rose: limit sk_filter trim to payload
[pandora-kernel.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Author:
5  *     Jay Schulist <jschlst@samba.org>
6  *
7  * Based on the design of:
8  *     - The Berkeley Packet Filter
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Andi Kleen - Fix a few bad bugs and races.
16  * Kris Katterjohn - Added many additional checks in sk_chk_filter()
17  */
18
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/mm.h>
22 #include <linux/fcntl.h>
23 #include <linux/socket.h>
24 #include <linux/in.h>
25 #include <linux/inet.h>
26 #include <linux/netdevice.h>
27 #include <linux/if_packet.h>
28 #include <linux/gfp.h>
29 #include <net/ip.h>
30 #include <net/protocol.h>
31 #include <net/netlink.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <linux/errno.h>
35 #include <linux/timer.h>
36 #include <asm/system.h>
37 #include <asm/uaccess.h>
38 #include <asm/unaligned.h>
39 #include <linux/filter.h>
40 #include <linux/reciprocal_div.h>
41 #include <linux/ratelimit.h>
42
43 /* No hurry in this branch */
44 static void *__load_pointer(const struct sk_buff *skb, int k, unsigned int size)
45 {
46         u8 *ptr = NULL;
47
48         if (k >= SKF_NET_OFF)
49                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
50         else if (k >= SKF_LL_OFF)
51                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
52
53         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
54                 return ptr;
55         return NULL;
56 }
57
58 static inline void *load_pointer(const struct sk_buff *skb, int k,
59                                  unsigned int size, void *buffer)
60 {
61         if (k >= 0)
62                 return skb_header_pointer(skb, k, size, buffer);
63         return __load_pointer(skb, k, size);
64 }
65
66 /**
67  *      sk_filter_trim_cap - run a packet through a socket filter
68  *      @sk: sock associated with &sk_buff
69  *      @skb: buffer to filter
70  *      @cap: limit on how short the eBPF program may trim the packet
71  *
72  * Run the filter code and then cut skb->data to correct size returned by
73  * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
74  * than pkt_len we keep whole skb->data. This is the socket level
75  * wrapper to sk_run_filter. It returns 0 if the packet should
76  * be accepted or -EPERM if the packet should be tossed.
77  *
78  */
79 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
80 {
81         int err;
82         struct sk_filter *filter;
83
84         err = security_sock_rcv_skb(sk, skb);
85         if (err)
86                 return err;
87
88         rcu_read_lock();
89         filter = rcu_dereference(sk->sk_filter);
90         if (filter) {
91                 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
92                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
93         }
94         rcu_read_unlock();
95
96         return err;
97 }
98 EXPORT_SYMBOL(sk_filter_trim_cap);
99
100 /**
101  *      sk_run_filter - run a filter on a socket
102  *      @skb: buffer to run the filter on
103  *      @fentry: filter to apply
104  *
105  * Decode and apply filter instructions to the skb->data.
106  * Return length to keep, 0 for none. @skb is the data we are
107  * filtering, @filter is the array of filter instructions.
108  * Because all jumps are guaranteed to be before last instruction,
109  * and last instruction guaranteed to be a RET, we dont need to check
110  * flen. (We used to pass to this function the length of filter)
111  */
112 unsigned int sk_run_filter(const struct sk_buff *skb,
113                            const struct sock_filter *fentry)
114 {
115         void *ptr;
116         u32 A = 0;                      /* Accumulator */
117         u32 X = 0;                      /* Index Register */
118         u32 mem[BPF_MEMWORDS];          /* Scratch Memory Store */
119         u32 tmp;
120         int k;
121
122         /*
123          * Process array of filter instructions.
124          */
125         for (;; fentry++) {
126 #if defined(CONFIG_X86_32)
127 #define K (fentry->k)
128 #else
129                 const u32 K = fentry->k;
130 #endif
131
132                 switch (fentry->code) {
133                 case BPF_S_ALU_ADD_X:
134                         A += X;
135                         continue;
136                 case BPF_S_ALU_ADD_K:
137                         A += K;
138                         continue;
139                 case BPF_S_ALU_SUB_X:
140                         A -= X;
141                         continue;
142                 case BPF_S_ALU_SUB_K:
143                         A -= K;
144                         continue;
145                 case BPF_S_ALU_MUL_X:
146                         A *= X;
147                         continue;
148                 case BPF_S_ALU_MUL_K:
149                         A *= K;
150                         continue;
151                 case BPF_S_ALU_DIV_X:
152                         if (X == 0)
153                                 return 0;
154                         A /= X;
155                         continue;
156                 case BPF_S_ALU_DIV_K:
157                         A = reciprocal_divide(A, K);
158                         continue;
159                 case BPF_S_ALU_AND_X:
160                         A &= X;
161                         continue;
162                 case BPF_S_ALU_AND_K:
163                         A &= K;
164                         continue;
165                 case BPF_S_ALU_OR_X:
166                         A |= X;
167                         continue;
168                 case BPF_S_ALU_OR_K:
169                         A |= K;
170                         continue;
171                 case BPF_S_ALU_LSH_X:
172                         A <<= X;
173                         continue;
174                 case BPF_S_ALU_LSH_K:
175                         A <<= K;
176                         continue;
177                 case BPF_S_ALU_RSH_X:
178                         A >>= X;
179                         continue;
180                 case BPF_S_ALU_RSH_K:
181                         A >>= K;
182                         continue;
183                 case BPF_S_ALU_NEG:
184                         A = -A;
185                         continue;
186                 case BPF_S_JMP_JA:
187                         fentry += K;
188                         continue;
189                 case BPF_S_JMP_JGT_K:
190                         fentry += (A > K) ? fentry->jt : fentry->jf;
191                         continue;
192                 case BPF_S_JMP_JGE_K:
193                         fentry += (A >= K) ? fentry->jt : fentry->jf;
194                         continue;
195                 case BPF_S_JMP_JEQ_K:
196                         fentry += (A == K) ? fentry->jt : fentry->jf;
197                         continue;
198                 case BPF_S_JMP_JSET_K:
199                         fentry += (A & K) ? fentry->jt : fentry->jf;
200                         continue;
201                 case BPF_S_JMP_JGT_X:
202                         fentry += (A > X) ? fentry->jt : fentry->jf;
203                         continue;
204                 case BPF_S_JMP_JGE_X:
205                         fentry += (A >= X) ? fentry->jt : fentry->jf;
206                         continue;
207                 case BPF_S_JMP_JEQ_X:
208                         fentry += (A == X) ? fentry->jt : fentry->jf;
209                         continue;
210                 case BPF_S_JMP_JSET_X:
211                         fentry += (A & X) ? fentry->jt : fentry->jf;
212                         continue;
213                 case BPF_S_LD_W_ABS:
214                         k = K;
215 load_w:
216                         ptr = load_pointer(skb, k, 4, &tmp);
217                         if (ptr != NULL) {
218                                 A = get_unaligned_be32(ptr);
219                                 continue;
220                         }
221                         return 0;
222                 case BPF_S_LD_H_ABS:
223                         k = K;
224 load_h:
225                         ptr = load_pointer(skb, k, 2, &tmp);
226                         if (ptr != NULL) {
227                                 A = get_unaligned_be16(ptr);
228                                 continue;
229                         }
230                         return 0;
231                 case BPF_S_LD_B_ABS:
232                         k = K;
233 load_b:
234                         ptr = load_pointer(skb, k, 1, &tmp);
235                         if (ptr != NULL) {
236                                 A = *(u8 *)ptr;
237                                 continue;
238                         }
239                         return 0;
240                 case BPF_S_LD_W_LEN:
241                         A = skb->len;
242                         continue;
243                 case BPF_S_LDX_W_LEN:
244                         X = skb->len;
245                         continue;
246                 case BPF_S_LD_W_IND:
247                         k = X + K;
248                         goto load_w;
249                 case BPF_S_LD_H_IND:
250                         k = X + K;
251                         goto load_h;
252                 case BPF_S_LD_B_IND:
253                         k = X + K;
254                         goto load_b;
255                 case BPF_S_LDX_B_MSH:
256                         ptr = load_pointer(skb, K, 1, &tmp);
257                         if (ptr != NULL) {
258                                 X = (*(u8 *)ptr & 0xf) << 2;
259                                 continue;
260                         }
261                         return 0;
262                 case BPF_S_LD_IMM:
263                         A = K;
264                         continue;
265                 case BPF_S_LDX_IMM:
266                         X = K;
267                         continue;
268                 case BPF_S_LD_MEM:
269                         A = mem[K];
270                         continue;
271                 case BPF_S_LDX_MEM:
272                         X = mem[K];
273                         continue;
274                 case BPF_S_MISC_TAX:
275                         X = A;
276                         continue;
277                 case BPF_S_MISC_TXA:
278                         A = X;
279                         continue;
280                 case BPF_S_RET_K:
281                         return K;
282                 case BPF_S_RET_A:
283                         return A;
284                 case BPF_S_ST:
285                         mem[K] = A;
286                         continue;
287                 case BPF_S_STX:
288                         mem[K] = X;
289                         continue;
290                 case BPF_S_ANC_PROTOCOL:
291                         A = ntohs(skb->protocol);
292                         continue;
293                 case BPF_S_ANC_PKTTYPE:
294                         A = skb->pkt_type;
295                         continue;
296                 case BPF_S_ANC_IFINDEX:
297                         if (!skb->dev)
298                                 return 0;
299                         A = skb->dev->ifindex;
300                         continue;
301                 case BPF_S_ANC_MARK:
302                         A = skb->mark;
303                         continue;
304                 case BPF_S_ANC_QUEUE:
305                         A = skb->queue_mapping;
306                         continue;
307                 case BPF_S_ANC_HATYPE:
308                         if (!skb->dev)
309                                 return 0;
310                         A = skb->dev->type;
311                         continue;
312                 case BPF_S_ANC_RXHASH:
313                         A = skb->rxhash;
314                         continue;
315                 case BPF_S_ANC_CPU:
316                         A = raw_smp_processor_id();
317                         continue;
318                 case BPF_S_ANC_NLATTR: {
319                         struct nlattr *nla;
320
321                         if (skb_is_nonlinear(skb))
322                                 return 0;
323                         if (skb->len < sizeof(struct nlattr))
324                                 return 0;
325                         if (A > skb->len - sizeof(struct nlattr))
326                                 return 0;
327
328                         nla = nla_find((struct nlattr *)&skb->data[A],
329                                        skb->len - A, X);
330                         if (nla)
331                                 A = (void *)nla - (void *)skb->data;
332                         else
333                                 A = 0;
334                         continue;
335                 }
336                 case BPF_S_ANC_NLATTR_NEST: {
337                         struct nlattr *nla;
338
339                         if (skb_is_nonlinear(skb))
340                                 return 0;
341                         if (skb->len < sizeof(struct nlattr))
342                                 return 0;
343                         if (A > skb->len - sizeof(struct nlattr))
344                                 return 0;
345
346                         nla = (struct nlattr *)&skb->data[A];
347                         if (nla->nla_len > skb->len - A)
348                                 return 0;
349
350                         nla = nla_find_nested(nla, X);
351                         if (nla)
352                                 A = (void *)nla - (void *)skb->data;
353                         else
354                                 A = 0;
355                         continue;
356                 }
357                 default:
358                         WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
359                                        fentry->code, fentry->jt,
360                                        fentry->jf, fentry->k);
361                         return 0;
362                 }
363         }
364
365         return 0;
366 }
367 EXPORT_SYMBOL(sk_run_filter);
368
369 /*
370  * Security :
371  * A BPF program is able to use 16 cells of memory to store intermediate
372  * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter())
373  * As we dont want to clear mem[] array for each packet going through
374  * sk_run_filter(), we check that filter loaded by user never try to read
375  * a cell if not previously written, and we check all branches to be sure
376  * a malicious user doesn't try to abuse us.
377  */
378 static int check_load_and_stores(struct sock_filter *filter, int flen)
379 {
380         u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */
381         int pc, ret = 0;
382
383         BUILD_BUG_ON(BPF_MEMWORDS > 16);
384         masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
385         if (!masks)
386                 return -ENOMEM;
387         memset(masks, 0xff, flen * sizeof(*masks));
388
389         for (pc = 0; pc < flen; pc++) {
390                 memvalid &= masks[pc];
391
392                 switch (filter[pc].code) {
393                 case BPF_S_ST:
394                 case BPF_S_STX:
395                         memvalid |= (1 << filter[pc].k);
396                         break;
397                 case BPF_S_LD_MEM:
398                 case BPF_S_LDX_MEM:
399                         if (!(memvalid & (1 << filter[pc].k))) {
400                                 ret = -EINVAL;
401                                 goto error;
402                         }
403                         break;
404                 case BPF_S_JMP_JA:
405                         /* a jump must set masks on target */
406                         masks[pc + 1 + filter[pc].k] &= memvalid;
407                         memvalid = ~0;
408                         break;
409                 case BPF_S_JMP_JEQ_K:
410                 case BPF_S_JMP_JEQ_X:
411                 case BPF_S_JMP_JGE_K:
412                 case BPF_S_JMP_JGE_X:
413                 case BPF_S_JMP_JGT_K:
414                 case BPF_S_JMP_JGT_X:
415                 case BPF_S_JMP_JSET_X:
416                 case BPF_S_JMP_JSET_K:
417                         /* a jump must set masks on targets */
418                         masks[pc + 1 + filter[pc].jt] &= memvalid;
419                         masks[pc + 1 + filter[pc].jf] &= memvalid;
420                         memvalid = ~0;
421                         break;
422                 }
423         }
424 error:
425         kfree(masks);
426         return ret;
427 }
428
429 /**
430  *      sk_chk_filter - verify socket filter code
431  *      @filter: filter to verify
432  *      @flen: length of filter
433  *
434  * Check the user's filter code. If we let some ugly
435  * filter code slip through kaboom! The filter must contain
436  * no references or jumps that are out of range, no illegal
437  * instructions, and must end with a RET instruction.
438  *
439  * All jumps are forward as they are not signed.
440  *
441  * Returns 0 if the rule set is legal or -EINVAL if not.
442  */
443 int sk_chk_filter(struct sock_filter *filter, unsigned int flen)
444 {
445         /*
446          * Valid instructions are initialized to non-0.
447          * Invalid instructions are initialized to 0.
448          */
449         static const u8 codes[] = {
450                 [BPF_ALU|BPF_ADD|BPF_K]  = BPF_S_ALU_ADD_K,
451                 [BPF_ALU|BPF_ADD|BPF_X]  = BPF_S_ALU_ADD_X,
452                 [BPF_ALU|BPF_SUB|BPF_K]  = BPF_S_ALU_SUB_K,
453                 [BPF_ALU|BPF_SUB|BPF_X]  = BPF_S_ALU_SUB_X,
454                 [BPF_ALU|BPF_MUL|BPF_K]  = BPF_S_ALU_MUL_K,
455                 [BPF_ALU|BPF_MUL|BPF_X]  = BPF_S_ALU_MUL_X,
456                 [BPF_ALU|BPF_DIV|BPF_X]  = BPF_S_ALU_DIV_X,
457                 [BPF_ALU|BPF_AND|BPF_K]  = BPF_S_ALU_AND_K,
458                 [BPF_ALU|BPF_AND|BPF_X]  = BPF_S_ALU_AND_X,
459                 [BPF_ALU|BPF_OR|BPF_K]   = BPF_S_ALU_OR_K,
460                 [BPF_ALU|BPF_OR|BPF_X]   = BPF_S_ALU_OR_X,
461                 [BPF_ALU|BPF_LSH|BPF_K]  = BPF_S_ALU_LSH_K,
462                 [BPF_ALU|BPF_LSH|BPF_X]  = BPF_S_ALU_LSH_X,
463                 [BPF_ALU|BPF_RSH|BPF_K]  = BPF_S_ALU_RSH_K,
464                 [BPF_ALU|BPF_RSH|BPF_X]  = BPF_S_ALU_RSH_X,
465                 [BPF_ALU|BPF_NEG]        = BPF_S_ALU_NEG,
466                 [BPF_LD|BPF_W|BPF_ABS]   = BPF_S_LD_W_ABS,
467                 [BPF_LD|BPF_H|BPF_ABS]   = BPF_S_LD_H_ABS,
468                 [BPF_LD|BPF_B|BPF_ABS]   = BPF_S_LD_B_ABS,
469                 [BPF_LD|BPF_W|BPF_LEN]   = BPF_S_LD_W_LEN,
470                 [BPF_LD|BPF_W|BPF_IND]   = BPF_S_LD_W_IND,
471                 [BPF_LD|BPF_H|BPF_IND]   = BPF_S_LD_H_IND,
472                 [BPF_LD|BPF_B|BPF_IND]   = BPF_S_LD_B_IND,
473                 [BPF_LD|BPF_IMM]         = BPF_S_LD_IMM,
474                 [BPF_LDX|BPF_W|BPF_LEN]  = BPF_S_LDX_W_LEN,
475                 [BPF_LDX|BPF_B|BPF_MSH]  = BPF_S_LDX_B_MSH,
476                 [BPF_LDX|BPF_IMM]        = BPF_S_LDX_IMM,
477                 [BPF_MISC|BPF_TAX]       = BPF_S_MISC_TAX,
478                 [BPF_MISC|BPF_TXA]       = BPF_S_MISC_TXA,
479                 [BPF_RET|BPF_K]          = BPF_S_RET_K,
480                 [BPF_RET|BPF_A]          = BPF_S_RET_A,
481                 [BPF_ALU|BPF_DIV|BPF_K]  = BPF_S_ALU_DIV_K,
482                 [BPF_LD|BPF_MEM]         = BPF_S_LD_MEM,
483                 [BPF_LDX|BPF_MEM]        = BPF_S_LDX_MEM,
484                 [BPF_ST]                 = BPF_S_ST,
485                 [BPF_STX]                = BPF_S_STX,
486                 [BPF_JMP|BPF_JA]         = BPF_S_JMP_JA,
487                 [BPF_JMP|BPF_JEQ|BPF_K]  = BPF_S_JMP_JEQ_K,
488                 [BPF_JMP|BPF_JEQ|BPF_X]  = BPF_S_JMP_JEQ_X,
489                 [BPF_JMP|BPF_JGE|BPF_K]  = BPF_S_JMP_JGE_K,
490                 [BPF_JMP|BPF_JGE|BPF_X]  = BPF_S_JMP_JGE_X,
491                 [BPF_JMP|BPF_JGT|BPF_K]  = BPF_S_JMP_JGT_K,
492                 [BPF_JMP|BPF_JGT|BPF_X]  = BPF_S_JMP_JGT_X,
493                 [BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
494                 [BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
495         };
496         int pc;
497
498         if (flen == 0 || flen > BPF_MAXINSNS)
499                 return -EINVAL;
500
501         /* check the filter code now */
502         for (pc = 0; pc < flen; pc++) {
503                 struct sock_filter *ftest = &filter[pc];
504                 u16 code = ftest->code;
505
506                 if (code >= ARRAY_SIZE(codes))
507                         return -EINVAL;
508                 code = codes[code];
509                 if (!code)
510                         return -EINVAL;
511                 /* Some instructions need special checks */
512                 switch (code) {
513                 case BPF_S_ALU_DIV_K:
514                         /* check for division by zero */
515                         if (ftest->k == 0)
516                                 return -EINVAL;
517                         ftest->k = reciprocal_value(ftest->k);
518                         break;
519                 case BPF_S_LD_MEM:
520                 case BPF_S_LDX_MEM:
521                 case BPF_S_ST:
522                 case BPF_S_STX:
523                         /* check for invalid memory addresses */
524                         if (ftest->k >= BPF_MEMWORDS)
525                                 return -EINVAL;
526                         break;
527                 case BPF_S_JMP_JA:
528                         /*
529                          * Note, the large ftest->k might cause loops.
530                          * Compare this with conditional jumps below,
531                          * where offsets are limited. --ANK (981016)
532                          */
533                         if (ftest->k >= (unsigned)(flen-pc-1))
534                                 return -EINVAL;
535                         break;
536                 case BPF_S_JMP_JEQ_K:
537                 case BPF_S_JMP_JEQ_X:
538                 case BPF_S_JMP_JGE_K:
539                 case BPF_S_JMP_JGE_X:
540                 case BPF_S_JMP_JGT_K:
541                 case BPF_S_JMP_JGT_X:
542                 case BPF_S_JMP_JSET_X:
543                 case BPF_S_JMP_JSET_K:
544                         /* for conditionals both must be safe */
545                         if (pc + ftest->jt + 1 >= flen ||
546                             pc + ftest->jf + 1 >= flen)
547                                 return -EINVAL;
548                         break;
549                 case BPF_S_LD_W_ABS:
550                 case BPF_S_LD_H_ABS:
551                 case BPF_S_LD_B_ABS:
552 #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE:        \
553                                 code = BPF_S_ANC_##CODE;        \
554                                 break
555                         switch (ftest->k) {
556                         ANCILLARY(PROTOCOL);
557                         ANCILLARY(PKTTYPE);
558                         ANCILLARY(IFINDEX);
559                         ANCILLARY(NLATTR);
560                         ANCILLARY(NLATTR_NEST);
561                         ANCILLARY(MARK);
562                         ANCILLARY(QUEUE);
563                         ANCILLARY(HATYPE);
564                         ANCILLARY(RXHASH);
565                         ANCILLARY(CPU);
566                         }
567                 }
568                 ftest->code = code;
569         }
570
571         /* last instruction must be a RET code */
572         switch (filter[flen - 1].code) {
573         case BPF_S_RET_K:
574         case BPF_S_RET_A:
575                 return check_load_and_stores(filter, flen);
576         }
577         return -EINVAL;
578 }
579 EXPORT_SYMBOL(sk_chk_filter);
580
581 /**
582  *      sk_filter_release_rcu - Release a socket filter by rcu_head
583  *      @rcu: rcu_head that contains the sk_filter to free
584  */
585 void sk_filter_release_rcu(struct rcu_head *rcu)
586 {
587         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
588
589         bpf_jit_free(fp);
590         kfree(fp);
591 }
592 EXPORT_SYMBOL(sk_filter_release_rcu);
593
594 /**
595  *      sk_attach_filter - attach a socket filter
596  *      @fprog: the filter program
597  *      @sk: the socket to use
598  *
599  * Attach the user's filter code. We first run some sanity checks on
600  * it to make sure it does not explode on us later. If an error
601  * occurs or there is insufficient memory for the filter a negative
602  * errno code is returned. On success the return is zero.
603  */
604 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
605 {
606         struct sk_filter *fp, *old_fp;
607         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
608         int err;
609
610         /* Make sure new filter is there and in the right amounts. */
611         if (fprog->filter == NULL)
612                 return -EINVAL;
613
614         fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
615         if (!fp)
616                 return -ENOMEM;
617         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
618                 sock_kfree_s(sk, fp, fsize+sizeof(*fp));
619                 return -EFAULT;
620         }
621
622         atomic_set(&fp->refcnt, 1);
623         fp->len = fprog->len;
624         fp->bpf_func = sk_run_filter;
625
626         err = sk_chk_filter(fp->insns, fp->len);
627         if (err) {
628                 sk_filter_uncharge(sk, fp);
629                 return err;
630         }
631
632         bpf_jit_compile(fp);
633
634         old_fp = rcu_dereference_protected(sk->sk_filter,
635                                            sock_owned_by_user(sk));
636         rcu_assign_pointer(sk->sk_filter, fp);
637
638         if (old_fp)
639                 sk_filter_uncharge(sk, old_fp);
640         return 0;
641 }
642 EXPORT_SYMBOL_GPL(sk_attach_filter);
643
644 int sk_detach_filter(struct sock *sk)
645 {
646         int ret = -ENOENT;
647         struct sk_filter *filter;
648
649         filter = rcu_dereference_protected(sk->sk_filter,
650                                            sock_owned_by_user(sk));
651         if (filter) {
652                 RCU_INIT_POINTER(sk->sk_filter, NULL);
653                 sk_filter_uncharge(sk, filter);
654                 ret = 0;
655         }
656         return ret;
657 }
658 EXPORT_SYMBOL_GPL(sk_detach_filter);