only _guessed_.
2364  *                 Actually, it is the heuristics to predict lossage that
2365  *                 distinguishes different algorithms.
2366  *
2367  *      F.e. after RTO, when all the queue is considered as lost,
2368  *      lost_out = packets_out and in_flight = retrans_out.
2369  *
2370  *              Essentially, we have now two algorithms counting
2371  *              lost packets.
2372  *
2373  *              FACK: It is the simplest heuristics. As soon as we decided
2374  *              that something is lost, we decide that _all_ not SACKed
2375  *              packets until the most forward SACK are lost. I.e.
2376  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2377  *              It is absolutely correct estimate, if network does not reorder
2378  *              packets. And it loses any connection to reality when reordering
2379  *              takes place. We use FACK by default until reordering
2380  *              is suspected on the path to this destination.
2381  *
2382  *              NewReno: when Recovery is entered, we assume that one segment
2383  *              is lost (classic Reno). While we are in Recovery and
2384  *              a partial ACK arrives, we assume that one more packet
2385  *              is lost (NewReno). This heuristics are the same in NewReno
2386  *              and SACK.
2387  *
2388  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2389  *  deflation etc. CWND is real congestion window, never inflated, changes
2390  *  only according to classic VJ rules.
2391  *
2392  * Really tricky (and requiring careful tuning) part of algorithm
2393  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2394  * The first determines the moment _when_ we should reduce CWND and,
2395  * hence, slow down forward transmission. In fact, it determines the moment
2396  * when we decide that hole is caused by loss, rather than by a reorder.
2397  *
2398  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2399  * holes, caused by lost packets.
2400  *
2401  * And the most logically complicated part of algorithm is undo
2402  * heuristics. We detect false retransmits due to both too early
2403  * fast retransmit (reordering) and underestimated RTO, analyzing
2404  * timestamps and D-SACKs. When we detect that some segments were
2405  * retransmitted by mistake and CWND reduction was wrong, we undo
2406  * window reduction and abort recovery phase. This logic is hidden
2407  * inside several functions named tcp_try_undo_<something>.
2408  */
2409
2410 /* This function decides, when we should leave Disordered state
2411  * and enter Recovery phase, reducing congestion window.
2412  *
2413  * Main question: may we further continue forward transmission
2414  * with the same cwnd?
2415  */
2416 static int tcp_time_to_recover(struct sock *sk)
2417 {
2418         struct tcp_sock *tp = tcp_sk(sk);
2419         __u32 packets_out;
2420
2421         /* Do not perform any recovery during F-RTO algorithm */
2422         if (tp->frto_counter)
2423                 return 0;
2424
2425         /* Trick#1: The loss is proven. */
2426         if (tp->lost_out)
2427                 return 1;
2428
2429         /* Not-A-Trick#2 : Classic rule... */
2430         if (tcp_dupack_heuristics(tp) > tp->reordering)
2431                 return 1;
2432
2433         /* Trick#3 : when we use RFC2988 timer restart, fast
2434          * retransmit can be triggered by timeout of queue head.
2435          */
2436         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2437                 return 1;
2438
2439         /* Trick#4: It is still not OK... But will it be useful to delay
2440          * recovery more?
2441          */
2442         packets_out = tp->packets_out;
2443         if (packets_out <= tp->reordering &&
2444             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2445             !tcp_may_send_now(sk)) {
2446                 /* We have nothing to send. This connection is limited
2447                  * either by receiver window or by application.
2448                  */
2449                 return 1;
2450         }
2451
2452         /* If a thin stream is detected, retransmit after first
2453          * received dupack. Employ only if SACK is supported in order
2454          * to avoid possible corner-case series of spurious retransmissions
2455          * Use only if there are no unsent data.
2456          */
2457         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2458             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2459             tcp_is_sack(tp) && !tcp_send_head(sk))
2460                 return 1;
2461
2462         return 0;
2463 }
2464
2465 /* New heuristics: it is possible only after we switched to restart timer
2466  * each time when something is ACKed. Hence, we can detect timed out packets
2467  * during fast retransmit without falling to slow start.
2468  *
2469  * Usefulness of this as is very questionable, since we should know which of
2470  * the segments is the next to timeout which is relatively expensive to find
2471  * in general case unless we add some data structure just for that. The
2472  * current approach certainly won't find the right one too often and when it
2473  * finally does find _something_ it usually marks large part of the window
2474  * right away (because a retransmission with a larger timestamp blocks the
2475  * loop from advancing). -ij
2476  */
2477 static void tcp_timeout_skbs(struct sock *sk)
2478 {
2479         struct tcp_sock *tp = tcp_sk(sk);
2480         struct sk_buff *skb;
2481
2482         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2483                 return;
2484
2485         skb = tp->scoreboard_skb_hint;
2486         if (tp->scoreboard_skb_hint == NULL)
2487                 skb = tcp_write_queue_head(sk);
2488
2489         tcp_for_write_queue_from(skb, sk) {
2490                 if (skb == tcp_send_head(sk))
2491                         break;
2492                 if (!tcp_skb_timedout(sk, skb))
2493                         break;
2494
2495                 tcp_skb_mark_lost(tp, skb);
2496         }
2497
2498         tp->scoreboard_skb_hint = skb;
2499
2500         tcp_verify_left_out(tp);
2501 }
2502
2503 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2504  * is against sacked "cnt", otherwise it's against facked "cnt"
2505  */
2506 static void tcp_mark_head_lost(struct sock *sk, int packets)
2507 {
2508         struct tcp_sock *tp = tcp_sk(sk);
2509         struct sk_buff *skb;
2510         int cnt, oldcnt;
2511         int err;
2512         unsigned int mss;
2513
2514         WARN_ON(packets > tp->packets_out);
2515         if (tp->lost_skb_hint) {
2516                 skb = tp->lost_skb_hint;
2517                 cnt = tp->lost_cnt_hint;
2518         } else {
2519                 skb = tcp_write_queue_head(sk);
2520                 cnt = 0;
2521         }
2522
2523         tcp_for_write_queue_from(skb, sk) {
2524                 if (skb == tcp_send_head(sk))
2525                         break;
2526                 /* TODO: do this better */
2527                 /* this is not the most efficient way to do this... */
2528                 tp->lost_skb_hint = skb;
2529                 tp->lost_cnt_hint = cnt;
2530
2531                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2532                         break;
2533
2534                 oldcnt = cnt;
2535                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2536                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2537                         cnt += tcp_skb_pcount(skb);
2538
2539                 if (cnt > packets) {
2540                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2541                                 break;
2542
2543                         mss = skb_shinfo(skb)->gso_size;
2544                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2545                         if (err < 0)
2546                                 break;
2547                         cnt = packets;
2548                 }
2549
2550                 tcp_skb_mark_lost(tp, skb);
2551         }
2552         tcp_verify_left_out(tp);
2553 }
2554
2555 /* Account newly detected lost packet(s) */
2556
2557 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2558 {
2559         struct tcp_sock *tp = tcp_sk(sk);
2560
2561         if (tcp_is_reno(tp)) {
2562                 tcp_mark_head_lost(sk, 1);
2563         } else if (tcp_is_fack(tp)) {
2564                 int lost = tp->fackets_out - tp->reordering;
2565                 if (lost <= 0)
2566                         lost = 1;
2567                 tcp_mark_head_lost(sk, lost);
2568         } else {
2569                 int sacked_upto = tp->sacked_out - tp->reordering;
2570                 if (sacked_upto < fast_rexmit)
2571                         sacked_upto = fast_rexmit;
2572                 tcp_mark_head_lost(sk, sacked_upto);
2573         }
2574
2575         tcp_timeout_skbs(sk);
2576 }
2577
2578 /* CWND moderation, preventing bursts due to too big ACKs
2579  * in dubious situations.
2580  */
2581 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2582 {
2583         tp->snd_cwnd = min(tp->snd_cwnd,
2584                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2585         tp->snd_cwnd_stamp = tcp_time_stamp;
2586 }
2587
2588 /* Lower bound on congestion window is slow start threshold
2589  * unless congestion avoidance choice decides to overide it.
2590  */
2591 static inline u32 tcp_cwnd_min(const struct sock *sk)
2592 {
2593         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2594
2595         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2596 }
2597
2598 /* Decrease cwnd each second ack. */
2599 static void tcp_cwnd_down(struct sock *sk, int flag)
2600 {
2601         struct tcp_sock *tp = tcp_sk(sk);
2602         int decr = tp->snd_cwnd_cnt + 1;
2603
2604         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2605             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2606                 tp->snd_cwnd_cnt = decr & 1;
2607                 decr >>= 1;
2608
2609                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2610                         tp->snd_cwnd -= decr;
2611
2612                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2613                 tp->snd_cwnd_stamp = tcp_time_stamp;
2614         }
2615 }
2616
2617 /* Nothing was retransmitted or returned timestamp is less
2618  * than timestamp of the first retransmission.
2619  */
2620 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2621 {
2622         return !tp->retrans_stamp ||
2623                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2624                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2625 }
2626
2627 /* Undo procedures. */
2628
2629 #if FASTRETRANS_DEBUG > 1
2630 static void DBGUNDO(struct sock *sk, const char *msg)
2631 {
2632         struct tcp_sock *tp = tcp_sk(sk);
2633         struct inet_sock *inet = inet_sk(sk);
2634
2635         if (sk->sk_family == AF_INET) {
2636                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2637                        msg,
2638                        &inet->daddr, ntohs(inet->dport),
2639                        tp->snd_cwnd, tcp_left_out(tp),
2640                        tp->snd_ssthresh, tp->prior_ssthresh,
2641                        tp->packets_out);
2642         }
2643 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2644         else if (sk->sk_family == AF_INET6) {
2645                 struct ipv6_pinfo *np = inet6_sk(sk);
2646                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2647                        msg,
2648                        &np->daddr, ntohs(inet->dport),
2649                        tp->snd_cwnd, tcp_left_out(tp),
2650                        tp->snd_ssthresh, tp->prior_ssthresh,
2651                        tp->packets_out);
2652         }
2653 #endif
2654 }
2655 #else
2656 #define DBGUNDO(x...) do { } while (0)
2657 #endif
2658
2659 static void tcp_undo_cwr(struct sock *sk, const int undo)
2660 {
2661         struct tcp_sock *tp = tcp_sk(sk);
2662
2663         if (tp->prior_ssthresh) {
2664                 const struct inet_connection_sock *icsk = inet_csk(sk);
2665
2666                 if (icsk->icsk_ca_ops->undo_cwnd)
2667                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2668                 else
2669                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2670
2671                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2672                         tp->snd_ssthresh = tp->prior_ssthresh;
2673                         TCP_ECN_withdraw_cwr(tp);
2674                 }
2675         } else {
2676                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2677         }
2678         tcp_moderate_cwnd(tp);
2679         tp->snd_cwnd_stamp = tcp_time_stamp;
2680 }
2681
2682 static inline int tcp_may_undo(struct tcp_sock *tp)
2683 {
2684         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2685 }
2686
2687 /* People celebrate: "We love our President!" */
2688 static int tcp_try_undo_recovery(struct sock *sk)
2689 {
2690         struct tcp_sock *tp = tcp_sk(sk);
2691
2692         if (tcp_may_undo(tp)) {
2693                 int mib_idx;
2694
2695                 /* Happy end! We did not retransmit anything
2696                  * or our original transmission succeeded.
2697                  */
2698                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2699                 tcp_undo_cwr(sk, 1);
2700                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2701                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2702                 else
2703                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2704
2705                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2706                 tp->undo_marker = 0;
2707         }
2708         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2709                 /* Hold old state until something *above* high_seq
2710                  * is ACKed. For Reno it is MUST to prevent false
2711                  * fast retransmits (RFC2582). SACK TCP is safe. */
2712                 tcp_moderate_cwnd(tp);
2713                 return 1;
2714         }
2715         tcp_set_ca_state(sk, TCP_CA_Open);
2716         return 0;
2717 }
2718
2719 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2720 static void tcp_try_undo_dsack(struct sock *sk)
2721 {
2722         struct tcp_sock *tp = tcp_sk(sk);
2723
2724         if (tp->undo_marker && !tp->undo_retrans) {
2725                 DBGUNDO(sk, "D-SACK");
2726                 tcp_undo_cwr(sk, 1);
2727                 tp->undo_marker = 0;
2728                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2729         }
2730 }
2731
2732 /* We can clear retrans_stamp when there are no retransmissions in the
2733  * window. It would seem that it is trivially available for us in
2734  * tp->retrans_out, however, that kind of assumptions doesn't consider
2735  * what will happen if errors occur when sending retransmission for the
2736  * second time. ...It could the that such segment has only
2737  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2738  * the head skb is enough except for some reneging corner cases that
2739  * are not worth the effort.
2740  *
2741  * Main reason for all this complexity is the fact that connection dying
2742  * time now depends on the validity of the retrans_stamp, in particular,
2743  * that successive retransmissions of a segment must not advance
2744  * retrans_stamp under any conditions.
2745  */
2746 static int tcp_any_retrans_done(struct sock *sk)
2747 {
2748         struct tcp_sock *tp = tcp_sk(sk);
2749         struct sk_buff *skb;
2750
2751         if (tp->retrans_out)
2752                 return 1;
2753
2754         skb = tcp_write_queue_head(sk);
2755         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2756                 return 1;
2757
2758         return 0;
2759 }
2760
2761 /* Undo during fast recovery after partial ACK. */
2762
2763 static int tcp_try_undo_partial(struct sock *sk, int acked)
2764 {
2765         struct tcp_sock *tp = tcp_sk(sk);
2766         /* Partial ACK arrived. Force Hoe's retransmit. */
2767         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2768
2769         if (tcp_may_undo(tp)) {
2770                 /* Plain luck! Hole if filled with delayed
2771                  * packet, rather than with a retransmit.
2772                  */
2773                 if (!tcp_any_retrans_done(sk))
2774                         tp->retrans_stamp = 0;
2775
2776                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2777
2778                 DBGUNDO(sk, "Hoe");
2779                 tcp_undo_cwr(sk, 0);
2780                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2781
2782                 /* So... Do not make Hoe's retransmit yet.
2783                  * If the first packet was delayed, the rest
2784                  * ones are most probably delayed as well.
2785                  */
2786                 failed = 0;
2787         }
2788         return failed;
2789 }
2790
2791 /* Undo during loss recovery after partial ACK. */
2792 static int tcp_try_undo_loss(struct sock *sk)
2793 {
2794         struct tcp_sock *tp = tcp_sk(sk);
2795
2796         if (tcp_may_undo(tp)) {
2797                 struct sk_buff *skb;
2798                 tcp_for_write_queue(skb, sk) {
2799                         if (skb == tcp_send_head(sk))
2800                                 break;
2801                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2802                 }
2803
2804                 tcp_clear_all_retrans_hints(tp);
2805
2806                 DBGUNDO(sk, "partial loss");
2807                 tp->lost_out = 0;
2808                 tcp_undo_cwr(sk, 1);
2809                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2810                 inet_csk(sk)->icsk_retransmits = 0;
2811                 tp->undo_marker = 0;
2812                 if (tcp_is_sack(tp))
2813                         tcp_set_ca_state(sk, TCP_CA_Open);
2814                 return 1;
2815         }
2816         return 0;
2817 }
2818
2819 static inline void tcp_complete_cwr(struct sock *sk)
2820 {
2821         struct tcp_sock *tp = tcp_sk(sk);
2822         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2823         tp->snd_cwnd_stamp = tcp_time_stamp;
2824         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2825 }
2826
2827 static void tcp_try_keep_open(struct sock *sk)
2828 {
2829         struct tcp_sock *tp = tcp_sk(sk);
2830         int state = TCP_CA_Open;
2831
2832         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2833                 state = TCP_CA_Disorder;
2834
2835         if (inet_csk(sk)->icsk_ca_state != state) {
2836                 tcp_set_ca_state(sk, state);
2837                 tp->high_seq = tp->snd_nxt;
2838         }
2839 }
2840
2841 static void tcp_try_to_open(struct sock *sk, int flag)
2842 {
2843         struct tcp_sock *tp = tcp_sk(sk);
2844
2845         tcp_verify_left_out(tp);
2846
2847         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2848                 tp->retrans_stamp = 0;
2849
2850         if (flag & FLAG_ECE)
2851                 tcp_enter_cwr(sk, 1);
2852
2853         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2854                 tcp_try_keep_open(sk);
2855                 tcp_moderate_cwnd(tp);
2856         } else {
2857                 tcp_cwnd_down(sk, flag);
2858         }
2859 }
2860
2861 static void tcp_mtup_probe_failed(struct sock *sk)
2862 {
2863         struct inet_connection_sock *icsk = inet_csk(sk);
2864
2865         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2866         icsk->icsk_mtup.probe_size = 0;
2867 }
2868
2869 static void tcp_mtup_probe_success(struct sock *sk)
2870 {
2871         struct tcp_sock *tp = tcp_sk(sk);
2872         struct inet_connection_sock *icsk = inet_csk(sk);
2873
2874         /* FIXME: breaks with very large cwnd */
2875         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2876         tp->snd_cwnd = tp->snd_cwnd *
2877                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2878                        icsk->icsk_mtup.probe_size;
2879         tp->snd_cwnd_cnt = 0;
2880         tp->snd_cwnd_stamp = tcp_time_stamp;
2881         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2882
2883         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2884         icsk->icsk_mtup.probe_size = 0;
2885         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2886 }
2887
2888 /* Do a simple retransmit without using the backoff mechanisms in
2889  * tcp_timer. This is used for path mtu discovery.
2890  * The socket is already locked here.
2891  */
2892 void tcp_simple_retransmit(struct sock *sk)
2893 {
2894         const struct inet_connection_sock *icsk = inet_csk(sk);
2895         struct tcp_sock *tp = tcp_sk(sk);
2896         struct sk_buff *skb;
2897         unsigned int mss = tcp_current_mss(sk);
2898         u32 prior_lost = tp->lost_out;
2899
2900         tcp_for_write_queue(skb, sk) {
2901                 if (skb == tcp_send_head(sk))
2902                         break;
2903                 if (tcp_skb_seglen(skb) > mss &&
2904                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2905                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2906                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2907                                 tp->retrans_out -= tcp_skb_pcount(skb);
2908                         }
2909                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2910                 }
2911         }
2912
2913         tcp_clear_retrans_hints_partial(tp);
2914
2915         if (prior_lost == tp->lost_out)
2916                 return;
2917
2918         if (tcp_is_reno(tp))
2919                 tcp_limit_reno_sacked(tp);
2920
2921         tcp_verify_left_out(tp);
2922
2923         /* Don't muck with the congestion window here.
2924          * Reason is that we do not increase amount of _data_
2925          * in network, but units changed and effective
2926          * cwnd/ssthresh really reduced now.
2927          */
2928         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2929                 tp->high_seq = tp->snd_nxt;
2930                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2931                 tp->prior_ssthresh = 0;
2932                 tp->undo_marker = 0;
2933                 tcp_set_ca_state(sk, TCP_CA_Loss);
2934         }
2935         tcp_xmit_retransmit_queue(sk);
2936 }
2937
2938 /* Process an event, which can update packets-in-flight not trivially.
2939  * Main goal of this function is to calculate new estimate for left_out,
2940  * taking into account both packets sitting in receiver's buffer and
2941  * packets lost by network.
2942  *
2943  * Besides that it does CWND reduction, when packet loss is detected
2944  * and changes state of machine.
2945  *
2946  * It does _not_ decide what to send, it is made in function
2947  * tcp_xmit_retransmit_queue().
2948  */
2949 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2950 {
2951         struct inet_connection_sock *icsk = inet_csk(sk);
2952         struct tcp_sock *tp = tcp_sk(sk);
2953         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2954         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2955                                     (tcp_fackets_out(tp) > tp->reordering));
2956         int fast_rexmit = 0, mib_idx;
2957
2958         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2959                 tp->sacked_out = 0;
2960         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2961                 tp->fackets_out = 0;
2962
2963         /* Now state machine starts.
2964          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2965         if (flag & FLAG_ECE)
2966                 tp->prior_ssthresh = 0;
2967
2968         /* B. In all the states check for reneging SACKs. */
2969         if (tcp_check_sack_reneging(sk, flag))
2970                 return;
2971
2972         /* C. Process data loss notification, provided it is valid. */
2973         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2974             before(tp->snd_una, tp->high_seq) &&
2975             icsk->icsk_ca_state != TCP_CA_Open &&
2976             tp->fackets_out > tp->reordering) {
2977                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2978                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2979         }
2980
2981         /* D. Check consistency of the current state. */
2982         tcp_verify_left_out(tp);
2983
2984         /* E. Check state exit conditions. State can be terminated
2985          *    when high_seq is ACKed. */
2986         if (icsk->icsk_ca_state == TCP_CA_Open) {
2987                 WARN_ON(tp->retrans_out != 0);
2988                 tp->retrans_stamp = 0;
2989         } else if (!before(tp->snd_una, tp->high_seq)) {
2990                 switch (icsk->icsk_ca_state) {
2991                 case TCP_CA_Loss:
2992                         icsk->icsk_retransmits = 0;
2993                         if (tcp_try_undo_recovery(sk))
2994                                 return;
2995                         break;
2996
2997                 case TCP_CA_CWR:
2998                         /* CWR is to be held something *above* high_seq
2999                          * is ACKed for CWR bit to reach receiver. */
3000                         if (tp->snd_una != tp->high_seq) {
3001                                 tcp_complete_cwr(sk);
3002                                 tcp_set_ca_state(sk, TCP_CA_Open);
3003                         }
3004                         break;
3005
3006                 case TCP_CA_Disorder:
3007                         tcp_try_undo_dsack(sk);
3008                         if (!tp->undo_marker ||
3009                             /* For SACK case do not Open to allow to undo
3010                              * catching for all duplicate ACKs. */
3011                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3012                                 tp->undo_marker = 0;
3013                                 tcp_set_ca_state(sk, TCP_CA_Open);
3014                         }
3015                         break;
3016
3017                 case TCP_CA_Recovery:
3018                         if (tcp_is_reno(tp))
3019                                 tcp_reset_reno_sack(tp);
3020                         if (tcp_try_undo_recovery(sk))
3021                                 return;
3022                         tcp_complete_cwr(sk);
3023                         break;
3024                 }
3025         }
3026
3027         /* F. Process state. */
3028         switch (icsk->icsk_ca_state) {
3029         case TCP_CA_Recovery:
3030                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3031                         if (tcp_is_reno(tp) && is_dupack)
3032                                 tcp_add_reno_sack(sk);
3033                 } else
3034                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3035                 break;
3036         case TCP_CA_Loss:
3037                 if (flag & FLAG_DATA_ACKED)
3038                         icsk->icsk_retransmits = 0;
3039                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3040                         tcp_reset_reno_sack(tp);
3041                 if (!tcp_try_undo_loss(sk)) {
3042                         tcp_moderate_cwnd(tp);
3043                         tcp_xmit_retransmit_queue(sk);
3044                         return;
3045                 }
3046                 if (icsk->icsk_ca_state != TCP_CA_Open)
3047                         return;
3048                 /* Loss is undone; fall through to processing in Open state. */
3049         default:
3050                 if (tcp_is_reno(tp)) {
3051                         if (flag & FLAG_SND_UNA_ADVANCED)
3052                                 tcp_reset_reno_sack(tp);
3053                         if (is_dupack)
3054                                 tcp_add_reno_sack(sk);
3055                 }
3056
3057                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3058                         tcp_try_undo_dsack(sk);
3059
3060                 if (!tcp_time_to_recover(sk)) {
3061                         tcp_try_to_open(sk, flag);
3062                         return;
3063                 }
3064
3065                 /* MTU probe failure: don't reduce cwnd */
3066                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3067                     icsk->icsk_mtup.probe_size &&
3068                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3069                         tcp_mtup_probe_failed(sk);
3070                         /* Restores the reduction we did in tcp_mtup_probe() */
3071                         tp->snd_cwnd++;
3072                         tcp_simple_retransmit(sk);
3073                         return;
3074                 }
3075
3076                 /* Otherwise enter Recovery state */
3077
3078                 if (tcp_is_reno(tp))
3079                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3080                 else
3081                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3082
3083                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3084
3085                 tp->high_seq = tp->snd_nxt;
3086                 tp->prior_ssthresh = 0;
3087                 tp->undo_marker = tp->snd_una;
3088                 tp->undo_retrans = tp->retrans_out;
3089
3090                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3091                         if (!(flag & FLAG_ECE))
3092                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3093                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3094                         TCP_ECN_queue_cwr(tp);
3095                 }
3096
3097                 tp->bytes_acked = 0;
3098                 tp->snd_cwnd_cnt = 0;
3099                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3100                 fast_rexmit = 1;
3101         }
3102
3103         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3104                 tcp_update_scoreboard(sk, fast_rexmit);
3105         tcp_cwnd_down(sk, flag);
3106         tcp_xmit_retransmit_queue(sk);
3107 }
3108
3109 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3110 {
3111         tcp_rtt_estimator(sk, seq_rtt);
3112         tcp_set_rto(sk);
3113         inet_csk(sk)->icsk_backoff = 0;
3114 }
3115
3116 /* Read draft-ietf-tcplw-high-performance before mucking
3117  * with this code. (Supersedes RFC1323)
3118  */
3119 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3120 {
3121         /* RTTM Rule: A TSecr value received in a segment is used to
3122          * update the averaged RTT measurement only if the segment
3123          * acknowledges some new data, i.e., only if it advances the
3124          * left edge of the send window.
3125          *
3126          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3127          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3128          *
3129          * Changed: reset backoff as soon as we see the first valid sample.
3130          * If we do not, we get strongly overestimated rto. With timestamps
3131          * samples are accepted even from very old segments: f.e., when rtt=1
3132          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3133          * answer arrives rto becomes 120 seconds! If at least one of segments
3134          * in window is lost... Voila.                          --ANK (010210)
3135          */
3136         struct tcp_sock *tp = tcp_sk(sk);
3137
3138         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3139 }
3140
3141 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3142 {
3143         /* We don't have a timestamp. Can only use
3144          * packets that are not retransmitted to determine
3145          * rtt estimates. Also, we must not reset the
3146          * backoff for rto until we get a non-retransmitted
3147          * packet. This allows us to deal with a situation
3148          * where the network delay has increased suddenly.
3149          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3150          */
3151
3152         if (flag & FLAG_RETRANS_DATA_ACKED)
3153                 return;
3154
3155         tcp_valid_rtt_meas(sk, seq_rtt);
3156 }
3157
3158 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3159                                       const s32 seq_rtt)
3160 {
3161         const struct tcp_sock *tp = tcp_sk(sk);
3162         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3163         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3164                 tcp_ack_saw_tstamp(sk, flag);
3165         else if (seq_rtt >= 0)
3166                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3167 }
3168
3169 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3170 {
3171         const struct inet_connection_sock *icsk = inet_csk(sk);
3172         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3173         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3174 }
3175
3176 /* Restart timer after forward progress on connection.
3177  * RFC2988 recommends to restart timer to now+rto.
3178  */
3179 static void tcp_rearm_rto(struct sock *sk)
3180 {
3181         struct tcp_sock *tp = tcp_sk(sk);
3182
3183         if (!tp->packets_out) {
3184                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3185         } else {
3186                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3187                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3188         }
3189 }
3190
3191 /* If we get here, the whole TSO packet has not been acked. */
3192 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3193 {
3194         struct tcp_sock *tp = tcp_sk(sk);
3195         u32 packets_acked;
3196
3197         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3198
3199         packets_acked = tcp_skb_pcount(skb);
3200         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3201                 return 0;
3202         packets_acked -= tcp_skb_pcount(skb);
3203
3204         if (packets_acked) {
3205                 BUG_ON(tcp_skb_pcount(skb) == 0);
3206                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3207         }
3208
3209         return packets_acked;
3210 }
3211
3212 /* Remove acknowledged frames from the retransmission queue. If our packet
3213  * is before the ack sequence we can discard it as it's confirmed to have
3214  * arrived at the other end.
3215  */
3216 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3217                                u32 prior_snd_una)
3218 {
3219         struct tcp_sock *tp = tcp_sk(sk);
3220         const struct inet_connection_sock *icsk = inet_csk(sk);
3221         struct sk_buff *skb;
3222         u32 now = tcp_time_stamp;
3223         int fully_acked = 1;
3224         int flag = 0;
3225         u32 pkts_acked = 0;
3226         u32 reord = tp->packets_out;
3227         u32 prior_sacked = tp->sacked_out;
3228         s32 seq_rtt = -1;
3229         s32 ca_seq_rtt = -1;
3230         ktime_t last_ackt = net_invalid_timestamp();
3231
3232         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3233                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3234                 u32 acked_pcount;
3235                 u8 sacked = scb->sacked;
3236
3237                 /* Determine how many packets and what bytes were acked, tso and else */
3238                 if (after(scb->end_seq, tp->snd_una)) {
3239                         if (tcp_skb_pcount(skb) == 1 ||
3240                             !after(tp->snd_una, scb->seq))
3241                                 break;
3242
3243                         acked_pcount = tcp_tso_acked(sk, skb);
3244                         if (!acked_pcount)
3245                                 break;
3246
3247                         fully_acked = 0;
3248                 } else {
3249                         acked_pcount = tcp_skb_pcount(skb);
3250                 }
3251
3252                 if (sacked & TCPCB_RETRANS) {
3253                         if (sacked & TCPCB_SACKED_RETRANS)
3254                                 tp->retrans_out -= acked_pcount;
3255                         flag |= FLAG_RETRANS_DATA_ACKED;
3256                         ca_seq_rtt = -1;
3257                         seq_rtt = -1;
3258                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3259                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3260                 } else {
3261                         ca_seq_rtt = now - scb->when;
3262                         last_ackt = skb->tstamp;
3263                         if (seq_rtt < 0) {
3264                                 seq_rtt = ca_seq_rtt;
3265                         }
3266                         if (!(sacked & TCPCB_SACKED_ACKED))
3267                                 reord = min(pkts_acked, reord);
3268                 }
3269
3270                 if (sacked & TCPCB_SACKED_ACKED)
3271                         tp->sacked_out -= acked_pcount;
3272                 if (sacked & TCPCB_LOST)
3273                         tp->lost_out -= acked_pcount;
3274
3275                 tp->packets_out -= acked_pcount;
3276                 pkts_acked += acked_pcount;
3277
3278                 /* Initial outgoing SYN's get put onto the write_queue
3279                  * just like anything else we transmit.  It is not
3280                  * true data, and if we misinform our callers that
3281                  * this ACK acks real data, we will erroneously exit
3282                  * connection startup slow start one packet too
3283                  * quickly.  This is severely frowned upon behavior.
3284                  */
3285                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3286                         flag |= FLAG_DATA_ACKED;
3287                 } else {
3288                         flag |= FLAG_SYN_ACKED;
3289                         tp->retrans_stamp = 0;
3290                 }
3291
3292                 if (!fully_acked)
3293                         break;
3294
3295                 tcp_unlink_write_queue(skb, sk);
3296                 sk_wmem_free_skb(sk, skb);
3297                 tp->scoreboard_skb_hint = NULL;
3298                 if (skb == tp->retransmit_skb_hint)
3299                         tp->retransmit_skb_hint = NULL;
3300                 if (skb == tp->lost_skb_hint)
3301                         tp->lost_skb_hint = NULL;
3302         }
3303
3304         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3305                 tp->snd_up = tp->snd_una;
3306
3307         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3308                 flag |= FLAG_SACK_RENEGING;
3309
3310         if (flag & FLAG_ACKED) {
3311                 const struct tcp_congestion_ops *ca_ops
3312                         = inet_csk(sk)->icsk_ca_ops;
3313
3314                 if (unlikely(icsk->icsk_mtup.probe_size &&
3315                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3316                         tcp_mtup_probe_success(sk);
3317                 }
3318
3319                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3320                 tcp_rearm_rto(sk);
3321
3322                 if (tcp_is_reno(tp)) {
3323                         tcp_remove_reno_sacks(sk, pkts_acked);
3324                 } else {
3325                         int delta;
3326
3327                         /* Non-retransmitted hole got filled? That's reordering */
3328                         if (reord < prior_fackets)
3329                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3330
3331                         delta = tcp_is_fack(tp) ? pkts_acked :
3332                                                   prior_sacked - tp->sacked_out;
3333                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3334                 }
3335
3336                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3337
3338                 if (ca_ops->pkts_acked) {
3339                         s32 rtt_us = -1;
3340
3341                         /* Is the ACK triggering packet unambiguous? */
3342                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3343                                 /* High resolution needed and available? */
3344                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3345                                     !ktime_equal(last_ackt,
3346                                                  net_invalid_timestamp()))
3347                                         rtt_us = ktime_us_delta(ktime_get_real(),
3348                                                                 last_ackt);
3349                                 else if (ca_seq_rtt > 0)
3350                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3351                         }
3352
3353                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3354                 }
3355         }
3356
3357 #if FASTRETRANS_DEBUG > 0
3358         WARN_ON((int)tp->sacked_out < 0);
3359         WARN_ON((int)tp->lost_out < 0);
3360         WARN_ON((int)tp->retrans_out < 0);
3361         if (!tp->packets_out && tcp_is_sack(tp)) {
3362                 icsk = inet_csk(sk);
3363                 if (tp->lost_out) {
3364                         printk(KERN_DEBUG "Leak l=%u %d\n",
3365                                tp->lost_out, icsk->icsk_ca_state);
3366                         tp->lost_out = 0;
3367                 }
3368                 if (tp->sacked_out) {
3369                         printk(KERN_DEBUG "Leak s=%u %d\n",
3370                                tp->sacked_out, icsk->icsk_ca_state);
3371                         tp->sacked_out = 0;
3372                 }
3373                 if (tp->retrans_out) {
3374                         printk(KERN_DEBUG "Leak r=%u %d\n",
3375                                tp->retrans_out, icsk->icsk_ca_state);
3376                         tp->retrans_out = 0;
3377                 }
3378         }
3379 #endif
3380         return flag;
3381 }
3382
3383 static void tcp_ack_probe(struct sock *sk)
3384 {
3385         const struct tcp_sock *tp = tcp_sk(sk);
3386         struct inet_connection_sock *icsk = inet_csk(sk);
3387
3388         /* Was it a usable window open? */
3389
3390         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3391                 icsk->icsk_backoff = 0;
3392                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3393                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3394                  * This function is not for random using!
3395                  */
3396         } else {
3397                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3398                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3399                                           TCP_RTO_MAX);
3400         }
3401 }
3402
3403 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3404 {
3405         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3406                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3407 }
3408
3409 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3410 {
3411         const struct tcp_sock *tp = tcp_sk(sk);
3412         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3413                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3414 }
3415
3416 /* Check that window update is acceptable.
3417  * The function assumes that snd_una<=ack<=snd_next.
3418  */
3419 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3420                                         const u32 ack, const u32 ack_seq,
3421                                         const u32 nwin)
3422 {
3423         return (after(ack, tp->snd_una) ||
3424                 after(ack_seq, tp->snd_wl1) ||
3425                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3426 }
3427
3428 /* Update our send window.
3429  *
3430  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3431  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3432  */
3433 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3434                                  u32 ack_seq)
3435 {
3436         struct tcp_sock *tp = tcp_sk(sk);
3437         int flag = 0;
3438         u32 nwin = ntohs(tcp_hdr(skb)->window);
3439
3440         if (likely(!tcp_hdr(skb)->syn))
3441                 nwin <<= tp->rx_opt.snd_wscale;
3442
3443         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3444                 flag |= FLAG_WIN_UPDATE;
3445                 tcp_update_wl(tp, ack_seq);
3446
3447                 if (tp->snd_wnd != nwin) {
3448                         tp->snd_wnd = nwin;
3449
3450                         /* Note, it is the only place, where
3451                          * fast path is recovered for sending TCP.
3452                          */
3453                         tp->pred_flags = 0;
3454                         tcp_fast_path_check(sk);
3455
3456                         if (nwin > tp->max_window) {
3457                                 tp->max_window = nwin;
3458                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3459                         }
3460                 }
3461         }
3462
3463         tp->snd_una = ack;
3464
3465         return flag;
3466 }
3467
3468 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3469  * continue in congestion avoidance.
3470  */
3471 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3472 {
3473         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3474         tp->snd_cwnd_cnt = 0;
3475         tp->bytes_acked = 0;
3476         TCP_ECN_queue_cwr(tp);
3477         tcp_moderate_cwnd(tp);
3478 }
3479
3480 /* A conservative spurious RTO response algorithm: reduce cwnd using
3481  * rate halving and continue in congestion avoidance.
3482  */
3483 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3484 {
3485         tcp_enter_cwr(sk, 0);
3486 }
3487
3488 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3489 {
3490         if (flag & FLAG_ECE)
3491                 tcp_ratehalving_spur_to_response(sk);
3492         else
3493                 tcp_undo_cwr(sk, 1);
3494 }
3495
3496 /* F-RTO spurious RTO detection algorithm (RFC4138)
3497  *
3498  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3499  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3500  * window (but not to or beyond highest sequence sent before RTO):
3501  *   On First ACK,  send two new segments out.
3502  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3503  *                  algorithm is not part of the F-RTO detection algorithm
3504  *                  given in RFC4138 but can be selected separately).
3505  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3506  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3507  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3508  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3509  *
3510  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3511  * original window even after we transmit two new data segments.
3512  *
3513  * SACK version:
3514  *   on first step, wait until first cumulative ACK arrives, then move to
3515  *   the second step. In second step, the next ACK decides.
3516  *
3517  * F-RTO is implemented (mainly) in four functions:
3518  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3519  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3520  *     called when tcp_use_frto() showed green light
3521  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3522  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3523  *     to prove that the RTO is indeed spurious. It transfers the control
3524  *     from F-RTO to the conventional RTO recovery
3525  */
3526 static int tcp_process_frto(struct sock *sk, int flag)
3527 {
3528         struct tcp_sock *tp = tcp_sk(sk);
3529
3530         tcp_verify_left_out(tp);
3531
3532         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3533         if (flag & FLAG_DATA_ACKED)
3534                 inet_csk(sk)->icsk_retransmits = 0;
3535
3536         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3537             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3538                 tp->undo_marker = 0;
3539
3540         if (!before(tp->snd_una, tp->frto_highmark)) {
3541                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3542                 return 1;
3543         }
3544
3545         if (!tcp_is_sackfrto(tp)) {
3546                 /* RFC4138 shortcoming in step 2; should also have case c):
3547                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3548                  * data, winupdate
3549                  */
3550                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3551                         return 1;
3552
3553                 if (!(flag & FLAG_DATA_ACKED)) {
3554                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3555                                             flag);
3556                         return 1;
3557                 }
3558         } else {
3559                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3560                         /* Prevent sending of new data. */
3561                         tp->snd_cwnd = min(tp->snd_cwnd,
3562                                            tcp_packets_in_flight(tp));
3563                         return 1;
3564                 }
3565
3566                 if ((tp->frto_counter >= 2) &&
3567                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3568                      ((flag & FLAG_DATA_SACKED) &&
3569                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3570                         /* RFC4138 shortcoming (see comment above) */
3571                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3572                             (flag & FLAG_NOT_DUP))
3573                                 return 1;
3574
3575                         tcp_enter_frto_loss(sk, 3, flag);
3576                         return 1;
3577                 }
3578         }
3579
3580         if (tp->frto_counter == 1) {
3581                 /* tcp_may_send_now needs to see updated state */
3582                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3583                 tp->frto_counter = 2;
3584
3585                 if (!tcp_may_send_now(sk))
3586                         tcp_enter_frto_loss(sk, 2, flag);
3587
3588                 return 1;
3589         } else {
3590                 switch (sysctl_tcp_frto_response) {
3591                 case 2:
3592                         tcp_undo_spur_to_response(sk, flag);
3593                         break;
3594                 case 1:
3595                         tcp_conservative_spur_to_response(tp);
3596                         break;
3597                 default:
3598                         tcp_ratehalving_spur_to_response(sk);
3599                         break;
3600                 }
3601                 tp->frto_counter = 0;
3602                 tp->undo_marker = 0;
3603                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3604         }
3605         return 0;
3606 }
3607
3608 /* This routine deals with incoming acks, but not outgoing ones. */
3609 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3610 {
3611         struct inet_connection_sock *icsk = inet_csk(sk);
3612         struct tcp_sock *tp = tcp_sk(sk);
3613         u32 prior_snd_una = tp->snd_una;
3614         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3615         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3616         u32 prior_in_flight;
3617         u32 prior_fackets;
3618         int prior_packets;
3619         int frto_cwnd = 0;
3620
3621         /* If the ack is older than previous acks
3622          * then we can probably ignore it.
3623          */
3624         if (before(ack, prior_snd_una))
3625                 goto old_ack;
3626
3627         /* If the ack includes data we haven't sent yet, discard
3628          * this segment (RFC793 Section 3.9).
3629          */
3630         if (after(ack, tp->snd_nxt))
3631                 goto invalid_ack;
3632
3633         if (after(ack, prior_snd_una))
3634                 flag |= FLAG_SND_UNA_ADVANCED;
3635
3636         if (sysctl_tcp_abc) {
3637                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3638                         tp->bytes_acked += ack - prior_snd_una;
3639                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3640                         /* we assume just one segment left network */
3641                         tp->bytes_acked += min(ack - prior_snd_una,
3642                                                tp->mss_cache);
3643         }
3644
3645         prior_fackets = tp->fackets_out;
3646         prior_in_flight = tcp_packets_in_flight(tp);
3647
3648         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3649                 /* Window is constant, pure forward advance.
3650                  * No more checks are required.
3651                  * Note, we use the fact that SND.UNA>=SND.WL2.
3652                  */
3653                 tcp_update_wl(tp, ack_seq);
3654                 tp->snd_una = ack;
3655                 flag |= FLAG_WIN_UPDATE;
3656
3657                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3658
3659                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3660         } else {
3661                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3662                         flag |= FLAG_DATA;
3663                 else
3664                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3665
3666                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3667
3668                 if (TCP_SKB_CB(skb)->sacked)
3669                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3670
3671                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3672                         flag |= FLAG_ECE;
3673
3674                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3675         }
3676
3677         /* We passed data and got it acked, remove any soft error
3678          * log. Something worked...
3679          */
3680         sk->sk_err_soft = 0;
3681         icsk->icsk_probes_out = 0;
3682         tp->rcv_tstamp = tcp_time_stamp;
3683         prior_packets = tp->packets_out;
3684         if (!prior_packets)
3685                 goto no_queue;
3686
3687         /* See if we can take anything off of the retransmit queue. */
3688         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3689
3690         if (tp->frto_counter)
3691                 frto_cwnd = tcp_process_frto(sk, flag);
3692         /* Guarantee sacktag reordering detection against wrap-arounds */
3693         if (before(tp->frto_highmark, tp->snd_una))
3694                 tp->frto_highmark = 0;
3695
3696         if (tcp_ack_is_dubious(sk, flag)) {
3697                 /* Advance CWND, if state allows this. */
3698                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3699                     tcp_may_raise_cwnd(sk, flag))
3700                         tcp_cong_avoid(sk, ack, prior_in_flight);
3701                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3702                                       flag);
3703         } else {
3704                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3705                         tcp_cong_avoid(sk, ack, prior_in_flight);
3706         }
3707
3708         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3709                 dst_confirm(sk->sk_dst_cache);
3710
3711         return 1;
3712
3713 no_queue:
3714         /* If this ack opens up a zero window, clear backoff.  It was
3715          * being used to time the probes, and is probably far higher than
3716          * it needs to be for normal retransmission.
3717          */
3718         if (tcp_send_head(sk))
3719                 tcp_ack_probe(sk);
3720         return 1;
3721
3722 invalid_ack:
3723         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3724         return -1;
3725
3726 old_ack:
3727         if (TCP_SKB_CB(skb)->sacked) {
3728                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3729                 if (icsk->icsk_ca_state == TCP_CA_Open)
3730                         tcp_try_keep_open(sk);
3731         }
3732
3733         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3734         return 0;
3735 }
3736
3737 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3738  * But, this can also be called on packets in the established flow when
3739  * the fast version below fails.
3740  */
3741 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3742                        u8 **hvpp, int estab)
3743 {
3744         unsigned char *ptr;
3745         struct tcphdr *th = tcp_hdr(skb);
3746         int length = (th->doff * 4) - sizeof(struct tcphdr);
3747
3748         ptr = (unsigned char *)(th + 1);
3749         opt_rx->saw_tstamp = 0;
3750
3751         while (length > 0) {
3752                 int opcode = *ptr++;
3753                 int opsize;
3754
3755                 switch (opcode) {
3756                 case TCPOPT_EOL:
3757                         return;
3758                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3759                         length--;
3760                         continue;
3761                 default:
3762                         opsize = *ptr++;
3763                         if (opsize < 2) /* "silly options" */
3764                                 return;
3765                         if (opsize > length)
3766                                 return; /* don't parse partial options */
3767                         switch (opcode) {
3768                         case TCPOPT_MSS:
3769                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3770                                         u16 in_mss = get_unaligned_be16(ptr);
3771                                         if (in_mss) {
3772                                                 if (opt_rx->user_mss &&
3773                                                     opt_rx->user_mss < in_mss)
3774                                                         in_mss = opt_rx->user_mss;
3775                                                 opt_rx->mss_clamp = in_mss;
3776                                         }
3777                                 }
3778                                 break;
3779                         case TCPOPT_WINDOW:
3780                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3781                                     !estab && sysctl_tcp_window_scaling) {
3782                                         __u8 snd_wscale = *(__u8 *)ptr;
3783                                         opt_rx->wscale_ok = 1;
3784                                         if (snd_wscale > 14) {
3785                                                 if (net_ratelimit())
3786                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3787                                                                "scaling value %d >14 received.\n",
3788                                                                snd_wscale);
3789                                                 snd_wscale = 14;
3790                                         }
3791                                         opt_rx->snd_wscale = snd_wscale;
3792                                 }
3793                                 break;
3794                         case TCPOPT_TIMESTAMP:
3795                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3796                                     ((estab && opt_rx->tstamp_ok) ||
3797                                      (!estab && sysctl_tcp_timestamps))) {
3798                                         opt_rx->saw_tstamp = 1;
3799                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3800                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3801                                 }
3802                                 break;
3803                         case TCPOPT_SACK_PERM:
3804                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3805                                     !estab && sysctl_tcp_sack) {
3806                                         opt_rx->sack_ok = 1;
3807                                         tcp_sack_reset(opt_rx);
3808                                 }
3809                                 break;
3810
3811                         case TCPOPT_SACK:
3812                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3813                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3814                                    opt_rx->sack_ok) {
3815                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3816                                 }
3817                                 break;
3818 #ifdef CONFIG_TCP_MD5SIG
3819                         case TCPOPT_MD5SIG:
3820                                 /*
3821                                  * The MD5 Hash has already been
3822                                  * checked (see tcp_v{4,6}_do_rcv()).
3823                                  */
3824                                 break;
3825 #endif
3826                         case TCPOPT_COOKIE:
3827                                 /* This option is variable length.
3828                                  */
3829                                 switch (opsize) {
3830                                 case TCPOLEN_COOKIE_BASE:
3831                                         /* not yet implemented */
3832                                         break;
3833                                 case TCPOLEN_COOKIE_PAIR:
3834                                         /* not yet implemented */
3835                                         break;
3836                                 case TCPOLEN_COOKIE_MIN+0:
3837                                 case TCPOLEN_COOKIE_MIN+2:
3838                                 case TCPOLEN_COOKIE_MIN+4:
3839                                 case TCPOLEN_COOKIE_MIN+6:
3840                                 case TCPOLEN_COOKIE_MAX:
3841                                         /* 16-bit multiple */
3842                                         opt_rx->cookie_plus = opsize;
3843                                         *hvpp = ptr;
3844                                 default:
3845                                         /* ignore option */
3846                                         break;
3847                                 };
3848                                 break;
3849                         };
3850
3851                         ptr += opsize-2;
3852                         length -= opsize;
3853                 }
3854         }
3855 }
3856
3857 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3858 {
3859         __be32 *ptr = (__be32 *)(th + 1);
3860
3861         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3862                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3863                 tp->rx_opt.saw_tstamp = 1;
3864                 ++ptr;
3865                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3866                 ++ptr;
3867                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3868                 return 1;
3869         }
3870         return 0;
3871 }
3872
3873 /* Fast parse options. This hopes to only see timestamps.
3874  * If it is wrong it falls back on tcp_parse_options().
3875  */
3876 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3877                                   struct tcp_sock *tp, u8 **hvpp)
3878 {
3879         /* In the spirit of fast parsing, compare doff directly to constant
3880          * values.  Because equality is used, short doff can be ignored here.
3881          */
3882         if (th->doff == (sizeof(*th) / 4)) {
3883                 tp->rx_opt.saw_tstamp = 0;
3884                 return 0;
3885         } else if (tp->rx_opt.tstamp_ok &&
3886                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3887                 if (tcp_parse_aligned_timestamp(tp, th))
3888                         return 1;
3889         }
3890         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3891         return 1;
3892 }
3893
3894 #ifdef CONFIG_TCP_MD5SIG
3895 /*
3896  * Parse MD5 Signature option
3897  */
3898 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3899 {
3900         int length = (th->doff << 2) - sizeof (*th);
3901         u8 *ptr = (u8*)(th + 1);
3902
3903         /* If the TCP option is too short, we can short cut */
3904         if (length < TCPOLEN_MD5SIG)
3905                 return NULL;
3906
3907         while (length > 0) {
3908                 int opcode = *ptr++;
3909                 int opsize;
3910
3911                 switch(opcode) {
3912                 case TCPOPT_EOL:
3913                         return NULL;
3914                 case TCPOPT_NOP:
3915                         length--;
3916                         continue;
3917                 default:
3918                         opsize = *ptr++;
3919                         if (opsize < 2 || opsize > length)
3920                                 return NULL;
3921                         if (opcode == TCPOPT_MD5SIG)
3922                                 return ptr;
3923                 }
3924                 ptr += opsize - 2;
3925                 length -= opsize;
3926         }
3927         return NULL;
3928 }
3929 #endif
3930
3931 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3932 {
3933         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3934         tp->rx_opt.ts_recent_stamp = get_seconds();
3935 }
3936
3937 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3938 {
3939         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3940                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3941                  * extra check below makes sure this can only happen
3942                  * for pure ACK frames.  -DaveM
3943                  *
3944                  * Not only, also it occurs for expired timestamps.
3945                  */
3946
3947                 if (tcp_paws_check(&tp->rx_opt, 0))
3948                         tcp_store_ts_recent(tp);
3949         }
3950 }
3951
3952 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3953  *
3954  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3955  * it can pass through stack. So, the following predicate verifies that
3956  * this segment is not used for anything but congestion avoidance or
3957  * fast retransmit. Moreover, we even are able to eliminate most of such
3958  * second order effects, if we apply some small "replay" window (~RTO)
3959  * to timestamp space.
3960  *
3961  * All these measures still do not guarantee that we reject wrapped ACKs
3962  * on networks with high bandwidth, when sequence space is recycled fastly,
3963  * but it guarantees that such events will be very rare and do not affect
3964  * connection seriously. This doesn't look nice, but alas, PAWS is really
3965  * buggy extension.
3966  *
3967  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3968  * states that events when retransmit arrives after original data are rare.
3969  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3970  * the biggest problem on large power networks even with minor reordering.
3971  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3972  * up to bandwidth of 18Gigabit/sec. 8) ]
3973  */
3974
3975 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3976 {
3977         struct tcp_sock *tp = tcp_sk(sk);
3978         struct tcphdr *th = tcp_hdr(skb);
3979         u32 seq = TCP_SKB_CB(skb)->seq;
3980         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3981
3982         return (/* 1. Pure ACK with correct sequence number. */
3983                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3984
3985                 /* 2. ... and duplicate ACK. */
3986                 ack == tp->snd_una &&
3987
3988                 /* 3. ... and does not update window. */
3989                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3990
3991                 /* 4. ... and sits in replay window. */
3992                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3993 }
3994
3995 static inline int tcp_paws_discard(const struct sock *sk,
3996                                    const struct sk_buff *skb)
3997 {
3998         const struct tcp_sock *tp = tcp_sk(sk);
3999
4000         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4001                !tcp_disordered_ack(sk, skb);
4002 }
4003
4004 /* Check segment sequence number for validity.
4005  *
4006  * Segment controls are considered valid, if the segment
4007  * fits to the window after truncation to the window. Acceptability
4008  * of data (and SYN, FIN, of course) is checked separately.
4009  * See tcp_data_queue(), for example.
4010  *
4011  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4012  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4013  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4014  * (borrowed from freebsd)
4015  */
4016
4017 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4018 {
4019         return  !before(end_seq, tp->rcv_wup) &&
4020                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4021 }
4022
4023 /* When we get a reset we do this. */
4024 static void tcp_reset(struct sock *sk)
4025 {
4026         /* We want the right error as BSD sees it (and indeed as we do). */
4027         switch (sk->sk_state) {
4028         case TCP_SYN_SENT:
4029                 sk->sk_err = ECONNREFUSED;
4030                 break;
4031         case TCP_CLOSE_WAIT:
4032                 sk->sk_err = EPIPE;
4033                 break;
4034         case TCP_CLOSE:
4035                 return;
4036         default:
4037                 sk->sk_err = ECONNRESET;
4038         }
4039
4040         if (!sock_flag(sk, SOCK_DEAD))
4041                 sk->sk_error_report(sk);
4042
4043         tcp_done(sk);
4044 }
4045
4046 /*
4047  *      Process the FIN bit. This now behaves as it is supposed to work
4048  *      and the FIN takes effect when it is validly part of sequence
4049  *      space. Not before when we get holes.
4050  *
4051  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4052  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4053  *      TIME-WAIT)
4054  *
4055  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4056  *      close and we go into CLOSING (and later onto TIME-WAIT)
4057  *
4058  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4059  */
4060 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4061 {
4062         struct tcp_sock *tp = tcp_sk(sk);
4063
4064         inet_csk_schedule_ack(sk);
4065
4066         sk->sk_shutdown |= RCV_SHUTDOWN;
4067         sock_set_flag(sk, SOCK_DONE);
4068
4069         switch (sk->sk_state) {
4070         case TCP_SYN_RECV:
4071         case TCP_ESTABLISHED:
4072                 /* Move to CLOSE_WAIT */
4073                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4074                 inet_csk(sk)->icsk_ack.pingpong = 1;
4075                 break;
4076
4077         case TCP_CLOSE_WAIT:
4078         case TCP_CLOSING:
4079                 /* Received a retransmission of the FIN, do
4080                  * nothing.
4081                  */
4082                 break;
4083         case TCP_LAST_ACK:
4084                 /* RFC793: Remain in the LAST-ACK state. */
4085                 break;
4086
4087         case TCP_FIN_WAIT1:
4088                 /* This case occurs when a simultaneous close
4089                  * happens, we must ack the received FIN and
4090                  * enter the CLOSING state.
4091                  */
4092                 tcp_send_ack(sk);
4093                 tcp_set_state(sk, TCP_CLOSING);
4094                 break;
4095         case TCP_FIN_WAIT2:
4096                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4097                 tcp_send_ack(sk);
4098                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4099                 break;
4100         default:
4101                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4102                  * cases we should never reach this piece of code.
4103                  */
4104                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4105                        __func__, sk->sk_state);
4106                 break;
4107         }
4108
4109         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4110          * Probably, we should reset in this case. For now drop them.
4111          */
4112         __skb_queue_purge(&tp->out_of_order_queue);
4113         if (tcp_is_sack(tp))
4114                 tcp_sack_reset(&tp->rx_opt);
4115         sk_mem_reclaim(sk);
4116
4117         if (!sock_flag(sk, SOCK_DEAD)) {
4118                 sk->sk_state_change(sk);
4119
4120                 /* Do not send POLL_HUP for half duplex close. */
4121                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4122                     sk->sk_state == TCP_CLOSE)
4123                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4124                 else
4125                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4126         }
4127 }
4128
4129 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4130                                   u32 end_seq)
4131 {
4132         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4133                 if (before(seq, sp->start_seq))
4134                         sp->start_seq = seq;
4135                 if (after(end_seq, sp->end_seq))
4136                         sp->end_seq = end_seq;
4137                 return 1;
4138         }
4139         return 0;
4140 }
4141
4142 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4143 {
4144         struct tcp_sock *tp = tcp_sk(sk);
4145
4146         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4147                 int mib_idx;
4148
4149                 if (before(seq, tp->rcv_nxt))
4150                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4151                 else
4152                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4153
4154                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4155
4156                 tp->rx_opt.dsack = 1;
4157                 tp->duplicate_sack[0].start_seq = seq;
4158                 tp->duplicate_sack[0].end_seq = end_seq;
4159         }
4160 }
4161
4162 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4163 {
4164         struct tcp_sock *tp = tcp_sk(sk);
4165
4166         if (!tp->rx_opt.dsack)
4167                 tcp_dsack_set(sk, seq, end_seq);
4168         else
4169                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4170 }
4171
4172 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4173 {
4174         struct tcp_sock *tp = tcp_sk(sk);
4175
4176         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4177             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4178                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4179                 tcp_enter_quickack_mode(sk);
4180
4181                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4182                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4183
4184                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4185                                 end_seq = tp->rcv_nxt;
4186                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4187                 }
4188         }
4189
4190         tcp_send_ack(sk);
4191 }
4192
4193 /* These routines update the SACK block as out-of-order packets arrive or
4194  * in-order packets close up the sequence space.
4195  */
4196 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4197 {
4198         int this_sack;
4199         struct tcp_sack_block *sp = &tp->selective_acks[0];
4200         struct tcp_sack_block *swalk = sp + 1;
4201
4202         /* See if the recent change to the first SACK eats into
4203          * or hits the sequence space of other SACK blocks, if so coalesce.
4204          */
4205         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4206                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4207                         int i;
4208
4209                         /* Zap SWALK, by moving every further SACK up by one slot.
4210                          * Decrease num_sacks.
4211                          */
4212                         tp->rx_opt.num_sacks--;
4213                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4214                                 sp[i] = sp[i + 1];
4215                         continue;
4216                 }
4217                 this_sack++, swalk++;
4218         }
4219 }
4220
4221 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4222 {
4223         struct tcp_sock *tp = tcp_sk(sk);
4224         struct tcp_sack_block *sp = &tp->selective_acks[0];
4225         int cur_sacks = tp->rx_opt.num_sacks;
4226         int this_sack;
4227
4228         if (!cur_sacks)
4229                 goto new_sack;
4230
4231         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4232                 if (tcp_sack_extend(sp, seq, end_seq)) {
4233                         /* Rotate this_sack to the first one. */
4234                         for (; this_sack > 0; this_sack--, sp--)
4235                                 swap(*sp, *(sp - 1));
4236                         if (cur_sacks > 1)
4237                                 tcp_sack_maybe_coalesce(tp);
4238                         return;
4239                 }
4240         }
4241
4242         /* Could not find an adjacent existing SACK, build a new one,
4243          * put it at the front, and shift everyone else down.  We
4244          * always know there is at least one SACK present already here.
4245          *
4246          * If the sack array is full, forget about the last one.
4247          */
4248         if (this_sack >= TCP_NUM_SACKS) {
4249                 this_sack--;
4250                 tp->rx_opt.num_sacks--;
4251                 sp--;
4252         }
4253         for (; this_sack > 0; this_sack--, sp--)
4254                 *sp = *(sp - 1);
4255
4256 new_sack:
4257         /* Build the new head SACK, and we're done. */
4258         sp->start_seq = seq;
4259         sp->end_seq = end_seq;
4260         tp->rx_opt.num_sacks++;
4261 }
4262
4263 /* RCV.NXT advances, some SACKs should be eaten. */
4264
4265 static void tcp_sack_remove(struct tcp_sock *tp)
4266 {
4267         struct tcp_sack_block *sp = &tp->selective_acks[0];
4268         int num_sacks = tp->rx_opt.num_sacks;
4269         int this_sack;
4270
4271         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4272         if (skb_queue_empty(&tp->out_of_order_queue)) {
4273                 tp->rx_opt.num_sacks = 0;
4274                 return;
4275         }
4276
4277         for (this_sack = 0; this_sack < num_sacks;) {
4278                 /* Check if the start of the sack is covered by RCV.NXT. */
4279                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4280                         int i;
4281
4282                         /* RCV.NXT must cover all the block! */
4283                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4284
4285                         /* Zap this SACK, by moving forward any other SACKS. */
4286                         for (i=this_sack+1; i < num_sacks; i++)
4287                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4288                         num_sacks--;
4289                         continue;
4290                 }
4291                 this_sack++;
4292                 sp++;
4293         }
4294         tp->rx_opt.num_sacks = num_sacks;
4295 }
4296
4297 /* This one checks to see if we can put data from the
4298  * out_of_order queue into the receive_queue.
4299  */
4300 static void tcp_ofo_queue(struct sock *sk)
4301 {
4302         struct tcp_sock *tp = tcp_sk(sk);
4303         __u32 dsack_high = tp->rcv_nxt;
4304         struct sk_buff *skb;
4305
4306         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4307                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4308                         break;
4309
4310                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4311                         __u32 dsack = dsack_high;
4312                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4313                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4314                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4315                 }
4316
4317                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4318                         SOCK_DEBUG(sk, "ofo packet was already received \n");
4319                         __skb_unlink(skb, &tp->out_of_order_queue);
4320                         __kfree_skb(skb);
4321                         continue;
4322                 }
4323                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4324                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4325                            TCP_SKB_CB(skb)->end_seq);
4326
4327                 __skb_unlink(skb, &tp->out_of_order_queue);
4328                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4329                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4330                 if (tcp_hdr(skb)->fin)
4331                         tcp_fin(skb, sk, tcp_hdr(skb));
4332         }
4333 }
4334
4335 static int tcp_prune_ofo_queue(struct sock *sk);
4336 static int tcp_prune_queue(struct sock *sk);
4337
4338 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4339 {
4340         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4341             !sk_rmem_schedule(sk, size)) {
4342
4343                 if (tcp_prune_queue(sk) < 0)
4344                         return -1;
4345
4346                 if (!sk_rmem_schedule(sk, size)) {
4347                         if (!tcp_prune_ofo_queue(sk))
4348                                 return -1;
4349
4350                         if (!sk_rmem_schedule(sk, size))
4351                                 return -1;
4352                 }
4353         }
4354         return 0;
4355 }
4356
4357 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4358 {
4359         struct tcphdr *th = tcp_hdr(skb);
4360         struct tcp_sock *tp = tcp_sk(sk);
4361         int eaten = -1;
4362
4363         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4364                 goto drop;
4365
4366         __skb_pull(skb, th->doff * 4);
4367
4368         TCP_ECN_accept_cwr(tp, skb);
4369
4370         tp->rx_opt.dsack = 0;
4371
4372         /*  Queue data for delivery to the user.
4373          *  Packets in sequence go to the receive queue.
4374          *  Out of sequence packets to the out_of_order_queue.
4375          */
4376         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4377                 if (tcp_receive_window(tp) == 0)
4378                         goto out_of_window;
4379
4380                 /* Ok. In sequence. In window. */
4381                 if (tp->ucopy.task == current &&
4382                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4383                     sock_owned_by_user(sk) && !tp->urg_data) {
4384                         int chunk = min_t(unsigned int, skb->len,
4385                                           tp->ucopy.len);
4386
4387                         __set_current_state(TASK_RUNNING);
4388
4389                         local_bh_enable();
4390                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4391                                 tp->ucopy.len -= chunk;
4392                                 tp->copied_seq += chunk;
4393                                 eaten = (chunk == skb->len && !th->fin);
4394                                 tcp_rcv_space_adjust(sk);
4395                         }
4396                         local_bh_disable();
4397                 }
4398
4399                 if (eaten <= 0) {
4400 queue_and_out:
4401                         if (eaten < 0 &&
4402                             tcp_try_rmem_schedule(sk, skb->truesize))
4403                                 goto drop;
4404
4405                         skb_set_owner_r(skb, sk);
4406                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4407                 }
4408                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4409                 if (skb->len)
4410                         tcp_event_data_recv(sk, skb);
4411                 if (th->fin)
4412                         tcp_fin(skb, sk, th);
4413
4414                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4415                         tcp_ofo_queue(sk);
4416
4417                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4418                          * gap in queue is filled.
4419                          */
4420                         if (skb_queue_empty(&tp->out_of_order_queue))
4421                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4422                 }
4423
4424                 if (tp->rx_opt.num_sacks)
4425                         tcp_sack_remove(tp);
4426
4427                 tcp_fast_path_check(sk);
4428
4429                 if (eaten > 0)
4430                         __kfree_skb(skb);
4431                 else if (!sock_flag(sk, SOCK_DEAD))
4432                         sk->sk_data_ready(sk, 0);
4433                 return;
4434         }
4435
4436         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4437                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4438                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4439                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4440
4441 out_of_window:
4442                 tcp_enter_quickack_mode(sk);
4443                 inet_csk_schedule_ack(sk);
4444 drop:
4445                 __kfree_skb(skb);
4446                 return;
4447         }
4448
4449         /* Out of window. F.e. zero window probe. */
4450         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4451                 goto out_of_window;
4452
4453         tcp_enter_quickack_mode(sk);
4454
4455         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4456                 /* Partial packet, seq < rcv_next < end_seq */
4457                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4458                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4459                            TCP_SKB_CB(skb)->end_seq);
4460
4461                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4462
4463                 /* If window is closed, drop tail of packet. But after
4464                  * remembering D-SACK for its head made in previous line.
4465                  */
4466                 if (!tcp_receive_window(tp))
4467                         goto out_of_window;
4468                 goto queue_and_out;
4469         }
4470
4471         TCP_ECN_check_ce(tp, skb);
4472
4473         if (tcp_try_rmem_schedule(sk, skb->truesize))
4474                 goto drop;
4475
4476         /* Disable header prediction. */
4477         tp->pred_flags = 0;
4478         inet_csk_schedule_ack(sk);
4479
4480         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4481                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4482
4483         skb_set_owner_r(skb, sk);
4484
4485         if (!skb_peek(&tp->out_of_order_queue)) {
4486                 /* Initial out of order segment, build 1 SACK. */
4487                 if (tcp_is_sack(tp)) {
4488                         tp->rx_opt.num_sacks = 1;
4489                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4490                         tp->selective_acks[0].end_seq =
4491                                                 TCP_SKB_CB(skb)->end_seq;
4492                 }
4493                 __skb_queue_head(&tp->out_of_order_queue, skb);
4494         } else {
4495                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4496                 u32 seq = TCP_SKB_CB(skb)->seq;
4497                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4498
4499                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4500                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4501
4502                         if (!tp->rx_opt.num_sacks ||
4503                             tp->selective_acks[0].end_seq != seq)
4504                                 goto add_sack;
4505
4506                         /* Common case: data arrive in order after hole. */
4507                         tp->selective_acks[0].end_seq = end_seq;
4508                         return;
4509                 }
4510
4511                 /* Find place to insert this segment. */
4512                 while (1) {
4513                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4514                                 break;
4515                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4516                                 skb1 = NULL;
4517                                 break;
4518                         }
4519                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4520                 }
4521
4522                 /* Do skb overlap to previous one? */
4523                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4524                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4525                                 /* All the bits are present. Drop. */
4526                                 __kfree_skb(skb);
4527                                 tcp_dsack_set(sk, seq, end_seq);
4528                                 goto add_sack;
4529                         }
4530                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4531                                 /* Partial overlap. */
4532                                 tcp_dsack_set(sk, seq,
4533                                               TCP_SKB_CB(skb1)->end_seq);
4534                         } else {
4535                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4536                                                        skb1))
4537                                         skb1 = NULL;
4538                                 else
4539                                         skb1 = skb_queue_prev(
4540                                                 &tp->out_of_order_queue,
4541                                                 skb1);
4542                         }
4543                 }
4544                 if (!skb1)
4545                         __skb_queue_head(&tp->out_of_order_queue, skb);
4546                 else
4547                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4548
4549                 /* And clean segments covered by new one as whole. */
4550                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4551                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4552
4553                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4554                                 break;
4555                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4556                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4557                                                  end_seq);
4558                                 break;
4559                         }
4560                         __skb_unlink(skb1, &tp->out_of_order_queue);
4561                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4562                                          TCP_SKB_CB(skb1)->end_seq);
4563                         __kfree_skb(skb1);
4564                 }
4565
4566 add_sack:
4567                 if (tcp_is_sack(tp))
4568                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4569         }
4570 }
4571
4572 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4573                                         struct sk_buff_head *list)
4574 {
4575         struct sk_buff *next = NULL;
4576
4577         if (!skb_queue_is_last(list, skb))
4578                 next = skb_queue_next(list, skb);
4579
4580         __skb_unlink(skb, list);
4581         __kfree_skb(skb);
4582         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4583
4584         return next;
4585 }
4586
4587 /* Collapse contiguous sequence of skbs head..tail with
4588  * sequence numbers start..end.
4589  *
4590  * If tail is NULL, this means until the end of the list.
4591  *
4592  * Segments with FIN/SYN are not collapsed (only because this
4593  * simplifies code)
4594  */
4595 static void
4596 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4597              struct sk_buff *head, struct sk_buff *tail,
4598              u32 start, u32 end)
4599 {
4600         struct sk_buff *skb, *n;
4601         bool end_of_skbs;
4602
4603         /* First, check that queue is collapsible and find
4604          * the point where collapsing can be useful. */
4605         skb = head;
4606 restart:
4607         end_of_skbs = true;
4608         skb_queue_walk_from_safe(list, skb, n) {
4609                 if (skb == tail)
4610                         break;
4611                 /* No new bits? It is possible on ofo queue. */
4612                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4613                         skb = tcp_collapse_one(sk, skb, list);
4614                         if (!skb)
4615                                 break;
4616                         goto restart;
4617                 }
4618
4619                 /* The first skb to collapse is:
4620                  * - not SYN/FIN and
4621                  * - bloated or contains data before "start" or
4622                  *   overlaps to the next one.
4623                  */
4624                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4625                     (tcp_win_from_space(skb->truesize) > skb->len ||
4626                      before(TCP_SKB_CB(skb)->seq, start))) {
4627                         end_of_skbs = false;
4628                         break;
4629                 }
4630
4631                 if (!skb_queue_is_last(list, skb)) {
4632                         struct sk_buff *next = skb_queue_next(list, skb);
4633                         if (next != tail &&
4634                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4635                                 end_of_skbs = false;
4636                                 break;
4637                         }
4638                 }
4639
4640                 /* Decided to skip this, advance start seq. */
4641                 start = TCP_SKB_CB(skb)->end_seq;
4642         }
4643         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4644                 return;
4645
4646         while (before(start, end)) {
4647                 struct sk_buff *nskb;
4648                 unsigned int header = skb_headroom(skb);
4649                 int copy = SKB_MAX_ORDER(header, 0);
4650
4651                 /* Too big header? This can happen with IPv6. */
4652                 if (copy < 0)
4653                         return;
4654                 if (end - start < copy)
4655                         copy = end - start;
4656                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4657                 if (!nskb)
4658                         return;
4659
4660                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4661                 skb_set_network_header(nskb, (skb_network_header(skb) -
4662                                               skb->head));
4663                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4664                                                 skb->head));
4665                 skb_reserve(nskb, header);
4666                 memcpy(nskb->head, skb->head, header);
4667                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4668                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4669                 __skb_queue_before(list, skb, nskb);
4670                 skb_set_owner_r(nskb, sk);
4671
4672                 /* Copy data, releasing collapsed skbs. */
4673                 while (copy > 0) {
4674                         int offset = start - TCP_SKB_CB(skb)->seq;
4675                         int size = TCP_SKB_CB(skb)->end_seq - start;
4676
4677                         BUG_ON(offset < 0);
4678                         if (size > 0) {
4679                                 size = min(copy, size);
4680                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4681                                         BUG();
4682                                 TCP_SKB_CB(nskb)->end_seq += size;
4683                                 copy -= size;
4684                                 start += size;
4685                         }
4686                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4687                                 skb = tcp_collapse_one(sk, skb, list);
4688                                 if (!skb ||
4689                                     skb == tail ||
4690                                     tcp_hdr(skb)->syn ||
4691                                     tcp_hdr(skb)->fin)
4692                                         return;
4693                         }
4694                 }
4695         }
4696 }
4697
4698 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4699  * and tcp_collapse() them until all the queue is collapsed.
4700  */
4701 static void tcp_collapse_ofo_queue(struct sock *sk)
4702 {
4703         struct tcp_sock *tp = tcp_sk(sk);
4704         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4705         struct sk_buff *head;
4706         u32 start, end;
4707
4708         if (skb == NULL)
4709                 return;
4710
4711         start = TCP_SKB_CB(skb)->seq;
4712         end = TCP_SKB_CB(skb)->end_seq;
4713         head = skb;
4714
4715         for (;;) {
4716                 struct sk_buff *next = NULL;
4717
4718                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4719                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4720                 skb = next;
4721
4722                 /* Segment is terminated when we see gap or when
4723                  * we are at the end of all the queue. */
4724                 if (!skb ||
4725                     after(TCP_SKB_CB(skb)->seq, end) ||
4726                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4727                         tcp_collapse(sk, &tp->out_of_order_queue,
4728                                      head, skb, start, end);
4729                         head = skb;
4730                         if (!skb)
4731                                 break;
4732                         /* Start new segment */
4733                         start = TCP_SKB_CB(skb)->seq;
4734                         end = TCP_SKB_CB(skb)->end_seq;
4735                 } else {
4736                         if (before(TCP_SKB_CB(skb)->seq, start))
4737                                 start = TCP_SKB_CB(skb)->seq;
4738                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4739                                 end = TCP_SKB_CB(skb)->end_seq;
4740                 }
4741         }
4742 }
4743
4744 /*
4745  * Purge the out-of-order queue.
4746  * Return true if queue was pruned.
4747  */
4748 static int tcp_prune_ofo_queue(struct sock *sk)
4749 {
4750         struct tcp_sock *tp = tcp_sk(sk);
4751         int res = 0;
4752
4753         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4754                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4755                 __skb_queue_purge(&tp->out_of_order_queue);
4756
4757                 /* Reset SACK state.  A conforming SACK implementation will
4758                  * do the same at a timeout based retransmit.  When a connection
4759                  * is in a sad state like this, we care only about integrity
4760                  * of the connection not performance.
4761                  */
4762                 if (tp->rx_opt.sack_ok)
4763                         tcp_sack_reset(&tp->rx_opt);
4764                 sk_mem_reclaim(sk);
4765                 res = 1;
4766         }
4767         return res;
4768 }
4769
4770 /* Reduce allocated memory if we can, trying to get
4771  * the socket within its memory limits again.
4772  *
4773  * Return less than zero if we should start dropping frames
4774  * until the socket owning process reads some of the data
4775  * to stabilize the situation.
4776  */
4777 static int tcp_prune_queue(struct sock *sk)
4778 {
4779         struct tcp_sock *tp = tcp_sk(sk);
4780
4781         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4782
4783         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4784
4785         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4786                 tcp_clamp_window(sk);
4787         else if (tcp_memory_pressure)
4788                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4789
4790         tcp_collapse_ofo_queue(sk);
4791         if (!skb_queue_empty(&sk->sk_receive_queue))
4792                 tcp_collapse(sk, &sk->sk_receive_queue,
4793                              skb_peek(&sk->sk_receive_queue),
4794                              NULL,
4795                              tp->copied_seq, tp->rcv_nxt);
4796         sk_mem_reclaim(sk);
4797
4798         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4799                 return 0;
4800
4801         /* Collapsing did not help, destructive actions follow.
4802          * This must not ever occur. */
4803
4804         tcp_prune_ofo_queue(sk);
4805
4806         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4807                 return 0;
4808
4809         /* If we are really being abused, tell the caller to silently
4810          * drop receive data on the floor.  It will get retransmitted
4811          * and hopefully then we'll have sufficient space.
4812          */
4813         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4814
4815         /* Massive buffer overcommit. */
4816         tp->pred_flags = 0;
4817         return -1;
4818 }
4819
4820 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4821  * As additional protections, we do not touch cwnd in retransmission phases,
4822  * and if application hit its sndbuf limit recently.
4823  */
4824 void tcp_cwnd_application_limited(struct sock *sk)
4825 {
4826         struct tcp_sock *tp = tcp_sk(sk);
4827
4828         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4829             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4830                 /* Limited by application or receiver window. */
4831                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4832                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4833                 if (win_used < tp->snd_cwnd) {
4834                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4835                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4836                 }
4837                 tp->snd_cwnd_used = 0;
4838         }
4839         tp->snd_cwnd_stamp = tcp_time_stamp;
4840 }
4841
4842 static int tcp_should_expand_sndbuf(struct sock *sk)
4843 {
4844         struct tcp_sock *tp = tcp_sk(sk);
4845
4846         /* If the user specified a specific send buffer setting, do
4847          * not modify it.
4848          */
4849         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4850                 return 0;
4851
4852         /* If we are under global TCP memory pressure, do not expand.  */
4853         if (tcp_memory_pressure)
4854                 return 0;
4855
4856         /* If we are under soft global TCP memory pressure, do not expand.  */
4857         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4858                 return 0;
4859
4860         /* If we filled the congestion window, do not expand.  */
4861         if (tp->packets_out >= tp->snd_cwnd)
4862                 return 0;
4863
4864         return 1;
4865 }
4866
4867 /* When incoming ACK allowed to free some skb from write_queue,
4868  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4869  * on the exit from tcp input handler.
4870  *
4871  * PROBLEM: sndbuf expansion does not work well with largesend.
4872  */
4873 static void tcp_new_space(struct sock *sk)
4874 {
4875         struct tcp_sock *tp = tcp_sk(sk);
4876
4877         if (tcp_should_expand_sndbuf(sk)) {
4878                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4879                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4880                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4881                                      tp->reordering + 1);
4882                 sndmem *= 2 * demanded;
4883                 if (sndmem > sk->sk_sndbuf)
4884                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4885                 tp->snd_cwnd_stamp = tcp_time_stamp;
4886         }
4887
4888         sk->sk_write_space(sk);
4889 }
4890
4891 static void tcp_check_space(struct sock *sk)
4892 {
4893         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4894                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4895                 if (sk->sk_socket &&
4896                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4897                         tcp_new_space(sk);
4898         }
4899 }
4900
4901 static inline void tcp_data_snd_check(struct sock *sk)
4902 {
4903         tcp_push_pending_frames(sk);
4904         tcp_check_space(sk);
4905 }
4906
4907 /*
4908  * Check if sending an ack is needed.
4909  */
4910 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4911 {
4912         struct tcp_sock *tp = tcp_sk(sk);
4913
4914             /* More than one full frame received... */
4915         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4916              /* ... and right edge of window advances far enough.
4917               * (tcp_recvmsg() will send ACK otherwise). Or...
4918               */
4919              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4920             /* We ACK each frame or... */
4921             tcp_in_quickack_mode(sk) ||
4922             /* We have out of order data. */
4923             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4924                 /* Then ack it now */
4925                 tcp_send_ack(sk);
4926         } else {
4927                 /* Else, send delayed ack. */
4928                 tcp_send_delayed_ack(sk);
4929         }
4930 }
4931
4932 static inline void tcp_ack_snd_check(struct sock *sk)
4933 {
4934         if (!inet_csk_ack_scheduled(sk)) {
4935                 /* We sent a data segment already. */
4936                 return;
4937         }
4938         __tcp_ack_snd_check(sk, 1);
4939 }
4940
4941 /*
4942  *      This routine is only called when we have urgent data
4943  *      signaled. Its the 'slow' part of tcp_urg. It could be
4944  *      moved inline now as tcp_urg is only called from one
4945  *      place. We handle URGent data wrong. We have to - as
4946  *      BSD still doesn't use the correction from RFC961.
4947  *      For 1003.1g we should support a new option TCP_STDURG to permit
4948  *      either form (or just set the sysctl tcp_stdurg).
4949  */
4950
4951 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4952 {
4953         struct tcp_sock *tp = tcp_sk(sk);
4954         u32 ptr = ntohs(th->urg_ptr);
4955
4956         if (ptr && !sysctl_tcp_stdurg)
4957                 ptr--;
4958         ptr += ntohl(th->seq);
4959
4960         /* Ignore urgent data that we've already seen and read. */
4961         if (after(tp->copied_seq, ptr))
4962                 return;
4963
4964         /* Do not replay urg ptr.
4965          *
4966          * NOTE: interesting situation not covered by specs.
4967          * Misbehaving sender may send urg ptr, pointing to segment,
4968          * which we already have in ofo queue. We are not able to fetch
4969          * such data and will stay in TCP_URG_NOTYET until will be eaten
4970          * by recvmsg(). Seems, we are not obliged to handle such wicked
4971          * situations. But it is worth to think about possibility of some
4972          * DoSes using some hypothetical application level deadlock.
4973          */
4974         if (before(ptr, tp->rcv_nxt))
4975                 return;
4976
4977         /* Do we already have a newer (or duplicate) urgent pointer? */
4978         if (tp->urg_data && !after(ptr, tp->urg_seq))
4979                 return;
4980
4981         /* Tell the world about our new urgent pointer. */
4982         sk_send_sigurg(sk);
4983
4984         /* We may be adding urgent data when the last byte read was
4985          * urgent. To do this requires some care. We cannot just ignore
4986          * tp->copied_seq since we would read the last urgent byte again
4987          * as data, nor can we alter copied_seq until this data arrives
4988          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4989          *
4990          * NOTE. Double Dutch. Rendering to plain English: author of comment
4991          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4992          * and expect that both A and B disappear from stream. This is _wrong_.
4993          * Though this happens in BSD with high probability, this is occasional.
4994          * Any application relying on this is buggy. Note also, that fix "works"
4995          * only in this artificial test. Insert some normal data between A and B and we will
4996          * decline of BSD again. Verdict: it is better to remove to trap
4997          * buggy users.
4998          */
4999         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5000             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5001                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5002                 tp->copied_seq++;
5003                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5004                         __skb_unlink(skb, &sk->sk_receive_queue);
5005                         __kfree_skb(skb);
5006                 }
5007         }
5008
5009         tp->urg_data = TCP_URG_NOTYET;
5010         tp->urg_seq = ptr;
5011
5012         /* Disable header prediction. */
5013         tp->pred_flags = 0;
5014 }
5015
5016 /* This is the 'fast' part of urgent handling. */
5017 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5018 {
5019         struct tcp_sock *tp = tcp_sk(sk);
5020
5021         /* Check if we get a new urgent pointer - normally not. */
5022         if (th->urg)
5023                 tcp_check_urg(sk, th);
5024
5025         /* Do we wait for any urgent data? - normally not... */
5026         if (tp->urg_data == TCP_URG_NOTYET) {
5027                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5028                           th->syn;
5029
5030                 /* Is the urgent pointer pointing into this packet? */
5031                 if (ptr < skb->len) {
5032                         u8 tmp;
5033                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5034                                 BUG();
5035                         tp->urg_data = TCP_URG_VALID | tmp;
5036                         if (!sock_flag(sk, SOCK_DEAD))
5037                                 sk->sk_data_ready(sk, 0);
5038                 }
5039         }
5040 }
5041
5042 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5043 {
5044         struct tcp_sock *tp = tcp_sk(sk);
5045         int chunk = skb->len - hlen;
5046         int err;
5047
5048         local_bh_enable();
5049         if (skb_csum_unnecessary(skb))
5050                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5051         else
5052                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5053                                                        tp->ucopy.iov);
5054
5055         if (!err) {
5056                 tp->ucopy.len -= chunk;
5057                 tp->copied_seq += chunk;
5058                 tcp_rcv_space_adjust(sk);
5059         }
5060
5061         local_bh_disable();
5062         return err;
5063 }
5064
5065 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5066                                             struct sk_buff *skb)
5067 {
5068         __sum16 result;
5069
5070         if (sock_owned_by_user(sk)) {
5071                 local_bh_enable();
5072                 result = __tcp_checksum_complete(skb);
5073                 local_bh_disable();
5074         } else {
5075                 result = __tcp_checksum_complete(skb);
5076         }
5077         return result;
5078 }
5079
5080 static inline int tcp_checksum_complete_user(struct sock *sk,
5081                                              struct sk_buff *skb)
5082 {
5083         return !skb_csum_unnecessary(skb) &&
5084                __tcp_checksum_complete_user(sk, skb);
5085 }
5086
5087 #ifdef CONFIG_NET_DMA
5088 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5089                                   int hlen)
5090 {
5091         struct tcp_sock *tp = tcp_sk(sk);
5092         int chunk = skb->len - hlen;
5093         int dma_cookie;
5094         int copied_early = 0;
5095
5096         if (tp->ucopy.wakeup)
5097                 return 0;
5098
5099         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5100                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5101
5102         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5103
5104                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5105                                                          skb, hlen,
5106                                                          tp->ucopy.iov, chunk,
5107                                                          tp->ucopy.pinned_list);
5108
5109                 if (dma_cookie < 0)
5110                         goto out;
5111
5112                 tp->ucopy.dma_cookie = dma_cookie;
5113                 copied_early = 1;
5114
5115                 tp->ucopy.len -= chunk;
5116                 tp->copied_seq += chunk;
5117                 tcp_rcv_space_adjust(sk);
5118
5119                 if ((tp->ucopy.len == 0) ||
5120                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5121                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5122                         tp->ucopy.wakeup = 1;
5123                         sk->sk_data_ready(sk, 0);
5124                 }
5125         } else if (chunk > 0) {
5126                 tp->ucopy.wakeup = 1;
5127                 sk->sk_data_ready(sk, 0);
5128         }
5129 out:
5130         return copied_early;
5131 }
5132 #endif /* CONFIG_NET_DMA */
5133
5134 /* Does PAWS and seqno based validation of an incoming segment, flags will
5135  * play significant role here.
5136  */
5137 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5138                               struct tcphdr *th, int syn_inerr)
5139 {
5140         u8 *hash_location;
5141         struct tcp_sock *tp = tcp_sk(sk);
5142
5143         /* RFC1323: H1. Apply PAWS check first. */
5144         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5145             tp->rx_opt.saw_tstamp &&
5146             tcp_paws_discard(sk, skb)) {
5147                 if (!th->rst) {
5148                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5149                         tcp_send_dupack(sk, skb);
5150                         goto discard;
5151                 }
5152                 /* Reset is accepted even if it did not pass PAWS. */
5153         }
5154
5155         /* Step 1: check sequence number */
5156         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5157                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5158                  * (RST) segments are validated by checking their SEQ-fields."
5159                  * And page 69: "If an incoming segment is not acceptable,
5160                  * an acknowledgment should be sent in reply (unless the RST
5161                  * bit is set, if so drop the segment and return)".
5162                  */
5163                 if (!th->rst)
5164                         tcp_send_dupack(sk, skb);
5165                 goto discard;
5166         }
5167
5168         /* Step 2: check RST bit */
5169         if (th->rst) {
5170                 tcp_reset(sk);
5171                 goto discard;
5172         }
5173
5174         /* ts_recent update must be made after we are sure that the packet
5175          * is in window.
5176          */
5177         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5178
5179         /* step 3: check security and precedence [ignored] */
5180
5181         /* step 4: Check for a SYN in window. */
5182         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5183                 if (syn_inerr)
5184                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5185                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5186                 tcp_reset(sk);
5187                 return -1;
5188         }
5189
5190         return 1;
5191
5192 discard:
5193         __kfree_skb(skb);
5194         return 0;
5195 }
5196
5197 /*
5198  *      TCP receive function for the ESTABLISHED state.
5199  *
5200  *      It is split into a fast path and a slow path. The fast path is
5201  *      disabled when:
5202  *      - A zero window was announced from us - zero window probing
5203  *        is only handled properly in the slow path.
5204  *      - Out of order segments arrived.
5205  *      - Urgent data is expected.
5206  *      - There is no buffer space left
5207  *      - Unexpected TCP flags/window values/header lengths are received
5208  *        (detected by checking the TCP header against pred_flags)
5209  *      - Data is sent in both directions. Fast path only supports pure senders
5210  *        or pure receivers (this means either the sequence number or the ack
5211  *        value must stay constant)
5212  *      - Unexpected TCP option.
5213  *
5214  *      When these conditions are not satisfied it drops into a standard
5215  *      receive procedure patterned after RFC793 to handle all cases.
5216  *      The first three cases are guaranteed by proper pred_flags setting,
5217  *      the rest is checked inline. Fast processing is turned on in
5218  *      tcp_data_queue when everything is OK.
5219  */
5220 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5221                         struct tcphdr *th, unsigned len)
5222 {
5223         struct tcp_sock *tp = tcp_sk(sk);
5224         int res;
5225
5226         /*
5227          *      Header prediction.
5228          *      The code loosely follows the one in the famous
5229          *      "30 instruction TCP receive" Van Jacobson mail.
5230          *
5231          *      Van's trick is to deposit buffers into socket queue
5232          *      on a device interrupt, to call tcp_recv function
5233          *      on the receive process context and checksum and copy
5234          *      the buffer to user space. smart...
5235          *
5236          *      Our current scheme is not silly either but we take the
5237          *      extra cost of the net_bh soft interrupt processing...
5238          *      We do checksum and copy also but from device to kernel.
5239          */
5240
5241         tp->rx_opt.saw_tstamp = 0;
5242
5243         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5244          *      if header_prediction is to be made
5245          *      'S' will always be tp->tcp_header_len >> 2
5246          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5247          *  turn it off (when there are holes in the receive
5248          *       space for instance)
5249          *      PSH flag is ignored.
5250          */
5251
5252         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5253             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5254             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5255                 int tcp_header_len = tp->tcp_header_len;
5256
5257                 /* Timestamp header prediction: tcp_header_len
5258                  * is automatically equal to th->doff*4 due to pred_flags
5259                  * match.
5260                  */
5261
5262                 /* Check timestamp */
5263                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5264                         /* No? Slow path! */
5265                         if (!tcp_parse_aligned_timestamp(tp, th))
5266                                 goto slow_path;
5267
5268                         /* If PAWS failed, check it more carefully in slow path */
5269                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5270                                 goto slow_path;
5271
5272                         /* DO NOT update ts_recent here, if checksum fails
5273                          * and timestamp was corrupted part, it will result
5274                          * in a hung connection since we will drop all
5275                          * future packets due to the PAWS test.
5276                          */
5277                 }
5278
5279                 if (len <= tcp_header_len) {
5280                         /* Bulk data transfer: sender */
5281                         if (len == tcp_header_len) {
5282                                 /* Predicted packet is in window by definition.
5283                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5284                                  * Hence, check seq<=rcv_wup reduces to:
5285                                  */
5286                                 if (tcp_header_len ==
5287                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5288                                     tp->rcv_nxt == tp->rcv_wup)
5289                                         tcp_store_ts_recent(tp);
5290
5291                                 /* We know that such packets are checksummed
5292                                  * on entry.
5293                                  */
5294                                 tcp_ack(sk, skb, 0);
5295                                 __kfree_skb(skb);
5296                                 tcp_data_snd_check(sk);
5297                                 return 0;
5298                         } else { /* Header too small */
5299                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5300                                 goto discard;
5301                         }
5302                 } else {
5303                         int eaten = 0;
5304                         int copied_early = 0;
5305
5306                         if (tp->copied_seq == tp->rcv_nxt &&
5307                             len - tcp_header_len <= tp->ucopy.len) {
5308 #ifdef CONFIG_NET_DMA
5309                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5310                                         copied_early = 1;
5311                                         eaten = 1;
5312                                 }
5313 #endif
5314                                 if (tp->ucopy.task == current &&
5315                                     sock_owned_by_user(sk) && !copied_early) {
5316                                         __set_current_state(TASK_RUNNING);
5317
5318                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5319                                                 eaten = 1;
5320                                 }
5321                                 if (eaten) {
5322                                         /* Predicted packet is in window by definition.
5323                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5324                                          * Hence, check seq<=rcv_wup reduces to:
5325                                          */
5326                                         if (tcp_header_len ==
5327                                             (sizeof(struct tcphdr) +
5328                                              TCPOLEN_TSTAMP_ALIGNED) &&
5329                                             tp->rcv_nxt == tp->rcv_wup)
5330                                                 tcp_store_ts_recent(tp);
5331
5332                                         tcp_rcv_rtt_measure_ts(sk, skb);
5333
5334                                         __skb_pull(skb, tcp_header_len);
5335                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5336                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5337                                 }
5338                                 if (copied_early)
5339                                         tcp_cleanup_rbuf(sk, skb->len);
5340                         }
5341                         if (!eaten) {
5342                                 if (tcp_checksum_complete_user(sk, skb))
5343                                         goto csum_error;
5344
5345                                 /* Predicted packet is in window by definition.
5346                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5347                                  * Hence, check seq<=rcv_wup reduces to:
5348                                  */
5349                                 if (tcp_header_len ==
5350                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5351                                     tp->rcv_nxt == tp->rcv_wup)
5352                                         tcp_store_ts_recent(tp);
5353
5354                                 tcp_rcv_rtt_measure_ts(sk, skb);
5355
5356                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5357                                         goto step5;
5358
5359                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5360
5361                                 /* Bulk data transfer: receiver */
5362                                 __skb_pull(skb, tcp_header_len);
5363                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5364                                 skb_set_owner_r(skb, sk);
5365                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5366                         }
5367
5368                         tcp_event_data_recv(sk, skb);
5369
5370                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5371                                 /* Well, only one small jumplet in fast path... */
5372                                 tcp_ack(sk, skb, FLAG_DATA);
5373                                 tcp_data_snd_check(sk);
5374                                 if (!inet_csk_ack_scheduled(sk))
5375                                         goto no_ack;
5376                         }
5377
5378                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5379                                 __tcp_ack_snd_check(sk, 0);
5380 no_ack:
5381 #ifdef CONFIG_NET_DMA
5382                         if (copied_early)
5383                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5384                         else
5385 #endif
5386                         if (eaten)
5387                                 __kfree_skb(skb);
5388                         else
5389                                 sk->sk_data_ready(sk, 0);
5390                         return 0;
5391                 }
5392         }
5393
5394 slow_path:
5395         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5396                 goto csum_error;
5397
5398         /*
5399          *      Standard slow path.
5400          */
5401
5402         res = tcp_validate_incoming(sk, skb, th, 1);
5403         if (res <= 0)
5404                 return -res;
5405
5406 step5:
5407         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5408                 goto discard;
5409
5410         tcp_rcv_rtt_measure_ts(sk, skb);
5411
5412         /* Process urgent data. */
5413         tcp_urg(sk, skb, th);
5414
5415         /* step 7: process the segment text */
5416         tcp_data_queue(sk, skb);
5417
5418         tcp_data_snd_check(sk);
5419         tcp_ack_snd_check(sk);
5420         return 0;
5421
5422 csum_error:
5423         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5424
5425 discard:
5426         __kfree_skb(skb);
5427         return 0;
5428 }
5429
5430 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5431                                          struct tcphdr *th, unsigned len)
5432 {
5433         u8 *hash_location;
5434         struct inet_connection_sock *icsk = inet_csk(sk);
5435         struct tcp_sock *tp = tcp_sk(sk);
5436         struct tcp_cookie_values *cvp = tp->cookie_values;
5437         int saved_clamp = tp->rx_opt.mss_clamp;
5438
5439         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5440
5441         if (th->ack) {
5442                 /* rfc793:
5443                  * "If the state is SYN-SENT then
5444                  *    first check the ACK bit
5445                  *      If the ACK bit is set
5446                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5447                  *        a reset (unless the RST bit is set, if so drop
5448                  *        the segment and return)"
5449                  *
5450                  *  We do not send data with SYN, so that RFC-correct
5451                  *  test reduces to:
5452                  */
5453                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5454                         goto reset_and_undo;
5455
5456                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5457                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5458                              tcp_time_stamp)) {
5459                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5460                         goto reset_and_undo;
5461                 }
5462
5463                 /* Now ACK is acceptable.
5464                  *
5465                  * "If the RST bit is set
5466                  *    If the ACK was acceptable then signal the user "error:
5467                  *    connection reset", drop the segment, enter CLOSED state,
5468                  *    delete TCB, and return."
5469                  */
5470
5471                 if (th->rst) {
5472                         tcp_reset(sk);
5473                         goto discard;
5474                 }
5475
5476                 /* rfc793:
5477                  *   "fifth, if neither of the SYN or RST bits is set then
5478                  *    drop the segment and return."
5479                  *
5480                  *    See note below!
5481                  *                                        --ANK(990513)
5482                  */
5483                 if (!th->syn)
5484                         goto discard_and_undo;
5485
5486                 /* rfc793:
5487                  *   "If the SYN bit is on ...
5488                  *    are acceptable then ...
5489                  *    (our SYN has been ACKed), change the connection
5490                  *    state to ESTABLISHED..."
5491                  */
5492
5493                 TCP_ECN_rcv_synack(tp, th);
5494
5495                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5496                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5497
5498                 /* Ok.. it's good. Set up sequence numbers and
5499                  * move to established.
5500                  */
5501                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5502                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5503
5504                 /* RFC1323: The window in SYN & SYN/ACK segments is
5505                  * never scaled.
5506                  */
5507                 tp->snd_wnd = ntohs(th->window);
5508                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5509
5510                 if (!tp->rx_opt.wscale_ok) {
5511                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5512                         tp->window_clamp = min(tp->window_clamp, 65535U);
5513                 }
5514
5515                 if (tp->rx_opt.saw_tstamp) {
5516                         tp->rx_opt.tstamp_ok       = 1;
5517                         tp->tcp_header_len =
5518                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5519                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5520                         tcp_store_ts_recent(tp);
5521                 } else {
5522                         tp->tcp_header_len = sizeof(struct tcphdr);
5523                 }
5524
5525                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5526                         tcp_enable_fack(tp);
5527
5528                 tcp_mtup_init(sk);
5529                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5530                 tcp_initialize_rcv_mss(sk);
5531
5532                 /* Remember, tcp_poll() does not lock socket!
5533                  * Change state from SYN-SENT only after copied_seq
5534                  * is initialized. */
5535                 tp->copied_seq = tp->rcv_nxt;
5536
5537                 if (cvp != NULL &&
5538                     cvp->cookie_pair_size > 0 &&
5539                     tp->rx_opt.cookie_plus > 0) {
5540                         int cookie_size = tp->rx_opt.cookie_plus
5541                                         - TCPOLEN_COOKIE_BASE;
5542                         int cookie_pair_size = cookie_size
5543                                              + cvp->cookie_desired;
5544
5545                         /* A cookie extension option was sent and returned.
5546                          * Note that each incoming SYNACK replaces the
5547                          * Responder cookie.  The initial exchange is most
5548                          * fragile, as protection against spoofing relies
5549                          * entirely upon the sequence and timestamp (above).
5550                          * This replacement strategy allows the correct pair to
5551                          * pass through, while any others will be filtered via
5552                          * Responder verification later.
5553                          */
5554                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5555                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5556                                        hash_location, cookie_size);
5557                                 cvp->cookie_pair_size = cookie_pair_size;
5558                         }
5559                 }
5560
5561                 smp_mb();
5562                 tcp_set_state(sk, TCP_ESTABLISHED);
5563
5564                 security_inet_conn_established(sk, skb);
5565
5566                 /* Make sure socket is routed, for correct metrics.  */
5567                 icsk->icsk_af_ops->rebuild_header(sk);
5568
5569                 tcp_init_metrics(sk);
5570
5571                 tcp_init_congestion_control(sk);
5572
5573                 /* Prevent spurious tcp_cwnd_restart() on first data
5574                  * packet.
5575                  */
5576                 tp->lsndtime = tcp_time_stamp;
5577
5578                 tcp_init_buffer_space(sk);
5579
5580                 if (sock_flag(sk, SOCK_KEEPOPEN))
5581                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5582
5583                 if (!tp->rx_opt.snd_wscale)
5584                         __tcp_fast_path_on(tp, tp->snd_wnd);
5585                 else
5586                         tp->pred_flags = 0;
5587
5588                 if (!sock_flag(sk, SOCK_DEAD)) {
5589                         sk->sk_state_change(sk);
5590                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5591                 }
5592
5593                 if (sk->sk_write_pending ||
5594                     icsk->icsk_accept_queue.rskq_defer_accept ||
5595                     icsk->icsk_ack.pingpong) {
5596                         /* Save one ACK. Data will be ready after
5597                          * several ticks, if write_pending is set.
5598                          *
5599                          * It may be deleted, but with this feature tcpdumps
5600                          * look so _wonderfully_ clever, that I was not able
5601                          * to stand against the temptation 8)     --ANK
5602                          */
5603                         inet_csk_schedule_ack(sk);
5604                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5605                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5606                         tcp_incr_quickack(sk);
5607                         tcp_enter_quickack_mode(sk);
5608                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5609                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5610
5611 discard:
5612                         __kfree_skb(skb);
5613                         return 0;
5614                 } else {
5615                         tcp_send_ack(sk);
5616                 }
5617                 return -1;
5618         }
5619
5620         /* No ACK in the segment */
5621
5622         if (th->rst) {
5623                 /* rfc793:
5624                  * "If the RST bit is set
5625                  *
5626                  *      Otherwise (no ACK) drop the segment and return."
5627                  */
5628
5629                 goto discard_and_undo;
5630         }
5631
5632         /* PAWS check. */
5633         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5634             tcp_paws_reject(&tp->rx_opt, 0))
5635                 goto discard_and_undo;
5636
5637         if (th->syn) {
5638                 /* We see SYN without ACK. It is attempt of
5639                  * simultaneous connect with crossed SYNs.
5640                  * Particularly, it can be connect to self.
5641                  */
5642                 tcp_set_state(sk, TCP_SYN_RECV);
5643
5644                 if (tp->rx_opt.saw_tstamp) {
5645                         tp->rx_opt.tstamp_ok = 1;
5646                         tcp_store_ts_recent(tp);
5647                         tp->tcp_header_len =
5648                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5649                 } else {
5650                         tp->tcp_header_len = sizeof(struct tcphdr);
5651                 }
5652
5653                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5654                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5655
5656                 /* RFC1323: The window in SYN & SYN/ACK segments is
5657                  * never scaled.
5658                  */
5659                 tp->snd_wnd    = ntohs(th->window);
5660                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5661                 tp->max_window = tp->snd_wnd;
5662
5663                 TCP_ECN_rcv_syn(tp, th);
5664
5665                 tcp_mtup_init(sk);
5666                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5667                 tcp_initialize_rcv_mss(sk);
5668
5669                 tcp_send_synack(sk);
5670 #if 0
5671                 /* Note, we could accept data and URG from this segment.
5672                  * There are no obstacles to make this.
5673                  *
5674                  * However, if we ignore data in ACKless segments sometimes,
5675                  * we have no reasons to accept it sometimes.
5676                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5677                  * is not flawless. So, discard packet for sanity.
5678                  * Uncomment this return to process the data.
5679                  */
5680                 return -1;
5681 #else
5682                 goto discard;
5683 #endif
5684         }
5685         /* "fifth, if neither of the SYN or RST bits is set then
5686          * drop the segment and return."
5687          */
5688
5689 discard_and_undo:
5690         tcp_clear_options(&tp->rx_opt);
5691         tp->rx_opt.mss_clamp = saved_clamp;
5692         goto discard;
5693
5694 reset_and_undo:
5695         tcp_clear_options(&tp->rx_opt);
5696         tp->rx_opt.mss_clamp = saved_clamp;
5697         return 1;
5698 }
5699
5700 /*
5701  *      This function implements the receiving procedure of RFC 793 for
5702  *      all states except ESTABLISHED and TIME_WAIT.
5703  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5704  *      address independent.
5705  */
5706
5707 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5708                           struct tcphdr *th, unsigned len)
5709 {
5710         struct tcp_sock *tp = tcp_sk(sk);
5711         struct inet_connection_sock *icsk = inet_csk(sk);
5712         int queued = 0;
5713         int res;
5714
5715         tp->rx_opt.saw_tstamp = 0;
5716
5717         switch (sk->sk_state) {
5718         case TCP_CLOSE:
5719                 goto discard;
5720
5721         case TCP_LISTEN:
5722                 if (th->ack)
5723                         return 1;
5724
5725                 if (th->rst)
5726                         goto discard;
5727
5728                 if (th->syn) {
5729                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5730                                 return 1;
5731
5732                         /* Now we have several options: In theory there is
5733                          * nothing else in the frame. KA9Q has an option to
5734                          * send data with the syn, BSD accepts data with the
5735                          * syn up to the [to be] advertised window and
5736                          * Solaris 2.1 gives you a protocol error. For now
5737                          * we just ignore it, that fits the spec precisely
5738                          * and avoids incompatibilities. It would be nice in
5739                          * future to drop through and process the data.
5740                          *
5741                          * Now that TTCP is starting to be used we ought to
5742                          * queue this data.
5743                          * But, this leaves one open to an easy denial of
5744                          * service attack, and SYN cookies can't defend
5745                          * against this problem. So, we drop the data
5746                          * in the interest of security over speed unless
5747                          * it's still in use.
5748                          */
5749                         kfree_skb(skb);
5750                         return 0;
5751                 }
5752                 goto discard;
5753
5754         case TCP_SYN_SENT:
5755                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5756                 if (queued >= 0)
5757                         return queued;
5758
5759                 /* Do step6 onward by hand. */
5760                 tcp_urg(sk, skb, th);
5761                 __kfree_skb(skb);
5762                 tcp_data_snd_check(sk);
5763                 return 0;
5764         }
5765
5766         res = tcp_validate_incoming(sk, skb, th, 0);
5767         if (res <= 0)
5768                 return -res;
5769
5770         /* step 5: check the ACK field */
5771         if (th->ack) {
5772                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5773
5774                 switch (sk->sk_state) {
5775                 case TCP_SYN_RECV:
5776                         if (acceptable) {
5777                                 tp->copied_seq = tp->rcv_nxt;
5778                                 smp_mb();
5779                                 tcp_set_state(sk, TCP_ESTABLISHED);
5780                                 sk->sk_state_change(sk);
5781
5782                                 /* Note, that this wakeup is only for marginal
5783                                  * crossed SYN case. Passively open sockets
5784                                  * are not waked up, because sk->sk_sleep ==
5785                                  * NULL and sk->sk_socket == NULL.
5786                                  */
5787                                 if (sk->sk_socket)
5788                                         sk_wake_async(sk,
5789                                                       SOCK_WAKE_IO, POLL_OUT);
5790
5791                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5792                                 tp->snd_wnd = ntohs(th->window) <<
5793                                               tp->rx_opt.snd_wscale;
5794                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5795
5796                                 /* tcp_ack considers this ACK as duplicate
5797                                  * and does not calculate rtt.
5798                                  * Force it here.
5799                                  */
5800                                 tcp_ack_update_rtt(sk, 0, 0);
5801
5802                                 if (tp->rx_opt.tstamp_ok)
5803                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5804
5805                                 /* Make sure socket is routed, for
5806                                  * correct metrics.
5807                                  */
5808                                 icsk->icsk_af_ops->rebuild_header(sk);
5809
5810                                 tcp_init_metrics(sk);
5811
5812                                 tcp_init_congestion_control(sk);
5813
5814                                 /* Prevent spurious tcp_cwnd_restart() on
5815                                  * first data packet.
5816                                  */
5817                                 tp->lsndtime = tcp_time_stamp;
5818
5819                                 tcp_mtup_init(sk);
5820                                 tcp_initialize_rcv_mss(sk);
5821                                 tcp_init_buffer_space(sk);
5822                                 tcp_fast_path_on(tp);
5823                         } else {
5824                                 return 1;
5825                         }
5826                         break;
5827
5828                 case TCP_FIN_WAIT1:
5829                         if (tp->snd_una == tp->write_seq) {
5830                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5831                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5832                                 dst_confirm(sk->sk_dst_cache);
5833
5834                                 if (!sock_flag(sk, SOCK_DEAD))
5835                                         /* Wake up lingering close() */
5836                                         sk->sk_state_change(sk);
5837                                 else {
5838                                         int tmo;
5839
5840                                         if (tp->linger2 < 0 ||
5841                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5842                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5843                                                 tcp_done(sk);
5844                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5845                                                 return 1;
5846                                         }
5847
5848                                         tmo = tcp_fin_time(sk);
5849                                         if (tmo > TCP_TIMEWAIT_LEN) {
5850                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5851                                         } else if (th->fin || sock_owned_by_user(sk)) {
5852                                                 /* Bad case. We could lose such FIN otherwise.
5853                                                  * It is not a big problem, but it looks confusing
5854                                                  * and not so rare event. We still can lose it now,
5855                                                  * if it spins in bh_lock_sock(), but it is really
5856                                                  * marginal case.
5857                                                  */
5858                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5859                                         } else {
5860                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5861                                                 goto discard;
5862                                         }
5863                                 }
5864                         }
5865                         break;
5866
5867                 case TCP_CLOSING:
5868                         if (tp->snd_una == tp->write_seq) {
5869                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5870                                 goto discard;
5871                         }
5872                         break;
5873
5874                 case TCP_LAST_ACK:
5875                         if (tp->snd_una == tp->write_seq) {
5876                                 tcp_update_metrics(sk);
5877                                 tcp_done(sk);
5878                                 goto discard;
5879                         }
5880                         break;
5881                 }
5882         } else
5883                 goto discard;
5884
5885         /* step 6: check the URG bit */
5886         tcp_urg(sk, skb, th);
5887
5888         /* step 7: process the segment text */
5889         switch (sk->sk_state) {
5890         case TCP_CLOSE_WAIT:
5891         case TCP_CLOSING:
5892         case TCP_LAST_ACK:
5893                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5894                         break;
5895         case TCP_FIN_WAIT1:
5896         case TCP_FIN_WAIT2:
5897                 /* RFC 793 says to queue data in these states,
5898                  * RFC 1122 says we MUST send a reset.
5899                  * BSD 4.4 also does reset.
5900                  */
5901                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5902                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5903                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5904                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5905                                 tcp_reset(sk);
5906                                 return 1;
5907                         }
5908                 }
5909                 /* Fall through */
5910         case TCP_ESTABLISHED:
5911                 tcp_data_queue(sk, skb);
5912                 queued = 1;
5913                 break;
5914         }
5915
5916         /* tcp_data could move socket to TIME-WAIT */
5917         if (sk->sk_state != TCP_CLOSE) {
5918                 tcp_data_snd_check(sk);
5919                 tcp_ack_snd_check(sk);
5920         }
5921
5922         if (!queued) {
5923 discard:
5924                 __kfree_skb(skb);
5925         }
5926         return 0;
5927 }
5928
5929 EXPORT_SYMBOL(sysctl_tcp_ecn);
5930 EXPORT_SYMBOL(sysctl_tcp_reordering);
5931 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5932 EXPORT_SYMBOL(tcp_parse_options);
5933 #ifdef CONFIG_TCP_MD5SIG
5934 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5935 #endif
5936 EXPORT_SYMBOL(tcp_rcv_established);
5937 EXPORT_SYMBOL(tcp_rcv_state_process);
5938 EXPORT_SYMBOL(tcp_initialize_rcv_mss);