[NET]: Use sockfd_lookup_light in the rest of the net/socket.c
[pandora-kernel.git] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:     $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:     Ross Biro
13  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *              Alan Cox        :       Numerous verify_area() problems
19  *              Alan Cox        :       Connecting on a connecting socket
20  *                                      now returns an error for tcp.
21  *              Alan Cox        :       sock->protocol is set correctly.
22  *                                      and is not sometimes left as 0.
23  *              Alan Cox        :       connect handles icmp errors on a
24  *                                      connect properly. Unfortunately there
25  *                                      is a restart syscall nasty there. I
26  *                                      can't match BSD without hacking the C
27  *                                      library. Ideas urgently sought!
28  *              Alan Cox        :       Disallow bind() to addresses that are
29  *                                      not ours - especially broadcast ones!!
30  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
31  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
32  *                                      instead they leave that for the DESTROY timer.
33  *              Alan Cox        :       Clean up error flag in accept
34  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
35  *                                      was buggy. Put a remove_sock() in the handler
36  *                                      for memory when we hit 0. Also altered the timer
37  *                                      code. The ACK stuff can wait and needs major
38  *                                      TCP layer surgery.
39  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
40  *                                      and fixed timer/inet_bh race.
41  *              Alan Cox        :       Added zapped flag for TCP
42  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
43  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
45  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
48  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
49  *      Pauline Middelink       :       identd support
50  *              Alan Cox        :       Fixed connect() taking signals I think.
51  *              Alan Cox        :       SO_LINGER supported
52  *              Alan Cox        :       Error reporting fixes
53  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
54  *              Alan Cox        :       inet sockets don't set sk->type!
55  *              Alan Cox        :       Split socket option code
56  *              Alan Cox        :       Callbacks
57  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
58  *              Alex            :       Removed restriction on inet fioctl
59  *              Alan Cox        :       Splitting INET from NET core
60  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
61  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
62  *              Alan Cox        :       Split IP from generic code
63  *              Alan Cox        :       New kfree_skbmem()
64  *              Alan Cox        :       Make SO_DEBUG superuser only.
65  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
66  *                                      (compatibility fix)
67  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
68  *              Alan Cox        :       Allocator for a socket is settable.
69  *              Alan Cox        :       SO_ERROR includes soft errors.
70  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
71  *              Alan Cox        :       Generic socket allocation to make hooks
72  *                                      easier (suggested by Craig Metz).
73  *              Michael Pall    :       SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
81  *              Andi Kleen      :       Fix write_space callback
82  *              Chris Evans     :       Security fixes - signedness again
83  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *              This program is free software; you can redistribute it and/or
89  *              modify it under the terms of the GNU General Public License
90  *              as published by the Free Software Foundation; either version
91  *              2 of the License, or (at your option) any later version.
92  */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-29"          ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS         256
203 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218         struct timeval tv;
219
220         if (optlen < sizeof(tv))
221                 return -EINVAL;
222         if (copy_from_user(&tv, optval, sizeof(tv)))
223                 return -EFAULT;
224         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225                 return -EDOM;
226
227         if (tv.tv_sec < 0) {
228                 static int warned __read_mostly;
229
230                 *timeo_p = 0;
231                 if (warned < 10 && net_ratelimit())
232                         warned++;
233                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234                                "tries to set negative timeout\n",
235                                 current->comm, task_pid_nr(current));
236                 return 0;
237         }
238         *timeo_p = MAX_SCHEDULE_TIMEOUT;
239         if (tv.tv_sec == 0 && tv.tv_usec == 0)
240                 return 0;
241         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243         return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248         static int warned;
249         static char warncomm[TASK_COMM_LEN];
250         if (strcmp(warncomm, current->comm) && warned < 5) {
251                 strcpy(warncomm,  current->comm);
252                 printk(KERN_WARNING "process `%s' is using obsolete "
253                        "%s SO_BSDCOMPAT\n", warncomm, name);
254                 warned++;
255         }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260         if (sock_flag(sk, SOCK_TIMESTAMP)) {
261                 sock_reset_flag(sk, SOCK_TIMESTAMP);
262                 net_disable_timestamp();
263         }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269         int err = 0;
270         int skb_len;
271
272         /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273            number of warnings when compiling with -W --ANK
274          */
275         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276             (unsigned)sk->sk_rcvbuf) {
277                 err = -ENOMEM;
278                 goto out;
279         }
280
281         err = sk_filter(sk, skb);
282         if (err)
283                 goto out;
284
285         skb->dev = NULL;
286         skb_set_owner_r(skb, sk);
287
288         /* Cache the SKB length before we tack it onto the receive
289          * queue.  Once it is added it no longer belongs to us and
290          * may be freed by other threads of control pulling packets
291          * from the queue.
292          */
293         skb_len = skb->len;
294
295         skb_queue_tail(&sk->sk_receive_queue, skb);
296
297         if (!sock_flag(sk, SOCK_DEAD))
298                 sk->sk_data_ready(sk, skb_len);
299 out:
300         return err;
301 }
302 EXPORT_SYMBOL(sock_queue_rcv_skb);
303
304 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305 {
306         int rc = NET_RX_SUCCESS;
307
308         if (sk_filter(sk, skb))
309                 goto discard_and_relse;
310
311         skb->dev = NULL;
312
313         if (nested)
314                 bh_lock_sock_nested(sk);
315         else
316                 bh_lock_sock(sk);
317         if (!sock_owned_by_user(sk)) {
318                 /*
319                  * trylock + unlock semantics:
320                  */
321                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322
323                 rc = sk->sk_backlog_rcv(sk, skb);
324
325                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326         } else
327                 sk_add_backlog(sk, skb);
328         bh_unlock_sock(sk);
329 out:
330         sock_put(sk);
331         return rc;
332 discard_and_relse:
333         kfree_skb(skb);
334         goto out;
335 }
336 EXPORT_SYMBOL(sk_receive_skb);
337
338 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339 {
340         struct dst_entry *dst = sk->sk_dst_cache;
341
342         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343                 sk->sk_dst_cache = NULL;
344                 dst_release(dst);
345                 return NULL;
346         }
347
348         return dst;
349 }
350 EXPORT_SYMBOL(__sk_dst_check);
351
352 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353 {
354         struct dst_entry *dst = sk_dst_get(sk);
355
356         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357                 sk_dst_reset(sk);
358                 dst_release(dst);
359                 return NULL;
360         }
361
362         return dst;
363 }
364 EXPORT_SYMBOL(sk_dst_check);
365
366 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367 {
368         int ret = -ENOPROTOOPT;
369 #ifdef CONFIG_NETDEVICES
370         struct net *net = sk->sk_net;
371         char devname[IFNAMSIZ];
372         int index;
373
374         /* Sorry... */
375         ret = -EPERM;
376         if (!capable(CAP_NET_RAW))
377                 goto out;
378
379         ret = -EINVAL;
380         if (optlen < 0)
381                 goto out;
382
383         /* Bind this socket to a particular device like "eth0",
384          * as specified in the passed interface name. If the
385          * name is "" or the option length is zero the socket
386          * is not bound.
387          */
388         if (optlen > IFNAMSIZ - 1)
389                 optlen = IFNAMSIZ - 1;
390         memset(devname, 0, sizeof(devname));
391
392         ret = -EFAULT;
393         if (copy_from_user(devname, optval, optlen))
394                 goto out;
395
396         if (devname[0] == '\0') {
397                 index = 0;
398         } else {
399                 struct net_device *dev = dev_get_by_name(net, devname);
400
401                 ret = -ENODEV;
402                 if (!dev)
403                         goto out;
404
405                 index = dev->ifindex;
406                 dev_put(dev);
407         }
408
409         lock_sock(sk);
410         sk->sk_bound_dev_if = index;
411         sk_dst_reset(sk);
412         release_sock(sk);
413
414         ret = 0;
415
416 out:
417 #endif
418
419         return ret;
420 }
421
422 /*
423  *      This is meant for all protocols to use and covers goings on
424  *      at the socket level. Everything here is generic.
425  */
426
427 int sock_setsockopt(struct socket *sock, int level, int optname,
428                     char __user *optval, int optlen)
429 {
430         struct sock *sk=sock->sk;
431         int val;
432         int valbool;
433         struct linger ling;
434         int ret = 0;
435
436         /*
437          *      Options without arguments
438          */
439
440 #ifdef SO_DONTLINGER            /* Compatibility item... */
441         if (optname == SO_DONTLINGER) {
442                 lock_sock(sk);
443                 sock_reset_flag(sk, SOCK_LINGER);
444                 release_sock(sk);
445                 return 0;
446         }
447 #endif
448
449         if (optname == SO_BINDTODEVICE)
450                 return sock_bindtodevice(sk, optval, optlen);
451
452         if (optlen < sizeof(int))
453                 return -EINVAL;
454
455         if (get_user(val, (int __user *)optval))
456                 return -EFAULT;
457
458         valbool = val?1:0;
459
460         lock_sock(sk);
461
462         switch(optname) {
463         case SO_DEBUG:
464                 if (val && !capable(CAP_NET_ADMIN)) {
465                         ret = -EACCES;
466                 }
467                 else if (valbool)
468                         sock_set_flag(sk, SOCK_DBG);
469                 else
470                         sock_reset_flag(sk, SOCK_DBG);
471                 break;
472         case SO_REUSEADDR:
473                 sk->sk_reuse = valbool;
474                 break;
475         case SO_TYPE:
476         case SO_ERROR:
477                 ret = -ENOPROTOOPT;
478                 break;
479         case SO_DONTROUTE:
480                 if (valbool)
481                         sock_set_flag(sk, SOCK_LOCALROUTE);
482                 else
483                         sock_reset_flag(sk, SOCK_LOCALROUTE);
484                 break;
485         case SO_BROADCAST:
486                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487                 break;
488         case SO_SNDBUF:
489                 /* Don't error on this BSD doesn't and if you think
490                    about it this is right. Otherwise apps have to
491                    play 'guess the biggest size' games. RCVBUF/SNDBUF
492                    are treated in BSD as hints */
493
494                 if (val > sysctl_wmem_max)
495                         val = sysctl_wmem_max;
496 set_sndbuf:
497                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498                 if ((val * 2) < SOCK_MIN_SNDBUF)
499                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500                 else
501                         sk->sk_sndbuf = val * 2;
502
503                 /*
504                  *      Wake up sending tasks if we
505                  *      upped the value.
506                  */
507                 sk->sk_write_space(sk);
508                 break;
509
510         case SO_SNDBUFFORCE:
511                 if (!capable(CAP_NET_ADMIN)) {
512                         ret = -EPERM;
513                         break;
514                 }
515                 goto set_sndbuf;
516
517         case SO_RCVBUF:
518                 /* Don't error on this BSD doesn't and if you think
519                    about it this is right. Otherwise apps have to
520                    play 'guess the biggest size' games. RCVBUF/SNDBUF
521                    are treated in BSD as hints */
522
523                 if (val > sysctl_rmem_max)
524                         val = sysctl_rmem_max;
525 set_rcvbuf:
526                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527                 /*
528                  * We double it on the way in to account for
529                  * "struct sk_buff" etc. overhead.   Applications
530                  * assume that the SO_RCVBUF setting they make will
531                  * allow that much actual data to be received on that
532                  * socket.
533                  *
534                  * Applications are unaware that "struct sk_buff" and
535                  * other overheads allocate from the receive buffer
536                  * during socket buffer allocation.
537                  *
538                  * And after considering the possible alternatives,
539                  * returning the value we actually used in getsockopt
540                  * is the most desirable behavior.
541                  */
542                 if ((val * 2) < SOCK_MIN_RCVBUF)
543                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544                 else
545                         sk->sk_rcvbuf = val * 2;
546                 break;
547
548         case SO_RCVBUFFORCE:
549                 if (!capable(CAP_NET_ADMIN)) {
550                         ret = -EPERM;
551                         break;
552                 }
553                 goto set_rcvbuf;
554
555         case SO_KEEPALIVE:
556 #ifdef CONFIG_INET
557                 if (sk->sk_protocol == IPPROTO_TCP)
558                         tcp_set_keepalive(sk, valbool);
559 #endif
560                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561                 break;
562
563         case SO_OOBINLINE:
564                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565                 break;
566
567         case SO_NO_CHECK:
568                 sk->sk_no_check = valbool;
569                 break;
570
571         case SO_PRIORITY:
572                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573                         sk->sk_priority = val;
574                 else
575                         ret = -EPERM;
576                 break;
577
578         case SO_LINGER:
579                 if (optlen < sizeof(ling)) {
580                         ret = -EINVAL;  /* 1003.1g */
581                         break;
582                 }
583                 if (copy_from_user(&ling,optval,sizeof(ling))) {
584                         ret = -EFAULT;
585                         break;
586                 }
587                 if (!ling.l_onoff)
588                         sock_reset_flag(sk, SOCK_LINGER);
589                 else {
590 #if (BITS_PER_LONG == 32)
591                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593                         else
594 #endif
595                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596                         sock_set_flag(sk, SOCK_LINGER);
597                 }
598                 break;
599
600         case SO_BSDCOMPAT:
601                 sock_warn_obsolete_bsdism("setsockopt");
602                 break;
603
604         case SO_PASSCRED:
605                 if (valbool)
606                         set_bit(SOCK_PASSCRED, &sock->flags);
607                 else
608                         clear_bit(SOCK_PASSCRED, &sock->flags);
609                 break;
610
611         case SO_TIMESTAMP:
612         case SO_TIMESTAMPNS:
613                 if (valbool)  {
614                         if (optname == SO_TIMESTAMP)
615                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616                         else
617                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618                         sock_set_flag(sk, SOCK_RCVTSTAMP);
619                         sock_enable_timestamp(sk);
620                 } else {
621                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
622                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623                 }
624                 break;
625
626         case SO_RCVLOWAT:
627                 if (val < 0)
628                         val = INT_MAX;
629                 sk->sk_rcvlowat = val ? : 1;
630                 break;
631
632         case SO_RCVTIMEO:
633                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634                 break;
635
636         case SO_SNDTIMEO:
637                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638                 break;
639
640         case SO_ATTACH_FILTER:
641                 ret = -EINVAL;
642                 if (optlen == sizeof(struct sock_fprog)) {
643                         struct sock_fprog fprog;
644
645                         ret = -EFAULT;
646                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
647                                 break;
648
649                         ret = sk_attach_filter(&fprog, sk);
650                 }
651                 break;
652
653         case SO_DETACH_FILTER:
654                 ret = sk_detach_filter(sk);
655                 break;
656
657         case SO_PASSSEC:
658                 if (valbool)
659                         set_bit(SOCK_PASSSEC, &sock->flags);
660                 else
661                         clear_bit(SOCK_PASSSEC, &sock->flags);
662                 break;
663
664                 /* We implement the SO_SNDLOWAT etc to
665                    not be settable (1003.1g 5.3) */
666         default:
667                 ret = -ENOPROTOOPT;
668                 break;
669         }
670         release_sock(sk);
671         return ret;
672 }
673
674
675 int sock_getsockopt(struct socket *sock, int level, int optname,
676                     char __user *optval, int __user *optlen)
677 {
678         struct sock *sk = sock->sk;
679
680         union {
681                 int val;
682                 struct linger ling;
683                 struct timeval tm;
684         } v;
685
686         unsigned int lv = sizeof(int);
687         int len;
688
689         if (get_user(len, optlen))
690                 return -EFAULT;
691         if (len < 0)
692                 return -EINVAL;
693
694         switch(optname) {
695         case SO_DEBUG:
696                 v.val = sock_flag(sk, SOCK_DBG);
697                 break;
698
699         case SO_DONTROUTE:
700                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
701                 break;
702
703         case SO_BROADCAST:
704                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
705                 break;
706
707         case SO_SNDBUF:
708                 v.val = sk->sk_sndbuf;
709                 break;
710
711         case SO_RCVBUF:
712                 v.val = sk->sk_rcvbuf;
713                 break;
714
715         case SO_REUSEADDR:
716                 v.val = sk->sk_reuse;
717                 break;
718
719         case SO_KEEPALIVE:
720                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
721                 break;
722
723         case SO_TYPE:
724                 v.val = sk->sk_type;
725                 break;
726
727         case SO_ERROR:
728                 v.val = -sock_error(sk);
729                 if (v.val==0)
730                         v.val = xchg(&sk->sk_err_soft, 0);
731                 break;
732
733         case SO_OOBINLINE:
734                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
735                 break;
736
737         case SO_NO_CHECK:
738                 v.val = sk->sk_no_check;
739                 break;
740
741         case SO_PRIORITY:
742                 v.val = sk->sk_priority;
743                 break;
744
745         case SO_LINGER:
746                 lv              = sizeof(v.ling);
747                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
748                 v.ling.l_linger = sk->sk_lingertime / HZ;
749                 break;
750
751         case SO_BSDCOMPAT:
752                 sock_warn_obsolete_bsdism("getsockopt");
753                 break;
754
755         case SO_TIMESTAMP:
756                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
757                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
758                 break;
759
760         case SO_TIMESTAMPNS:
761                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
762                 break;
763
764         case SO_RCVTIMEO:
765                 lv=sizeof(struct timeval);
766                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
767                         v.tm.tv_sec = 0;
768                         v.tm.tv_usec = 0;
769                 } else {
770                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
771                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
772                 }
773                 break;
774
775         case SO_SNDTIMEO:
776                 lv=sizeof(struct timeval);
777                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
778                         v.tm.tv_sec = 0;
779                         v.tm.tv_usec = 0;
780                 } else {
781                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
782                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
783                 }
784                 break;
785
786         case SO_RCVLOWAT:
787                 v.val = sk->sk_rcvlowat;
788                 break;
789
790         case SO_SNDLOWAT:
791                 v.val=1;
792                 break;
793
794         case SO_PASSCRED:
795                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
796                 break;
797
798         case SO_PEERCRED:
799                 if (len > sizeof(sk->sk_peercred))
800                         len = sizeof(sk->sk_peercred);
801                 if (copy_to_user(optval, &sk->sk_peercred, len))
802                         return -EFAULT;
803                 goto lenout;
804
805         case SO_PEERNAME:
806         {
807                 char address[128];
808
809                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
810                         return -ENOTCONN;
811                 if (lv < len)
812                         return -EINVAL;
813                 if (copy_to_user(optval, address, len))
814                         return -EFAULT;
815                 goto lenout;
816         }
817
818         /* Dubious BSD thing... Probably nobody even uses it, but
819          * the UNIX standard wants it for whatever reason... -DaveM
820          */
821         case SO_ACCEPTCONN:
822                 v.val = sk->sk_state == TCP_LISTEN;
823                 break;
824
825         case SO_PASSSEC:
826                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
827                 break;
828
829         case SO_PEERSEC:
830                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
831
832         default:
833                 return -ENOPROTOOPT;
834         }
835
836         if (len > lv)
837                 len = lv;
838         if (copy_to_user(optval, &v, len))
839                 return -EFAULT;
840 lenout:
841         if (put_user(len, optlen))
842                 return -EFAULT;
843         return 0;
844 }
845
846 /*
847  * Initialize an sk_lock.
848  *
849  * (We also register the sk_lock with the lock validator.)
850  */
851 static inline void sock_lock_init(struct sock *sk)
852 {
853         sock_lock_init_class_and_name(sk,
854                         af_family_slock_key_strings[sk->sk_family],
855                         af_family_slock_keys + sk->sk_family,
856                         af_family_key_strings[sk->sk_family],
857                         af_family_keys + sk->sk_family);
858 }
859
860 static void sock_copy(struct sock *nsk, const struct sock *osk)
861 {
862 #ifdef CONFIG_SECURITY_NETWORK
863         void *sptr = nsk->sk_security;
864 #endif
865
866         memcpy(nsk, osk, osk->sk_prot->obj_size);
867 #ifdef CONFIG_SECURITY_NETWORK
868         nsk->sk_security = sptr;
869         security_sk_clone(osk, nsk);
870 #endif
871 }
872
873 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
874                 int family)
875 {
876         struct sock *sk;
877         struct kmem_cache *slab;
878
879         slab = prot->slab;
880         if (slab != NULL)
881                 sk = kmem_cache_alloc(slab, priority);
882         else
883                 sk = kmalloc(prot->obj_size, priority);
884
885         if (sk != NULL) {
886                 if (security_sk_alloc(sk, family, priority))
887                         goto out_free;
888
889                 if (!try_module_get(prot->owner))
890                         goto out_free_sec;
891         }
892
893         return sk;
894
895 out_free_sec:
896         security_sk_free(sk);
897 out_free:
898         if (slab != NULL)
899                 kmem_cache_free(slab, sk);
900         else
901                 kfree(sk);
902         return NULL;
903 }
904
905 static void sk_prot_free(struct proto *prot, struct sock *sk)
906 {
907         struct kmem_cache *slab;
908         struct module *owner;
909
910         owner = prot->owner;
911         slab = prot->slab;
912
913         security_sk_free(sk);
914         if (slab != NULL)
915                 kmem_cache_free(slab, sk);
916         else
917                 kfree(sk);
918         module_put(owner);
919 }
920
921 /**
922  *      sk_alloc - All socket objects are allocated here
923  *      @net: the applicable net namespace
924  *      @family: protocol family
925  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
926  *      @prot: struct proto associated with this new sock instance
927  *      @zero_it: if we should zero the newly allocated sock
928  */
929 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
930                       struct proto *prot)
931 {
932         struct sock *sk;
933
934         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
935         if (sk) {
936                 sk->sk_family = family;
937                 /*
938                  * See comment in struct sock definition to understand
939                  * why we need sk_prot_creator -acme
940                  */
941                 sk->sk_prot = sk->sk_prot_creator = prot;
942                 sock_lock_init(sk);
943                 sk->sk_net = get_net(net);
944         }
945
946         return sk;
947 }
948
949 void sk_free(struct sock *sk)
950 {
951         struct sk_filter *filter;
952
953         if (sk->sk_destruct)
954                 sk->sk_destruct(sk);
955
956         filter = rcu_dereference(sk->sk_filter);
957         if (filter) {
958                 sk_filter_uncharge(sk, filter);
959                 rcu_assign_pointer(sk->sk_filter, NULL);
960         }
961
962         sock_disable_timestamp(sk);
963
964         if (atomic_read(&sk->sk_omem_alloc))
965                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
966                        __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
967
968         put_net(sk->sk_net);
969         sk_prot_free(sk->sk_prot_creator, sk);
970 }
971
972 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
973 {
974         struct sock *newsk;
975
976         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
977         if (newsk != NULL) {
978                 struct sk_filter *filter;
979
980                 sock_copy(newsk, sk);
981
982                 /* SANITY */
983                 get_net(newsk->sk_net);
984                 sk_node_init(&newsk->sk_node);
985                 sock_lock_init(newsk);
986                 bh_lock_sock(newsk);
987                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
988
989                 atomic_set(&newsk->sk_rmem_alloc, 0);
990                 atomic_set(&newsk->sk_wmem_alloc, 0);
991                 atomic_set(&newsk->sk_omem_alloc, 0);
992                 skb_queue_head_init(&newsk->sk_receive_queue);
993                 skb_queue_head_init(&newsk->sk_write_queue);
994 #ifdef CONFIG_NET_DMA
995                 skb_queue_head_init(&newsk->sk_async_wait_queue);
996 #endif
997
998                 rwlock_init(&newsk->sk_dst_lock);
999                 rwlock_init(&newsk->sk_callback_lock);
1000                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1001                                 af_callback_keys + newsk->sk_family,
1002                                 af_family_clock_key_strings[newsk->sk_family]);
1003
1004                 newsk->sk_dst_cache     = NULL;
1005                 newsk->sk_wmem_queued   = 0;
1006                 newsk->sk_forward_alloc = 0;
1007                 newsk->sk_send_head     = NULL;
1008                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1009
1010                 sock_reset_flag(newsk, SOCK_DONE);
1011                 skb_queue_head_init(&newsk->sk_error_queue);
1012
1013                 filter = newsk->sk_filter;
1014                 if (filter != NULL)
1015                         sk_filter_charge(newsk, filter);
1016
1017                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1018                         /* It is still raw copy of parent, so invalidate
1019                          * destructor and make plain sk_free() */
1020                         newsk->sk_destruct = NULL;
1021                         sk_free(newsk);
1022                         newsk = NULL;
1023                         goto out;
1024                 }
1025
1026                 newsk->sk_err      = 0;
1027                 newsk->sk_priority = 0;
1028                 atomic_set(&newsk->sk_refcnt, 2);
1029
1030                 /*
1031                  * Increment the counter in the same struct proto as the master
1032                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1033                  * is the same as sk->sk_prot->socks, as this field was copied
1034                  * with memcpy).
1035                  *
1036                  * This _changes_ the previous behaviour, where
1037                  * tcp_create_openreq_child always was incrementing the
1038                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1039                  * to be taken into account in all callers. -acme
1040                  */
1041                 sk_refcnt_debug_inc(newsk);
1042                 newsk->sk_socket = NULL;
1043                 newsk->sk_sleep  = NULL;
1044
1045                 if (newsk->sk_prot->sockets_allocated)
1046                         atomic_inc(newsk->sk_prot->sockets_allocated);
1047         }
1048 out:
1049         return newsk;
1050 }
1051
1052 EXPORT_SYMBOL_GPL(sk_clone);
1053
1054 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1055 {
1056         __sk_dst_set(sk, dst);
1057         sk->sk_route_caps = dst->dev->features;
1058         if (sk->sk_route_caps & NETIF_F_GSO)
1059                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1060         if (sk_can_gso(sk)) {
1061                 if (dst->header_len)
1062                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1063                 else
1064                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1065         }
1066 }
1067 EXPORT_SYMBOL_GPL(sk_setup_caps);
1068
1069 void __init sk_init(void)
1070 {
1071         if (num_physpages <= 4096) {
1072                 sysctl_wmem_max = 32767;
1073                 sysctl_rmem_max = 32767;
1074                 sysctl_wmem_default = 32767;
1075                 sysctl_rmem_default = 32767;
1076         } else if (num_physpages >= 131072) {
1077                 sysctl_wmem_max = 131071;
1078                 sysctl_rmem_max = 131071;
1079         }
1080 }
1081
1082 /*
1083  *      Simple resource managers for sockets.
1084  */
1085
1086
1087 /*
1088  * Write buffer destructor automatically called from kfree_skb.
1089  */
1090 void sock_wfree(struct sk_buff *skb)
1091 {
1092         struct sock *sk = skb->sk;
1093
1094         /* In case it might be waiting for more memory. */
1095         atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1096         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1097                 sk->sk_write_space(sk);
1098         sock_put(sk);
1099 }
1100
1101 /*
1102  * Read buffer destructor automatically called from kfree_skb.
1103  */
1104 void sock_rfree(struct sk_buff *skb)
1105 {
1106         struct sock *sk = skb->sk;
1107
1108         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1109 }
1110
1111
1112 int sock_i_uid(struct sock *sk)
1113 {
1114         int uid;
1115
1116         read_lock(&sk->sk_callback_lock);
1117         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1118         read_unlock(&sk->sk_callback_lock);
1119         return uid;
1120 }
1121
1122 unsigned long sock_i_ino(struct sock *sk)
1123 {
1124         unsigned long ino;
1125
1126         read_lock(&sk->sk_callback_lock);
1127         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1128         read_unlock(&sk->sk_callback_lock);
1129         return ino;
1130 }
1131
1132 /*
1133  * Allocate a skb from the socket's send buffer.
1134  */
1135 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1136                              gfp_t priority)
1137 {
1138         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1139                 struct sk_buff * skb = alloc_skb(size, priority);
1140                 if (skb) {
1141                         skb_set_owner_w(skb, sk);
1142                         return skb;
1143                 }
1144         }
1145         return NULL;
1146 }
1147
1148 /*
1149  * Allocate a skb from the socket's receive buffer.
1150  */
1151 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1152                              gfp_t priority)
1153 {
1154         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1155                 struct sk_buff *skb = alloc_skb(size, priority);
1156                 if (skb) {
1157                         skb_set_owner_r(skb, sk);
1158                         return skb;
1159                 }
1160         }
1161         return NULL;
1162 }
1163
1164 /*
1165  * Allocate a memory block from the socket's option memory buffer.
1166  */
1167 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1168 {
1169         if ((unsigned)size <= sysctl_optmem_max &&
1170             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1171                 void *mem;
1172                 /* First do the add, to avoid the race if kmalloc
1173                  * might sleep.
1174                  */
1175                 atomic_add(size, &sk->sk_omem_alloc);
1176                 mem = kmalloc(size, priority);
1177                 if (mem)
1178                         return mem;
1179                 atomic_sub(size, &sk->sk_omem_alloc);
1180         }
1181         return NULL;
1182 }
1183
1184 /*
1185  * Free an option memory block.
1186  */
1187 void sock_kfree_s(struct sock *sk, void *mem, int size)
1188 {
1189         kfree(mem);
1190         atomic_sub(size, &sk->sk_omem_alloc);
1191 }
1192
1193 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1194    I think, these locks should be removed for datagram sockets.
1195  */
1196 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1197 {
1198         DEFINE_WAIT(wait);
1199
1200         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1201         for (;;) {
1202                 if (!timeo)
1203                         break;
1204                 if (signal_pending(current))
1205                         break;
1206                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1207                 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1208                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1209                         break;
1210                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1211                         break;
1212                 if (sk->sk_err)
1213                         break;
1214                 timeo = schedule_timeout(timeo);
1215         }
1216         finish_wait(sk->sk_sleep, &wait);
1217         return timeo;
1218 }
1219
1220
1221 /*
1222  *      Generic send/receive buffer handlers
1223  */
1224
1225 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1226                                             unsigned long header_len,
1227                                             unsigned long data_len,
1228                                             int noblock, int *errcode)
1229 {
1230         struct sk_buff *skb;
1231         gfp_t gfp_mask;
1232         long timeo;
1233         int err;
1234
1235         gfp_mask = sk->sk_allocation;
1236         if (gfp_mask & __GFP_WAIT)
1237                 gfp_mask |= __GFP_REPEAT;
1238
1239         timeo = sock_sndtimeo(sk, noblock);
1240         while (1) {
1241                 err = sock_error(sk);
1242                 if (err != 0)
1243                         goto failure;
1244
1245                 err = -EPIPE;
1246                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1247                         goto failure;
1248
1249                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1250                         skb = alloc_skb(header_len, gfp_mask);
1251                         if (skb) {
1252                                 int npages;
1253                                 int i;
1254
1255                                 /* No pages, we're done... */
1256                                 if (!data_len)
1257                                         break;
1258
1259                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1260                                 skb->truesize += data_len;
1261                                 skb_shinfo(skb)->nr_frags = npages;
1262                                 for (i = 0; i < npages; i++) {
1263                                         struct page *page;
1264                                         skb_frag_t *frag;
1265
1266                                         page = alloc_pages(sk->sk_allocation, 0);
1267                                         if (!page) {
1268                                                 err = -ENOBUFS;
1269                                                 skb_shinfo(skb)->nr_frags = i;
1270                                                 kfree_skb(skb);
1271                                                 goto failure;
1272                                         }
1273
1274                                         frag = &skb_shinfo(skb)->frags[i];
1275                                         frag->page = page;
1276                                         frag->page_offset = 0;
1277                                         frag->size = (data_len >= PAGE_SIZE ?
1278                                                       PAGE_SIZE :
1279                                                       data_len);
1280                                         data_len -= PAGE_SIZE;
1281                                 }
1282
1283                                 /* Full success... */
1284                                 break;
1285                         }
1286                         err = -ENOBUFS;
1287                         goto failure;
1288                 }
1289                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1290                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1291                 err = -EAGAIN;
1292                 if (!timeo)
1293                         goto failure;
1294                 if (signal_pending(current))
1295                         goto interrupted;
1296                 timeo = sock_wait_for_wmem(sk, timeo);
1297         }
1298
1299         skb_set_owner_w(skb, sk);
1300         return skb;
1301
1302 interrupted:
1303         err = sock_intr_errno(timeo);
1304 failure:
1305         *errcode = err;
1306         return NULL;
1307 }
1308
1309 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1310                                     int noblock, int *errcode)
1311 {
1312         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1313 }
1314
1315 static void __lock_sock(struct sock *sk)
1316 {
1317         DEFINE_WAIT(wait);
1318
1319         for (;;) {
1320                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1321                                         TASK_UNINTERRUPTIBLE);
1322                 spin_unlock_bh(&sk->sk_lock.slock);
1323                 schedule();
1324                 spin_lock_bh(&sk->sk_lock.slock);
1325                 if (!sock_owned_by_user(sk))
1326                         break;
1327         }
1328         finish_wait(&sk->sk_lock.wq, &wait);
1329 }
1330
1331 static void __release_sock(struct sock *sk)
1332 {
1333         struct sk_buff *skb = sk->sk_backlog.head;
1334
1335         do {
1336                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1337                 bh_unlock_sock(sk);
1338
1339                 do {
1340                         struct sk_buff *next = skb->next;
1341
1342                         skb->next = NULL;
1343                         sk->sk_backlog_rcv(sk, skb);
1344
1345                         /*
1346                          * We are in process context here with softirqs
1347                          * disabled, use cond_resched_softirq() to preempt.
1348                          * This is safe to do because we've taken the backlog
1349                          * queue private:
1350                          */
1351                         cond_resched_softirq();
1352
1353                         skb = next;
1354                 } while (skb != NULL);
1355
1356                 bh_lock_sock(sk);
1357         } while ((skb = sk->sk_backlog.head) != NULL);
1358 }
1359
1360 /**
1361  * sk_wait_data - wait for data to arrive at sk_receive_queue
1362  * @sk:    sock to wait on
1363  * @timeo: for how long
1364  *
1365  * Now socket state including sk->sk_err is changed only under lock,
1366  * hence we may omit checks after joining wait queue.
1367  * We check receive queue before schedule() only as optimization;
1368  * it is very likely that release_sock() added new data.
1369  */
1370 int sk_wait_data(struct sock *sk, long *timeo)
1371 {
1372         int rc;
1373         DEFINE_WAIT(wait);
1374
1375         prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1376         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1377         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1378         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1379         finish_wait(sk->sk_sleep, &wait);
1380         return rc;
1381 }
1382
1383 EXPORT_SYMBOL(sk_wait_data);
1384
1385 /*
1386  * Set of default routines for initialising struct proto_ops when
1387  * the protocol does not support a particular function. In certain
1388  * cases where it makes no sense for a protocol to have a "do nothing"
1389  * function, some default processing is provided.
1390  */
1391
1392 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1393 {
1394         return -EOPNOTSUPP;
1395 }
1396
1397 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1398                     int len, int flags)
1399 {
1400         return -EOPNOTSUPP;
1401 }
1402
1403 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1404 {
1405         return -EOPNOTSUPP;
1406 }
1407
1408 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1409 {
1410         return -EOPNOTSUPP;
1411 }
1412
1413 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1414                     int *len, int peer)
1415 {
1416         return -EOPNOTSUPP;
1417 }
1418
1419 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1420 {
1421         return 0;
1422 }
1423
1424 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1425 {
1426         return -EOPNOTSUPP;
1427 }
1428
1429 int sock_no_listen(struct socket *sock, int backlog)
1430 {
1431         return -EOPNOTSUPP;
1432 }
1433
1434 int sock_no_shutdown(struct socket *sock, int how)
1435 {
1436         return -EOPNOTSUPP;
1437 }
1438
1439 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1440                     char __user *optval, int optlen)
1441 {
1442         return -EOPNOTSUPP;
1443 }
1444
1445 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1446                     char __user *optval, int __user *optlen)
1447 {
1448         return -EOPNOTSUPP;
1449 }
1450
1451 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1452                     size_t len)
1453 {
1454         return -EOPNOTSUPP;
1455 }
1456
1457 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1458                     size_t len, int flags)
1459 {
1460         return -EOPNOTSUPP;
1461 }
1462
1463 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1464 {
1465         /* Mirror missing mmap method error code */
1466         return -ENODEV;
1467 }
1468
1469 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1470 {
1471         ssize_t res;
1472         struct msghdr msg = {.msg_flags = flags};
1473         struct kvec iov;
1474         char *kaddr = kmap(page);
1475         iov.iov_base = kaddr + offset;
1476         iov.iov_len = size;
1477         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1478         kunmap(page);
1479         return res;
1480 }
1481
1482 /*
1483  *      Default Socket Callbacks
1484  */
1485
1486 static void sock_def_wakeup(struct sock *sk)
1487 {
1488         read_lock(&sk->sk_callback_lock);
1489         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1490                 wake_up_interruptible_all(sk->sk_sleep);
1491         read_unlock(&sk->sk_callback_lock);
1492 }
1493
1494 static void sock_def_error_report(struct sock *sk)
1495 {
1496         read_lock(&sk->sk_callback_lock);
1497         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1498                 wake_up_interruptible(sk->sk_sleep);
1499         sk_wake_async(sk,0,POLL_ERR);
1500         read_unlock(&sk->sk_callback_lock);
1501 }
1502
1503 static void sock_def_readable(struct sock *sk, int len)
1504 {
1505         read_lock(&sk->sk_callback_lock);
1506         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1507                 wake_up_interruptible(sk->sk_sleep);
1508         sk_wake_async(sk,1,POLL_IN);
1509         read_unlock(&sk->sk_callback_lock);
1510 }
1511
1512 static void sock_def_write_space(struct sock *sk)
1513 {
1514         read_lock(&sk->sk_callback_lock);
1515
1516         /* Do not wake up a writer until he can make "significant"
1517          * progress.  --DaveM
1518          */
1519         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1520                 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1521                         wake_up_interruptible(sk->sk_sleep);
1522
1523                 /* Should agree with poll, otherwise some programs break */
1524                 if (sock_writeable(sk))
1525                         sk_wake_async(sk, 2, POLL_OUT);
1526         }
1527
1528         read_unlock(&sk->sk_callback_lock);
1529 }
1530
1531 static void sock_def_destruct(struct sock *sk)
1532 {
1533         kfree(sk->sk_protinfo);
1534 }
1535
1536 void sk_send_sigurg(struct sock *sk)
1537 {
1538         if (sk->sk_socket && sk->sk_socket->file)
1539                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1540                         sk_wake_async(sk, 3, POLL_PRI);
1541 }
1542
1543 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1544                     unsigned long expires)
1545 {
1546         if (!mod_timer(timer, expires))
1547                 sock_hold(sk);
1548 }
1549
1550 EXPORT_SYMBOL(sk_reset_timer);
1551
1552 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1553 {
1554         if (timer_pending(timer) && del_timer(timer))
1555                 __sock_put(sk);
1556 }
1557
1558 EXPORT_SYMBOL(sk_stop_timer);
1559
1560 void sock_init_data(struct socket *sock, struct sock *sk)
1561 {
1562         skb_queue_head_init(&sk->sk_receive_queue);
1563         skb_queue_head_init(&sk->sk_write_queue);
1564         skb_queue_head_init(&sk->sk_error_queue);
1565 #ifdef CONFIG_NET_DMA
1566         skb_queue_head_init(&sk->sk_async_wait_queue);
1567 #endif
1568
1569         sk->sk_send_head        =       NULL;
1570
1571         init_timer(&sk->sk_timer);
1572
1573         sk->sk_allocation       =       GFP_KERNEL;
1574         sk->sk_rcvbuf           =       sysctl_rmem_default;
1575         sk->sk_sndbuf           =       sysctl_wmem_default;
1576         sk->sk_state            =       TCP_CLOSE;
1577         sk->sk_socket           =       sock;
1578
1579         sock_set_flag(sk, SOCK_ZAPPED);
1580
1581         if (sock) {
1582                 sk->sk_type     =       sock->type;
1583                 sk->sk_sleep    =       &sock->wait;
1584                 sock->sk        =       sk;
1585         } else
1586                 sk->sk_sleep    =       NULL;
1587
1588         rwlock_init(&sk->sk_dst_lock);
1589         rwlock_init(&sk->sk_callback_lock);
1590         lockdep_set_class_and_name(&sk->sk_callback_lock,
1591                         af_callback_keys + sk->sk_family,
1592                         af_family_clock_key_strings[sk->sk_family]);
1593
1594         sk->sk_state_change     =       sock_def_wakeup;
1595         sk->sk_data_ready       =       sock_def_readable;
1596         sk->sk_write_space      =       sock_def_write_space;
1597         sk->sk_error_report     =       sock_def_error_report;
1598         sk->sk_destruct         =       sock_def_destruct;
1599
1600         sk->sk_sndmsg_page      =       NULL;
1601         sk->sk_sndmsg_off       =       0;
1602
1603         sk->sk_peercred.pid     =       0;
1604         sk->sk_peercred.uid     =       -1;
1605         sk->sk_peercred.gid     =       -1;
1606         sk->sk_write_pending    =       0;
1607         sk->sk_rcvlowat         =       1;
1608         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1609         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1610
1611         sk->sk_stamp = ktime_set(-1L, -1L);
1612
1613         atomic_set(&sk->sk_refcnt, 1);
1614         atomic_set(&sk->sk_drops, 0);
1615 }
1616
1617 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1618 {
1619         might_sleep();
1620         spin_lock_bh(&sk->sk_lock.slock);
1621         if (sk->sk_lock.owned)
1622                 __lock_sock(sk);
1623         sk->sk_lock.owned = 1;
1624         spin_unlock(&sk->sk_lock.slock);
1625         /*
1626          * The sk_lock has mutex_lock() semantics here:
1627          */
1628         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1629         local_bh_enable();
1630 }
1631
1632 EXPORT_SYMBOL(lock_sock_nested);
1633
1634 void fastcall release_sock(struct sock *sk)
1635 {
1636         /*
1637          * The sk_lock has mutex_unlock() semantics:
1638          */
1639         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1640
1641         spin_lock_bh(&sk->sk_lock.slock);
1642         if (sk->sk_backlog.tail)
1643                 __release_sock(sk);
1644         sk->sk_lock.owned = 0;
1645         if (waitqueue_active(&sk->sk_lock.wq))
1646                 wake_up(&sk->sk_lock.wq);
1647         spin_unlock_bh(&sk->sk_lock.slock);
1648 }
1649 EXPORT_SYMBOL(release_sock);
1650
1651 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1652 {
1653         struct timeval tv;
1654         if (!sock_flag(sk, SOCK_TIMESTAMP))
1655                 sock_enable_timestamp(sk);
1656         tv = ktime_to_timeval(sk->sk_stamp);
1657         if (tv.tv_sec == -1)
1658                 return -ENOENT;
1659         if (tv.tv_sec == 0) {
1660                 sk->sk_stamp = ktime_get_real();
1661                 tv = ktime_to_timeval(sk->sk_stamp);
1662         }
1663         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1664 }
1665 EXPORT_SYMBOL(sock_get_timestamp);
1666
1667 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1668 {
1669         struct timespec ts;
1670         if (!sock_flag(sk, SOCK_TIMESTAMP))
1671                 sock_enable_timestamp(sk);
1672         ts = ktime_to_timespec(sk->sk_stamp);
1673         if (ts.tv_sec == -1)
1674                 return -ENOENT;
1675         if (ts.tv_sec == 0) {
1676                 sk->sk_stamp = ktime_get_real();
1677                 ts = ktime_to_timespec(sk->sk_stamp);
1678         }
1679         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1680 }
1681 EXPORT_SYMBOL(sock_get_timestampns);
1682
1683 void sock_enable_timestamp(struct sock *sk)
1684 {
1685         if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1686                 sock_set_flag(sk, SOCK_TIMESTAMP);
1687                 net_enable_timestamp();
1688         }
1689 }
1690
1691 /*
1692  *      Get a socket option on an socket.
1693  *
1694  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
1695  *      asynchronous errors should be reported by getsockopt. We assume
1696  *      this means if you specify SO_ERROR (otherwise whats the point of it).
1697  */
1698 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1699                            char __user *optval, int __user *optlen)
1700 {
1701         struct sock *sk = sock->sk;
1702
1703         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1704 }
1705
1706 EXPORT_SYMBOL(sock_common_getsockopt);
1707
1708 #ifdef CONFIG_COMPAT
1709 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1710                                   char __user *optval, int __user *optlen)
1711 {
1712         struct sock *sk = sock->sk;
1713
1714         if (sk->sk_prot->compat_getsockopt != NULL)
1715                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1716                                                       optval, optlen);
1717         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1718 }
1719 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1720 #endif
1721
1722 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1723                         struct msghdr *msg, size_t size, int flags)
1724 {
1725         struct sock *sk = sock->sk;
1726         int addr_len = 0;
1727         int err;
1728
1729         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1730                                    flags & ~MSG_DONTWAIT, &addr_len);
1731         if (err >= 0)
1732                 msg->msg_namelen = addr_len;
1733         return err;
1734 }
1735
1736 EXPORT_SYMBOL(sock_common_recvmsg);
1737
1738 /*
1739  *      Set socket options on an inet socket.
1740  */
1741 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1742                            char __user *optval, int optlen)
1743 {
1744         struct sock *sk = sock->sk;
1745
1746         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1747 }
1748
1749 EXPORT_SYMBOL(sock_common_setsockopt);
1750
1751 #ifdef CONFIG_COMPAT
1752 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1753                                   char __user *optval, int optlen)
1754 {
1755         struct sock *sk = sock->sk;
1756
1757         if (sk->sk_prot->compat_setsockopt != NULL)
1758                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1759                                                       optval, optlen);
1760         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1761 }
1762 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1763 #endif
1764
1765 void sk_common_release(struct sock *sk)
1766 {
1767         if (sk->sk_prot->destroy)
1768                 sk->sk_prot->destroy(sk);
1769
1770         /*
1771          * Observation: when sock_common_release is called, processes have
1772          * no access to socket. But net still has.
1773          * Step one, detach it from networking:
1774          *
1775          * A. Remove from hash tables.
1776          */
1777
1778         sk->sk_prot->unhash(sk);
1779
1780         /*
1781          * In this point socket cannot receive new packets, but it is possible
1782          * that some packets are in flight because some CPU runs receiver and
1783          * did hash table lookup before we unhashed socket. They will achieve
1784          * receive queue and will be purged by socket destructor.
1785          *
1786          * Also we still have packets pending on receive queue and probably,
1787          * our own packets waiting in device queues. sock_destroy will drain
1788          * receive queue, but transmitted packets will delay socket destruction
1789          * until the last reference will be released.
1790          */
1791
1792         sock_orphan(sk);
1793
1794         xfrm_sk_free_policy(sk);
1795
1796         sk_refcnt_debug_release(sk);
1797         sock_put(sk);
1798 }
1799
1800 EXPORT_SYMBOL(sk_common_release);
1801
1802 static DEFINE_RWLOCK(proto_list_lock);
1803 static LIST_HEAD(proto_list);
1804
1805 #ifdef CONFIG_SMP
1806 /*
1807  * Define default functions to keep track of inuse sockets per protocol
1808  * Note that often used protocols use dedicated functions to get a speed increase.
1809  * (see DEFINE_PROTO_INUSE/REF_PROTO_INUSE)
1810  */
1811 static void inuse_add(struct proto *prot, int inc)
1812 {
1813         per_cpu_ptr(prot->inuse_ptr, smp_processor_id())[0] += inc;
1814 }
1815
1816 static int inuse_get(const struct proto *prot)
1817 {
1818         int res = 0, cpu;
1819         for_each_possible_cpu(cpu)
1820                 res += per_cpu_ptr(prot->inuse_ptr, cpu)[0];
1821         return res;
1822 }
1823
1824 static int inuse_init(struct proto *prot)
1825 {
1826         if (!prot->inuse_getval || !prot->inuse_add) {
1827                 prot->inuse_ptr = alloc_percpu(int);
1828                 if (prot->inuse_ptr == NULL)
1829                         return -ENOBUFS;
1830
1831                 prot->inuse_getval = inuse_get;
1832                 prot->inuse_add = inuse_add;
1833         }
1834         return 0;
1835 }
1836
1837 static void inuse_fini(struct proto *prot)
1838 {
1839         if (prot->inuse_ptr != NULL) {
1840                 free_percpu(prot->inuse_ptr);
1841                 prot->inuse_ptr = NULL;
1842                 prot->inuse_getval = NULL;
1843                 prot->inuse_add = NULL;
1844         }
1845 }
1846 #else
1847 static inline int inuse_init(struct proto *prot)
1848 {
1849         return 0;
1850 }
1851
1852 static inline void inuse_fini(struct proto *prot)
1853 {
1854 }
1855 #endif
1856
1857 int proto_register(struct proto *prot, int alloc_slab)
1858 {
1859         char *request_sock_slab_name = NULL;
1860         char *timewait_sock_slab_name;
1861
1862         if (inuse_init(prot))
1863                 goto out;
1864
1865         if (alloc_slab) {
1866                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1867                                                SLAB_HWCACHE_ALIGN, NULL);
1868
1869                 if (prot->slab == NULL) {
1870                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1871                                prot->name);
1872                         goto out_free_inuse;
1873                 }
1874
1875                 if (prot->rsk_prot != NULL) {
1876                         static const char mask[] = "request_sock_%s";
1877
1878                         request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1879                         if (request_sock_slab_name == NULL)
1880                                 goto out_free_sock_slab;
1881
1882                         sprintf(request_sock_slab_name, mask, prot->name);
1883                         prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1884                                                                  prot->rsk_prot->obj_size, 0,
1885                                                                  SLAB_HWCACHE_ALIGN, NULL);
1886
1887                         if (prot->rsk_prot->slab == NULL) {
1888                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1889                                        prot->name);
1890                                 goto out_free_request_sock_slab_name;
1891                         }
1892                 }
1893
1894                 if (prot->twsk_prot != NULL) {
1895                         static const char mask[] = "tw_sock_%s";
1896
1897                         timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1898
1899                         if (timewait_sock_slab_name == NULL)
1900                                 goto out_free_request_sock_slab;
1901
1902                         sprintf(timewait_sock_slab_name, mask, prot->name);
1903                         prot->twsk_prot->twsk_slab =
1904                                 kmem_cache_create(timewait_sock_slab_name,
1905                                                   prot->twsk_prot->twsk_obj_size,
1906                                                   0, SLAB_HWCACHE_ALIGN,
1907                                                   NULL);
1908                         if (prot->twsk_prot->twsk_slab == NULL)
1909                                 goto out_free_timewait_sock_slab_name;
1910                 }
1911         }
1912
1913         write_lock(&proto_list_lock);
1914         list_add(&prot->node, &proto_list);
1915         write_unlock(&proto_list_lock);
1916         return 0;
1917
1918 out_free_timewait_sock_slab_name:
1919         kfree(timewait_sock_slab_name);
1920 out_free_request_sock_slab:
1921         if (prot->rsk_prot && prot->rsk_prot->slab) {
1922                 kmem_cache_destroy(prot->rsk_prot->slab);
1923                 prot->rsk_prot->slab = NULL;
1924         }
1925 out_free_request_sock_slab_name:
1926         kfree(request_sock_slab_name);
1927 out_free_sock_slab:
1928         kmem_cache_destroy(prot->slab);
1929         prot->slab = NULL;
1930 out_free_inuse:
1931         inuse_fini(prot);
1932 out:
1933         return -ENOBUFS;
1934 }
1935
1936 EXPORT_SYMBOL(proto_register);
1937
1938 void proto_unregister(struct proto *prot)
1939 {
1940         write_lock(&proto_list_lock);
1941         list_del(&prot->node);
1942         write_unlock(&proto_list_lock);
1943
1944         inuse_fini(prot);
1945         if (prot->slab != NULL) {
1946                 kmem_cache_destroy(prot->slab);
1947                 prot->slab = NULL;
1948         }
1949
1950         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1951                 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1952
1953                 kmem_cache_destroy(prot->rsk_prot->slab);
1954                 kfree(name);
1955                 prot->rsk_prot->slab = NULL;
1956         }
1957
1958         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1959                 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1960
1961                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1962                 kfree(name);
1963                 prot->twsk_prot->twsk_slab = NULL;
1964         }
1965 }
1966
1967 EXPORT_SYMBOL(proto_unregister);
1968
1969 #ifdef CONFIG_PROC_FS
1970 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1971 {
1972         read_lock(&proto_list_lock);
1973         return seq_list_start_head(&proto_list, *pos);
1974 }
1975
1976 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1977 {
1978         return seq_list_next(v, &proto_list, pos);
1979 }
1980
1981 static void proto_seq_stop(struct seq_file *seq, void *v)
1982 {
1983         read_unlock(&proto_list_lock);
1984 }
1985
1986 static char proto_method_implemented(const void *method)
1987 {
1988         return method == NULL ? 'n' : 'y';
1989 }
1990
1991 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1992 {
1993         seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1994                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1995                    proto->name,
1996                    proto->obj_size,
1997                    proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1998                    proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1999                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2000                    proto->max_header,
2001                    proto->slab == NULL ? "no" : "yes",
2002                    module_name(proto->owner),
2003                    proto_method_implemented(proto->close),
2004                    proto_method_implemented(proto->connect),
2005                    proto_method_implemented(proto->disconnect),
2006                    proto_method_implemented(proto->accept),
2007                    proto_method_implemented(proto->ioctl),
2008                    proto_method_implemented(proto->init),
2009                    proto_method_implemented(proto->destroy),
2010                    proto_method_implemented(proto->shutdown),
2011                    proto_method_implemented(proto->setsockopt),
2012                    proto_method_implemented(proto->getsockopt),
2013                    proto_method_implemented(proto->sendmsg),
2014                    proto_method_implemented(proto->recvmsg),
2015                    proto_method_implemented(proto->sendpage),
2016                    proto_method_implemented(proto->bind),
2017                    proto_method_implemented(proto->backlog_rcv),
2018                    proto_method_implemented(proto->hash),
2019                    proto_method_implemented(proto->unhash),
2020                    proto_method_implemented(proto->get_port),
2021                    proto_method_implemented(proto->enter_memory_pressure));
2022 }
2023
2024 static int proto_seq_show(struct seq_file *seq, void *v)
2025 {
2026         if (v == &proto_list)
2027                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2028                            "protocol",
2029                            "size",
2030                            "sockets",
2031                            "memory",
2032                            "press",
2033                            "maxhdr",
2034                            "slab",
2035                            "module",
2036                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2037         else
2038                 proto_seq_printf(seq, list_entry(v, struct proto, node));
2039         return 0;
2040 }
2041
2042 static const struct seq_operations proto_seq_ops = {
2043         .start  = proto_seq_start,
2044         .next   = proto_seq_next,
2045         .stop   = proto_seq_stop,
2046         .show   = proto_seq_show,
2047 };
2048
2049 static int proto_seq_open(struct inode *inode, struct file *file)
2050 {
2051         return seq_open(file, &proto_seq_ops);
2052 }
2053
2054 static const struct file_operations proto_seq_fops = {
2055         .owner          = THIS_MODULE,
2056         .open           = proto_seq_open,
2057         .read           = seq_read,
2058         .llseek         = seq_lseek,
2059         .release        = seq_release,
2060 };
2061
2062 static int __init proto_init(void)
2063 {
2064         /* register /proc/net/protocols */
2065         return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2066 }
2067
2068 subsys_initcall(proto_init);
2069
2070 #endif /* PROC_FS */
2071
2072 EXPORT_SYMBOL(sk_alloc);
2073 EXPORT_SYMBOL(sk_free);
2074 EXPORT_SYMBOL(sk_send_sigurg);
2075 EXPORT_SYMBOL(sock_alloc_send_skb);
2076 EXPORT_SYMBOL(sock_init_data);
2077 EXPORT_SYMBOL(sock_kfree_s);
2078 EXPORT_SYMBOL(sock_kmalloc);
2079 EXPORT_SYMBOL(sock_no_accept);
2080 EXPORT_SYMBOL(sock_no_bind);
2081 EXPORT_SYMBOL(sock_no_connect);
2082 EXPORT_SYMBOL(sock_no_getname);
2083 EXPORT_SYMBOL(sock_no_getsockopt);
2084 EXPORT_SYMBOL(sock_no_ioctl);
2085 EXPORT_SYMBOL(sock_no_listen);
2086 EXPORT_SYMBOL(sock_no_mmap);
2087 EXPORT_SYMBOL(sock_no_poll);
2088 EXPORT_SYMBOL(sock_no_recvmsg);
2089 EXPORT_SYMBOL(sock_no_sendmsg);
2090 EXPORT_SYMBOL(sock_no_sendpage);
2091 EXPORT_SYMBOL(sock_no_setsockopt);
2092 EXPORT_SYMBOL(sock_no_shutdown);
2093 EXPORT_SYMBOL(sock_no_socketpair);
2094 EXPORT_SYMBOL(sock_rfree);
2095 EXPORT_SYMBOL(sock_setsockopt);
2096 EXPORT_SYMBOL(sock_wfree);
2097 EXPORT_SYMBOL(sock_wmalloc);
2098 EXPORT_SYMBOL(sock_i_uid);
2099 EXPORT_SYMBOL(sock_i_ino);
2100 EXPORT_SYMBOL(sysctl_optmem_max);