trivial: net: filter: Fix typo in comment
[pandora-kernel.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in sk_chk_filter()
22  */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_packet.h>
33 #include <linux/gfp.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <net/sock.h>
39 #include <linux/errno.h>
40 #include <linux/timer.h>
41 #include <asm/uaccess.h>
42 #include <asm/unaligned.h>
43 #include <linux/filter.h>
44 #include <linux/ratelimit.h>
45 #include <linux/seccomp.h>
46 #include <linux/if_vlan.h>
47
48 /* Registers */
49 #define BPF_R0  regs[BPF_REG_0]
50 #define BPF_R1  regs[BPF_REG_1]
51 #define BPF_R2  regs[BPF_REG_2]
52 #define BPF_R3  regs[BPF_REG_3]
53 #define BPF_R4  regs[BPF_REG_4]
54 #define BPF_R5  regs[BPF_REG_5]
55 #define BPF_R6  regs[BPF_REG_6]
56 #define BPF_R7  regs[BPF_REG_7]
57 #define BPF_R8  regs[BPF_REG_8]
58 #define BPF_R9  regs[BPF_REG_9]
59 #define BPF_R10 regs[BPF_REG_10]
60
61 /* Named registers */
62 #define DST     regs[insn->dst_reg]
63 #define SRC     regs[insn->src_reg]
64 #define FP      regs[BPF_REG_FP]
65 #define ARG1    regs[BPF_REG_ARG1]
66 #define CTX     regs[BPF_REG_CTX]
67 #define IMM     insn->imm
68
69 /* No hurry in this branch
70  *
71  * Exported for the bpf jit load helper.
72  */
73 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
74 {
75         u8 *ptr = NULL;
76
77         if (k >= SKF_NET_OFF)
78                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
79         else if (k >= SKF_LL_OFF)
80                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
81         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
82                 return ptr;
83
84         return NULL;
85 }
86
87 static inline void *load_pointer(const struct sk_buff *skb, int k,
88                                  unsigned int size, void *buffer)
89 {
90         if (k >= 0)
91                 return skb_header_pointer(skb, k, size, buffer);
92
93         return bpf_internal_load_pointer_neg_helper(skb, k, size);
94 }
95
96 /**
97  *      sk_filter - run a packet through a socket filter
98  *      @sk: sock associated with &sk_buff
99  *      @skb: buffer to filter
100  *
101  * Run the filter code and then cut skb->data to correct size returned by
102  * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
103  * than pkt_len we keep whole skb->data. This is the socket level
104  * wrapper to sk_run_filter. It returns 0 if the packet should
105  * be accepted or -EPERM if the packet should be tossed.
106  *
107  */
108 int sk_filter(struct sock *sk, struct sk_buff *skb)
109 {
110         int err;
111         struct sk_filter *filter;
112
113         /*
114          * If the skb was allocated from pfmemalloc reserves, only
115          * allow SOCK_MEMALLOC sockets to use it as this socket is
116          * helping free memory
117          */
118         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
119                 return -ENOMEM;
120
121         err = security_sock_rcv_skb(sk, skb);
122         if (err)
123                 return err;
124
125         rcu_read_lock();
126         filter = rcu_dereference(sk->sk_filter);
127         if (filter) {
128                 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
129
130                 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
131         }
132         rcu_read_unlock();
133
134         return err;
135 }
136 EXPORT_SYMBOL(sk_filter);
137
138 /* Base function for offset calculation. Needs to go into .text section,
139  * therefore keeping it non-static as well; will also be used by JITs
140  * anyway later on, so do not let the compiler omit it.
141  */
142 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
143 {
144         return 0;
145 }
146
147 /**
148  *      __sk_run_filter - run a filter on a given context
149  *      @ctx: buffer to run the filter on
150  *      @insn: filter to apply
151  *
152  * Decode and apply filter instructions to the skb->data. Return length to
153  * keep, 0 for none. @ctx is the data we are operating on, @insn is the
154  * array of filter instructions.
155  */
156 static unsigned int __sk_run_filter(void *ctx, const struct sock_filter_int *insn)
157 {
158         u64 stack[MAX_BPF_STACK / sizeof(u64)];
159         u64 regs[MAX_BPF_REG], tmp;
160         static const void *jumptable[256] = {
161                 [0 ... 255] = &&default_label,
162                 /* Now overwrite non-defaults ... */
163                 /* 32 bit ALU operations */
164                 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
165                 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
166                 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
167                 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
168                 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
169                 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
170                 [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
171                 [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
172                 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
173                 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
174                 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
175                 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
176                 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
177                 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
178                 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
179                 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
180                 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
181                 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
182                 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
183                 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
184                 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
185                 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
186                 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
187                 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
188                 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
189                 /* 64 bit ALU operations */
190                 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
191                 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
192                 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
193                 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
194                 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
195                 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
196                 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
197                 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
198                 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
199                 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
200                 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
201                 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
202                 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
203                 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
204                 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
205                 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
206                 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
207                 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
208                 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
209                 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
210                 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
211                 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
212                 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
213                 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
214                 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
215                 /* Call instruction */
216                 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
217                 /* Jumps */
218                 [BPF_JMP | BPF_JA] = &&JMP_JA,
219                 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
220                 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
221                 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
222                 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
223                 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
224                 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
225                 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
226                 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
227                 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
228                 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
229                 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
230                 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
231                 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
232                 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
233                 /* Program return */
234                 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
235                 /* Store instructions */
236                 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
237                 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
238                 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
239                 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
240                 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
241                 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
242                 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
243                 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
244                 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
245                 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
246                 /* Load instructions */
247                 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
248                 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
249                 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
250                 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
251                 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
252                 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
253                 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
254                 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
255                 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
256                 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
257         };
258         void *ptr;
259         int off;
260
261 #define CONT     ({ insn++; goto select_insn; })
262 #define CONT_JMP ({ insn++; goto select_insn; })
263
264         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
265         ARG1 = (u64) (unsigned long) ctx;
266
267         /* Registers used in classic BPF programs need to be reset first. */
268         regs[BPF_REG_A] = 0;
269         regs[BPF_REG_X] = 0;
270
271 select_insn:
272         goto *jumptable[insn->code];
273
274         /* ALU */
275 #define ALU(OPCODE, OP)                 \
276         ALU64_##OPCODE##_X:             \
277                 DST = DST OP SRC;       \
278                 CONT;                   \
279         ALU_##OPCODE##_X:               \
280                 DST = (u32) DST OP (u32) SRC;   \
281                 CONT;                   \
282         ALU64_##OPCODE##_K:             \
283                 DST = DST OP IMM;               \
284                 CONT;                   \
285         ALU_##OPCODE##_K:               \
286                 DST = (u32) DST OP (u32) IMM;   \
287                 CONT;
288
289         ALU(ADD,  +)
290         ALU(SUB,  -)
291         ALU(AND,  &)
292         ALU(OR,   |)
293         ALU(LSH, <<)
294         ALU(RSH, >>)
295         ALU(XOR,  ^)
296         ALU(MUL,  *)
297 #undef ALU
298         ALU_NEG:
299                 DST = (u32) -DST;
300                 CONT;
301         ALU64_NEG:
302                 DST = -DST;
303                 CONT;
304         ALU_MOV_X:
305                 DST = (u32) SRC;
306                 CONT;
307         ALU_MOV_K:
308                 DST = (u32) IMM;
309                 CONT;
310         ALU64_MOV_X:
311                 DST = SRC;
312                 CONT;
313         ALU64_MOV_K:
314                 DST = IMM;
315                 CONT;
316         ALU64_ARSH_X:
317                 (*(s64 *) &DST) >>= SRC;
318                 CONT;
319         ALU64_ARSH_K:
320                 (*(s64 *) &DST) >>= IMM;
321                 CONT;
322         ALU64_MOD_X:
323                 if (unlikely(SRC == 0))
324                         return 0;
325                 tmp = DST;
326                 DST = do_div(tmp, SRC);
327                 CONT;
328         ALU_MOD_X:
329                 if (unlikely(SRC == 0))
330                         return 0;
331                 tmp = (u32) DST;
332                 DST = do_div(tmp, (u32) SRC);
333                 CONT;
334         ALU64_MOD_K:
335                 tmp = DST;
336                 DST = do_div(tmp, IMM);
337                 CONT;
338         ALU_MOD_K:
339                 tmp = (u32) DST;
340                 DST = do_div(tmp, (u32) IMM);
341                 CONT;
342         ALU64_DIV_X:
343                 if (unlikely(SRC == 0))
344                         return 0;
345                 do_div(DST, SRC);
346                 CONT;
347         ALU_DIV_X:
348                 if (unlikely(SRC == 0))
349                         return 0;
350                 tmp = (u32) DST;
351                 do_div(tmp, (u32) SRC);
352                 DST = (u32) tmp;
353                 CONT;
354         ALU64_DIV_K:
355                 do_div(DST, IMM);
356                 CONT;
357         ALU_DIV_K:
358                 tmp = (u32) DST;
359                 do_div(tmp, (u32) IMM);
360                 DST = (u32) tmp;
361                 CONT;
362         ALU_END_TO_BE:
363                 switch (IMM) {
364                 case 16:
365                         DST = (__force u16) cpu_to_be16(DST);
366                         break;
367                 case 32:
368                         DST = (__force u32) cpu_to_be32(DST);
369                         break;
370                 case 64:
371                         DST = (__force u64) cpu_to_be64(DST);
372                         break;
373                 }
374                 CONT;
375         ALU_END_TO_LE:
376                 switch (IMM) {
377                 case 16:
378                         DST = (__force u16) cpu_to_le16(DST);
379                         break;
380                 case 32:
381                         DST = (__force u32) cpu_to_le32(DST);
382                         break;
383                 case 64:
384                         DST = (__force u64) cpu_to_le64(DST);
385                         break;
386                 }
387                 CONT;
388
389         /* CALL */
390         JMP_CALL:
391                 /* Function call scratches BPF_R1-BPF_R5 registers,
392                  * preserves BPF_R6-BPF_R9, and stores return value
393                  * into BPF_R0.
394                  */
395                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
396                                                        BPF_R4, BPF_R5);
397                 CONT;
398
399         /* JMP */
400         JMP_JA:
401                 insn += insn->off;
402                 CONT;
403         JMP_JEQ_X:
404                 if (DST == SRC) {
405                         insn += insn->off;
406                         CONT_JMP;
407                 }
408                 CONT;
409         JMP_JEQ_K:
410                 if (DST == IMM) {
411                         insn += insn->off;
412                         CONT_JMP;
413                 }
414                 CONT;
415         JMP_JNE_X:
416                 if (DST != SRC) {
417                         insn += insn->off;
418                         CONT_JMP;
419                 }
420                 CONT;
421         JMP_JNE_K:
422                 if (DST != IMM) {
423                         insn += insn->off;
424                         CONT_JMP;
425                 }
426                 CONT;
427         JMP_JGT_X:
428                 if (DST > SRC) {
429                         insn += insn->off;
430                         CONT_JMP;
431                 }
432                 CONT;
433         JMP_JGT_K:
434                 if (DST > IMM) {
435                         insn += insn->off;
436                         CONT_JMP;
437                 }
438                 CONT;
439         JMP_JGE_X:
440                 if (DST >= SRC) {
441                         insn += insn->off;
442                         CONT_JMP;
443                 }
444                 CONT;
445         JMP_JGE_K:
446                 if (DST >= IMM) {
447                         insn += insn->off;
448                         CONT_JMP;
449                 }
450                 CONT;
451         JMP_JSGT_X:
452                 if (((s64) DST) > ((s64) SRC)) {
453                         insn += insn->off;
454                         CONT_JMP;
455                 }
456                 CONT;
457         JMP_JSGT_K:
458                 if (((s64) DST) > ((s64) IMM)) {
459                         insn += insn->off;
460                         CONT_JMP;
461                 }
462                 CONT;
463         JMP_JSGE_X:
464                 if (((s64) DST) >= ((s64) SRC)) {
465                         insn += insn->off;
466                         CONT_JMP;
467                 }
468                 CONT;
469         JMP_JSGE_K:
470                 if (((s64) DST) >= ((s64) IMM)) {
471                         insn += insn->off;
472                         CONT_JMP;
473                 }
474                 CONT;
475         JMP_JSET_X:
476                 if (DST & SRC) {
477                         insn += insn->off;
478                         CONT_JMP;
479                 }
480                 CONT;
481         JMP_JSET_K:
482                 if (DST & IMM) {
483                         insn += insn->off;
484                         CONT_JMP;
485                 }
486                 CONT;
487         JMP_EXIT:
488                 return BPF_R0;
489
490         /* STX and ST and LDX*/
491 #define LDST(SIZEOP, SIZE)                                              \
492         STX_MEM_##SIZEOP:                                               \
493                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
494                 CONT;                                                   \
495         ST_MEM_##SIZEOP:                                                \
496                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
497                 CONT;                                                   \
498         LDX_MEM_##SIZEOP:                                               \
499                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
500                 CONT;
501
502         LDST(B,   u8)
503         LDST(H,  u16)
504         LDST(W,  u32)
505         LDST(DW, u64)
506 #undef LDST
507         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
508                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
509                            (DST + insn->off));
510                 CONT;
511         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
512                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
513                              (DST + insn->off));
514                 CONT;
515         LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
516                 off = IMM;
517 load_word:
518                 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
519                  * only appearing in the programs where ctx ==
520                  * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
521                  * == BPF_R6, sk_convert_filter() saves it in BPF_R6,
522                  * internal BPF verifier will check that BPF_R6 ==
523                  * ctx.
524                  *
525                  * BPF_ABS and BPF_IND are wrappers of function calls,
526                  * so they scratch BPF_R1-BPF_R5 registers, preserve
527                  * BPF_R6-BPF_R9, and store return value into BPF_R0.
528                  *
529                  * Implicit input:
530                  *   ctx == skb == BPF_R6 == CTX
531                  *
532                  * Explicit input:
533                  *   SRC == any register
534                  *   IMM == 32-bit immediate
535                  *
536                  * Output:
537                  *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
538                  */
539
540                 ptr = load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
541                 if (likely(ptr != NULL)) {
542                         BPF_R0 = get_unaligned_be32(ptr);
543                         CONT;
544                 }
545
546                 return 0;
547         LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
548                 off = IMM;
549 load_half:
550                 ptr = load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
551                 if (likely(ptr != NULL)) {
552                         BPF_R0 = get_unaligned_be16(ptr);
553                         CONT;
554                 }
555
556                 return 0;
557         LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
558                 off = IMM;
559 load_byte:
560                 ptr = load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
561                 if (likely(ptr != NULL)) {
562                         BPF_R0 = *(u8 *)ptr;
563                         CONT;
564                 }
565
566                 return 0;
567         LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
568                 off = IMM + SRC;
569                 goto load_word;
570         LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
571                 off = IMM + SRC;
572                 goto load_half;
573         LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
574                 off = IMM + SRC;
575                 goto load_byte;
576
577         default_label:
578                 /* If we ever reach this, we have a bug somewhere. */
579                 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
580                 return 0;
581 }
582
583 /* Helper to find the offset of pkt_type in sk_buff structure. We want
584  * to make sure its still a 3bit field starting at a byte boundary;
585  * taken from arch/x86/net/bpf_jit_comp.c.
586  */
587 #ifdef __BIG_ENDIAN_BITFIELD
588 #define PKT_TYPE_MAX    (7 << 5)
589 #else
590 #define PKT_TYPE_MAX    7
591 #endif
592 static unsigned int pkt_type_offset(void)
593 {
594         struct sk_buff skb_probe = { .pkt_type = ~0, };
595         u8 *ct = (u8 *) &skb_probe;
596         unsigned int off;
597
598         for (off = 0; off < sizeof(struct sk_buff); off++) {
599                 if (ct[off] == PKT_TYPE_MAX)
600                         return off;
601         }
602
603         pr_err_once("Please fix %s, as pkt_type couldn't be found!\n", __func__);
604         return -1;
605 }
606
607 static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
608 {
609         return __skb_get_poff((struct sk_buff *)(unsigned long) ctx);
610 }
611
612 static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
613 {
614         struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
615         struct nlattr *nla;
616
617         if (skb_is_nonlinear(skb))
618                 return 0;
619
620         if (skb->len < sizeof(struct nlattr))
621                 return 0;
622
623         if (a > skb->len - sizeof(struct nlattr))
624                 return 0;
625
626         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
627         if (nla)
628                 return (void *) nla - (void *) skb->data;
629
630         return 0;
631 }
632
633 static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
634 {
635         struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
636         struct nlattr *nla;
637
638         if (skb_is_nonlinear(skb))
639                 return 0;
640
641         if (skb->len < sizeof(struct nlattr))
642                 return 0;
643
644         if (a > skb->len - sizeof(struct nlattr))
645                 return 0;
646
647         nla = (struct nlattr *) &skb->data[a];
648         if (nla->nla_len > skb->len - a)
649                 return 0;
650
651         nla = nla_find_nested(nla, x);
652         if (nla)
653                 return (void *) nla - (void *) skb->data;
654
655         return 0;
656 }
657
658 static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
659 {
660         return raw_smp_processor_id();
661 }
662
663 /* note that this only generates 32-bit random numbers */
664 static u64 __get_random_u32(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
665 {
666         return prandom_u32();
667 }
668
669 static bool convert_bpf_extensions(struct sock_filter *fp,
670                                    struct sock_filter_int **insnp)
671 {
672         struct sock_filter_int *insn = *insnp;
673
674         switch (fp->k) {
675         case SKF_AD_OFF + SKF_AD_PROTOCOL:
676                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
677
678                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
679                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
680                                       offsetof(struct sk_buff, protocol));
681                 /* A = ntohs(A) [emitting a nop or swap16] */
682                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
683                 break;
684
685         case SKF_AD_OFF + SKF_AD_PKTTYPE:
686                 *insn = BPF_LDX_MEM(BPF_B, BPF_REG_A, BPF_REG_CTX,
687                                     pkt_type_offset());
688                 if (insn->off < 0)
689                         return false;
690                 insn++;
691                 *insn = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, PKT_TYPE_MAX);
692 #ifdef __BIG_ENDIAN_BITFIELD
693                 insn++;
694                 *insn = BPF_ALU32_IMM(BPF_RSH, BPF_REG_A, 5);
695 #endif
696                 break;
697
698         case SKF_AD_OFF + SKF_AD_IFINDEX:
699         case SKF_AD_OFF + SKF_AD_HATYPE:
700                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
701                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
702                 BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
703
704                 *insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
705                                       BPF_REG_TMP, BPF_REG_CTX,
706                                       offsetof(struct sk_buff, dev));
707                 /* if (tmp != 0) goto pc + 1 */
708                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
709                 *insn++ = BPF_EXIT_INSN();
710                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
711                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
712                                             offsetof(struct net_device, ifindex));
713                 else
714                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
715                                             offsetof(struct net_device, type));
716                 break;
717
718         case SKF_AD_OFF + SKF_AD_MARK:
719                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
720
721                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
722                                     offsetof(struct sk_buff, mark));
723                 break;
724
725         case SKF_AD_OFF + SKF_AD_RXHASH:
726                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
727
728                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
729                                     offsetof(struct sk_buff, hash));
730                 break;
731
732         case SKF_AD_OFF + SKF_AD_QUEUE:
733                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
734
735                 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
736                                     offsetof(struct sk_buff, queue_mapping));
737                 break;
738
739         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
740         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
741                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
742                 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
743
744                 /* A = *(u16 *) (CTX + offsetof(vlan_tci)) */
745                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
746                                       offsetof(struct sk_buff, vlan_tci));
747                 if (fp->k == SKF_AD_OFF + SKF_AD_VLAN_TAG) {
748                         *insn = BPF_ALU32_IMM(BPF_AND, BPF_REG_A,
749                                               ~VLAN_TAG_PRESENT);
750                 } else {
751                         /* A >>= 12 */
752                         *insn++ = BPF_ALU32_IMM(BPF_RSH, BPF_REG_A, 12);
753                         /* A &= 1 */
754                         *insn = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 1);
755                 }
756                 break;
757
758         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
759         case SKF_AD_OFF + SKF_AD_NLATTR:
760         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
761         case SKF_AD_OFF + SKF_AD_CPU:
762         case SKF_AD_OFF + SKF_AD_RANDOM:
763                 /* arg1 = CTX */
764                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
765                 /* arg2 = A */
766                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
767                 /* arg3 = X */
768                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
769                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
770                 switch (fp->k) {
771                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
772                         *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
773                         break;
774                 case SKF_AD_OFF + SKF_AD_NLATTR:
775                         *insn = BPF_EMIT_CALL(__skb_get_nlattr);
776                         break;
777                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
778                         *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
779                         break;
780                 case SKF_AD_OFF + SKF_AD_CPU:
781                         *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
782                         break;
783                 case SKF_AD_OFF + SKF_AD_RANDOM:
784                         *insn = BPF_EMIT_CALL(__get_random_u32);
785                         break;
786                 }
787                 break;
788
789         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
790                 /* A ^= X */
791                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
792                 break;
793
794         default:
795                 /* This is just a dummy call to avoid letting the compiler
796                  * evict __bpf_call_base() as an optimization. Placed here
797                  * where no-one bothers.
798                  */
799                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
800                 return false;
801         }
802
803         *insnp = insn;
804         return true;
805 }
806
807 /**
808  *      sk_convert_filter - convert filter program
809  *      @prog: the user passed filter program
810  *      @len: the length of the user passed filter program
811  *      @new_prog: buffer where converted program will be stored
812  *      @new_len: pointer to store length of converted program
813  *
814  * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
815  * Conversion workflow:
816  *
817  * 1) First pass for calculating the new program length:
818  *   sk_convert_filter(old_prog, old_len, NULL, &new_len)
819  *
820  * 2) 2nd pass to remap in two passes: 1st pass finds new
821  *    jump offsets, 2nd pass remapping:
822  *   new_prog = kmalloc(sizeof(struct sock_filter_int) * new_len);
823  *   sk_convert_filter(old_prog, old_len, new_prog, &new_len);
824  *
825  * User BPF's register A is mapped to our BPF register 6, user BPF
826  * register X is mapped to BPF register 7; frame pointer is always
827  * register 10; Context 'void *ctx' is stored in register 1, that is,
828  * for socket filters: ctx == 'struct sk_buff *', for seccomp:
829  * ctx == 'struct seccomp_data *'.
830  */
831 int sk_convert_filter(struct sock_filter *prog, int len,
832                       struct sock_filter_int *new_prog, int *new_len)
833 {
834         int new_flen = 0, pass = 0, target, i;
835         struct sock_filter_int *new_insn;
836         struct sock_filter *fp;
837         int *addrs = NULL;
838         u8 bpf_src;
839
840         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
841         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
842
843         if (len <= 0 || len > BPF_MAXINSNS)
844                 return -EINVAL;
845
846         if (new_prog) {
847                 addrs = kzalloc(len * sizeof(*addrs), GFP_KERNEL);
848                 if (!addrs)
849                         return -ENOMEM;
850         }
851
852 do_pass:
853         new_insn = new_prog;
854         fp = prog;
855
856         if (new_insn)
857                 *new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
858         new_insn++;
859
860         for (i = 0; i < len; fp++, i++) {
861                 struct sock_filter_int tmp_insns[6] = { };
862                 struct sock_filter_int *insn = tmp_insns;
863
864                 if (addrs)
865                         addrs[i] = new_insn - new_prog;
866
867                 switch (fp->code) {
868                 /* All arithmetic insns and skb loads map as-is. */
869                 case BPF_ALU | BPF_ADD | BPF_X:
870                 case BPF_ALU | BPF_ADD | BPF_K:
871                 case BPF_ALU | BPF_SUB | BPF_X:
872                 case BPF_ALU | BPF_SUB | BPF_K:
873                 case BPF_ALU | BPF_AND | BPF_X:
874                 case BPF_ALU | BPF_AND | BPF_K:
875                 case BPF_ALU | BPF_OR | BPF_X:
876                 case BPF_ALU | BPF_OR | BPF_K:
877                 case BPF_ALU | BPF_LSH | BPF_X:
878                 case BPF_ALU | BPF_LSH | BPF_K:
879                 case BPF_ALU | BPF_RSH | BPF_X:
880                 case BPF_ALU | BPF_RSH | BPF_K:
881                 case BPF_ALU | BPF_XOR | BPF_X:
882                 case BPF_ALU | BPF_XOR | BPF_K:
883                 case BPF_ALU | BPF_MUL | BPF_X:
884                 case BPF_ALU | BPF_MUL | BPF_K:
885                 case BPF_ALU | BPF_DIV | BPF_X:
886                 case BPF_ALU | BPF_DIV | BPF_K:
887                 case BPF_ALU | BPF_MOD | BPF_X:
888                 case BPF_ALU | BPF_MOD | BPF_K:
889                 case BPF_ALU | BPF_NEG:
890                 case BPF_LD | BPF_ABS | BPF_W:
891                 case BPF_LD | BPF_ABS | BPF_H:
892                 case BPF_LD | BPF_ABS | BPF_B:
893                 case BPF_LD | BPF_IND | BPF_W:
894                 case BPF_LD | BPF_IND | BPF_H:
895                 case BPF_LD | BPF_IND | BPF_B:
896                         /* Check for overloaded BPF extension and
897                          * directly convert it if found, otherwise
898                          * just move on with mapping.
899                          */
900                         if (BPF_CLASS(fp->code) == BPF_LD &&
901                             BPF_MODE(fp->code) == BPF_ABS &&
902                             convert_bpf_extensions(fp, &insn))
903                                 break;
904
905                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
906                         break;
907
908                 /* Jump transformation cannot use BPF block macros
909                  * everywhere as offset calculation and target updates
910                  * require a bit more work than the rest, i.e. jump
911                  * opcodes map as-is, but offsets need adjustment.
912                  */
913
914 #define BPF_EMIT_JMP                                                    \
915         do {                                                            \
916                 if (target >= len || target < 0)                        \
917                         goto err;                                       \
918                 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;   \
919                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
920                 insn->off -= insn - tmp_insns;                          \
921         } while (0)
922
923                 case BPF_JMP | BPF_JA:
924                         target = i + fp->k + 1;
925                         insn->code = fp->code;
926                         BPF_EMIT_JMP;
927                         break;
928
929                 case BPF_JMP | BPF_JEQ | BPF_K:
930                 case BPF_JMP | BPF_JEQ | BPF_X:
931                 case BPF_JMP | BPF_JSET | BPF_K:
932                 case BPF_JMP | BPF_JSET | BPF_X:
933                 case BPF_JMP | BPF_JGT | BPF_K:
934                 case BPF_JMP | BPF_JGT | BPF_X:
935                 case BPF_JMP | BPF_JGE | BPF_K:
936                 case BPF_JMP | BPF_JGE | BPF_X:
937                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
938                                 /* BPF immediates are signed, zero extend
939                                  * immediate into tmp register and use it
940                                  * in compare insn.
941                                  */
942                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
943
944                                 insn->dst_reg = BPF_REG_A;
945                                 insn->src_reg = BPF_REG_TMP;
946                                 bpf_src = BPF_X;
947                         } else {
948                                 insn->dst_reg = BPF_REG_A;
949                                 insn->src_reg = BPF_REG_X;
950                                 insn->imm = fp->k;
951                                 bpf_src = BPF_SRC(fp->code);
952                         }
953
954                         /* Common case where 'jump_false' is next insn. */
955                         if (fp->jf == 0) {
956                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
957                                 target = i + fp->jt + 1;
958                                 BPF_EMIT_JMP;
959                                 break;
960                         }
961
962                         /* Convert JEQ into JNE when 'jump_true' is next insn. */
963                         if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
964                                 insn->code = BPF_JMP | BPF_JNE | bpf_src;
965                                 target = i + fp->jf + 1;
966                                 BPF_EMIT_JMP;
967                                 break;
968                         }
969
970                         /* Other jumps are mapped into two insns: Jxx and JA. */
971                         target = i + fp->jt + 1;
972                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
973                         BPF_EMIT_JMP;
974                         insn++;
975
976                         insn->code = BPF_JMP | BPF_JA;
977                         target = i + fp->jf + 1;
978                         BPF_EMIT_JMP;
979                         break;
980
981                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
982                 case BPF_LDX | BPF_MSH | BPF_B:
983                         /* tmp = A */
984                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
985                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
986                         *insn++ = BPF_LD_ABS(BPF_B, fp->k);
987                         /* A &= 0xf */
988                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
989                         /* A <<= 2 */
990                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
991                         /* X = A */
992                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
993                         /* A = tmp */
994                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
995                         break;
996
997                 /* RET_K, RET_A are remaped into 2 insns. */
998                 case BPF_RET | BPF_A:
999                 case BPF_RET | BPF_K:
1000                         *insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
1001                                                 BPF_K : BPF_X, BPF_REG_0,
1002                                                 BPF_REG_A, fp->k);
1003                         *insn = BPF_EXIT_INSN();
1004                         break;
1005
1006                 /* Store to stack. */
1007                 case BPF_ST:
1008                 case BPF_STX:
1009                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
1010                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
1011                                             -(BPF_MEMWORDS - fp->k) * 4);
1012                         break;
1013
1014                 /* Load from stack. */
1015                 case BPF_LD | BPF_MEM:
1016                 case BPF_LDX | BPF_MEM:
1017                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
1018                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
1019                                             -(BPF_MEMWORDS - fp->k) * 4);
1020                         break;
1021
1022                 /* A = K or X = K */
1023                 case BPF_LD | BPF_IMM:
1024                 case BPF_LDX | BPF_IMM:
1025                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
1026                                               BPF_REG_A : BPF_REG_X, fp->k);
1027                         break;
1028
1029                 /* X = A */
1030                 case BPF_MISC | BPF_TAX:
1031                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
1032                         break;
1033
1034                 /* A = X */
1035                 case BPF_MISC | BPF_TXA:
1036                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
1037                         break;
1038
1039                 /* A = skb->len or X = skb->len */
1040                 case BPF_LD | BPF_W | BPF_LEN:
1041                 case BPF_LDX | BPF_W | BPF_LEN:
1042                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
1043                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
1044                                             offsetof(struct sk_buff, len));
1045                         break;
1046
1047                 /* Access seccomp_data fields. */
1048                 case BPF_LDX | BPF_ABS | BPF_W:
1049                         /* A = *(u32 *) (ctx + K) */
1050                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
1051                         break;
1052
1053                 /* Unkown instruction. */
1054                 default:
1055                         goto err;
1056                 }
1057
1058                 insn++;
1059                 if (new_prog)
1060                         memcpy(new_insn, tmp_insns,
1061                                sizeof(*insn) * (insn - tmp_insns));
1062                 new_insn += insn - tmp_insns;
1063         }
1064
1065         if (!new_prog) {
1066                 /* Only calculating new length. */
1067                 *new_len = new_insn - new_prog;
1068                 return 0;
1069         }
1070
1071         pass++;
1072         if (new_flen != new_insn - new_prog) {
1073                 new_flen = new_insn - new_prog;
1074                 if (pass > 2)
1075                         goto err;
1076                 goto do_pass;
1077         }
1078
1079         kfree(addrs);
1080         BUG_ON(*new_len != new_flen);
1081         return 0;
1082 err:
1083         kfree(addrs);
1084         return -EINVAL;
1085 }
1086
1087 /* Security:
1088  *
1089  * A BPF program is able to use 16 cells of memory to store intermediate
1090  * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter()).
1091  *
1092  * As we dont want to clear mem[] array for each packet going through
1093  * sk_run_filter(), we check that filter loaded by user never try to read
1094  * a cell if not previously written, and we check all branches to be sure
1095  * a malicious user doesn't try to abuse us.
1096  */
1097 static int check_load_and_stores(struct sock_filter *filter, int flen)
1098 {
1099         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
1100         int pc, ret = 0;
1101
1102         BUILD_BUG_ON(BPF_MEMWORDS > 16);
1103
1104         masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
1105         if (!masks)
1106                 return -ENOMEM;
1107
1108         memset(masks, 0xff, flen * sizeof(*masks));
1109
1110         for (pc = 0; pc < flen; pc++) {
1111                 memvalid &= masks[pc];
1112
1113                 switch (filter[pc].code) {
1114                 case BPF_ST:
1115                 case BPF_STX:
1116                         memvalid |= (1 << filter[pc].k);
1117                         break;
1118                 case BPF_LD | BPF_MEM:
1119                 case BPF_LDX | BPF_MEM:
1120                         if (!(memvalid & (1 << filter[pc].k))) {
1121                                 ret = -EINVAL;
1122                                 goto error;
1123                         }
1124                         break;
1125                 case BPF_JMP | BPF_JA:
1126                         /* A jump must set masks on target */
1127                         masks[pc + 1 + filter[pc].k] &= memvalid;
1128                         memvalid = ~0;
1129                         break;
1130                 case BPF_JMP | BPF_JEQ | BPF_K:
1131                 case BPF_JMP | BPF_JEQ | BPF_X:
1132                 case BPF_JMP | BPF_JGE | BPF_K:
1133                 case BPF_JMP | BPF_JGE | BPF_X:
1134                 case BPF_JMP | BPF_JGT | BPF_K:
1135                 case BPF_JMP | BPF_JGT | BPF_X:
1136                 case BPF_JMP | BPF_JSET | BPF_K:
1137                 case BPF_JMP | BPF_JSET | BPF_X:
1138                         /* A jump must set masks on targets */
1139                         masks[pc + 1 + filter[pc].jt] &= memvalid;
1140                         masks[pc + 1 + filter[pc].jf] &= memvalid;
1141                         memvalid = ~0;
1142                         break;
1143                 }
1144         }
1145 error:
1146         kfree(masks);
1147         return ret;
1148 }
1149
1150 static bool chk_code_allowed(u16 code_to_probe)
1151 {
1152         static const bool codes[] = {
1153                 /* 32 bit ALU operations */
1154                 [BPF_ALU | BPF_ADD | BPF_K] = true,
1155                 [BPF_ALU | BPF_ADD | BPF_X] = true,
1156                 [BPF_ALU | BPF_SUB | BPF_K] = true,
1157                 [BPF_ALU | BPF_SUB | BPF_X] = true,
1158                 [BPF_ALU | BPF_MUL | BPF_K] = true,
1159                 [BPF_ALU | BPF_MUL | BPF_X] = true,
1160                 [BPF_ALU | BPF_DIV | BPF_K] = true,
1161                 [BPF_ALU | BPF_DIV | BPF_X] = true,
1162                 [BPF_ALU | BPF_MOD | BPF_K] = true,
1163                 [BPF_ALU | BPF_MOD | BPF_X] = true,
1164                 [BPF_ALU | BPF_AND | BPF_K] = true,
1165                 [BPF_ALU | BPF_AND | BPF_X] = true,
1166                 [BPF_ALU | BPF_OR | BPF_K] = true,
1167                 [BPF_ALU | BPF_OR | BPF_X] = true,
1168                 [BPF_ALU | BPF_XOR | BPF_K] = true,
1169                 [BPF_ALU | BPF_XOR | BPF_X] = true,
1170                 [BPF_ALU | BPF_LSH | BPF_K] = true,
1171                 [BPF_ALU | BPF_LSH | BPF_X] = true,
1172                 [BPF_ALU | BPF_RSH | BPF_K] = true,
1173                 [BPF_ALU | BPF_RSH | BPF_X] = true,
1174                 [BPF_ALU | BPF_NEG] = true,
1175                 /* Load instructions */
1176                 [BPF_LD | BPF_W | BPF_ABS] = true,
1177                 [BPF_LD | BPF_H | BPF_ABS] = true,
1178                 [BPF_LD | BPF_B | BPF_ABS] = true,
1179                 [BPF_LD | BPF_W | BPF_LEN] = true,
1180                 [BPF_LD | BPF_W | BPF_IND] = true,
1181                 [BPF_LD | BPF_H | BPF_IND] = true,
1182                 [BPF_LD | BPF_B | BPF_IND] = true,
1183                 [BPF_LD | BPF_IMM] = true,
1184                 [BPF_LD | BPF_MEM] = true,
1185                 [BPF_LDX | BPF_W | BPF_LEN] = true,
1186                 [BPF_LDX | BPF_B | BPF_MSH] = true,
1187                 [BPF_LDX | BPF_IMM] = true,
1188                 [BPF_LDX | BPF_MEM] = true,
1189                 /* Store instructions */
1190                 [BPF_ST] = true,
1191                 [BPF_STX] = true,
1192                 /* Misc instructions */
1193                 [BPF_MISC | BPF_TAX] = true,
1194                 [BPF_MISC | BPF_TXA] = true,
1195                 /* Return instructions */
1196                 [BPF_RET | BPF_K] = true,
1197                 [BPF_RET | BPF_A] = true,
1198                 /* Jump instructions */
1199                 [BPF_JMP | BPF_JA] = true,
1200                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1201                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1202                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1203                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1204                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1205                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1206                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1207                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1208         };
1209
1210         if (code_to_probe >= ARRAY_SIZE(codes))
1211                 return false;
1212
1213         return codes[code_to_probe];
1214 }
1215
1216 /**
1217  *      sk_chk_filter - verify socket filter code
1218  *      @filter: filter to verify
1219  *      @flen: length of filter
1220  *
1221  * Check the user's filter code. If we let some ugly
1222  * filter code slip through kaboom! The filter must contain
1223  * no references or jumps that are out of range, no illegal
1224  * instructions, and must end with a RET instruction.
1225  *
1226  * All jumps are forward as they are not signed.
1227  *
1228  * Returns 0 if the rule set is legal or -EINVAL if not.
1229  */
1230 int sk_chk_filter(struct sock_filter *filter, unsigned int flen)
1231 {
1232         bool anc_found;
1233         int pc;
1234
1235         if (flen == 0 || flen > BPF_MAXINSNS)
1236                 return -EINVAL;
1237
1238         /* Check the filter code now */
1239         for (pc = 0; pc < flen; pc++) {
1240                 struct sock_filter *ftest = &filter[pc];
1241
1242                 /* May we actually operate on this code? */
1243                 if (!chk_code_allowed(ftest->code))
1244                         return -EINVAL;
1245
1246                 /* Some instructions need special checks */
1247                 switch (ftest->code) {
1248                 case BPF_ALU | BPF_DIV | BPF_K:
1249                 case BPF_ALU | BPF_MOD | BPF_K:
1250                         /* Check for division by zero */
1251                         if (ftest->k == 0)
1252                                 return -EINVAL;
1253                         break;
1254                 case BPF_LD | BPF_MEM:
1255                 case BPF_LDX | BPF_MEM:
1256                 case BPF_ST:
1257                 case BPF_STX:
1258                         /* Check for invalid memory addresses */
1259                         if (ftest->k >= BPF_MEMWORDS)
1260                                 return -EINVAL;
1261                         break;
1262                 case BPF_JMP | BPF_JA:
1263                         /* Note, the large ftest->k might cause loops.
1264                          * Compare this with conditional jumps below,
1265                          * where offsets are limited. --ANK (981016)
1266                          */
1267                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1268                                 return -EINVAL;
1269                         break;
1270                 case BPF_JMP | BPF_JEQ | BPF_K:
1271                 case BPF_JMP | BPF_JEQ | BPF_X:
1272                 case BPF_JMP | BPF_JGE | BPF_K:
1273                 case BPF_JMP | BPF_JGE | BPF_X:
1274                 case BPF_JMP | BPF_JGT | BPF_K:
1275                 case BPF_JMP | BPF_JGT | BPF_X:
1276                 case BPF_JMP | BPF_JSET | BPF_K:
1277                 case BPF_JMP | BPF_JSET | BPF_X:
1278                         /* Both conditionals must be safe */
1279                         if (pc + ftest->jt + 1 >= flen ||
1280                             pc + ftest->jf + 1 >= flen)
1281                                 return -EINVAL;
1282                         break;
1283                 case BPF_LD | BPF_W | BPF_ABS:
1284                 case BPF_LD | BPF_H | BPF_ABS:
1285                 case BPF_LD | BPF_B | BPF_ABS:
1286                         anc_found = false;
1287                         if (bpf_anc_helper(ftest) & BPF_ANC)
1288                                 anc_found = true;
1289                         /* Ancillary operation unknown or unsupported */
1290                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1291                                 return -EINVAL;
1292                 }
1293         }
1294
1295         /* Last instruction must be a RET code */
1296         switch (filter[flen - 1].code) {
1297         case BPF_RET | BPF_K:
1298         case BPF_RET | BPF_A:
1299                 return check_load_and_stores(filter, flen);
1300         }
1301
1302         return -EINVAL;
1303 }
1304 EXPORT_SYMBOL(sk_chk_filter);
1305
1306 static int sk_store_orig_filter(struct sk_filter *fp,
1307                                 const struct sock_fprog *fprog)
1308 {
1309         unsigned int fsize = sk_filter_proglen(fprog);
1310         struct sock_fprog_kern *fkprog;
1311
1312         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1313         if (!fp->orig_prog)
1314                 return -ENOMEM;
1315
1316         fkprog = fp->orig_prog;
1317         fkprog->len = fprog->len;
1318         fkprog->filter = kmemdup(fp->insns, fsize, GFP_KERNEL);
1319         if (!fkprog->filter) {
1320                 kfree(fp->orig_prog);
1321                 return -ENOMEM;
1322         }
1323
1324         return 0;
1325 }
1326
1327 static void sk_release_orig_filter(struct sk_filter *fp)
1328 {
1329         struct sock_fprog_kern *fprog = fp->orig_prog;
1330
1331         if (fprog) {
1332                 kfree(fprog->filter);
1333                 kfree(fprog);
1334         }
1335 }
1336
1337 /**
1338  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1339  *      @rcu: rcu_head that contains the sk_filter to free
1340  */
1341 static void sk_filter_release_rcu(struct rcu_head *rcu)
1342 {
1343         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1344
1345         sk_release_orig_filter(fp);
1346         sk_filter_free(fp);
1347 }
1348
1349 /**
1350  *      sk_filter_release - release a socket filter
1351  *      @fp: filter to remove
1352  *
1353  *      Remove a filter from a socket and release its resources.
1354  */
1355 static void sk_filter_release(struct sk_filter *fp)
1356 {
1357         if (atomic_dec_and_test(&fp->refcnt))
1358                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1359 }
1360
1361 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1362 {
1363         atomic_sub(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1364         sk_filter_release(fp);
1365 }
1366
1367 void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1368 {
1369         atomic_inc(&fp->refcnt);
1370         atomic_add(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1371 }
1372
1373 static struct sk_filter *__sk_migrate_realloc(struct sk_filter *fp,
1374                                               struct sock *sk,
1375                                               unsigned int len)
1376 {
1377         struct sk_filter *fp_new;
1378
1379         if (sk == NULL)
1380                 return krealloc(fp, len, GFP_KERNEL);
1381
1382         fp_new = sock_kmalloc(sk, len, GFP_KERNEL);
1383         if (fp_new) {
1384                 *fp_new = *fp;
1385                 /* As we're keeping orig_prog in fp_new along,
1386                  * we need to make sure we're not evicting it
1387                  * from the old fp.
1388                  */
1389                 fp->orig_prog = NULL;
1390                 sk_filter_uncharge(sk, fp);
1391         }
1392
1393         return fp_new;
1394 }
1395
1396 static struct sk_filter *__sk_migrate_filter(struct sk_filter *fp,
1397                                              struct sock *sk)
1398 {
1399         struct sock_filter *old_prog;
1400         struct sk_filter *old_fp;
1401         int err, new_len, old_len = fp->len;
1402
1403         /* We are free to overwrite insns et al right here as it
1404          * won't be used at this point in time anymore internally
1405          * after the migration to the internal BPF instruction
1406          * representation.
1407          */
1408         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1409                      sizeof(struct sock_filter_int));
1410
1411         /* Conversion cannot happen on overlapping memory areas,
1412          * so we need to keep the user BPF around until the 2nd
1413          * pass. At this time, the user BPF is stored in fp->insns.
1414          */
1415         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1416                            GFP_KERNEL);
1417         if (!old_prog) {
1418                 err = -ENOMEM;
1419                 goto out_err;
1420         }
1421
1422         /* 1st pass: calculate the new program length. */
1423         err = sk_convert_filter(old_prog, old_len, NULL, &new_len);
1424         if (err)
1425                 goto out_err_free;
1426
1427         /* Expand fp for appending the new filter representation. */
1428         old_fp = fp;
1429         fp = __sk_migrate_realloc(old_fp, sk, sk_filter_size(new_len));
1430         if (!fp) {
1431                 /* The old_fp is still around in case we couldn't
1432                  * allocate new memory, so uncharge on that one.
1433                  */
1434                 fp = old_fp;
1435                 err = -ENOMEM;
1436                 goto out_err_free;
1437         }
1438
1439         fp->len = new_len;
1440
1441         /* 2nd pass: remap sock_filter insns into sock_filter_int insns. */
1442         err = sk_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
1443         if (err)
1444                 /* 2nd sk_convert_filter() can fail only if it fails
1445                  * to allocate memory, remapping must succeed. Note,
1446                  * that at this time old_fp has already been released
1447                  * by __sk_migrate_realloc().
1448                  */
1449                 goto out_err_free;
1450
1451         sk_filter_select_runtime(fp);
1452
1453         kfree(old_prog);
1454         return fp;
1455
1456 out_err_free:
1457         kfree(old_prog);
1458 out_err:
1459         /* Rollback filter setup. */
1460         if (sk != NULL)
1461                 sk_filter_uncharge(sk, fp);
1462         else
1463                 kfree(fp);
1464         return ERR_PTR(err);
1465 }
1466
1467 void __weak bpf_int_jit_compile(struct sk_filter *prog)
1468 {
1469 }
1470
1471 /**
1472  *      sk_filter_select_runtime - select execution runtime for BPF program
1473  *      @fp: sk_filter populated with internal BPF program
1474  *
1475  * try to JIT internal BPF program, if JIT is not available select interpreter
1476  * BPF program will be executed via SK_RUN_FILTER() macro
1477  */
1478 void sk_filter_select_runtime(struct sk_filter *fp)
1479 {
1480         fp->bpf_func = (void *) __sk_run_filter;
1481
1482         /* Probe if internal BPF can be JITed */
1483         bpf_int_jit_compile(fp);
1484 }
1485 EXPORT_SYMBOL_GPL(sk_filter_select_runtime);
1486
1487 /* free internal BPF program */
1488 void sk_filter_free(struct sk_filter *fp)
1489 {
1490         bpf_jit_free(fp);
1491 }
1492 EXPORT_SYMBOL_GPL(sk_filter_free);
1493
1494 static struct sk_filter *__sk_prepare_filter(struct sk_filter *fp,
1495                                              struct sock *sk)
1496 {
1497         int err;
1498
1499         fp->bpf_func = NULL;
1500         fp->jited = 0;
1501
1502         err = sk_chk_filter(fp->insns, fp->len);
1503         if (err) {
1504                 if (sk != NULL)
1505                         sk_filter_uncharge(sk, fp);
1506                 else
1507                         kfree(fp);
1508                 return ERR_PTR(err);
1509         }
1510
1511         /* Probe if we can JIT compile the filter and if so, do
1512          * the compilation of the filter.
1513          */
1514         bpf_jit_compile(fp);
1515
1516         /* JIT compiler couldn't process this filter, so do the
1517          * internal BPF translation for the optimized interpreter.
1518          */
1519         if (!fp->jited)
1520                 fp = __sk_migrate_filter(fp, sk);
1521
1522         return fp;
1523 }
1524
1525 /**
1526  *      sk_unattached_filter_create - create an unattached filter
1527  *      @fprog: the filter program
1528  *      @pfp: the unattached filter that is created
1529  *
1530  * Create a filter independent of any socket. We first run some
1531  * sanity checks on it to make sure it does not explode on us later.
1532  * If an error occurs or there is insufficient memory for the filter
1533  * a negative errno code is returned. On success the return is zero.
1534  */
1535 int sk_unattached_filter_create(struct sk_filter **pfp,
1536                                 struct sock_fprog_kern *fprog)
1537 {
1538         unsigned int fsize = sk_filter_proglen(fprog);
1539         struct sk_filter *fp;
1540
1541         /* Make sure new filter is there and in the right amounts. */
1542         if (fprog->filter == NULL)
1543                 return -EINVAL;
1544
1545         fp = kmalloc(sk_filter_size(fprog->len), GFP_KERNEL);
1546         if (!fp)
1547                 return -ENOMEM;
1548
1549         memcpy(fp->insns, fprog->filter, fsize);
1550
1551         atomic_set(&fp->refcnt, 1);
1552         fp->len = fprog->len;
1553         /* Since unattached filters are not copied back to user
1554          * space through sk_get_filter(), we do not need to hold
1555          * a copy here, and can spare us the work.
1556          */
1557         fp->orig_prog = NULL;
1558
1559         /* __sk_prepare_filter() already takes care of uncharging
1560          * memory in case something goes wrong.
1561          */
1562         fp = __sk_prepare_filter(fp, NULL);
1563         if (IS_ERR(fp))
1564                 return PTR_ERR(fp);
1565
1566         *pfp = fp;
1567         return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(sk_unattached_filter_create);
1570
1571 void sk_unattached_filter_destroy(struct sk_filter *fp)
1572 {
1573         sk_filter_release(fp);
1574 }
1575 EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy);
1576
1577 /**
1578  *      sk_attach_filter - attach a socket filter
1579  *      @fprog: the filter program
1580  *      @sk: the socket to use
1581  *
1582  * Attach the user's filter code. We first run some sanity checks on
1583  * it to make sure it does not explode on us later. If an error
1584  * occurs or there is insufficient memory for the filter a negative
1585  * errno code is returned. On success the return is zero.
1586  */
1587 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1588 {
1589         struct sk_filter *fp, *old_fp;
1590         unsigned int fsize = sk_filter_proglen(fprog);
1591         unsigned int sk_fsize = sk_filter_size(fprog->len);
1592         int err;
1593
1594         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1595                 return -EPERM;
1596
1597         /* Make sure new filter is there and in the right amounts. */
1598         if (fprog->filter == NULL)
1599                 return -EINVAL;
1600
1601         fp = sock_kmalloc(sk, sk_fsize, GFP_KERNEL);
1602         if (!fp)
1603                 return -ENOMEM;
1604
1605         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1606                 sock_kfree_s(sk, fp, sk_fsize);
1607                 return -EFAULT;
1608         }
1609
1610         atomic_set(&fp->refcnt, 1);
1611         fp->len = fprog->len;
1612
1613         err = sk_store_orig_filter(fp, fprog);
1614         if (err) {
1615                 sk_filter_uncharge(sk, fp);
1616                 return -ENOMEM;
1617         }
1618
1619         /* __sk_prepare_filter() already takes care of uncharging
1620          * memory in case something goes wrong.
1621          */
1622         fp = __sk_prepare_filter(fp, sk);
1623         if (IS_ERR(fp))
1624                 return PTR_ERR(fp);
1625
1626         old_fp = rcu_dereference_protected(sk->sk_filter,
1627                                            sock_owned_by_user(sk));
1628         rcu_assign_pointer(sk->sk_filter, fp);
1629
1630         if (old_fp)
1631                 sk_filter_uncharge(sk, old_fp);
1632
1633         return 0;
1634 }
1635 EXPORT_SYMBOL_GPL(sk_attach_filter);
1636
1637 int sk_detach_filter(struct sock *sk)
1638 {
1639         int ret = -ENOENT;
1640         struct sk_filter *filter;
1641
1642         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1643                 return -EPERM;
1644
1645         filter = rcu_dereference_protected(sk->sk_filter,
1646                                            sock_owned_by_user(sk));
1647         if (filter) {
1648                 RCU_INIT_POINTER(sk->sk_filter, NULL);
1649                 sk_filter_uncharge(sk, filter);
1650                 ret = 0;
1651         }
1652
1653         return ret;
1654 }
1655 EXPORT_SYMBOL_GPL(sk_detach_filter);
1656
1657 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
1658                   unsigned int len)
1659 {
1660         struct sock_fprog_kern *fprog;
1661         struct sk_filter *filter;
1662         int ret = 0;
1663
1664         lock_sock(sk);
1665         filter = rcu_dereference_protected(sk->sk_filter,
1666                                            sock_owned_by_user(sk));
1667         if (!filter)
1668                 goto out;
1669
1670         /* We're copying the filter that has been originally attached,
1671          * so no conversion/decode needed anymore.
1672          */
1673         fprog = filter->orig_prog;
1674
1675         ret = fprog->len;
1676         if (!len)
1677                 /* User space only enquires number of filter blocks. */
1678                 goto out;
1679
1680         ret = -EINVAL;
1681         if (len < fprog->len)
1682                 goto out;
1683
1684         ret = -EFAULT;
1685         if (copy_to_user(ubuf, fprog->filter, sk_filter_proglen(fprog)))
1686                 goto out;
1687
1688         /* Instead of bytes, the API requests to return the number
1689          * of filter blocks.
1690          */
1691         ret = fprog->len;
1692 out:
1693         release_sock(sk);
1694         return ret;
1695 }