Merge tag 'for-v3.20' of git://git.infradead.org/battery-2.6
[pandora-kernel.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;       /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155                                          struct net_device *dev,
156                                          struct netdev_notifier_info *info);
157
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190         while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208         spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215         spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222         struct net *net = dev_net(dev);
223
224         ASSERT_RTNL();
225
226         write_lock_bh(&dev_base_lock);
227         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229         hlist_add_head_rcu(&dev->index_hlist,
230                            dev_index_hash(net, dev->ifindex));
231         write_unlock_bh(&dev_base_lock);
232
233         dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237  * caller must respect a RCU grace period before freeing/reusing dev
238  */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241         ASSERT_RTNL();
242
243         /* Unlink dev from the device chain */
244         write_lock_bh(&dev_base_lock);
245         list_del_rcu(&dev->dev_list);
246         hlist_del_rcu(&dev->name_hlist);
247         hlist_del_rcu(&dev->index_hlist);
248         write_unlock_bh(&dev_base_lock);
249
250         dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254  *      Our notifier list
255  */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260  *      Device drivers call our routines to queue packets here. We empty the
261  *      queue in the local softnet handler.
262  */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270  * according to dev->type
271  */
272 static const unsigned short netdev_lock_type[] =
273         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311         int i;
312
313         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314                 if (netdev_lock_type[i] == dev_type)
315                         return i;
316         /* the last key is used by default */
317         return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321                                                  unsigned short dev_type)
322 {
323         int i;
324
325         i = netdev_lock_pos(dev_type);
326         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327                                    netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332         int i;
333
334         i = netdev_lock_pos(dev->type);
335         lockdep_set_class_and_name(&dev->addr_list_lock,
336                                    &netdev_addr_lock_key[i],
337                                    netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341                                                  unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351                 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356  *      Add a protocol ID to the list. Now that the input handler is
357  *      smarter we can dispense with all the messy stuff that used to be
358  *      here.
359  *
360  *      BEWARE!!! Protocol handlers, mangling input packets,
361  *      MUST BE last in hash buckets and checking protocol handlers
362  *      MUST start from promiscuous ptype_all chain in net_bh.
363  *      It is true now, do not change it.
364  *      Explanation follows: if protocol handler, mangling packet, will
365  *      be the first on list, it is not able to sense, that packet
366  *      is cloned and should be copied-on-write, so that it will
367  *      change it and subsequent readers will get broken packet.
368  *                                                      --ANK (980803)
369  */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373         if (pt->type == htons(ETH_P_ALL))
374                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375         else
376                 return pt->dev ? &pt->dev->ptype_specific :
377                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379
380 /**
381  *      dev_add_pack - add packet handler
382  *      @pt: packet type declaration
383  *
384  *      Add a protocol handler to the networking stack. The passed &packet_type
385  *      is linked into kernel lists and may not be freed until it has been
386  *      removed from the kernel lists.
387  *
388  *      This call does not sleep therefore it can not
389  *      guarantee all CPU's that are in middle of receiving packets
390  *      will see the new packet type (until the next received packet).
391  */
392
393 void dev_add_pack(struct packet_type *pt)
394 {
395         struct list_head *head = ptype_head(pt);
396
397         spin_lock(&ptype_lock);
398         list_add_rcu(&pt->list, head);
399         spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402
403 /**
404  *      __dev_remove_pack        - remove packet handler
405  *      @pt: packet type declaration
406  *
407  *      Remove a protocol handler that was previously added to the kernel
408  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
409  *      from the kernel lists and can be freed or reused once this function
410  *      returns.
411  *
412  *      The packet type might still be in use by receivers
413  *      and must not be freed until after all the CPU's have gone
414  *      through a quiescent state.
415  */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418         struct list_head *head = ptype_head(pt);
419         struct packet_type *pt1;
420
421         spin_lock(&ptype_lock);
422
423         list_for_each_entry(pt1, head, list) {
424                 if (pt == pt1) {
425                         list_del_rcu(&pt->list);
426                         goto out;
427                 }
428         }
429
430         pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432         spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435
436 /**
437  *      dev_remove_pack  - remove packet handler
438  *      @pt: packet type declaration
439  *
440  *      Remove a protocol handler that was previously added to the kernel
441  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
442  *      from the kernel lists and can be freed or reused once this function
443  *      returns.
444  *
445  *      This call sleeps to guarantee that no CPU is looking at the packet
446  *      type after return.
447  */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450         __dev_remove_pack(pt);
451
452         synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455
456
457 /**
458  *      dev_add_offload - register offload handlers
459  *      @po: protocol offload declaration
460  *
461  *      Add protocol offload handlers to the networking stack. The passed
462  *      &proto_offload is linked into kernel lists and may not be freed until
463  *      it has been removed from the kernel lists.
464  *
465  *      This call does not sleep therefore it can not
466  *      guarantee all CPU's that are in middle of receiving packets
467  *      will see the new offload handlers (until the next received packet).
468  */
469 void dev_add_offload(struct packet_offload *po)
470 {
471         struct list_head *head = &offload_base;
472
473         spin_lock(&offload_lock);
474         list_add_rcu(&po->list, head);
475         spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478
479 /**
480  *      __dev_remove_offload     - remove offload handler
481  *      @po: packet offload declaration
482  *
483  *      Remove a protocol offload handler that was previously added to the
484  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
485  *      is removed from the kernel lists and can be freed or reused once this
486  *      function returns.
487  *
488  *      The packet type might still be in use by receivers
489  *      and must not be freed until after all the CPU's have gone
490  *      through a quiescent state.
491  */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494         struct list_head *head = &offload_base;
495         struct packet_offload *po1;
496
497         spin_lock(&offload_lock);
498
499         list_for_each_entry(po1, head, list) {
500                 if (po == po1) {
501                         list_del_rcu(&po->list);
502                         goto out;
503                 }
504         }
505
506         pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508         spin_unlock(&offload_lock);
509 }
510
511 /**
512  *      dev_remove_offload       - remove packet offload handler
513  *      @po: packet offload declaration
514  *
515  *      Remove a packet offload handler that was previously added to the kernel
516  *      offload handlers by dev_add_offload(). The passed &offload_type is
517  *      removed from the kernel lists and can be freed or reused once this
518  *      function returns.
519  *
520  *      This call sleeps to guarantee that no CPU is looking at the packet
521  *      type after return.
522  */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525         __dev_remove_offload(po);
526
527         synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530
531 /******************************************************************************
532
533                       Device Boot-time Settings Routines
534
535 *******************************************************************************/
536
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540 /**
541  *      netdev_boot_setup_add   - add new setup entry
542  *      @name: name of the device
543  *      @map: configured settings for the device
544  *
545  *      Adds new setup entry to the dev_boot_setup list.  The function
546  *      returns 0 on error and 1 on success.  This is a generic routine to
547  *      all netdevices.
548  */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551         struct netdev_boot_setup *s;
552         int i;
553
554         s = dev_boot_setup;
555         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557                         memset(s[i].name, 0, sizeof(s[i].name));
558                         strlcpy(s[i].name, name, IFNAMSIZ);
559                         memcpy(&s[i].map, map, sizeof(s[i].map));
560                         break;
561                 }
562         }
563
564         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566
567 /**
568  *      netdev_boot_setup_check - check boot time settings
569  *      @dev: the netdevice
570  *
571  *      Check boot time settings for the device.
572  *      The found settings are set for the device to be used
573  *      later in the device probing.
574  *      Returns 0 if no settings found, 1 if they are.
575  */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578         struct netdev_boot_setup *s = dev_boot_setup;
579         int i;
580
581         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583                     !strcmp(dev->name, s[i].name)) {
584                         dev->irq        = s[i].map.irq;
585                         dev->base_addr  = s[i].map.base_addr;
586                         dev->mem_start  = s[i].map.mem_start;
587                         dev->mem_end    = s[i].map.mem_end;
588                         return 1;
589                 }
590         }
591         return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594
595
596 /**
597  *      netdev_boot_base        - get address from boot time settings
598  *      @prefix: prefix for network device
599  *      @unit: id for network device
600  *
601  *      Check boot time settings for the base address of device.
602  *      The found settings are set for the device to be used
603  *      later in the device probing.
604  *      Returns 0 if no settings found.
605  */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608         const struct netdev_boot_setup *s = dev_boot_setup;
609         char name[IFNAMSIZ];
610         int i;
611
612         sprintf(name, "%s%d", prefix, unit);
613
614         /*
615          * If device already registered then return base of 1
616          * to indicate not to probe for this interface
617          */
618         if (__dev_get_by_name(&init_net, name))
619                 return 1;
620
621         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622                 if (!strcmp(name, s[i].name))
623                         return s[i].map.base_addr;
624         return 0;
625 }
626
627 /*
628  * Saves at boot time configured settings for any netdevice.
629  */
630 int __init netdev_boot_setup(char *str)
631 {
632         int ints[5];
633         struct ifmap map;
634
635         str = get_options(str, ARRAY_SIZE(ints), ints);
636         if (!str || !*str)
637                 return 0;
638
639         /* Save settings */
640         memset(&map, 0, sizeof(map));
641         if (ints[0] > 0)
642                 map.irq = ints[1];
643         if (ints[0] > 1)
644                 map.base_addr = ints[2];
645         if (ints[0] > 2)
646                 map.mem_start = ints[3];
647         if (ints[0] > 3)
648                 map.mem_end = ints[4];
649
650         /* Add new entry to the list */
651         return netdev_boot_setup_add(str, &map);
652 }
653
654 __setup("netdev=", netdev_boot_setup);
655
656 /*******************************************************************************
657
658                             Device Interface Subroutines
659
660 *******************************************************************************/
661
662 /**
663  *      __dev_get_by_name       - find a device by its name
664  *      @net: the applicable net namespace
665  *      @name: name to find
666  *
667  *      Find an interface by name. Must be called under RTNL semaphore
668  *      or @dev_base_lock. If the name is found a pointer to the device
669  *      is returned. If the name is not found then %NULL is returned. The
670  *      reference counters are not incremented so the caller must be
671  *      careful with locks.
672  */
673
674 struct net_device *__dev_get_by_name(struct net *net, const char *name)
675 {
676         struct net_device *dev;
677         struct hlist_head *head = dev_name_hash(net, name);
678
679         hlist_for_each_entry(dev, head, name_hlist)
680                 if (!strncmp(dev->name, name, IFNAMSIZ))
681                         return dev;
682
683         return NULL;
684 }
685 EXPORT_SYMBOL(__dev_get_by_name);
686
687 /**
688  *      dev_get_by_name_rcu     - find a device by its name
689  *      @net: the applicable net namespace
690  *      @name: name to find
691  *
692  *      Find an interface by name.
693  *      If the name is found a pointer to the device is returned.
694  *      If the name is not found then %NULL is returned.
695  *      The reference counters are not incremented so the caller must be
696  *      careful with locks. The caller must hold RCU lock.
697  */
698
699 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700 {
701         struct net_device *dev;
702         struct hlist_head *head = dev_name_hash(net, name);
703
704         hlist_for_each_entry_rcu(dev, head, name_hlist)
705                 if (!strncmp(dev->name, name, IFNAMSIZ))
706                         return dev;
707
708         return NULL;
709 }
710 EXPORT_SYMBOL(dev_get_by_name_rcu);
711
712 /**
713  *      dev_get_by_name         - find a device by its name
714  *      @net: the applicable net namespace
715  *      @name: name to find
716  *
717  *      Find an interface by name. This can be called from any
718  *      context and does its own locking. The returned handle has
719  *      the usage count incremented and the caller must use dev_put() to
720  *      release it when it is no longer needed. %NULL is returned if no
721  *      matching device is found.
722  */
723
724 struct net_device *dev_get_by_name(struct net *net, const char *name)
725 {
726         struct net_device *dev;
727
728         rcu_read_lock();
729         dev = dev_get_by_name_rcu(net, name);
730         if (dev)
731                 dev_hold(dev);
732         rcu_read_unlock();
733         return dev;
734 }
735 EXPORT_SYMBOL(dev_get_by_name);
736
737 /**
738  *      __dev_get_by_index - find a device by its ifindex
739  *      @net: the applicable net namespace
740  *      @ifindex: index of device
741  *
742  *      Search for an interface by index. Returns %NULL if the device
743  *      is not found or a pointer to the device. The device has not
744  *      had its reference counter increased so the caller must be careful
745  *      about locking. The caller must hold either the RTNL semaphore
746  *      or @dev_base_lock.
747  */
748
749 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
750 {
751         struct net_device *dev;
752         struct hlist_head *head = dev_index_hash(net, ifindex);
753
754         hlist_for_each_entry(dev, head, index_hlist)
755                 if (dev->ifindex == ifindex)
756                         return dev;
757
758         return NULL;
759 }
760 EXPORT_SYMBOL(__dev_get_by_index);
761
762 /**
763  *      dev_get_by_index_rcu - find a device by its ifindex
764  *      @net: the applicable net namespace
765  *      @ifindex: index of device
766  *
767  *      Search for an interface by index. Returns %NULL if the device
768  *      is not found or a pointer to the device. The device has not
769  *      had its reference counter increased so the caller must be careful
770  *      about locking. The caller must hold RCU lock.
771  */
772
773 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774 {
775         struct net_device *dev;
776         struct hlist_head *head = dev_index_hash(net, ifindex);
777
778         hlist_for_each_entry_rcu(dev, head, index_hlist)
779                 if (dev->ifindex == ifindex)
780                         return dev;
781
782         return NULL;
783 }
784 EXPORT_SYMBOL(dev_get_by_index_rcu);
785
786
787 /**
788  *      dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns NULL if the device
793  *      is not found or a pointer to the device. The device returned has
794  *      had a reference added and the pointer is safe until the user calls
795  *      dev_put to indicate they have finished with it.
796  */
797
798 struct net_device *dev_get_by_index(struct net *net, int ifindex)
799 {
800         struct net_device *dev;
801
802         rcu_read_lock();
803         dev = dev_get_by_index_rcu(net, ifindex);
804         if (dev)
805                 dev_hold(dev);
806         rcu_read_unlock();
807         return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_index);
810
811 /**
812  *      netdev_get_name - get a netdevice name, knowing its ifindex.
813  *      @net: network namespace
814  *      @name: a pointer to the buffer where the name will be stored.
815  *      @ifindex: the ifindex of the interface to get the name from.
816  *
817  *      The use of raw_seqcount_begin() and cond_resched() before
818  *      retrying is required as we want to give the writers a chance
819  *      to complete when CONFIG_PREEMPT is not set.
820  */
821 int netdev_get_name(struct net *net, char *name, int ifindex)
822 {
823         struct net_device *dev;
824         unsigned int seq;
825
826 retry:
827         seq = raw_seqcount_begin(&devnet_rename_seq);
828         rcu_read_lock();
829         dev = dev_get_by_index_rcu(net, ifindex);
830         if (!dev) {
831                 rcu_read_unlock();
832                 return -ENODEV;
833         }
834
835         strcpy(name, dev->name);
836         rcu_read_unlock();
837         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838                 cond_resched();
839                 goto retry;
840         }
841
842         return 0;
843 }
844
845 /**
846  *      dev_getbyhwaddr_rcu - find a device by its hardware address
847  *      @net: the applicable net namespace
848  *      @type: media type of device
849  *      @ha: hardware address
850  *
851  *      Search for an interface by MAC address. Returns NULL if the device
852  *      is not found or a pointer to the device.
853  *      The caller must hold RCU or RTNL.
854  *      The returned device has not had its ref count increased
855  *      and the caller must therefore be careful about locking
856  *
857  */
858
859 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860                                        const char *ha)
861 {
862         struct net_device *dev;
863
864         for_each_netdev_rcu(net, dev)
865                 if (dev->type == type &&
866                     !memcmp(dev->dev_addr, ha, dev->addr_len))
867                         return dev;
868
869         return NULL;
870 }
871 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
872
873 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
874 {
875         struct net_device *dev;
876
877         ASSERT_RTNL();
878         for_each_netdev(net, dev)
879                 if (dev->type == type)
880                         return dev;
881
882         return NULL;
883 }
884 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885
886 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
887 {
888         struct net_device *dev, *ret = NULL;
889
890         rcu_read_lock();
891         for_each_netdev_rcu(net, dev)
892                 if (dev->type == type) {
893                         dev_hold(dev);
894                         ret = dev;
895                         break;
896                 }
897         rcu_read_unlock();
898         return ret;
899 }
900 EXPORT_SYMBOL(dev_getfirstbyhwtype);
901
902 /**
903  *      __dev_get_by_flags - find any device with given flags
904  *      @net: the applicable net namespace
905  *      @if_flags: IFF_* values
906  *      @mask: bitmask of bits in if_flags to check
907  *
908  *      Search for any interface with the given flags. Returns NULL if a device
909  *      is not found or a pointer to the device. Must be called inside
910  *      rtnl_lock(), and result refcount is unchanged.
911  */
912
913 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914                                       unsigned short mask)
915 {
916         struct net_device *dev, *ret;
917
918         ASSERT_RTNL();
919
920         ret = NULL;
921         for_each_netdev(net, dev) {
922                 if (((dev->flags ^ if_flags) & mask) == 0) {
923                         ret = dev;
924                         break;
925                 }
926         }
927         return ret;
928 }
929 EXPORT_SYMBOL(__dev_get_by_flags);
930
931 /**
932  *      dev_valid_name - check if name is okay for network device
933  *      @name: name string
934  *
935  *      Network device names need to be valid file names to
936  *      to allow sysfs to work.  We also disallow any kind of
937  *      whitespace.
938  */
939 bool dev_valid_name(const char *name)
940 {
941         if (*name == '\0')
942                 return false;
943         if (strlen(name) >= IFNAMSIZ)
944                 return false;
945         if (!strcmp(name, ".") || !strcmp(name, ".."))
946                 return false;
947
948         while (*name) {
949                 if (*name == '/' || isspace(*name))
950                         return false;
951                 name++;
952         }
953         return true;
954 }
955 EXPORT_SYMBOL(dev_valid_name);
956
957 /**
958  *      __dev_alloc_name - allocate a name for a device
959  *      @net: network namespace to allocate the device name in
960  *      @name: name format string
961  *      @buf:  scratch buffer and result name string
962  *
963  *      Passed a format string - eg "lt%d" it will try and find a suitable
964  *      id. It scans list of devices to build up a free map, then chooses
965  *      the first empty slot. The caller must hold the dev_base or rtnl lock
966  *      while allocating the name and adding the device in order to avoid
967  *      duplicates.
968  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969  *      Returns the number of the unit assigned or a negative errno code.
970  */
971
972 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
973 {
974         int i = 0;
975         const char *p;
976         const int max_netdevices = 8*PAGE_SIZE;
977         unsigned long *inuse;
978         struct net_device *d;
979
980         p = strnchr(name, IFNAMSIZ-1, '%');
981         if (p) {
982                 /*
983                  * Verify the string as this thing may have come from
984                  * the user.  There must be either one "%d" and no other "%"
985                  * characters.
986                  */
987                 if (p[1] != 'd' || strchr(p + 2, '%'))
988                         return -EINVAL;
989
990                 /* Use one page as a bit array of possible slots */
991                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
992                 if (!inuse)
993                         return -ENOMEM;
994
995                 for_each_netdev(net, d) {
996                         if (!sscanf(d->name, name, &i))
997                                 continue;
998                         if (i < 0 || i >= max_netdevices)
999                                 continue;
1000
1001                         /*  avoid cases where sscanf is not exact inverse of printf */
1002                         snprintf(buf, IFNAMSIZ, name, i);
1003                         if (!strncmp(buf, d->name, IFNAMSIZ))
1004                                 set_bit(i, inuse);
1005                 }
1006
1007                 i = find_first_zero_bit(inuse, max_netdevices);
1008                 free_page((unsigned long) inuse);
1009         }
1010
1011         if (buf != name)
1012                 snprintf(buf, IFNAMSIZ, name, i);
1013         if (!__dev_get_by_name(net, buf))
1014                 return i;
1015
1016         /* It is possible to run out of possible slots
1017          * when the name is long and there isn't enough space left
1018          * for the digits, or if all bits are used.
1019          */
1020         return -ENFILE;
1021 }
1022
1023 /**
1024  *      dev_alloc_name - allocate a name for a device
1025  *      @dev: device
1026  *      @name: name format string
1027  *
1028  *      Passed a format string - eg "lt%d" it will try and find a suitable
1029  *      id. It scans list of devices to build up a free map, then chooses
1030  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1031  *      while allocating the name and adding the device in order to avoid
1032  *      duplicates.
1033  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034  *      Returns the number of the unit assigned or a negative errno code.
1035  */
1036
1037 int dev_alloc_name(struct net_device *dev, const char *name)
1038 {
1039         char buf[IFNAMSIZ];
1040         struct net *net;
1041         int ret;
1042
1043         BUG_ON(!dev_net(dev));
1044         net = dev_net(dev);
1045         ret = __dev_alloc_name(net, name, buf);
1046         if (ret >= 0)
1047                 strlcpy(dev->name, buf, IFNAMSIZ);
1048         return ret;
1049 }
1050 EXPORT_SYMBOL(dev_alloc_name);
1051
1052 static int dev_alloc_name_ns(struct net *net,
1053                              struct net_device *dev,
1054                              const char *name)
1055 {
1056         char buf[IFNAMSIZ];
1057         int ret;
1058
1059         ret = __dev_alloc_name(net, name, buf);
1060         if (ret >= 0)
1061                 strlcpy(dev->name, buf, IFNAMSIZ);
1062         return ret;
1063 }
1064
1065 static int dev_get_valid_name(struct net *net,
1066                               struct net_device *dev,
1067                               const char *name)
1068 {
1069         BUG_ON(!net);
1070
1071         if (!dev_valid_name(name))
1072                 return -EINVAL;
1073
1074         if (strchr(name, '%'))
1075                 return dev_alloc_name_ns(net, dev, name);
1076         else if (__dev_get_by_name(net, name))
1077                 return -EEXIST;
1078         else if (dev->name != name)
1079                 strlcpy(dev->name, name, IFNAMSIZ);
1080
1081         return 0;
1082 }
1083
1084 /**
1085  *      dev_change_name - change name of a device
1086  *      @dev: device
1087  *      @newname: name (or format string) must be at least IFNAMSIZ
1088  *
1089  *      Change name of a device, can pass format strings "eth%d".
1090  *      for wildcarding.
1091  */
1092 int dev_change_name(struct net_device *dev, const char *newname)
1093 {
1094         unsigned char old_assign_type;
1095         char oldname[IFNAMSIZ];
1096         int err = 0;
1097         int ret;
1098         struct net *net;
1099
1100         ASSERT_RTNL();
1101         BUG_ON(!dev_net(dev));
1102
1103         net = dev_net(dev);
1104         if (dev->flags & IFF_UP)
1105                 return -EBUSY;
1106
1107         write_seqcount_begin(&devnet_rename_seq);
1108
1109         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1110                 write_seqcount_end(&devnet_rename_seq);
1111                 return 0;
1112         }
1113
1114         memcpy(oldname, dev->name, IFNAMSIZ);
1115
1116         err = dev_get_valid_name(net, dev, newname);
1117         if (err < 0) {
1118                 write_seqcount_end(&devnet_rename_seq);
1119                 return err;
1120         }
1121
1122         if (oldname[0] && !strchr(oldname, '%'))
1123                 netdev_info(dev, "renamed from %s\n", oldname);
1124
1125         old_assign_type = dev->name_assign_type;
1126         dev->name_assign_type = NET_NAME_RENAMED;
1127
1128 rollback:
1129         ret = device_rename(&dev->dev, dev->name);
1130         if (ret) {
1131                 memcpy(dev->name, oldname, IFNAMSIZ);
1132                 dev->name_assign_type = old_assign_type;
1133                 write_seqcount_end(&devnet_rename_seq);
1134                 return ret;
1135         }
1136
1137         write_seqcount_end(&devnet_rename_seq);
1138
1139         netdev_adjacent_rename_links(dev, oldname);
1140
1141         write_lock_bh(&dev_base_lock);
1142         hlist_del_rcu(&dev->name_hlist);
1143         write_unlock_bh(&dev_base_lock);
1144
1145         synchronize_rcu();
1146
1147         write_lock_bh(&dev_base_lock);
1148         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1149         write_unlock_bh(&dev_base_lock);
1150
1151         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1152         ret = notifier_to_errno(ret);
1153
1154         if (ret) {
1155                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1156                 if (err >= 0) {
1157                         err = ret;
1158                         write_seqcount_begin(&devnet_rename_seq);
1159                         memcpy(dev->name, oldname, IFNAMSIZ);
1160                         memcpy(oldname, newname, IFNAMSIZ);
1161                         dev->name_assign_type = old_assign_type;
1162                         old_assign_type = NET_NAME_RENAMED;
1163                         goto rollback;
1164                 } else {
1165                         pr_err("%s: name change rollback failed: %d\n",
1166                                dev->name, ret);
1167                 }
1168         }
1169
1170         return err;
1171 }
1172
1173 /**
1174  *      dev_set_alias - change ifalias of a device
1175  *      @dev: device
1176  *      @alias: name up to IFALIASZ
1177  *      @len: limit of bytes to copy from info
1178  *
1179  *      Set ifalias for a device,
1180  */
1181 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182 {
1183         char *new_ifalias;
1184
1185         ASSERT_RTNL();
1186
1187         if (len >= IFALIASZ)
1188                 return -EINVAL;
1189
1190         if (!len) {
1191                 kfree(dev->ifalias);
1192                 dev->ifalias = NULL;
1193                 return 0;
1194         }
1195
1196         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197         if (!new_ifalias)
1198                 return -ENOMEM;
1199         dev->ifalias = new_ifalias;
1200
1201         strlcpy(dev->ifalias, alias, len+1);
1202         return len;
1203 }
1204
1205
1206 /**
1207  *      netdev_features_change - device changes features
1208  *      @dev: device to cause notification
1209  *
1210  *      Called to indicate a device has changed features.
1211  */
1212 void netdev_features_change(struct net_device *dev)
1213 {
1214         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1215 }
1216 EXPORT_SYMBOL(netdev_features_change);
1217
1218 /**
1219  *      netdev_state_change - device changes state
1220  *      @dev: device to cause notification
1221  *
1222  *      Called to indicate a device has changed state. This function calls
1223  *      the notifier chains for netdev_chain and sends a NEWLINK message
1224  *      to the routing socket.
1225  */
1226 void netdev_state_change(struct net_device *dev)
1227 {
1228         if (dev->flags & IFF_UP) {
1229                 struct netdev_notifier_change_info change_info;
1230
1231                 change_info.flags_changed = 0;
1232                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233                                               &change_info.info);
1234                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1235         }
1236 }
1237 EXPORT_SYMBOL(netdev_state_change);
1238
1239 /**
1240  *      netdev_notify_peers - notify network peers about existence of @dev
1241  *      @dev: network device
1242  *
1243  * Generate traffic such that interested network peers are aware of
1244  * @dev, such as by generating a gratuitous ARP. This may be used when
1245  * a device wants to inform the rest of the network about some sort of
1246  * reconfiguration such as a failover event or virtual machine
1247  * migration.
1248  */
1249 void netdev_notify_peers(struct net_device *dev)
1250 {
1251         rtnl_lock();
1252         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253         rtnl_unlock();
1254 }
1255 EXPORT_SYMBOL(netdev_notify_peers);
1256
1257 static int __dev_open(struct net_device *dev)
1258 {
1259         const struct net_device_ops *ops = dev->netdev_ops;
1260         int ret;
1261
1262         ASSERT_RTNL();
1263
1264         if (!netif_device_present(dev))
1265                 return -ENODEV;
1266
1267         /* Block netpoll from trying to do any rx path servicing.
1268          * If we don't do this there is a chance ndo_poll_controller
1269          * or ndo_poll may be running while we open the device
1270          */
1271         netpoll_poll_disable(dev);
1272
1273         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274         ret = notifier_to_errno(ret);
1275         if (ret)
1276                 return ret;
1277
1278         set_bit(__LINK_STATE_START, &dev->state);
1279
1280         if (ops->ndo_validate_addr)
1281                 ret = ops->ndo_validate_addr(dev);
1282
1283         if (!ret && ops->ndo_open)
1284                 ret = ops->ndo_open(dev);
1285
1286         netpoll_poll_enable(dev);
1287
1288         if (ret)
1289                 clear_bit(__LINK_STATE_START, &dev->state);
1290         else {
1291                 dev->flags |= IFF_UP;
1292                 dev_set_rx_mode(dev);
1293                 dev_activate(dev);
1294                 add_device_randomness(dev->dev_addr, dev->addr_len);
1295         }
1296
1297         return ret;
1298 }
1299
1300 /**
1301  *      dev_open        - prepare an interface for use.
1302  *      @dev:   device to open
1303  *
1304  *      Takes a device from down to up state. The device's private open
1305  *      function is invoked and then the multicast lists are loaded. Finally
1306  *      the device is moved into the up state and a %NETDEV_UP message is
1307  *      sent to the netdev notifier chain.
1308  *
1309  *      Calling this function on an active interface is a nop. On a failure
1310  *      a negative errno code is returned.
1311  */
1312 int dev_open(struct net_device *dev)
1313 {
1314         int ret;
1315
1316         if (dev->flags & IFF_UP)
1317                 return 0;
1318
1319         ret = __dev_open(dev);
1320         if (ret < 0)
1321                 return ret;
1322
1323         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1324         call_netdevice_notifiers(NETDEV_UP, dev);
1325
1326         return ret;
1327 }
1328 EXPORT_SYMBOL(dev_open);
1329
1330 static int __dev_close_many(struct list_head *head)
1331 {
1332         struct net_device *dev;
1333
1334         ASSERT_RTNL();
1335         might_sleep();
1336
1337         list_for_each_entry(dev, head, close_list) {
1338                 /* Temporarily disable netpoll until the interface is down */
1339                 netpoll_poll_disable(dev);
1340
1341                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1342
1343                 clear_bit(__LINK_STATE_START, &dev->state);
1344
1345                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1346                  * can be even on different cpu. So just clear netif_running().
1347                  *
1348                  * dev->stop() will invoke napi_disable() on all of it's
1349                  * napi_struct instances on this device.
1350                  */
1351                 smp_mb__after_atomic(); /* Commit netif_running(). */
1352         }
1353
1354         dev_deactivate_many(head);
1355
1356         list_for_each_entry(dev, head, close_list) {
1357                 const struct net_device_ops *ops = dev->netdev_ops;
1358
1359                 /*
1360                  *      Call the device specific close. This cannot fail.
1361                  *      Only if device is UP
1362                  *
1363                  *      We allow it to be called even after a DETACH hot-plug
1364                  *      event.
1365                  */
1366                 if (ops->ndo_stop)
1367                         ops->ndo_stop(dev);
1368
1369                 dev->flags &= ~IFF_UP;
1370                 netpoll_poll_enable(dev);
1371         }
1372
1373         return 0;
1374 }
1375
1376 static int __dev_close(struct net_device *dev)
1377 {
1378         int retval;
1379         LIST_HEAD(single);
1380
1381         list_add(&dev->close_list, &single);
1382         retval = __dev_close_many(&single);
1383         list_del(&single);
1384
1385         return retval;
1386 }
1387
1388 static int dev_close_many(struct list_head *head)
1389 {
1390         struct net_device *dev, *tmp;
1391
1392         /* Remove the devices that don't need to be closed */
1393         list_for_each_entry_safe(dev, tmp, head, close_list)
1394                 if (!(dev->flags & IFF_UP))
1395                         list_del_init(&dev->close_list);
1396
1397         __dev_close_many(head);
1398
1399         list_for_each_entry_safe(dev, tmp, head, close_list) {
1400                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1401                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1402                 list_del_init(&dev->close_list);
1403         }
1404
1405         return 0;
1406 }
1407
1408 /**
1409  *      dev_close - shutdown an interface.
1410  *      @dev: device to shutdown
1411  *
1412  *      This function moves an active device into down state. A
1413  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1414  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1415  *      chain.
1416  */
1417 int dev_close(struct net_device *dev)
1418 {
1419         if (dev->flags & IFF_UP) {
1420                 LIST_HEAD(single);
1421
1422                 list_add(&dev->close_list, &single);
1423                 dev_close_many(&single);
1424                 list_del(&single);
1425         }
1426         return 0;
1427 }
1428 EXPORT_SYMBOL(dev_close);
1429
1430
1431 /**
1432  *      dev_disable_lro - disable Large Receive Offload on a device
1433  *      @dev: device
1434  *
1435  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1436  *      called under RTNL.  This is needed if received packets may be
1437  *      forwarded to another interface.
1438  */
1439 void dev_disable_lro(struct net_device *dev)
1440 {
1441         struct net_device *lower_dev;
1442         struct list_head *iter;
1443
1444         dev->wanted_features &= ~NETIF_F_LRO;
1445         netdev_update_features(dev);
1446
1447         if (unlikely(dev->features & NETIF_F_LRO))
1448                 netdev_WARN(dev, "failed to disable LRO!\n");
1449
1450         netdev_for_each_lower_dev(dev, lower_dev, iter)
1451                 dev_disable_lro(lower_dev);
1452 }
1453 EXPORT_SYMBOL(dev_disable_lro);
1454
1455 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1456                                    struct net_device *dev)
1457 {
1458         struct netdev_notifier_info info;
1459
1460         netdev_notifier_info_init(&info, dev);
1461         return nb->notifier_call(nb, val, &info);
1462 }
1463
1464 static int dev_boot_phase = 1;
1465
1466 /**
1467  *      register_netdevice_notifier - register a network notifier block
1468  *      @nb: notifier
1469  *
1470  *      Register a notifier to be called when network device events occur.
1471  *      The notifier passed is linked into the kernel structures and must
1472  *      not be reused until it has been unregistered. A negative errno code
1473  *      is returned on a failure.
1474  *
1475  *      When registered all registration and up events are replayed
1476  *      to the new notifier to allow device to have a race free
1477  *      view of the network device list.
1478  */
1479
1480 int register_netdevice_notifier(struct notifier_block *nb)
1481 {
1482         struct net_device *dev;
1483         struct net_device *last;
1484         struct net *net;
1485         int err;
1486
1487         rtnl_lock();
1488         err = raw_notifier_chain_register(&netdev_chain, nb);
1489         if (err)
1490                 goto unlock;
1491         if (dev_boot_phase)
1492                 goto unlock;
1493         for_each_net(net) {
1494                 for_each_netdev(net, dev) {
1495                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1496                         err = notifier_to_errno(err);
1497                         if (err)
1498                                 goto rollback;
1499
1500                         if (!(dev->flags & IFF_UP))
1501                                 continue;
1502
1503                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1504                 }
1505         }
1506
1507 unlock:
1508         rtnl_unlock();
1509         return err;
1510
1511 rollback:
1512         last = dev;
1513         for_each_net(net) {
1514                 for_each_netdev(net, dev) {
1515                         if (dev == last)
1516                                 goto outroll;
1517
1518                         if (dev->flags & IFF_UP) {
1519                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520                                                         dev);
1521                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1522                         }
1523                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1524                 }
1525         }
1526
1527 outroll:
1528         raw_notifier_chain_unregister(&netdev_chain, nb);
1529         goto unlock;
1530 }
1531 EXPORT_SYMBOL(register_netdevice_notifier);
1532
1533 /**
1534  *      unregister_netdevice_notifier - unregister a network notifier block
1535  *      @nb: notifier
1536  *
1537  *      Unregister a notifier previously registered by
1538  *      register_netdevice_notifier(). The notifier is unlinked into the
1539  *      kernel structures and may then be reused. A negative errno code
1540  *      is returned on a failure.
1541  *
1542  *      After unregistering unregister and down device events are synthesized
1543  *      for all devices on the device list to the removed notifier to remove
1544  *      the need for special case cleanup code.
1545  */
1546
1547 int unregister_netdevice_notifier(struct notifier_block *nb)
1548 {
1549         struct net_device *dev;
1550         struct net *net;
1551         int err;
1552
1553         rtnl_lock();
1554         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1555         if (err)
1556                 goto unlock;
1557
1558         for_each_net(net) {
1559                 for_each_netdev(net, dev) {
1560                         if (dev->flags & IFF_UP) {
1561                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562                                                         dev);
1563                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1564                         }
1565                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1566                 }
1567         }
1568 unlock:
1569         rtnl_unlock();
1570         return err;
1571 }
1572 EXPORT_SYMBOL(unregister_netdevice_notifier);
1573
1574 /**
1575  *      call_netdevice_notifiers_info - call all network notifier blocks
1576  *      @val: value passed unmodified to notifier function
1577  *      @dev: net_device pointer passed unmodified to notifier function
1578  *      @info: notifier information data
1579  *
1580  *      Call all network notifier blocks.  Parameters and return value
1581  *      are as for raw_notifier_call_chain().
1582  */
1583
1584 static int call_netdevice_notifiers_info(unsigned long val,
1585                                          struct net_device *dev,
1586                                          struct netdev_notifier_info *info)
1587 {
1588         ASSERT_RTNL();
1589         netdev_notifier_info_init(info, dev);
1590         return raw_notifier_call_chain(&netdev_chain, val, info);
1591 }
1592
1593 /**
1594  *      call_netdevice_notifiers - call all network notifier blocks
1595  *      @val: value passed unmodified to notifier function
1596  *      @dev: net_device pointer passed unmodified to notifier function
1597  *
1598  *      Call all network notifier blocks.  Parameters and return value
1599  *      are as for raw_notifier_call_chain().
1600  */
1601
1602 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1603 {
1604         struct netdev_notifier_info info;
1605
1606         return call_netdevice_notifiers_info(val, dev, &info);
1607 }
1608 EXPORT_SYMBOL(call_netdevice_notifiers);
1609
1610 static struct static_key netstamp_needed __read_mostly;
1611 #ifdef HAVE_JUMP_LABEL
1612 /* We are not allowed to call static_key_slow_dec() from irq context
1613  * If net_disable_timestamp() is called from irq context, defer the
1614  * static_key_slow_dec() calls.
1615  */
1616 static atomic_t netstamp_needed_deferred;
1617 #endif
1618
1619 void net_enable_timestamp(void)
1620 {
1621 #ifdef HAVE_JUMP_LABEL
1622         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1623
1624         if (deferred) {
1625                 while (--deferred)
1626                         static_key_slow_dec(&netstamp_needed);
1627                 return;
1628         }
1629 #endif
1630         static_key_slow_inc(&netstamp_needed);
1631 }
1632 EXPORT_SYMBOL(net_enable_timestamp);
1633
1634 void net_disable_timestamp(void)
1635 {
1636 #ifdef HAVE_JUMP_LABEL
1637         if (in_interrupt()) {
1638                 atomic_inc(&netstamp_needed_deferred);
1639                 return;
1640         }
1641 #endif
1642         static_key_slow_dec(&netstamp_needed);
1643 }
1644 EXPORT_SYMBOL(net_disable_timestamp);
1645
1646 static inline void net_timestamp_set(struct sk_buff *skb)
1647 {
1648         skb->tstamp.tv64 = 0;
1649         if (static_key_false(&netstamp_needed))
1650                 __net_timestamp(skb);
1651 }
1652
1653 #define net_timestamp_check(COND, SKB)                  \
1654         if (static_key_false(&netstamp_needed)) {               \
1655                 if ((COND) && !(SKB)->tstamp.tv64)      \
1656                         __net_timestamp(SKB);           \
1657         }                                               \
1658
1659 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1660 {
1661         unsigned int len;
1662
1663         if (!(dev->flags & IFF_UP))
1664                 return false;
1665
1666         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1667         if (skb->len <= len)
1668                 return true;
1669
1670         /* if TSO is enabled, we don't care about the length as the packet
1671          * could be forwarded without being segmented before
1672          */
1673         if (skb_is_gso(skb))
1674                 return true;
1675
1676         return false;
1677 }
1678 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1679
1680 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681 {
1682         if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1683                 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1684                         atomic_long_inc(&dev->rx_dropped);
1685                         kfree_skb(skb);
1686                         return NET_RX_DROP;
1687                 }
1688         }
1689
1690         if (unlikely(!is_skb_forwardable(dev, skb))) {
1691                 atomic_long_inc(&dev->rx_dropped);
1692                 kfree_skb(skb);
1693                 return NET_RX_DROP;
1694         }
1695
1696         skb_scrub_packet(skb, true);
1697         skb->protocol = eth_type_trans(skb, dev);
1698         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1699
1700         return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1703
1704 /**
1705  * dev_forward_skb - loopback an skb to another netif
1706  *
1707  * @dev: destination network device
1708  * @skb: buffer to forward
1709  *
1710  * return values:
1711  *      NET_RX_SUCCESS  (no congestion)
1712  *      NET_RX_DROP     (packet was dropped, but freed)
1713  *
1714  * dev_forward_skb can be used for injecting an skb from the
1715  * start_xmit function of one device into the receive queue
1716  * of another device.
1717  *
1718  * The receiving device may be in another namespace, so
1719  * we have to clear all information in the skb that could
1720  * impact namespace isolation.
1721  */
1722 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1723 {
1724         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1725 }
1726 EXPORT_SYMBOL_GPL(dev_forward_skb);
1727
1728 static inline int deliver_skb(struct sk_buff *skb,
1729                               struct packet_type *pt_prev,
1730                               struct net_device *orig_dev)
1731 {
1732         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1733                 return -ENOMEM;
1734         atomic_inc(&skb->users);
1735         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1736 }
1737
1738 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1739                                           struct packet_type **pt,
1740                                           struct net_device *dev, __be16 type,
1741                                           struct list_head *ptype_list)
1742 {
1743         struct packet_type *ptype, *pt_prev = *pt;
1744
1745         list_for_each_entry_rcu(ptype, ptype_list, list) {
1746                 if (ptype->type != type)
1747                         continue;
1748                 if (pt_prev)
1749                         deliver_skb(skb, pt_prev, dev);
1750                 pt_prev = ptype;
1751         }
1752         *pt = pt_prev;
1753 }
1754
1755 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1756 {
1757         if (!ptype->af_packet_priv || !skb->sk)
1758                 return false;
1759
1760         if (ptype->id_match)
1761                 return ptype->id_match(ptype, skb->sk);
1762         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1763                 return true;
1764
1765         return false;
1766 }
1767
1768 /*
1769  *      Support routine. Sends outgoing frames to any network
1770  *      taps currently in use.
1771  */
1772
1773 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1774 {
1775         struct packet_type *ptype;
1776         struct sk_buff *skb2 = NULL;
1777         struct packet_type *pt_prev = NULL;
1778         struct list_head *ptype_list = &ptype_all;
1779
1780         rcu_read_lock();
1781 again:
1782         list_for_each_entry_rcu(ptype, ptype_list, list) {
1783                 /* Never send packets back to the socket
1784                  * they originated from - MvS (miquels@drinkel.ow.org)
1785                  */
1786                 if (skb_loop_sk(ptype, skb))
1787                         continue;
1788
1789                 if (pt_prev) {
1790                         deliver_skb(skb2, pt_prev, skb->dev);
1791                         pt_prev = ptype;
1792                         continue;
1793                 }
1794
1795                 /* need to clone skb, done only once */
1796                 skb2 = skb_clone(skb, GFP_ATOMIC);
1797                 if (!skb2)
1798                         goto out_unlock;
1799
1800                 net_timestamp_set(skb2);
1801
1802                 /* skb->nh should be correctly
1803                  * set by sender, so that the second statement is
1804                  * just protection against buggy protocols.
1805                  */
1806                 skb_reset_mac_header(skb2);
1807
1808                 if (skb_network_header(skb2) < skb2->data ||
1809                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1810                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1811                                              ntohs(skb2->protocol),
1812                                              dev->name);
1813                         skb_reset_network_header(skb2);
1814                 }
1815
1816                 skb2->transport_header = skb2->network_header;
1817                 skb2->pkt_type = PACKET_OUTGOING;
1818                 pt_prev = ptype;
1819         }
1820
1821         if (ptype_list == &ptype_all) {
1822                 ptype_list = &dev->ptype_all;
1823                 goto again;
1824         }
1825 out_unlock:
1826         if (pt_prev)
1827                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1828         rcu_read_unlock();
1829 }
1830
1831 /**
1832  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1833  * @dev: Network device
1834  * @txq: number of queues available
1835  *
1836  * If real_num_tx_queues is changed the tc mappings may no longer be
1837  * valid. To resolve this verify the tc mapping remains valid and if
1838  * not NULL the mapping. With no priorities mapping to this
1839  * offset/count pair it will no longer be used. In the worst case TC0
1840  * is invalid nothing can be done so disable priority mappings. If is
1841  * expected that drivers will fix this mapping if they can before
1842  * calling netif_set_real_num_tx_queues.
1843  */
1844 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1845 {
1846         int i;
1847         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1848
1849         /* If TC0 is invalidated disable TC mapping */
1850         if (tc->offset + tc->count > txq) {
1851                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1852                 dev->num_tc = 0;
1853                 return;
1854         }
1855
1856         /* Invalidated prio to tc mappings set to TC0 */
1857         for (i = 1; i < TC_BITMASK + 1; i++) {
1858                 int q = netdev_get_prio_tc_map(dev, i);
1859
1860                 tc = &dev->tc_to_txq[q];
1861                 if (tc->offset + tc->count > txq) {
1862                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1863                                 i, q);
1864                         netdev_set_prio_tc_map(dev, i, 0);
1865                 }
1866         }
1867 }
1868
1869 #ifdef CONFIG_XPS
1870 static DEFINE_MUTEX(xps_map_mutex);
1871 #define xmap_dereference(P)             \
1872         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1873
1874 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1875                                         int cpu, u16 index)
1876 {
1877         struct xps_map *map = NULL;
1878         int pos;
1879
1880         if (dev_maps)
1881                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1882
1883         for (pos = 0; map && pos < map->len; pos++) {
1884                 if (map->queues[pos] == index) {
1885                         if (map->len > 1) {
1886                                 map->queues[pos] = map->queues[--map->len];
1887                         } else {
1888                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1889                                 kfree_rcu(map, rcu);
1890                                 map = NULL;
1891                         }
1892                         break;
1893                 }
1894         }
1895
1896         return map;
1897 }
1898
1899 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1900 {
1901         struct xps_dev_maps *dev_maps;
1902         int cpu, i;
1903         bool active = false;
1904
1905         mutex_lock(&xps_map_mutex);
1906         dev_maps = xmap_dereference(dev->xps_maps);
1907
1908         if (!dev_maps)
1909                 goto out_no_maps;
1910
1911         for_each_possible_cpu(cpu) {
1912                 for (i = index; i < dev->num_tx_queues; i++) {
1913                         if (!remove_xps_queue(dev_maps, cpu, i))
1914                                 break;
1915                 }
1916                 if (i == dev->num_tx_queues)
1917                         active = true;
1918         }
1919
1920         if (!active) {
1921                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1922                 kfree_rcu(dev_maps, rcu);
1923         }
1924
1925         for (i = index; i < dev->num_tx_queues; i++)
1926                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1927                                              NUMA_NO_NODE);
1928
1929 out_no_maps:
1930         mutex_unlock(&xps_map_mutex);
1931 }
1932
1933 static struct xps_map *expand_xps_map(struct xps_map *map,
1934                                       int cpu, u16 index)
1935 {
1936         struct xps_map *new_map;
1937         int alloc_len = XPS_MIN_MAP_ALLOC;
1938         int i, pos;
1939
1940         for (pos = 0; map && pos < map->len; pos++) {
1941                 if (map->queues[pos] != index)
1942                         continue;
1943                 return map;
1944         }
1945
1946         /* Need to add queue to this CPU's existing map */
1947         if (map) {
1948                 if (pos < map->alloc_len)
1949                         return map;
1950
1951                 alloc_len = map->alloc_len * 2;
1952         }
1953
1954         /* Need to allocate new map to store queue on this CPU's map */
1955         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1956                                cpu_to_node(cpu));
1957         if (!new_map)
1958                 return NULL;
1959
1960         for (i = 0; i < pos; i++)
1961                 new_map->queues[i] = map->queues[i];
1962         new_map->alloc_len = alloc_len;
1963         new_map->len = pos;
1964
1965         return new_map;
1966 }
1967
1968 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1969                         u16 index)
1970 {
1971         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1972         struct xps_map *map, *new_map;
1973         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1974         int cpu, numa_node_id = -2;
1975         bool active = false;
1976
1977         mutex_lock(&xps_map_mutex);
1978
1979         dev_maps = xmap_dereference(dev->xps_maps);
1980
1981         /* allocate memory for queue storage */
1982         for_each_online_cpu(cpu) {
1983                 if (!cpumask_test_cpu(cpu, mask))
1984                         continue;
1985
1986                 if (!new_dev_maps)
1987                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1988                 if (!new_dev_maps) {
1989                         mutex_unlock(&xps_map_mutex);
1990                         return -ENOMEM;
1991                 }
1992
1993                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1994                                  NULL;
1995
1996                 map = expand_xps_map(map, cpu, index);
1997                 if (!map)
1998                         goto error;
1999
2000                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2001         }
2002
2003         if (!new_dev_maps)
2004                 goto out_no_new_maps;
2005
2006         for_each_possible_cpu(cpu) {
2007                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2008                         /* add queue to CPU maps */
2009                         int pos = 0;
2010
2011                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012                         while ((pos < map->len) && (map->queues[pos] != index))
2013                                 pos++;
2014
2015                         if (pos == map->len)
2016                                 map->queues[map->len++] = index;
2017 #ifdef CONFIG_NUMA
2018                         if (numa_node_id == -2)
2019                                 numa_node_id = cpu_to_node(cpu);
2020                         else if (numa_node_id != cpu_to_node(cpu))
2021                                 numa_node_id = -1;
2022 #endif
2023                 } else if (dev_maps) {
2024                         /* fill in the new device map from the old device map */
2025                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2026                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2027                 }
2028
2029         }
2030
2031         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2032
2033         /* Cleanup old maps */
2034         if (dev_maps) {
2035                 for_each_possible_cpu(cpu) {
2036                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2038                         if (map && map != new_map)
2039                                 kfree_rcu(map, rcu);
2040                 }
2041
2042                 kfree_rcu(dev_maps, rcu);
2043         }
2044
2045         dev_maps = new_dev_maps;
2046         active = true;
2047
2048 out_no_new_maps:
2049         /* update Tx queue numa node */
2050         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2051                                      (numa_node_id >= 0) ? numa_node_id :
2052                                      NUMA_NO_NODE);
2053
2054         if (!dev_maps)
2055                 goto out_no_maps;
2056
2057         /* removes queue from unused CPUs */
2058         for_each_possible_cpu(cpu) {
2059                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2060                         continue;
2061
2062                 if (remove_xps_queue(dev_maps, cpu, index))
2063                         active = true;
2064         }
2065
2066         /* free map if not active */
2067         if (!active) {
2068                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2069                 kfree_rcu(dev_maps, rcu);
2070         }
2071
2072 out_no_maps:
2073         mutex_unlock(&xps_map_mutex);
2074
2075         return 0;
2076 error:
2077         /* remove any maps that we added */
2078         for_each_possible_cpu(cpu) {
2079                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2080                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2081                                  NULL;
2082                 if (new_map && new_map != map)
2083                         kfree(new_map);
2084         }
2085
2086         mutex_unlock(&xps_map_mutex);
2087
2088         kfree(new_dev_maps);
2089         return -ENOMEM;
2090 }
2091 EXPORT_SYMBOL(netif_set_xps_queue);
2092
2093 #endif
2094 /*
2095  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2096  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2097  */
2098 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2099 {
2100         int rc;
2101
2102         if (txq < 1 || txq > dev->num_tx_queues)
2103                 return -EINVAL;
2104
2105         if (dev->reg_state == NETREG_REGISTERED ||
2106             dev->reg_state == NETREG_UNREGISTERING) {
2107                 ASSERT_RTNL();
2108
2109                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2110                                                   txq);
2111                 if (rc)
2112                         return rc;
2113
2114                 if (dev->num_tc)
2115                         netif_setup_tc(dev, txq);
2116
2117                 if (txq < dev->real_num_tx_queues) {
2118                         qdisc_reset_all_tx_gt(dev, txq);
2119 #ifdef CONFIG_XPS
2120                         netif_reset_xps_queues_gt(dev, txq);
2121 #endif
2122                 }
2123         }
2124
2125         dev->real_num_tx_queues = txq;
2126         return 0;
2127 }
2128 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2129
2130 #ifdef CONFIG_SYSFS
2131 /**
2132  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2133  *      @dev: Network device
2134  *      @rxq: Actual number of RX queues
2135  *
2136  *      This must be called either with the rtnl_lock held or before
2137  *      registration of the net device.  Returns 0 on success, or a
2138  *      negative error code.  If called before registration, it always
2139  *      succeeds.
2140  */
2141 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2142 {
2143         int rc;
2144
2145         if (rxq < 1 || rxq > dev->num_rx_queues)
2146                 return -EINVAL;
2147
2148         if (dev->reg_state == NETREG_REGISTERED) {
2149                 ASSERT_RTNL();
2150
2151                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2152                                                   rxq);
2153                 if (rc)
2154                         return rc;
2155         }
2156
2157         dev->real_num_rx_queues = rxq;
2158         return 0;
2159 }
2160 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2161 #endif
2162
2163 /**
2164  * netif_get_num_default_rss_queues - default number of RSS queues
2165  *
2166  * This routine should set an upper limit on the number of RSS queues
2167  * used by default by multiqueue devices.
2168  */
2169 int netif_get_num_default_rss_queues(void)
2170 {
2171         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2172 }
2173 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2174
2175 static inline void __netif_reschedule(struct Qdisc *q)
2176 {
2177         struct softnet_data *sd;
2178         unsigned long flags;
2179
2180         local_irq_save(flags);
2181         sd = this_cpu_ptr(&softnet_data);
2182         q->next_sched = NULL;
2183         *sd->output_queue_tailp = q;
2184         sd->output_queue_tailp = &q->next_sched;
2185         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2186         local_irq_restore(flags);
2187 }
2188
2189 void __netif_schedule(struct Qdisc *q)
2190 {
2191         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2192                 __netif_reschedule(q);
2193 }
2194 EXPORT_SYMBOL(__netif_schedule);
2195
2196 struct dev_kfree_skb_cb {
2197         enum skb_free_reason reason;
2198 };
2199
2200 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2201 {
2202         return (struct dev_kfree_skb_cb *)skb->cb;
2203 }
2204
2205 void netif_schedule_queue(struct netdev_queue *txq)
2206 {
2207         rcu_read_lock();
2208         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2209                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2210
2211                 __netif_schedule(q);
2212         }
2213         rcu_read_unlock();
2214 }
2215 EXPORT_SYMBOL(netif_schedule_queue);
2216
2217 /**
2218  *      netif_wake_subqueue - allow sending packets on subqueue
2219  *      @dev: network device
2220  *      @queue_index: sub queue index
2221  *
2222  * Resume individual transmit queue of a device with multiple transmit queues.
2223  */
2224 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2225 {
2226         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2227
2228         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2229                 struct Qdisc *q;
2230
2231                 rcu_read_lock();
2232                 q = rcu_dereference(txq->qdisc);
2233                 __netif_schedule(q);
2234                 rcu_read_unlock();
2235         }
2236 }
2237 EXPORT_SYMBOL(netif_wake_subqueue);
2238
2239 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2240 {
2241         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2242                 struct Qdisc *q;
2243
2244                 rcu_read_lock();
2245                 q = rcu_dereference(dev_queue->qdisc);
2246                 __netif_schedule(q);
2247                 rcu_read_unlock();
2248         }
2249 }
2250 EXPORT_SYMBOL(netif_tx_wake_queue);
2251
2252 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2253 {
2254         unsigned long flags;
2255
2256         if (likely(atomic_read(&skb->users) == 1)) {
2257                 smp_rmb();
2258                 atomic_set(&skb->users, 0);
2259         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2260                 return;
2261         }
2262         get_kfree_skb_cb(skb)->reason = reason;
2263         local_irq_save(flags);
2264         skb->next = __this_cpu_read(softnet_data.completion_queue);
2265         __this_cpu_write(softnet_data.completion_queue, skb);
2266         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267         local_irq_restore(flags);
2268 }
2269 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2270
2271 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2272 {
2273         if (in_irq() || irqs_disabled())
2274                 __dev_kfree_skb_irq(skb, reason);
2275         else
2276                 dev_kfree_skb(skb);
2277 }
2278 EXPORT_SYMBOL(__dev_kfree_skb_any);
2279
2280
2281 /**
2282  * netif_device_detach - mark device as removed
2283  * @dev: network device
2284  *
2285  * Mark device as removed from system and therefore no longer available.
2286  */
2287 void netif_device_detach(struct net_device *dev)
2288 {
2289         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2290             netif_running(dev)) {
2291                 netif_tx_stop_all_queues(dev);
2292         }
2293 }
2294 EXPORT_SYMBOL(netif_device_detach);
2295
2296 /**
2297  * netif_device_attach - mark device as attached
2298  * @dev: network device
2299  *
2300  * Mark device as attached from system and restart if needed.
2301  */
2302 void netif_device_attach(struct net_device *dev)
2303 {
2304         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2305             netif_running(dev)) {
2306                 netif_tx_wake_all_queues(dev);
2307                 __netdev_watchdog_up(dev);
2308         }
2309 }
2310 EXPORT_SYMBOL(netif_device_attach);
2311
2312 static void skb_warn_bad_offload(const struct sk_buff *skb)
2313 {
2314         static const netdev_features_t null_features = 0;
2315         struct net_device *dev = skb->dev;
2316         const char *driver = "";
2317
2318         if (!net_ratelimit())
2319                 return;
2320
2321         if (dev && dev->dev.parent)
2322                 driver = dev_driver_string(dev->dev.parent);
2323
2324         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2325              "gso_type=%d ip_summed=%d\n",
2326              driver, dev ? &dev->features : &null_features,
2327              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2328              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2329              skb_shinfo(skb)->gso_type, skb->ip_summed);
2330 }
2331
2332 /*
2333  * Invalidate hardware checksum when packet is to be mangled, and
2334  * complete checksum manually on outgoing path.
2335  */
2336 int skb_checksum_help(struct sk_buff *skb)
2337 {
2338         __wsum csum;
2339         int ret = 0, offset;
2340
2341         if (skb->ip_summed == CHECKSUM_COMPLETE)
2342                 goto out_set_summed;
2343
2344         if (unlikely(skb_shinfo(skb)->gso_size)) {
2345                 skb_warn_bad_offload(skb);
2346                 return -EINVAL;
2347         }
2348
2349         /* Before computing a checksum, we should make sure no frag could
2350          * be modified by an external entity : checksum could be wrong.
2351          */
2352         if (skb_has_shared_frag(skb)) {
2353                 ret = __skb_linearize(skb);
2354                 if (ret)
2355                         goto out;
2356         }
2357
2358         offset = skb_checksum_start_offset(skb);
2359         BUG_ON(offset >= skb_headlen(skb));
2360         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2361
2362         offset += skb->csum_offset;
2363         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2364
2365         if (skb_cloned(skb) &&
2366             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2367                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2368                 if (ret)
2369                         goto out;
2370         }
2371
2372         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2373 out_set_summed:
2374         skb->ip_summed = CHECKSUM_NONE;
2375 out:
2376         return ret;
2377 }
2378 EXPORT_SYMBOL(skb_checksum_help);
2379
2380 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2381 {
2382         __be16 type = skb->protocol;
2383
2384         /* Tunnel gso handlers can set protocol to ethernet. */
2385         if (type == htons(ETH_P_TEB)) {
2386                 struct ethhdr *eth;
2387
2388                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2389                         return 0;
2390
2391                 eth = (struct ethhdr *)skb_mac_header(skb);
2392                 type = eth->h_proto;
2393         }
2394
2395         return __vlan_get_protocol(skb, type, depth);
2396 }
2397
2398 /**
2399  *      skb_mac_gso_segment - mac layer segmentation handler.
2400  *      @skb: buffer to segment
2401  *      @features: features for the output path (see dev->features)
2402  */
2403 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2404                                     netdev_features_t features)
2405 {
2406         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2407         struct packet_offload *ptype;
2408         int vlan_depth = skb->mac_len;
2409         __be16 type = skb_network_protocol(skb, &vlan_depth);
2410
2411         if (unlikely(!type))
2412                 return ERR_PTR(-EINVAL);
2413
2414         __skb_pull(skb, vlan_depth);
2415
2416         rcu_read_lock();
2417         list_for_each_entry_rcu(ptype, &offload_base, list) {
2418                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2419                         segs = ptype->callbacks.gso_segment(skb, features);
2420                         break;
2421                 }
2422         }
2423         rcu_read_unlock();
2424
2425         __skb_push(skb, skb->data - skb_mac_header(skb));
2426
2427         return segs;
2428 }
2429 EXPORT_SYMBOL(skb_mac_gso_segment);
2430
2431
2432 /* openvswitch calls this on rx path, so we need a different check.
2433  */
2434 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2435 {
2436         if (tx_path)
2437                 return skb->ip_summed != CHECKSUM_PARTIAL;
2438         else
2439                 return skb->ip_summed == CHECKSUM_NONE;
2440 }
2441
2442 /**
2443  *      __skb_gso_segment - Perform segmentation on skb.
2444  *      @skb: buffer to segment
2445  *      @features: features for the output path (see dev->features)
2446  *      @tx_path: whether it is called in TX path
2447  *
2448  *      This function segments the given skb and returns a list of segments.
2449  *
2450  *      It may return NULL if the skb requires no segmentation.  This is
2451  *      only possible when GSO is used for verifying header integrity.
2452  */
2453 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2454                                   netdev_features_t features, bool tx_path)
2455 {
2456         if (unlikely(skb_needs_check(skb, tx_path))) {
2457                 int err;
2458
2459                 skb_warn_bad_offload(skb);
2460
2461                 err = skb_cow_head(skb, 0);
2462                 if (err < 0)
2463                         return ERR_PTR(err);
2464         }
2465
2466         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2467         SKB_GSO_CB(skb)->encap_level = 0;
2468
2469         skb_reset_mac_header(skb);
2470         skb_reset_mac_len(skb);
2471
2472         return skb_mac_gso_segment(skb, features);
2473 }
2474 EXPORT_SYMBOL(__skb_gso_segment);
2475
2476 /* Take action when hardware reception checksum errors are detected. */
2477 #ifdef CONFIG_BUG
2478 void netdev_rx_csum_fault(struct net_device *dev)
2479 {
2480         if (net_ratelimit()) {
2481                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2482                 dump_stack();
2483         }
2484 }
2485 EXPORT_SYMBOL(netdev_rx_csum_fault);
2486 #endif
2487
2488 /* Actually, we should eliminate this check as soon as we know, that:
2489  * 1. IOMMU is present and allows to map all the memory.
2490  * 2. No high memory really exists on this machine.
2491  */
2492
2493 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2494 {
2495 #ifdef CONFIG_HIGHMEM
2496         int i;
2497         if (!(dev->features & NETIF_F_HIGHDMA)) {
2498                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2499                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2500                         if (PageHighMem(skb_frag_page(frag)))
2501                                 return 1;
2502                 }
2503         }
2504
2505         if (PCI_DMA_BUS_IS_PHYS) {
2506                 struct device *pdev = dev->dev.parent;
2507
2508                 if (!pdev)
2509                         return 0;
2510                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2511                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2512                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2513                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2514                                 return 1;
2515                 }
2516         }
2517 #endif
2518         return 0;
2519 }
2520
2521 /* If MPLS offload request, verify we are testing hardware MPLS features
2522  * instead of standard features for the netdev.
2523  */
2524 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2525 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2526                                            netdev_features_t features,
2527                                            __be16 type)
2528 {
2529         if (eth_p_mpls(type))
2530                 features &= skb->dev->mpls_features;
2531
2532         return features;
2533 }
2534 #else
2535 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2536                                            netdev_features_t features,
2537                                            __be16 type)
2538 {
2539         return features;
2540 }
2541 #endif
2542
2543 static netdev_features_t harmonize_features(struct sk_buff *skb,
2544         netdev_features_t features)
2545 {
2546         int tmp;
2547         __be16 type;
2548
2549         type = skb_network_protocol(skb, &tmp);
2550         features = net_mpls_features(skb, features, type);
2551
2552         if (skb->ip_summed != CHECKSUM_NONE &&
2553             !can_checksum_protocol(features, type)) {
2554                 features &= ~NETIF_F_ALL_CSUM;
2555         } else if (illegal_highdma(skb->dev, skb)) {
2556                 features &= ~NETIF_F_SG;
2557         }
2558
2559         return features;
2560 }
2561
2562 netdev_features_t netif_skb_features(struct sk_buff *skb)
2563 {
2564         struct net_device *dev = skb->dev;
2565         netdev_features_t features = dev->features;
2566         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2567         __be16 protocol = skb->protocol;
2568
2569         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2570                 features &= ~NETIF_F_GSO_MASK;
2571
2572         /* If encapsulation offload request, verify we are testing
2573          * hardware encapsulation features instead of standard
2574          * features for the netdev
2575          */
2576         if (skb->encapsulation)
2577                 features &= dev->hw_enc_features;
2578
2579         if (!skb_vlan_tag_present(skb)) {
2580                 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2581                              protocol == htons(ETH_P_8021AD))) {
2582                         struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2583                         protocol = veh->h_vlan_encapsulated_proto;
2584                 } else {
2585                         goto finalize;
2586                 }
2587         }
2588
2589         features = netdev_intersect_features(features,
2590                                              dev->vlan_features |
2591                                              NETIF_F_HW_VLAN_CTAG_TX |
2592                                              NETIF_F_HW_VLAN_STAG_TX);
2593
2594         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2595                 features = netdev_intersect_features(features,
2596                                                      NETIF_F_SG |
2597                                                      NETIF_F_HIGHDMA |
2598                                                      NETIF_F_FRAGLIST |
2599                                                      NETIF_F_GEN_CSUM |
2600                                                      NETIF_F_HW_VLAN_CTAG_TX |
2601                                                      NETIF_F_HW_VLAN_STAG_TX);
2602
2603 finalize:
2604         if (dev->netdev_ops->ndo_features_check)
2605                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2606                                                                 features);
2607
2608         return harmonize_features(skb, features);
2609 }
2610 EXPORT_SYMBOL(netif_skb_features);
2611
2612 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2613                     struct netdev_queue *txq, bool more)
2614 {
2615         unsigned int len;
2616         int rc;
2617
2618         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2619                 dev_queue_xmit_nit(skb, dev);
2620
2621         len = skb->len;
2622         trace_net_dev_start_xmit(skb, dev);
2623         rc = netdev_start_xmit(skb, dev, txq, more);
2624         trace_net_dev_xmit(skb, rc, dev, len);
2625
2626         return rc;
2627 }
2628
2629 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2630                                     struct netdev_queue *txq, int *ret)
2631 {
2632         struct sk_buff *skb = first;
2633         int rc = NETDEV_TX_OK;
2634
2635         while (skb) {
2636                 struct sk_buff *next = skb->next;
2637
2638                 skb->next = NULL;
2639                 rc = xmit_one(skb, dev, txq, next != NULL);
2640                 if (unlikely(!dev_xmit_complete(rc))) {
2641                         skb->next = next;
2642                         goto out;
2643                 }
2644
2645                 skb = next;
2646                 if (netif_xmit_stopped(txq) && skb) {
2647                         rc = NETDEV_TX_BUSY;
2648                         break;
2649                 }
2650         }
2651
2652 out:
2653         *ret = rc;
2654         return skb;
2655 }
2656
2657 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2658                                           netdev_features_t features)
2659 {
2660         if (skb_vlan_tag_present(skb) &&
2661             !vlan_hw_offload_capable(features, skb->vlan_proto))
2662                 skb = __vlan_hwaccel_push_inside(skb);
2663         return skb;
2664 }
2665
2666 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2667 {
2668         netdev_features_t features;
2669
2670         if (skb->next)
2671                 return skb;
2672
2673         features = netif_skb_features(skb);
2674         skb = validate_xmit_vlan(skb, features);
2675         if (unlikely(!skb))
2676                 goto out_null;
2677
2678         if (netif_needs_gso(dev, skb, features)) {
2679                 struct sk_buff *segs;
2680
2681                 segs = skb_gso_segment(skb, features);
2682                 if (IS_ERR(segs)) {
2683                         goto out_kfree_skb;
2684                 } else if (segs) {
2685                         consume_skb(skb);
2686                         skb = segs;
2687                 }
2688         } else {
2689                 if (skb_needs_linearize(skb, features) &&
2690                     __skb_linearize(skb))
2691                         goto out_kfree_skb;
2692
2693                 /* If packet is not checksummed and device does not
2694                  * support checksumming for this protocol, complete
2695                  * checksumming here.
2696                  */
2697                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698                         if (skb->encapsulation)
2699                                 skb_set_inner_transport_header(skb,
2700                                                                skb_checksum_start_offset(skb));
2701                         else
2702                                 skb_set_transport_header(skb,
2703                                                          skb_checksum_start_offset(skb));
2704                         if (!(features & NETIF_F_ALL_CSUM) &&
2705                             skb_checksum_help(skb))
2706                                 goto out_kfree_skb;
2707                 }
2708         }
2709
2710         return skb;
2711
2712 out_kfree_skb:
2713         kfree_skb(skb);
2714 out_null:
2715         return NULL;
2716 }
2717
2718 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719 {
2720         struct sk_buff *next, *head = NULL, *tail;
2721
2722         for (; skb != NULL; skb = next) {
2723                 next = skb->next;
2724                 skb->next = NULL;
2725
2726                 /* in case skb wont be segmented, point to itself */
2727                 skb->prev = skb;
2728
2729                 skb = validate_xmit_skb(skb, dev);
2730                 if (!skb)
2731                         continue;
2732
2733                 if (!head)
2734                         head = skb;
2735                 else
2736                         tail->next = skb;
2737                 /* If skb was segmented, skb->prev points to
2738                  * the last segment. If not, it still contains skb.
2739                  */
2740                 tail = skb->prev;
2741         }
2742         return head;
2743 }
2744
2745 static void qdisc_pkt_len_init(struct sk_buff *skb)
2746 {
2747         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748
2749         qdisc_skb_cb(skb)->pkt_len = skb->len;
2750
2751         /* To get more precise estimation of bytes sent on wire,
2752          * we add to pkt_len the headers size of all segments
2753          */
2754         if (shinfo->gso_size)  {
2755                 unsigned int hdr_len;
2756                 u16 gso_segs = shinfo->gso_segs;
2757
2758                 /* mac layer + network layer */
2759                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760
2761                 /* + transport layer */
2762                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763                         hdr_len += tcp_hdrlen(skb);
2764                 else
2765                         hdr_len += sizeof(struct udphdr);
2766
2767                 if (shinfo->gso_type & SKB_GSO_DODGY)
2768                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769                                                 shinfo->gso_size);
2770
2771                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2772         }
2773 }
2774
2775 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776                                  struct net_device *dev,
2777                                  struct netdev_queue *txq)
2778 {
2779         spinlock_t *root_lock = qdisc_lock(q);
2780         bool contended;
2781         int rc;
2782
2783         qdisc_pkt_len_init(skb);
2784         qdisc_calculate_pkt_len(skb, q);
2785         /*
2786          * Heuristic to force contended enqueues to serialize on a
2787          * separate lock before trying to get qdisc main lock.
2788          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789          * often and dequeue packets faster.
2790          */
2791         contended = qdisc_is_running(q);
2792         if (unlikely(contended))
2793                 spin_lock(&q->busylock);
2794
2795         spin_lock(root_lock);
2796         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797                 kfree_skb(skb);
2798                 rc = NET_XMIT_DROP;
2799         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2800                    qdisc_run_begin(q)) {
2801                 /*
2802                  * This is a work-conserving queue; there are no old skbs
2803                  * waiting to be sent out; and the qdisc is not running -
2804                  * xmit the skb directly.
2805                  */
2806
2807                 qdisc_bstats_update(q, skb);
2808
2809                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2810                         if (unlikely(contended)) {
2811                                 spin_unlock(&q->busylock);
2812                                 contended = false;
2813                         }
2814                         __qdisc_run(q);
2815                 } else
2816                         qdisc_run_end(q);
2817
2818                 rc = NET_XMIT_SUCCESS;
2819         } else {
2820                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2821                 if (qdisc_run_begin(q)) {
2822                         if (unlikely(contended)) {
2823                                 spin_unlock(&q->busylock);
2824                                 contended = false;
2825                         }
2826                         __qdisc_run(q);
2827                 }
2828         }
2829         spin_unlock(root_lock);
2830         if (unlikely(contended))
2831                 spin_unlock(&q->busylock);
2832         return rc;
2833 }
2834
2835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2836 static void skb_update_prio(struct sk_buff *skb)
2837 {
2838         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2839
2840         if (!skb->priority && skb->sk && map) {
2841                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842
2843                 if (prioidx < map->priomap_len)
2844                         skb->priority = map->priomap[prioidx];
2845         }
2846 }
2847 #else
2848 #define skb_update_prio(skb)
2849 #endif
2850
2851 static DEFINE_PER_CPU(int, xmit_recursion);
2852 #define RECURSION_LIMIT 10
2853
2854 /**
2855  *      dev_loopback_xmit - loop back @skb
2856  *      @skb: buffer to transmit
2857  */
2858 int dev_loopback_xmit(struct sk_buff *skb)
2859 {
2860         skb_reset_mac_header(skb);
2861         __skb_pull(skb, skb_network_offset(skb));
2862         skb->pkt_type = PACKET_LOOPBACK;
2863         skb->ip_summed = CHECKSUM_UNNECESSARY;
2864         WARN_ON(!skb_dst(skb));
2865         skb_dst_force(skb);
2866         netif_rx_ni(skb);
2867         return 0;
2868 }
2869 EXPORT_SYMBOL(dev_loopback_xmit);
2870
2871 /**
2872  *      __dev_queue_xmit - transmit a buffer
2873  *      @skb: buffer to transmit
2874  *      @accel_priv: private data used for L2 forwarding offload
2875  *
2876  *      Queue a buffer for transmission to a network device. The caller must
2877  *      have set the device and priority and built the buffer before calling
2878  *      this function. The function can be called from an interrupt.
2879  *
2880  *      A negative errno code is returned on a failure. A success does not
2881  *      guarantee the frame will be transmitted as it may be dropped due
2882  *      to congestion or traffic shaping.
2883  *
2884  * -----------------------------------------------------------------------------------
2885  *      I notice this method can also return errors from the queue disciplines,
2886  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2887  *      be positive.
2888  *
2889  *      Regardless of the return value, the skb is consumed, so it is currently
2890  *      difficult to retry a send to this method.  (You can bump the ref count
2891  *      before sending to hold a reference for retry if you are careful.)
2892  *
2893  *      When calling this method, interrupts MUST be enabled.  This is because
2894  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2895  *          --BLG
2896  */
2897 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2898 {
2899         struct net_device *dev = skb->dev;
2900         struct netdev_queue *txq;
2901         struct Qdisc *q;
2902         int rc = -ENOMEM;
2903
2904         skb_reset_mac_header(skb);
2905
2906         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2907                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2908
2909         /* Disable soft irqs for various locks below. Also
2910          * stops preemption for RCU.
2911          */
2912         rcu_read_lock_bh();
2913
2914         skb_update_prio(skb);
2915
2916         /* If device/qdisc don't need skb->dst, release it right now while
2917          * its hot in this cpu cache.
2918          */
2919         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2920                 skb_dst_drop(skb);
2921         else
2922                 skb_dst_force(skb);
2923
2924         txq = netdev_pick_tx(dev, skb, accel_priv);
2925         q = rcu_dereference_bh(txq->qdisc);
2926
2927 #ifdef CONFIG_NET_CLS_ACT
2928         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2929 #endif
2930         trace_net_dev_queue(skb);
2931         if (q->enqueue) {
2932                 rc = __dev_xmit_skb(skb, q, dev, txq);
2933                 goto out;
2934         }
2935
2936         /* The device has no queue. Common case for software devices:
2937            loopback, all the sorts of tunnels...
2938
2939            Really, it is unlikely that netif_tx_lock protection is necessary
2940            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2941            counters.)
2942            However, it is possible, that they rely on protection
2943            made by us here.
2944
2945            Check this and shot the lock. It is not prone from deadlocks.
2946            Either shot noqueue qdisc, it is even simpler 8)
2947          */
2948         if (dev->flags & IFF_UP) {
2949                 int cpu = smp_processor_id(); /* ok because BHs are off */
2950
2951                 if (txq->xmit_lock_owner != cpu) {
2952
2953                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2954                                 goto recursion_alert;
2955
2956                         skb = validate_xmit_skb(skb, dev);
2957                         if (!skb)
2958                                 goto drop;
2959
2960                         HARD_TX_LOCK(dev, txq, cpu);
2961
2962                         if (!netif_xmit_stopped(txq)) {
2963                                 __this_cpu_inc(xmit_recursion);
2964                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2965                                 __this_cpu_dec(xmit_recursion);
2966                                 if (dev_xmit_complete(rc)) {
2967                                         HARD_TX_UNLOCK(dev, txq);
2968                                         goto out;
2969                                 }
2970                         }
2971                         HARD_TX_UNLOCK(dev, txq);
2972                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2973                                              dev->name);
2974                 } else {
2975                         /* Recursion is detected! It is possible,
2976                          * unfortunately
2977                          */
2978 recursion_alert:
2979                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2980                                              dev->name);
2981                 }
2982         }
2983
2984         rc = -ENETDOWN;
2985 drop:
2986         rcu_read_unlock_bh();
2987
2988         atomic_long_inc(&dev->tx_dropped);
2989         kfree_skb_list(skb);
2990         return rc;
2991 out:
2992         rcu_read_unlock_bh();
2993         return rc;
2994 }
2995
2996 int dev_queue_xmit(struct sk_buff *skb)
2997 {
2998         return __dev_queue_xmit(skb, NULL);
2999 }
3000 EXPORT_SYMBOL(dev_queue_xmit);
3001
3002 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3003 {
3004         return __dev_queue_xmit(skb, accel_priv);
3005 }
3006 EXPORT_SYMBOL(dev_queue_xmit_accel);
3007
3008
3009 /*=======================================================================
3010                         Receiver routines
3011   =======================================================================*/
3012
3013 int netdev_max_backlog __read_mostly = 1000;
3014 EXPORT_SYMBOL(netdev_max_backlog);
3015
3016 int netdev_tstamp_prequeue __read_mostly = 1;
3017 int netdev_budget __read_mostly = 300;
3018 int weight_p __read_mostly = 64;            /* old backlog weight */
3019
3020 /* Called with irq disabled */
3021 static inline void ____napi_schedule(struct softnet_data *sd,
3022                                      struct napi_struct *napi)
3023 {
3024         list_add_tail(&napi->poll_list, &sd->poll_list);
3025         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3026 }
3027
3028 #ifdef CONFIG_RPS
3029
3030 /* One global table that all flow-based protocols share. */
3031 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3032 EXPORT_SYMBOL(rps_sock_flow_table);
3033 u32 rps_cpu_mask __read_mostly;
3034 EXPORT_SYMBOL(rps_cpu_mask);
3035
3036 struct static_key rps_needed __read_mostly;
3037
3038 static struct rps_dev_flow *
3039 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3040             struct rps_dev_flow *rflow, u16 next_cpu)
3041 {
3042         if (next_cpu != RPS_NO_CPU) {
3043 #ifdef CONFIG_RFS_ACCEL
3044                 struct netdev_rx_queue *rxqueue;
3045                 struct rps_dev_flow_table *flow_table;
3046                 struct rps_dev_flow *old_rflow;
3047                 u32 flow_id;
3048                 u16 rxq_index;
3049                 int rc;
3050
3051                 /* Should we steer this flow to a different hardware queue? */
3052                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3053                     !(dev->features & NETIF_F_NTUPLE))
3054                         goto out;
3055                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3056                 if (rxq_index == skb_get_rx_queue(skb))
3057                         goto out;
3058
3059                 rxqueue = dev->_rx + rxq_index;
3060                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3061                 if (!flow_table)
3062                         goto out;
3063                 flow_id = skb_get_hash(skb) & flow_table->mask;
3064                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3065                                                         rxq_index, flow_id);
3066                 if (rc < 0)
3067                         goto out;
3068                 old_rflow = rflow;
3069                 rflow = &flow_table->flows[flow_id];
3070                 rflow->filter = rc;
3071                 if (old_rflow->filter == rflow->filter)
3072                         old_rflow->filter = RPS_NO_FILTER;
3073         out:
3074 #endif
3075                 rflow->last_qtail =
3076                         per_cpu(softnet_data, next_cpu).input_queue_head;
3077         }
3078
3079         rflow->cpu = next_cpu;
3080         return rflow;
3081 }
3082
3083 /*
3084  * get_rps_cpu is called from netif_receive_skb and returns the target
3085  * CPU from the RPS map of the receiving queue for a given skb.
3086  * rcu_read_lock must be held on entry.
3087  */
3088 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3089                        struct rps_dev_flow **rflowp)
3090 {
3091         const struct rps_sock_flow_table *sock_flow_table;
3092         struct netdev_rx_queue *rxqueue = dev->_rx;
3093         struct rps_dev_flow_table *flow_table;
3094         struct rps_map *map;
3095         int cpu = -1;
3096         u32 tcpu;
3097         u32 hash;
3098
3099         if (skb_rx_queue_recorded(skb)) {
3100                 u16 index = skb_get_rx_queue(skb);
3101
3102                 if (unlikely(index >= dev->real_num_rx_queues)) {
3103                         WARN_ONCE(dev->real_num_rx_queues > 1,
3104                                   "%s received packet on queue %u, but number "
3105                                   "of RX queues is %u\n",
3106                                   dev->name, index, dev->real_num_rx_queues);
3107                         goto done;
3108                 }
3109                 rxqueue += index;
3110         }
3111
3112         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3113
3114         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3115         map = rcu_dereference(rxqueue->rps_map);
3116         if (!flow_table && !map)
3117                 goto done;
3118
3119         skb_reset_network_header(skb);
3120         hash = skb_get_hash(skb);
3121         if (!hash)
3122                 goto done;
3123
3124         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3125         if (flow_table && sock_flow_table) {
3126                 struct rps_dev_flow *rflow;
3127                 u32 next_cpu;
3128                 u32 ident;
3129
3130                 /* First check into global flow table if there is a match */
3131                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3132                 if ((ident ^ hash) & ~rps_cpu_mask)
3133                         goto try_rps;
3134
3135                 next_cpu = ident & rps_cpu_mask;
3136
3137                 /* OK, now we know there is a match,
3138                  * we can look at the local (per receive queue) flow table
3139                  */
3140                 rflow = &flow_table->flows[hash & flow_table->mask];
3141                 tcpu = rflow->cpu;
3142
3143                 /*
3144                  * If the desired CPU (where last recvmsg was done) is
3145                  * different from current CPU (one in the rx-queue flow
3146                  * table entry), switch if one of the following holds:
3147                  *   - Current CPU is unset (equal to RPS_NO_CPU).
3148                  *   - Current CPU is offline.
3149                  *   - The current CPU's queue tail has advanced beyond the
3150                  *     last packet that was enqueued using this table entry.
3151                  *     This guarantees that all previous packets for the flow
3152                  *     have been dequeued, thus preserving in order delivery.
3153                  */
3154                 if (unlikely(tcpu != next_cpu) &&
3155                     (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3156                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3157                       rflow->last_qtail)) >= 0)) {
3158                         tcpu = next_cpu;
3159                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3160                 }
3161
3162                 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3163                         *rflowp = rflow;
3164                         cpu = tcpu;
3165                         goto done;
3166                 }
3167         }
3168
3169 try_rps:
3170
3171         if (map) {
3172                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3173                 if (cpu_online(tcpu)) {
3174                         cpu = tcpu;
3175                         goto done;
3176                 }
3177         }
3178
3179 done:
3180         return cpu;
3181 }
3182
3183 #ifdef CONFIG_RFS_ACCEL
3184
3185 /**
3186  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3187  * @dev: Device on which the filter was set
3188  * @rxq_index: RX queue index
3189  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3190  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3191  *
3192  * Drivers that implement ndo_rx_flow_steer() should periodically call
3193  * this function for each installed filter and remove the filters for
3194  * which it returns %true.
3195  */
3196 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3197                          u32 flow_id, u16 filter_id)
3198 {
3199         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3200         struct rps_dev_flow_table *flow_table;
3201         struct rps_dev_flow *rflow;
3202         bool expire = true;
3203         int cpu;
3204
3205         rcu_read_lock();
3206         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3207         if (flow_table && flow_id <= flow_table->mask) {
3208                 rflow = &flow_table->flows[flow_id];
3209                 cpu = ACCESS_ONCE(rflow->cpu);
3210                 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3211                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3212                            rflow->last_qtail) <
3213                      (int)(10 * flow_table->mask)))
3214                         expire = false;
3215         }
3216         rcu_read_unlock();
3217         return expire;
3218 }
3219 EXPORT_SYMBOL(rps_may_expire_flow);
3220
3221 #endif /* CONFIG_RFS_ACCEL */
3222
3223 /* Called from hardirq (IPI) context */
3224 static void rps_trigger_softirq(void *data)
3225 {
3226         struct softnet_data *sd = data;
3227
3228         ____napi_schedule(sd, &sd->backlog);
3229         sd->received_rps++;
3230 }
3231
3232 #endif /* CONFIG_RPS */
3233
3234 /*
3235  * Check if this softnet_data structure is another cpu one
3236  * If yes, queue it to our IPI list and return 1
3237  * If no, return 0
3238  */
3239 static int rps_ipi_queued(struct softnet_data *sd)
3240 {
3241 #ifdef CONFIG_RPS
3242         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3243
3244         if (sd != mysd) {
3245                 sd->rps_ipi_next = mysd->rps_ipi_list;
3246                 mysd->rps_ipi_list = sd;
3247
3248                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3249                 return 1;
3250         }
3251 #endif /* CONFIG_RPS */
3252         return 0;
3253 }
3254
3255 #ifdef CONFIG_NET_FLOW_LIMIT
3256 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3257 #endif
3258
3259 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3260 {
3261 #ifdef CONFIG_NET_FLOW_LIMIT
3262         struct sd_flow_limit *fl;
3263         struct softnet_data *sd;
3264         unsigned int old_flow, new_flow;
3265
3266         if (qlen < (netdev_max_backlog >> 1))
3267                 return false;
3268
3269         sd = this_cpu_ptr(&softnet_data);
3270
3271         rcu_read_lock();
3272         fl = rcu_dereference(sd->flow_limit);
3273         if (fl) {
3274                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3275                 old_flow = fl->history[fl->history_head];
3276                 fl->history[fl->history_head] = new_flow;
3277
3278                 fl->history_head++;
3279                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3280
3281                 if (likely(fl->buckets[old_flow]))
3282                         fl->buckets[old_flow]--;
3283
3284                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3285                         fl->count++;
3286                         rcu_read_unlock();
3287                         return true;
3288                 }
3289         }
3290         rcu_read_unlock();
3291 #endif
3292         return false;
3293 }
3294
3295 /*
3296  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3297  * queue (may be a remote CPU queue).
3298  */
3299 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3300                               unsigned int *qtail)
3301 {
3302         struct softnet_data *sd;
3303         unsigned long flags;
3304         unsigned int qlen;
3305
3306         sd = &per_cpu(softnet_data, cpu);
3307
3308         local_irq_save(flags);
3309
3310         rps_lock(sd);
3311         qlen = skb_queue_len(&sd->input_pkt_queue);
3312         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3313                 if (qlen) {
3314 enqueue:
3315                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3316                         input_queue_tail_incr_save(sd, qtail);
3317                         rps_unlock(sd);
3318                         local_irq_restore(flags);
3319                         return NET_RX_SUCCESS;
3320                 }
3321
3322                 /* Schedule NAPI for backlog device
3323                  * We can use non atomic operation since we own the queue lock
3324                  */
3325                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3326                         if (!rps_ipi_queued(sd))
3327                                 ____napi_schedule(sd, &sd->backlog);
3328                 }
3329                 goto enqueue;
3330         }
3331
3332         sd->dropped++;
3333         rps_unlock(sd);
3334
3335         local_irq_restore(flags);
3336
3337         atomic_long_inc(&skb->dev->rx_dropped);
3338         kfree_skb(skb);
3339         return NET_RX_DROP;
3340 }
3341
3342 static int netif_rx_internal(struct sk_buff *skb)
3343 {
3344         int ret;
3345
3346         net_timestamp_check(netdev_tstamp_prequeue, skb);
3347
3348         trace_netif_rx(skb);
3349 #ifdef CONFIG_RPS
3350         if (static_key_false(&rps_needed)) {
3351                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3352                 int cpu;
3353
3354                 preempt_disable();
3355                 rcu_read_lock();
3356
3357                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3358                 if (cpu < 0)
3359                         cpu = smp_processor_id();
3360
3361                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3362
3363                 rcu_read_unlock();
3364                 preempt_enable();
3365         } else
3366 #endif
3367         {
3368                 unsigned int qtail;
3369                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3370                 put_cpu();
3371         }
3372         return ret;
3373 }
3374
3375 /**
3376  *      netif_rx        -       post buffer to the network code
3377  *      @skb: buffer to post
3378  *
3379  *      This function receives a packet from a device driver and queues it for
3380  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3381  *      may be dropped during processing for congestion control or by the
3382  *      protocol layers.
3383  *
3384  *      return values:
3385  *      NET_RX_SUCCESS  (no congestion)
3386  *      NET_RX_DROP     (packet was dropped)
3387  *
3388  */
3389
3390 int netif_rx(struct sk_buff *skb)
3391 {
3392         trace_netif_rx_entry(skb);
3393
3394         return netif_rx_internal(skb);
3395 }
3396 EXPORT_SYMBOL(netif_rx);
3397
3398 int netif_rx_ni(struct sk_buff *skb)
3399 {
3400         int err;
3401
3402         trace_netif_rx_ni_entry(skb);
3403
3404         preempt_disable();
3405         err = netif_rx_internal(skb);
3406         if (local_softirq_pending())
3407                 do_softirq();
3408         preempt_enable();
3409
3410         return err;
3411 }
3412 EXPORT_SYMBOL(netif_rx_ni);
3413
3414 static void net_tx_action(struct softirq_action *h)
3415 {
3416         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3417
3418         if (sd->completion_queue) {
3419                 struct sk_buff *clist;
3420
3421                 local_irq_disable();
3422                 clist = sd->completion_queue;
3423                 sd->completion_queue = NULL;
3424                 local_irq_enable();
3425
3426                 while (clist) {
3427                         struct sk_buff *skb = clist;
3428                         clist = clist->next;
3429
3430                         WARN_ON(atomic_read(&skb->users));
3431                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3432                                 trace_consume_skb(skb);
3433                         else
3434                                 trace_kfree_skb(skb, net_tx_action);
3435                         __kfree_skb(skb);
3436                 }
3437         }
3438
3439         if (sd->output_queue) {
3440                 struct Qdisc *head;
3441
3442                 local_irq_disable();
3443                 head = sd->output_queue;
3444                 sd->output_queue = NULL;
3445                 sd->output_queue_tailp = &sd->output_queue;
3446                 local_irq_enable();
3447
3448                 while (head) {
3449                         struct Qdisc *q = head;
3450                         spinlock_t *root_lock;
3451
3452                         head = head->next_sched;
3453
3454                         root_lock = qdisc_lock(q);
3455                         if (spin_trylock(root_lock)) {
3456                                 smp_mb__before_atomic();
3457                                 clear_bit(__QDISC_STATE_SCHED,
3458                                           &q->state);
3459                                 qdisc_run(q);
3460                                 spin_unlock(root_lock);
3461                         } else {
3462                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3463                                               &q->state)) {
3464                                         __netif_reschedule(q);
3465                                 } else {
3466                                         smp_mb__before_atomic();
3467                                         clear_bit(__QDISC_STATE_SCHED,
3468                                                   &q->state);
3469                                 }
3470                         }
3471                 }
3472         }
3473 }
3474
3475 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3476     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3477 /* This hook is defined here for ATM LANE */
3478 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3479                              unsigned char *addr) __read_mostly;
3480 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3481 #endif
3482
3483 #ifdef CONFIG_NET_CLS_ACT
3484 /* TODO: Maybe we should just force sch_ingress to be compiled in
3485  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3486  * a compare and 2 stores extra right now if we dont have it on
3487  * but have CONFIG_NET_CLS_ACT
3488  * NOTE: This doesn't stop any functionality; if you dont have
3489  * the ingress scheduler, you just can't add policies on ingress.
3490  *
3491  */
3492 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3493 {
3494         struct net_device *dev = skb->dev;
3495         u32 ttl = G_TC_RTTL(skb->tc_verd);
3496         int result = TC_ACT_OK;
3497         struct Qdisc *q;
3498
3499         if (unlikely(MAX_RED_LOOP < ttl++)) {
3500                 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3501                                      skb->skb_iif, dev->ifindex);
3502                 return TC_ACT_SHOT;
3503         }
3504
3505         skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3506         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3507
3508         q = rcu_dereference(rxq->qdisc);
3509         if (q != &noop_qdisc) {
3510                 spin_lock(qdisc_lock(q));
3511                 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3512                         result = qdisc_enqueue_root(skb, q);
3513                 spin_unlock(qdisc_lock(q));
3514         }
3515
3516         return result;
3517 }
3518
3519 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3520                                          struct packet_type **pt_prev,
3521                                          int *ret, struct net_device *orig_dev)
3522 {
3523         struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3524
3525         if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3526                 goto out;
3527
3528         if (*pt_prev) {
3529                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3530                 *pt_prev = NULL;
3531         }
3532
3533         switch (ing_filter(skb, rxq)) {
3534         case TC_ACT_SHOT:
3535         case TC_ACT_STOLEN:
3536                 kfree_skb(skb);
3537                 return NULL;
3538         }
3539
3540 out:
3541         skb->tc_verd = 0;
3542         return skb;
3543 }
3544 #endif
3545
3546 /**
3547  *      netdev_rx_handler_register - register receive handler
3548  *      @dev: device to register a handler for
3549  *      @rx_handler: receive handler to register
3550  *      @rx_handler_data: data pointer that is used by rx handler
3551  *
3552  *      Register a receive handler for a device. This handler will then be
3553  *      called from __netif_receive_skb. A negative errno code is returned
3554  *      on a failure.
3555  *
3556  *      The caller must hold the rtnl_mutex.
3557  *
3558  *      For a general description of rx_handler, see enum rx_handler_result.
3559  */
3560 int netdev_rx_handler_register(struct net_device *dev,
3561                                rx_handler_func_t *rx_handler,
3562                                void *rx_handler_data)
3563 {
3564         ASSERT_RTNL();
3565
3566         if (dev->rx_handler)
3567                 return -EBUSY;
3568
3569         /* Note: rx_handler_data must be set before rx_handler */
3570         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3571         rcu_assign_pointer(dev->rx_handler, rx_handler);
3572
3573         return 0;
3574 }
3575 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3576
3577 /**
3578  *      netdev_rx_handler_unregister - unregister receive handler
3579  *      @dev: device to unregister a handler from
3580  *
3581  *      Unregister a receive handler from a device.
3582  *
3583  *      The caller must hold the rtnl_mutex.
3584  */
3585 void netdev_rx_handler_unregister(struct net_device *dev)
3586 {
3587
3588         ASSERT_RTNL();
3589         RCU_INIT_POINTER(dev->rx_handler, NULL);
3590         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3591          * section has a guarantee to see a non NULL rx_handler_data
3592          * as well.
3593          */
3594         synchronize_net();
3595         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3596 }
3597 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3598
3599 /*
3600  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3601  * the special handling of PFMEMALLOC skbs.
3602  */
3603 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3604 {
3605         switch (skb->protocol) {
3606         case htons(ETH_P_ARP):
3607         case htons(ETH_P_IP):
3608         case htons(ETH_P_IPV6):
3609         case htons(ETH_P_8021Q):
3610         case htons(ETH_P_8021AD):
3611                 return true;
3612         default:
3613                 return false;
3614         }
3615 }
3616
3617 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3618 {
3619         struct packet_type *ptype, *pt_prev;
3620         rx_handler_func_t *rx_handler;
3621         struct net_device *orig_dev;
3622         bool deliver_exact = false;
3623         int ret = NET_RX_DROP;
3624         __be16 type;
3625
3626         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3627
3628         trace_netif_receive_skb(skb);
3629
3630         orig_dev = skb->dev;
3631
3632         skb_reset_network_header(skb);
3633         if (!skb_transport_header_was_set(skb))
3634                 skb_reset_transport_header(skb);
3635         skb_reset_mac_len(skb);
3636
3637         pt_prev = NULL;
3638
3639         rcu_read_lock();
3640
3641 another_round:
3642         skb->skb_iif = skb->dev->ifindex;
3643
3644         __this_cpu_inc(softnet_data.processed);
3645
3646         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3647             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3648                 skb = skb_vlan_untag(skb);
3649                 if (unlikely(!skb))
3650                         goto unlock;
3651         }
3652
3653 #ifdef CONFIG_NET_CLS_ACT
3654         if (skb->tc_verd & TC_NCLS) {
3655                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3656                 goto ncls;
3657         }
3658 #endif
3659
3660         if (pfmemalloc)
3661                 goto skip_taps;
3662
3663         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3664                 if (pt_prev)
3665                         ret = deliver_skb(skb, pt_prev, orig_dev);
3666                 pt_prev = ptype;
3667         }
3668
3669         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3670                 if (pt_prev)
3671                         ret = deliver_skb(skb, pt_prev, orig_dev);
3672                 pt_prev = ptype;
3673         }
3674
3675 skip_taps:
3676 #ifdef CONFIG_NET_CLS_ACT
3677         skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3678         if (!skb)
3679                 goto unlock;
3680 ncls:
3681 #endif
3682
3683         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3684                 goto drop;
3685
3686         if (skb_vlan_tag_present(skb)) {
3687                 if (pt_prev) {
3688                         ret = deliver_skb(skb, pt_prev, orig_dev);
3689                         pt_prev = NULL;
3690                 }
3691                 if (vlan_do_receive(&skb))
3692                         goto another_round;
3693                 else if (unlikely(!skb))
3694                         goto unlock;
3695         }
3696
3697         rx_handler = rcu_dereference(skb->dev->rx_handler);
3698         if (rx_handler) {
3699                 if (pt_prev) {
3700                         ret = deliver_skb(skb, pt_prev, orig_dev);
3701                         pt_prev = NULL;
3702                 }
3703                 switch (rx_handler(&skb)) {
3704                 case RX_HANDLER_CONSUMED:
3705                         ret = NET_RX_SUCCESS;
3706                         goto unlock;
3707                 case RX_HANDLER_ANOTHER:
3708                         goto another_round;
3709                 case RX_HANDLER_EXACT:
3710                         deliver_exact = true;
3711                 case RX_HANDLER_PASS:
3712                         break;
3713                 default:
3714                         BUG();
3715                 }
3716         }
3717
3718         if (unlikely(skb_vlan_tag_present(skb))) {
3719                 if (skb_vlan_tag_get_id(skb))
3720                         skb->pkt_type = PACKET_OTHERHOST;
3721                 /* Note: we might in the future use prio bits
3722                  * and set skb->priority like in vlan_do_receive()
3723                  * For the time being, just ignore Priority Code Point
3724                  */
3725                 skb->vlan_tci = 0;
3726         }
3727
3728         type = skb->protocol;
3729
3730         /* deliver only exact match when indicated */
3731         if (likely(!deliver_exact)) {
3732                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3733                                        &ptype_base[ntohs(type) &
3734                                                    PTYPE_HASH_MASK]);
3735         }
3736
3737         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3738                                &orig_dev->ptype_specific);
3739
3740         if (unlikely(skb->dev != orig_dev)) {
3741                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3742                                        &skb->dev->ptype_specific);
3743         }
3744
3745         if (pt_prev) {
3746                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3747                         goto drop;
3748                 else
3749                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3750         } else {
3751 drop:
3752                 atomic_long_inc(&skb->dev->rx_dropped);
3753                 kfree_skb(skb);
3754                 /* Jamal, now you will not able to escape explaining
3755                  * me how you were going to use this. :-)
3756                  */
3757                 ret = NET_RX_DROP;
3758         }
3759
3760 unlock:
3761         rcu_read_unlock();
3762         return ret;
3763 }
3764
3765 static int __netif_receive_skb(struct sk_buff *skb)
3766 {
3767         int ret;
3768
3769         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3770                 unsigned long pflags = current->flags;
3771
3772                 /*
3773                  * PFMEMALLOC skbs are special, they should
3774                  * - be delivered to SOCK_MEMALLOC sockets only
3775                  * - stay away from userspace
3776                  * - have bounded memory usage
3777                  *
3778                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3779                  * context down to all allocation sites.
3780                  */
3781                 current->flags |= PF_MEMALLOC;
3782                 ret = __netif_receive_skb_core(skb, true);
3783                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3784         } else
3785                 ret = __netif_receive_skb_core(skb, false);
3786
3787         return ret;
3788 }
3789
3790 static int netif_receive_skb_internal(struct sk_buff *skb)
3791 {
3792         net_timestamp_check(netdev_tstamp_prequeue, skb);
3793
3794         if (skb_defer_rx_timestamp(skb))
3795                 return NET_RX_SUCCESS;
3796
3797 #ifdef CONFIG_RPS
3798         if (static_key_false(&rps_needed)) {
3799                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3800                 int cpu, ret;
3801
3802                 rcu_read_lock();
3803
3804                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3805
3806                 if (cpu >= 0) {
3807                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808                         rcu_read_unlock();
3809                         return ret;
3810                 }
3811                 rcu_read_unlock();
3812         }
3813 #endif
3814         return __netif_receive_skb(skb);
3815 }
3816
3817 /**
3818  *      netif_receive_skb - process receive buffer from network
3819  *      @skb: buffer to process
3820  *
3821  *      netif_receive_skb() is the main receive data processing function.
3822  *      It always succeeds. The buffer may be dropped during processing
3823  *      for congestion control or by the protocol layers.
3824  *
3825  *      This function may only be called from softirq context and interrupts
3826  *      should be enabled.
3827  *
3828  *      Return values (usually ignored):
3829  *      NET_RX_SUCCESS: no congestion
3830  *      NET_RX_DROP: packet was dropped
3831  */
3832 int netif_receive_skb(struct sk_buff *skb)
3833 {
3834         trace_netif_receive_skb_entry(skb);
3835
3836         return netif_receive_skb_internal(skb);
3837 }
3838 EXPORT_SYMBOL(netif_receive_skb);
3839
3840 /* Network device is going away, flush any packets still pending
3841  * Called with irqs disabled.
3842  */
3843 static void flush_backlog(void *arg)
3844 {
3845         struct net_device *dev = arg;
3846         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3847         struct sk_buff *skb, *tmp;
3848
3849         rps_lock(sd);
3850         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3851                 if (skb->dev == dev) {
3852                         __skb_unlink(skb, &sd->input_pkt_queue);
3853                         kfree_skb(skb);
3854                         input_queue_head_incr(sd);
3855                 }
3856         }
3857         rps_unlock(sd);
3858
3859         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3860                 if (skb->dev == dev) {
3861                         __skb_unlink(skb, &sd->process_queue);
3862                         kfree_skb(skb);
3863                         input_queue_head_incr(sd);
3864                 }
3865         }
3866 }
3867
3868 static int napi_gro_complete(struct sk_buff *skb)
3869 {
3870         struct packet_offload *ptype;
3871         __be16 type = skb->protocol;
3872         struct list_head *head = &offload_base;
3873         int err = -ENOENT;
3874
3875         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3876
3877         if (NAPI_GRO_CB(skb)->count == 1) {
3878                 skb_shinfo(skb)->gso_size = 0;
3879                 goto out;
3880         }
3881
3882         rcu_read_lock();
3883         list_for_each_entry_rcu(ptype, head, list) {
3884                 if (ptype->type != type || !ptype->callbacks.gro_complete)
3885                         continue;
3886
3887                 err = ptype->callbacks.gro_complete(skb, 0);
3888                 break;
3889         }
3890         rcu_read_unlock();
3891
3892         if (err) {
3893                 WARN_ON(&ptype->list == head);
3894                 kfree_skb(skb);
3895                 return NET_RX_SUCCESS;
3896         }
3897
3898 out:
3899         return netif_receive_skb_internal(skb);
3900 }
3901
3902 /* napi->gro_list contains packets ordered by age.
3903  * youngest packets at the head of it.
3904  * Complete skbs in reverse order to reduce latencies.
3905  */
3906 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3907 {
3908         struct sk_buff *skb, *prev = NULL;
3909
3910         /* scan list and build reverse chain */
3911         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3912                 skb->prev = prev;
3913                 prev = skb;
3914         }
3915
3916         for (skb = prev; skb; skb = prev) {
3917                 skb->next = NULL;
3918
3919                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3920                         return;
3921
3922                 prev = skb->prev;
3923                 napi_gro_complete(skb);
3924                 napi->gro_count--;
3925         }
3926
3927         napi->gro_list = NULL;
3928 }
3929 EXPORT_SYMBOL(napi_gro_flush);
3930
3931 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3932 {
3933         struct sk_buff *p;
3934         unsigned int maclen = skb->dev->hard_header_len;
3935         u32 hash = skb_get_hash_raw(skb);
3936
3937         for (p = napi->gro_list; p; p = p->next) {
3938                 unsigned long diffs;
3939
3940                 NAPI_GRO_CB(p)->flush = 0;
3941
3942                 if (hash != skb_get_hash_raw(p)) {
3943                         NAPI_GRO_CB(p)->same_flow = 0;
3944                         continue;
3945                 }
3946
3947                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3948                 diffs |= p->vlan_tci ^ skb->vlan_tci;
3949                 if (maclen == ETH_HLEN)
3950                         diffs |= compare_ether_header(skb_mac_header(p),
3951                                                       skb_mac_header(skb));
3952                 else if (!diffs)
3953                         diffs = memcmp(skb_mac_header(p),
3954                                        skb_mac_header(skb),
3955                                        maclen);
3956                 NAPI_GRO_CB(p)->same_flow = !diffs;
3957         }
3958 }
3959
3960 static void skb_gro_reset_offset(struct sk_buff *skb)
3961 {
3962         const struct skb_shared_info *pinfo = skb_shinfo(skb);
3963         const skb_frag_t *frag0 = &pinfo->frags[0];
3964
3965         NAPI_GRO_CB(skb)->data_offset = 0;
3966         NAPI_GRO_CB(skb)->frag0 = NULL;
3967         NAPI_GRO_CB(skb)->frag0_len = 0;
3968
3969         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3970             pinfo->nr_frags &&
3971             !PageHighMem(skb_frag_page(frag0))) {
3972                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3973                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3974         }
3975 }
3976
3977 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3978 {
3979         struct skb_shared_info *pinfo = skb_shinfo(skb);
3980
3981         BUG_ON(skb->end - skb->tail < grow);
3982
3983         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3984
3985         skb->data_len -= grow;
3986         skb->tail += grow;
3987
3988         pinfo->frags[0].page_offset += grow;
3989         skb_frag_size_sub(&pinfo->frags[0], grow);
3990
3991         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3992                 skb_frag_unref(skb, 0);
3993                 memmove(pinfo->frags, pinfo->frags + 1,
3994                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3995         }
3996 }
3997
3998 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3999 {
4000         struct sk_buff **pp = NULL;
4001         struct packet_offload *ptype;
4002         __be16 type = skb->protocol;
4003         struct list_head *head = &offload_base;
4004         int same_flow;
4005         enum gro_result ret;
4006         int grow;
4007
4008         if (!(skb->dev->features & NETIF_F_GRO))
4009                 goto normal;
4010
4011         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4012                 goto normal;
4013
4014         gro_list_prepare(napi, skb);
4015
4016         rcu_read_lock();
4017         list_for_each_entry_rcu(ptype, head, list) {
4018                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4019                         continue;
4020
4021                 skb_set_network_header(skb, skb_gro_offset(skb));
4022                 skb_reset_mac_len(skb);
4023                 NAPI_GRO_CB(skb)->same_flow = 0;
4024                 NAPI_GRO_CB(skb)->flush = 0;
4025                 NAPI_GRO_CB(skb)->free = 0;
4026                 NAPI_GRO_CB(skb)->udp_mark = 0;
4027
4028                 /* Setup for GRO checksum validation */
4029                 switch (skb->ip_summed) {
4030                 case CHECKSUM_COMPLETE:
4031                         NAPI_GRO_CB(skb)->csum = skb->csum;
4032                         NAPI_GRO_CB(skb)->csum_valid = 1;
4033                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4034                         break;
4035                 case CHECKSUM_UNNECESSARY:
4036                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4037                         NAPI_GRO_CB(skb)->csum_valid = 0;
4038                         break;
4039                 default:
4040                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4041                         NAPI_GRO_CB(skb)->csum_valid = 0;
4042                 }
4043
4044                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4045                 break;
4046         }
4047         rcu_read_unlock();
4048
4049         if (&ptype->list == head)
4050                 goto normal;
4051
4052         same_flow = NAPI_GRO_CB(skb)->same_flow;
4053         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4054
4055         if (pp) {
4056                 struct sk_buff *nskb = *pp;
4057
4058                 *pp = nskb->next;
4059                 nskb->next = NULL;
4060                 napi_gro_complete(nskb);
4061                 napi->gro_count--;
4062         }
4063
4064         if (same_flow)
4065                 goto ok;
4066
4067         if (NAPI_GRO_CB(skb)->flush)
4068                 goto normal;
4069
4070         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4071                 struct sk_buff *nskb = napi->gro_list;
4072
4073                 /* locate the end of the list to select the 'oldest' flow */
4074                 while (nskb->next) {
4075                         pp = &nskb->next;
4076                         nskb = *pp;
4077                 }
4078                 *pp = NULL;
4079                 nskb->next = NULL;
4080                 napi_gro_complete(nskb);
4081         } else {
4082                 napi->gro_count++;
4083         }
4084         NAPI_GRO_CB(skb)->count = 1;
4085         NAPI_GRO_CB(skb)->age = jiffies;
4086         NAPI_GRO_CB(skb)->last = skb;
4087         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4088         skb->next = napi->gro_list;
4089         napi->gro_list = skb;
4090         ret = GRO_HELD;
4091
4092 pull:
4093         grow = skb_gro_offset(skb) - skb_headlen(skb);
4094         if (grow > 0)
4095                 gro_pull_from_frag0(skb, grow);
4096 ok:
4097         return ret;
4098
4099 normal:
4100         ret = GRO_NORMAL;
4101         goto pull;
4102 }
4103
4104 struct packet_offload *gro_find_receive_by_type(__be16 type)
4105 {
4106         struct list_head *offload_head = &offload_base;
4107         struct packet_offload *ptype;
4108
4109         list_for_each_entry_rcu(ptype, offload_head, list) {
4110                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4111                         continue;
4112                 return ptype;
4113         }
4114         return NULL;
4115 }
4116 EXPORT_SYMBOL(gro_find_receive_by_type);
4117
4118 struct packet_offload *gro_find_complete_by_type(__be16 type)
4119 {
4120         struct list_head *offload_head = &offload_base;
4121         struct packet_offload *ptype;
4122
4123         list_for_each_entry_rcu(ptype, offload_head, list) {
4124                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4125                         continue;
4126                 return ptype;
4127         }
4128         return NULL;
4129 }
4130 EXPORT_SYMBOL(gro_find_complete_by_type);
4131
4132 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4133 {
4134         switch (ret) {
4135         case GRO_NORMAL:
4136                 if (netif_receive_skb_internal(skb))
4137                         ret = GRO_DROP;
4138                 break;
4139
4140         case GRO_DROP:
4141                 kfree_skb(skb);
4142                 break;
4143
4144         case GRO_MERGED_FREE:
4145                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4146                         kmem_cache_free(skbuff_head_cache, skb);
4147                 else
4148                         __kfree_skb(skb);
4149                 break;
4150
4151         case GRO_HELD:
4152         case GRO_MERGED:
4153                 break;
4154         }
4155
4156         return ret;
4157 }
4158
4159 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4160 {
4161         trace_napi_gro_receive_entry(skb);
4162
4163         skb_gro_reset_offset(skb);
4164
4165         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4166 }
4167 EXPORT_SYMBOL(napi_gro_receive);
4168
4169 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4170 {
4171         if (unlikely(skb->pfmemalloc)) {
4172                 consume_skb(skb);
4173                 return;
4174         }
4175         __skb_pull(skb, skb_headlen(skb));
4176         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4177         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4178         skb->vlan_tci = 0;
4179         skb->dev = napi->dev;
4180         skb->skb_iif = 0;
4181         skb->encapsulation = 0;
4182         skb_shinfo(skb)->gso_type = 0;
4183         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4184
4185         napi->skb = skb;
4186 }
4187
4188 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4189 {
4190         struct sk_buff *skb = napi->skb;
4191
4192         if (!skb) {
4193                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4194                 napi->skb = skb;
4195         }
4196         return skb;
4197 }
4198 EXPORT_SYMBOL(napi_get_frags);
4199
4200 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4201                                       struct sk_buff *skb,
4202                                       gro_result_t ret)
4203 {
4204         switch (ret) {
4205         case GRO_NORMAL:
4206         case GRO_HELD:
4207                 __skb_push(skb, ETH_HLEN);
4208                 skb->protocol = eth_type_trans(skb, skb->dev);
4209                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4210                         ret = GRO_DROP;
4211                 break;
4212
4213         case GRO_DROP:
4214         case GRO_MERGED_FREE:
4215                 napi_reuse_skb(napi, skb);
4216                 break;
4217
4218         case GRO_MERGED:
4219                 break;
4220         }
4221
4222         return ret;
4223 }
4224
4225 /* Upper GRO stack assumes network header starts at gro_offset=0
4226  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4227  * We copy ethernet header into skb->data to have a common layout.
4228  */
4229 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4230 {
4231         struct sk_buff *skb = napi->skb;
4232         const struct ethhdr *eth;
4233         unsigned int hlen = sizeof(*eth);
4234
4235         napi->skb = NULL;
4236
4237         skb_reset_mac_header(skb);
4238         skb_gro_reset_offset(skb);
4239
4240         eth = skb_gro_header_fast(skb, 0);
4241         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4242                 eth = skb_gro_header_slow(skb, hlen, 0);
4243                 if (unlikely(!eth)) {
4244                         napi_reuse_skb(napi, skb);
4245                         return NULL;
4246                 }
4247         } else {
4248                 gro_pull_from_frag0(skb, hlen);
4249                 NAPI_GRO_CB(skb)->frag0 += hlen;
4250                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4251         }
4252         __skb_pull(skb, hlen);
4253
4254         /*
4255          * This works because the only protocols we care about don't require
4256          * special handling.
4257          * We'll fix it up properly in napi_frags_finish()
4258          */
4259         skb->protocol = eth->h_proto;
4260
4261         return skb;
4262 }
4263
4264 gro_result_t napi_gro_frags(struct napi_struct *napi)
4265 {
4266         struct sk_buff *skb = napi_frags_skb(napi);
4267
4268         if (!skb)
4269                 return GRO_DROP;
4270
4271         trace_napi_gro_frags_entry(skb);
4272
4273         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4274 }
4275 EXPORT_SYMBOL(napi_gro_frags);
4276
4277 /* Compute the checksum from gro_offset and return the folded value
4278  * after adding in any pseudo checksum.
4279  */
4280 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4281 {
4282         __wsum wsum;
4283         __sum16 sum;
4284
4285         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4286
4287         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4288         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4289         if (likely(!sum)) {
4290                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4291                     !skb->csum_complete_sw)
4292                         netdev_rx_csum_fault(skb->dev);
4293         }
4294
4295         NAPI_GRO_CB(skb)->csum = wsum;
4296         NAPI_GRO_CB(skb)->csum_valid = 1;
4297
4298         return sum;
4299 }
4300 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4301
4302 /*
4303  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4304  * Note: called with local irq disabled, but exits with local irq enabled.
4305  */
4306 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4307 {
4308 #ifdef CONFIG_RPS
4309         struct softnet_data *remsd = sd->rps_ipi_list;
4310
4311         if (remsd) {
4312                 sd->rps_ipi_list = NULL;
4313
4314                 local_irq_enable();
4315
4316                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4317                 while (remsd) {
4318                         struct softnet_data *next = remsd->rps_ipi_next;
4319
4320                         if (cpu_online(remsd->cpu))
4321                                 smp_call_function_single_async(remsd->cpu,
4322                                                            &remsd->csd);
4323                         remsd = next;
4324                 }
4325         } else
4326 #endif
4327                 local_irq_enable();
4328 }
4329
4330 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4331 {
4332 #ifdef CONFIG_RPS
4333         return sd->rps_ipi_list != NULL;
4334 #else
4335         return false;
4336 #endif
4337 }
4338
4339 static int process_backlog(struct napi_struct *napi, int quota)
4340 {
4341         int work = 0;
4342         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4343
4344         /* Check if we have pending ipi, its better to send them now,
4345          * not waiting net_rx_action() end.
4346          */
4347         if (sd_has_rps_ipi_waiting(sd)) {
4348                 local_irq_disable();
4349                 net_rps_action_and_irq_enable(sd);
4350         }
4351
4352         napi->weight = weight_p;
4353         local_irq_disable();
4354         while (1) {
4355                 struct sk_buff *skb;
4356
4357                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4358                         local_irq_enable();
4359                         __netif_receive_skb(skb);
4360                         local_irq_disable();
4361                         input_queue_head_incr(sd);
4362                         if (++work >= quota) {
4363                                 local_irq_enable();
4364                                 return work;
4365                         }
4366                 }
4367
4368                 rps_lock(sd);
4369                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4370                         /*
4371                          * Inline a custom version of __napi_complete().
4372                          * only current cpu owns and manipulates this napi,
4373                          * and NAPI_STATE_SCHED is the only possible flag set
4374                          * on backlog.
4375                          * We can use a plain write instead of clear_bit(),
4376                          * and we dont need an smp_mb() memory barrier.
4377                          */
4378                         napi->state = 0;
4379                         rps_unlock(sd);
4380
4381                         break;
4382                 }
4383
4384                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4385                                            &sd->process_queue);
4386                 rps_unlock(sd);
4387         }
4388         local_irq_enable();
4389
4390         return work;
4391 }
4392
4393 /**
4394  * __napi_schedule - schedule for receive
4395  * @n: entry to schedule
4396  *
4397  * The entry's receive function will be scheduled to run.
4398  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4399  */
4400 void __napi_schedule(struct napi_struct *n)
4401 {
4402         unsigned long flags;
4403
4404         local_irq_save(flags);
4405         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4406         local_irq_restore(flags);
4407 }
4408 EXPORT_SYMBOL(__napi_schedule);
4409
4410 /**
4411  * __napi_schedule_irqoff - schedule for receive
4412  * @n: entry to schedule
4413  *
4414  * Variant of __napi_schedule() assuming hard irqs are masked
4415  */
4416 void __napi_schedule_irqoff(struct napi_struct *n)
4417 {
4418         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4419 }
4420 EXPORT_SYMBOL(__napi_schedule_irqoff);
4421
4422 void __napi_complete(struct napi_struct *n)
4423 {
4424         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4425
4426         list_del_init(&n->poll_list);
4427         smp_mb__before_atomic();
4428         clear_bit(NAPI_STATE_SCHED, &n->state);
4429 }
4430 EXPORT_SYMBOL(__napi_complete);
4431
4432 void napi_complete_done(struct napi_struct *n, int work_done)
4433 {
4434         unsigned long flags;
4435
4436         /*
4437          * don't let napi dequeue from the cpu poll list
4438          * just in case its running on a different cpu
4439          */
4440         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4441                 return;
4442
4443         if (n->gro_list) {
4444                 unsigned long timeout = 0;
4445
4446                 if (work_done)
4447                         timeout = n->dev->gro_flush_timeout;
4448
4449                 if (timeout)
4450                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4451                                       HRTIMER_MODE_REL_PINNED);
4452                 else
4453                         napi_gro_flush(n, false);
4454         }
4455         if (likely(list_empty(&n->poll_list))) {
4456                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4457         } else {
4458                 /* If n->poll_list is not empty, we need to mask irqs */
4459                 local_irq_save(flags);
4460                 __napi_complete(n);
4461                 local_irq_restore(flags);
4462         }
4463 }
4464 EXPORT_SYMBOL(napi_complete_done);
4465
4466 /* must be called under rcu_read_lock(), as we dont take a reference */
4467 struct napi_struct *napi_by_id(unsigned int napi_id)
4468 {
4469         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4470         struct napi_struct *napi;
4471
4472         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4473                 if (napi->napi_id == napi_id)
4474                         return napi;
4475
4476         return NULL;
4477 }
4478 EXPORT_SYMBOL_GPL(napi_by_id);
4479
4480 void napi_hash_add(struct napi_struct *napi)
4481 {
4482         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4483
4484                 spin_lock(&napi_hash_lock);
4485
4486                 /* 0 is not a valid id, we also skip an id that is taken
4487                  * we expect both events to be extremely rare
4488                  */
4489                 napi->napi_id = 0;
4490                 while (!napi->napi_id) {
4491                         napi->napi_id = ++napi_gen_id;
4492                         if (napi_by_id(napi->napi_id))
4493                                 napi->napi_id = 0;
4494                 }
4495
4496                 hlist_add_head_rcu(&napi->napi_hash_node,
4497                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4498
4499                 spin_unlock(&napi_hash_lock);
4500         }
4501 }
4502 EXPORT_SYMBOL_GPL(napi_hash_add);
4503
4504 /* Warning : caller is responsible to make sure rcu grace period
4505  * is respected before freeing memory containing @napi
4506  */
4507 void napi_hash_del(struct napi_struct *napi)
4508 {
4509         spin_lock(&napi_hash_lock);
4510
4511         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4512                 hlist_del_rcu(&napi->napi_hash_node);
4513
4514         spin_unlock(&napi_hash_lock);
4515 }
4516 EXPORT_SYMBOL_GPL(napi_hash_del);
4517
4518 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4519 {
4520         struct napi_struct *napi;
4521
4522         napi = container_of(timer, struct napi_struct, timer);
4523         if (napi->gro_list)
4524                 napi_schedule(napi);
4525
4526         return HRTIMER_NORESTART;
4527 }
4528
4529 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4530                     int (*poll)(struct napi_struct *, int), int weight)
4531 {
4532         INIT_LIST_HEAD(&napi->poll_list);
4533         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4534         napi->timer.function = napi_watchdog;
4535         napi->gro_count = 0;
4536         napi->gro_list = NULL;
4537         napi->skb = NULL;
4538         napi->poll = poll;
4539         if (weight > NAPI_POLL_WEIGHT)
4540                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4541                             weight, dev->name);
4542         napi->weight = weight;
4543         list_add(&napi->dev_list, &dev->napi_list);
4544         napi->dev = dev;
4545 #ifdef CONFIG_NETPOLL
4546         spin_lock_init(&napi->poll_lock);
4547         napi->poll_owner = -1;
4548 #endif
4549         set_bit(NAPI_STATE_SCHED, &napi->state);
4550 }
4551 EXPORT_SYMBOL(netif_napi_add);
4552
4553 void napi_disable(struct napi_struct *n)
4554 {
4555         might_sleep();
4556         set_bit(NAPI_STATE_DISABLE, &n->state);
4557
4558         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4559                 msleep(1);
4560
4561         hrtimer_cancel(&n->timer);
4562
4563         clear_bit(NAPI_STATE_DISABLE, &n->state);
4564 }
4565 EXPORT_SYMBOL(napi_disable);
4566
4567 void netif_napi_del(struct napi_struct *napi)
4568 {
4569         list_del_init(&napi->dev_list);
4570         napi_free_frags(napi);
4571
4572         kfree_skb_list(napi->gro_list);
4573         napi->gro_list = NULL;
4574         napi->gro_count = 0;
4575 }
4576 EXPORT_SYMBOL(netif_napi_del);
4577
4578 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4579 {
4580         void *have;
4581         int work, weight;
4582
4583         list_del_init(&n->poll_list);
4584
4585         have = netpoll_poll_lock(n);
4586
4587         weight = n->weight;
4588
4589         /* This NAPI_STATE_SCHED test is for avoiding a race
4590          * with netpoll's poll_napi().  Only the entity which
4591          * obtains the lock and sees NAPI_STATE_SCHED set will
4592          * actually make the ->poll() call.  Therefore we avoid
4593          * accidentally calling ->poll() when NAPI is not scheduled.
4594          */
4595         work = 0;
4596         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4597                 work = n->poll(n, weight);
4598                 trace_napi_poll(n);
4599         }
4600
4601         WARN_ON_ONCE(work > weight);
4602
4603         if (likely(work < weight))
4604                 goto out_unlock;
4605
4606         /* Drivers must not modify the NAPI state if they
4607          * consume the entire weight.  In such cases this code
4608          * still "owns" the NAPI instance and therefore can
4609          * move the instance around on the list at-will.
4610          */
4611         if (unlikely(napi_disable_pending(n))) {
4612                 napi_complete(n);
4613                 goto out_unlock;
4614         }
4615
4616         if (n->gro_list) {
4617                 /* flush too old packets
4618                  * If HZ < 1000, flush all packets.
4619                  */
4620                 napi_gro_flush(n, HZ >= 1000);
4621         }
4622
4623         /* Some drivers may have called napi_schedule
4624          * prior to exhausting their budget.
4625          */
4626         if (unlikely(!list_empty(&n->poll_list))) {
4627                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4628                              n->dev ? n->dev->name : "backlog");
4629                 goto out_unlock;
4630         }
4631
4632         list_add_tail(&n->poll_list, repoll);
4633
4634 out_unlock:
4635         netpoll_poll_unlock(have);
4636
4637         return work;
4638 }
4639
4640 static void net_rx_action(struct softirq_action *h)
4641 {
4642         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4643         unsigned long time_limit = jiffies + 2;
4644         int budget = netdev_budget;
4645         LIST_HEAD(list);
4646         LIST_HEAD(repoll);
4647
4648         local_irq_disable();
4649         list_splice_init(&sd->poll_list, &list);
4650         local_irq_enable();
4651
4652         for (;;) {
4653                 struct napi_struct *n;
4654
4655                 if (list_empty(&list)) {
4656                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4657                                 return;
4658                         break;
4659                 }
4660
4661                 n = list_first_entry(&list, struct napi_struct, poll_list);
4662                 budget -= napi_poll(n, &repoll);
4663
4664                 /* If softirq window is exhausted then punt.
4665                  * Allow this to run for 2 jiffies since which will allow
4666                  * an average latency of 1.5/HZ.
4667                  */
4668                 if (unlikely(budget <= 0 ||
4669                              time_after_eq(jiffies, time_limit))) {
4670                         sd->time_squeeze++;
4671                         break;
4672                 }
4673         }
4674
4675         local_irq_disable();
4676
4677         list_splice_tail_init(&sd->poll_list, &list);
4678         list_splice_tail(&repoll, &list);
4679         list_splice(&list, &sd->poll_list);
4680         if (!list_empty(&sd->poll_list))
4681                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4682
4683         net_rps_action_and_irq_enable(sd);
4684 }
4685
4686 struct netdev_adjacent {
4687         struct net_device *dev;
4688
4689         /* upper master flag, there can only be one master device per list */
4690         bool master;
4691
4692         /* counter for the number of times this device was added to us */
4693         u16 ref_nr;
4694
4695         /* private field for the users */
4696         void *private;
4697
4698         struct list_head list;
4699         struct rcu_head rcu;
4700 };
4701
4702 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4703                                                  struct net_device *adj_dev,
4704                                                  struct list_head *adj_list)
4705 {
4706         struct netdev_adjacent *adj;
4707
4708         list_for_each_entry(adj, adj_list, list) {
4709                 if (adj->dev == adj_dev)
4710                         return adj;
4711         }
4712         return NULL;
4713 }
4714
4715 /**
4716  * netdev_has_upper_dev - Check if device is linked to an upper device
4717  * @dev: device
4718  * @upper_dev: upper device to check
4719  *
4720  * Find out if a device is linked to specified upper device and return true
4721  * in case it is. Note that this checks only immediate upper device,
4722  * not through a complete stack of devices. The caller must hold the RTNL lock.
4723  */
4724 bool netdev_has_upper_dev(struct net_device *dev,
4725                           struct net_device *upper_dev)
4726 {
4727         ASSERT_RTNL();
4728
4729         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4730 }
4731 EXPORT_SYMBOL(netdev_has_upper_dev);
4732
4733 /**
4734  * netdev_has_any_upper_dev - Check if device is linked to some device
4735  * @dev: device
4736  *
4737  * Find out if a device is linked to an upper device and return true in case
4738  * it is. The caller must hold the RTNL lock.
4739  */
4740 static bool netdev_has_any_upper_dev(struct net_device *dev)
4741 {
4742         ASSERT_RTNL();
4743
4744         return !list_empty(&dev->all_adj_list.upper);
4745 }
4746
4747 /**
4748  * netdev_master_upper_dev_get - Get master upper device
4749  * @dev: device
4750  *
4751  * Find a master upper device and return pointer to it or NULL in case
4752  * it's not there. The caller must hold the RTNL lock.
4753  */
4754 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4755 {
4756         struct netdev_adjacent *upper;
4757
4758         ASSERT_RTNL();
4759
4760         if (list_empty(&dev->adj_list.upper))
4761                 return NULL;
4762
4763         upper = list_first_entry(&dev->adj_list.upper,
4764                                  struct netdev_adjacent, list);
4765         if (likely(upper->master))
4766                 return upper->dev;
4767         return NULL;
4768 }
4769 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4770
4771 void *netdev_adjacent_get_private(struct list_head *adj_list)
4772 {
4773         struct netdev_adjacent *adj;
4774
4775         adj = list_entry(adj_list, struct netdev_adjacent, list);
4776
4777         return adj->private;
4778 }
4779 EXPORT_SYMBOL(netdev_adjacent_get_private);
4780
4781 /**
4782  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4783  * @dev: device
4784  * @iter: list_head ** of the current position
4785  *
4786  * Gets the next device from the dev's upper list, starting from iter
4787  * position. The caller must hold RCU read lock.
4788  */
4789 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4790                                                  struct list_head **iter)
4791 {
4792         struct netdev_adjacent *upper;
4793
4794         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4795
4796         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4797
4798         if (&upper->list == &dev->adj_list.upper)
4799                 return NULL;
4800
4801         *iter = &upper->list;
4802
4803         return upper->dev;
4804 }
4805 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4806
4807 /**
4808  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4809  * @dev: device
4810  * @iter: list_head ** of the current position
4811  *
4812  * Gets the next device from the dev's upper list, starting from iter
4813  * position. The caller must hold RCU read lock.
4814  */
4815 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4816                                                      struct list_head **iter)
4817 {
4818         struct netdev_adjacent *upper;
4819
4820         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4821
4822         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4823
4824         if (&upper->list == &dev->all_adj_list.upper)
4825                 return NULL;
4826
4827         *iter = &upper->list;
4828
4829         return upper->dev;
4830 }
4831 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4832
4833 /**
4834  * netdev_lower_get_next_private - Get the next ->private from the
4835  *                                 lower neighbour list
4836  * @dev: device
4837  * @iter: list_head ** of the current position
4838  *
4839  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4840  * list, starting from iter position. The caller must hold either hold the
4841  * RTNL lock or its own locking that guarantees that the neighbour lower
4842  * list will remain unchainged.
4843  */
4844 void *netdev_lower_get_next_private(struct net_device *dev,
4845                                     struct list_head **iter)
4846 {
4847         struct netdev_adjacent *lower;
4848
4849         lower = list_entry(*iter, struct netdev_adjacent, list);
4850
4851         if (&lower->list == &dev->adj_list.lower)
4852                 return NULL;
4853
4854         *iter = lower->list.next;
4855
4856         return lower->private;
4857 }
4858 EXPORT_SYMBOL(netdev_lower_get_next_private);
4859
4860 /**
4861  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4862  *                                     lower neighbour list, RCU
4863  *                                     variant
4864  * @dev: device
4865  * @iter: list_head ** of the current position
4866  *
4867  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4868  * list, starting from iter position. The caller must hold RCU read lock.
4869  */
4870 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4871                                         struct list_head **iter)
4872 {
4873         struct netdev_adjacent *lower;
4874
4875         WARN_ON_ONCE(!rcu_read_lock_held());
4876
4877         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4878
4879         if (&lower->list == &dev->adj_list.lower)
4880                 return NULL;
4881
4882         *iter = &lower->list;
4883
4884         return lower->private;
4885 }
4886 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4887
4888 /**
4889  * netdev_lower_get_next - Get the next device from the lower neighbour
4890  *                         list
4891  * @dev: device
4892  * @iter: list_head ** of the current position
4893  *
4894  * Gets the next netdev_adjacent from the dev's lower neighbour
4895  * list, starting from iter position. The caller must hold RTNL lock or
4896  * its own locking that guarantees that the neighbour lower
4897  * list will remain unchainged.
4898  */
4899 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4900 {
4901         struct netdev_adjacent *lower;
4902
4903         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4904
4905         if (&lower->list == &dev->adj_list.lower)
4906                 return NULL;
4907
4908         *iter = &lower->list;
4909
4910         return lower->dev;
4911 }
4912 EXPORT_SYMBOL(netdev_lower_get_next);
4913
4914 /**
4915  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4916  *                                     lower neighbour list, RCU
4917  *                                     variant
4918  * @dev: device
4919  *
4920  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4921  * list. The caller must hold RCU read lock.
4922  */
4923 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4924 {
4925         struct netdev_adjacent *lower;
4926
4927         lower = list_first_or_null_rcu(&dev->adj_list.lower,
4928                         struct netdev_adjacent, list);
4929         if (lower)
4930                 return lower->private;
4931         return NULL;
4932 }
4933 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4934
4935 /**
4936  * netdev_master_upper_dev_get_rcu - Get master upper device
4937  * @dev: device
4938  *
4939  * Find a master upper device and return pointer to it or NULL in case
4940  * it's not there. The caller must hold the RCU read lock.
4941  */
4942 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4943 {
4944         struct netdev_adjacent *upper;
4945
4946         upper = list_first_or_null_rcu(&dev->adj_list.upper,
4947                                        struct netdev_adjacent, list);
4948         if (upper && likely(upper->master))
4949                 return upper->dev;
4950         return NULL;
4951 }
4952 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4953
4954 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4955                               struct net_device *adj_dev,
4956                               struct list_head *dev_list)
4957 {
4958         char linkname[IFNAMSIZ+7];
4959         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4960                 "upper_%s" : "lower_%s", adj_dev->name);
4961         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4962                                  linkname);
4963 }
4964 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4965                                char *name,
4966                                struct list_head *dev_list)
4967 {
4968         char linkname[IFNAMSIZ+7];
4969         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4970                 "upper_%s" : "lower_%s", name);
4971         sysfs_remove_link(&(dev->dev.kobj), linkname);
4972 }
4973
4974 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4975                                                  struct net_device *adj_dev,
4976                                                  struct list_head *dev_list)
4977 {
4978         return (dev_list == &dev->adj_list.upper ||
4979                 dev_list == &dev->adj_list.lower) &&
4980                 net_eq(dev_net(dev), dev_net(adj_dev));
4981 }
4982
4983 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4984                                         struct net_device *adj_dev,
4985                                         struct list_head *dev_list,
4986                                         void *private, bool master)
4987 {
4988         struct netdev_adjacent *adj;
4989         int ret;
4990
4991         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4992
4993         if (adj) {
4994                 adj->ref_nr++;
4995                 return 0;
4996         }
4997
4998         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4999         if (!adj)
5000                 return -ENOMEM;
5001
5002         adj->dev = adj_dev;
5003         adj->master = master;
5004         adj->ref_nr = 1;
5005         adj->private = private;
5006         dev_hold(adj_dev);
5007
5008         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5009                  adj_dev->name, dev->name, adj_dev->name);
5010
5011         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5012                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5013                 if (ret)
5014                         goto free_adj;
5015         }
5016
5017         /* Ensure that master link is always the first item in list. */
5018         if (master) {
5019                 ret = sysfs_create_link(&(dev->dev.kobj),
5020                                         &(adj_dev->dev.kobj), "master");
5021                 if (ret)
5022                         goto remove_symlinks;
5023
5024                 list_add_rcu(&adj->list, dev_list);
5025         } else {
5026                 list_add_tail_rcu(&adj->list, dev_list);
5027         }
5028
5029         return 0;
5030
5031 remove_symlinks:
5032         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5033                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5034 free_adj:
5035         kfree(adj);
5036         dev_put(adj_dev);
5037
5038         return ret;
5039 }
5040
5041 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5042                                          struct net_device *adj_dev,
5043                                          struct list_head *dev_list)
5044 {
5045         struct netdev_adjacent *adj;
5046
5047         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5048
5049         if (!adj) {
5050                 pr_err("tried to remove device %s from %s\n",
5051                        dev->name, adj_dev->name);
5052                 BUG();
5053         }
5054
5055         if (adj->ref_nr > 1) {
5056                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5057                          adj->ref_nr-1);
5058                 adj->ref_nr--;
5059                 return;
5060         }
5061
5062         if (adj->master)
5063                 sysfs_remove_link(&(dev->dev.kobj), "master");
5064
5065         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5066                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5067
5068         list_del_rcu(&adj->list);
5069         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5070                  adj_dev->name, dev->name, adj_dev->name);
5071         dev_put(adj_dev);
5072         kfree_rcu(adj, rcu);
5073 }
5074
5075 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5076                                             struct net_device *upper_dev,
5077                                             struct list_head *up_list,
5078                                             struct list_head *down_list,
5079                                             void *private, bool master)
5080 {
5081         int ret;
5082
5083         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5084                                            master);
5085         if (ret)
5086                 return ret;
5087
5088         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5089                                            false);
5090         if (ret) {
5091                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5092                 return ret;
5093         }
5094
5095         return 0;
5096 }
5097
5098 static int __netdev_adjacent_dev_link(struct net_device *dev,
5099                                       struct net_device *upper_dev)
5100 {
5101         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5102                                                 &dev->all_adj_list.upper,
5103                                                 &upper_dev->all_adj_list.lower,
5104                                                 NULL, false);
5105 }
5106
5107 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5108                                                struct net_device *upper_dev,
5109                                                struct list_head *up_list,
5110                                                struct list_head *down_list)
5111 {
5112         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5113         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5114 }
5115
5116 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5117                                          struct net_device *upper_dev)
5118 {
5119         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5120                                            &dev->all_adj_list.upper,
5121                                            &upper_dev->all_adj_list.lower);
5122 }
5123
5124 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5125                                                 struct net_device *upper_dev,
5126                                                 void *private, bool master)
5127 {
5128         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5129
5130         if (ret)
5131                 return ret;
5132
5133         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5134                                                &dev->adj_list.upper,
5135                                                &upper_dev->adj_list.lower,
5136                                                private, master);
5137         if (ret) {
5138                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5139                 return ret;
5140         }
5141
5142         return 0;
5143 }
5144
5145 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5146                                                    struct net_device *upper_dev)
5147 {
5148         __netdev_adjacent_dev_unlink(dev, upper_dev);
5149         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5150                                            &dev->adj_list.upper,
5151                                            &upper_dev->adj_list.lower);
5152 }
5153
5154 static int __netdev_upper_dev_link(struct net_device *dev,
5155                                    struct net_device *upper_dev, bool master,
5156                                    void *private)
5157 {
5158         struct netdev_adjacent *i, *j, *to_i, *to_j;
5159         int ret = 0;
5160
5161         ASSERT_RTNL();
5162
5163         if (dev == upper_dev)
5164                 return -EBUSY;
5165
5166         /* To prevent loops, check if dev is not upper device to upper_dev. */
5167         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5168                 return -EBUSY;
5169
5170         if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5171                 return -EEXIST;
5172
5173         if (master && netdev_master_upper_dev_get(dev))
5174                 return -EBUSY;
5175
5176         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5177                                                    master);
5178         if (ret)
5179                 return ret;
5180
5181         /* Now that we linked these devs, make all the upper_dev's
5182          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5183          * versa, and don't forget the devices itself. All of these
5184          * links are non-neighbours.
5185          */
5186         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5187                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5188                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5189                                  i->dev->name, j->dev->name);
5190                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5191                         if (ret)
5192                                 goto rollback_mesh;
5193                 }
5194         }
5195
5196         /* add dev to every upper_dev's upper device */
5197         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5198                 pr_debug("linking %s's upper device %s with %s\n",
5199                          upper_dev->name, i->dev->name, dev->name);
5200                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5201                 if (ret)
5202                         goto rollback_upper_mesh;
5203         }
5204
5205         /* add upper_dev to every dev's lower device */
5206         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5207                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5208                          i->dev->name, upper_dev->name);
5209                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5210                 if (ret)
5211                         goto rollback_lower_mesh;
5212         }
5213
5214         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5215         return 0;
5216
5217 rollback_lower_mesh:
5218         to_i = i;
5219         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5220                 if (i == to_i)
5221                         break;
5222                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5223         }
5224
5225         i = NULL;
5226
5227 rollback_upper_mesh:
5228         to_i = i;
5229         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5230                 if (i == to_i)
5231                         break;
5232                 __netdev_adjacent_dev_unlink(dev, i->dev);
5233         }
5234
5235         i = j = NULL;
5236
5237 rollback_mesh:
5238         to_i = i;
5239         to_j = j;
5240         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5241                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5242                         if (i == to_i && j == to_j)
5243                                 break;
5244                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5245                 }
5246                 if (i == to_i)
5247                         break;
5248         }
5249
5250         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5251
5252         return ret;
5253 }
5254
5255 /**
5256  * netdev_upper_dev_link - Add a link to the upper device
5257  * @dev: device
5258  * @upper_dev: new upper device
5259  *
5260  * Adds a link to device which is upper to this one. The caller must hold
5261  * the RTNL lock. On a failure a negative errno code is returned.
5262  * On success the reference counts are adjusted and the function
5263  * returns zero.
5264  */
5265 int netdev_upper_dev_link(struct net_device *dev,
5266                           struct net_device *upper_dev)
5267 {
5268         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5269 }
5270 EXPORT_SYMBOL(netdev_upper_dev_link);
5271
5272 /**
5273  * netdev_master_upper_dev_link - Add a master link to the upper device
5274  * @dev: device
5275  * @upper_dev: new upper device
5276  *
5277  * Adds a link to device which is upper to this one. In this case, only
5278  * one master upper device can be linked, although other non-master devices
5279  * might be linked as well. The caller must hold the RTNL lock.
5280  * On a failure a negative errno code is returned. On success the reference
5281  * counts are adjusted and the function returns zero.
5282  */
5283 int netdev_master_upper_dev_link(struct net_device *dev,
5284                                  struct net_device *upper_dev)
5285 {
5286         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5287 }
5288 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5289
5290 int netdev_master_upper_dev_link_private(struct net_device *dev,
5291                                          struct net_device *upper_dev,
5292                                          void *private)
5293 {
5294         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5295 }
5296 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5297
5298 /**
5299  * netdev_upper_dev_unlink - Removes a link to upper device
5300  * @dev: device
5301  * @upper_dev: new upper device
5302  *
5303  * Removes a link to device which is upper to this one. The caller must hold
5304  * the RTNL lock.
5305  */
5306 void netdev_upper_dev_unlink(struct net_device *dev,
5307                              struct net_device *upper_dev)
5308 {
5309         struct netdev_adjacent *i, *j;
5310         ASSERT_RTNL();
5311
5312         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5313
5314         /* Here is the tricky part. We must remove all dev's lower
5315          * devices from all upper_dev's upper devices and vice
5316          * versa, to maintain the graph relationship.
5317          */
5318         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5319                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5320                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5321
5322         /* remove also the devices itself from lower/upper device
5323          * list
5324          */
5325         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5326                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5327
5328         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5329                 __netdev_adjacent_dev_unlink(dev, i->dev);
5330
5331         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5332 }
5333 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5334
5335 /**
5336  * netdev_bonding_info_change - Dispatch event about slave change
5337  * @dev: device
5338  * @netdev_bonding_info: info to dispatch
5339  *
5340  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5341  * The caller must hold the RTNL lock.
5342  */
5343 void netdev_bonding_info_change(struct net_device *dev,
5344                                 struct netdev_bonding_info *bonding_info)
5345 {
5346         struct netdev_notifier_bonding_info     info;
5347
5348         memcpy(&info.bonding_info, bonding_info,
5349                sizeof(struct netdev_bonding_info));
5350         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5351                                       &info.info);
5352 }
5353 EXPORT_SYMBOL(netdev_bonding_info_change);
5354
5355 static void netdev_adjacent_add_links(struct net_device *dev)
5356 {
5357         struct netdev_adjacent *iter;
5358
5359         struct net *net = dev_net(dev);
5360
5361         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5362                 if (!net_eq(net,dev_net(iter->dev)))
5363                         continue;
5364                 netdev_adjacent_sysfs_add(iter->dev, dev,
5365                                           &iter->dev->adj_list.lower);
5366                 netdev_adjacent_sysfs_add(dev, iter->dev,
5367                                           &dev->adj_list.upper);
5368         }
5369
5370         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5371                 if (!net_eq(net,dev_net(iter->dev)))
5372                         continue;
5373                 netdev_adjacent_sysfs_add(iter->dev, dev,
5374                                           &iter->dev->adj_list.upper);
5375                 netdev_adjacent_sysfs_add(dev, iter->dev,
5376                                           &dev->adj_list.lower);
5377         }
5378 }
5379
5380 static void netdev_adjacent_del_links(struct net_device *dev)
5381 {
5382         struct netdev_adjacent *iter;
5383
5384         struct net *net = dev_net(dev);
5385
5386         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5387                 if (!net_eq(net,dev_net(iter->dev)))
5388                         continue;
5389                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5390                                           &iter->dev->adj_list.lower);
5391                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5392                                           &dev->adj_list.upper);
5393         }
5394
5395         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5396                 if (!net_eq(net,dev_net(iter->dev)))
5397                         continue;
5398                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5399                                           &iter->dev->adj_list.upper);
5400                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5401                                           &dev->adj_list.lower);
5402         }
5403 }
5404
5405 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5406 {
5407         struct netdev_adjacent *iter;
5408
5409         struct net *net = dev_net(dev);
5410
5411         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5412                 if (!net_eq(net,dev_net(iter->dev)))
5413                         continue;
5414                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5415                                           &iter->dev->adj_list.lower);
5416                 netdev_adjacent_sysfs_add(iter->dev, dev,
5417                                           &iter->dev->adj_list.lower);
5418         }
5419
5420         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5421                 if (!net_eq(net,dev_net(iter->dev)))
5422                         continue;
5423                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5424                                           &iter->dev->adj_list.upper);
5425                 netdev_adjacent_sysfs_add(iter->dev, dev,
5426                                           &iter->dev->adj_list.upper);
5427         }
5428 }
5429
5430 void *netdev_lower_dev_get_private(struct net_device *dev,
5431                                    struct net_device *lower_dev)
5432 {
5433         struct netdev_adjacent *lower;
5434
5435         if (!lower_dev)
5436                 return NULL;
5437         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5438         if (!lower)
5439                 return NULL;
5440
5441         return lower->private;
5442 }
5443 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5444
5445
5446 int dev_get_nest_level(struct net_device *dev,
5447                        bool (*type_check)(struct net_device *dev))
5448 {
5449         struct net_device *lower = NULL;
5450         struct list_head *iter;
5451         int max_nest = -1;
5452         int nest;
5453
5454         ASSERT_RTNL();
5455
5456         netdev_for_each_lower_dev(dev, lower, iter) {
5457                 nest = dev_get_nest_level(lower, type_check);
5458                 if (max_nest < nest)
5459                         max_nest = nest;
5460         }
5461
5462         if (type_check(dev))
5463                 max_nest++;
5464
5465         return max_nest;
5466 }
5467 EXPORT_SYMBOL(dev_get_nest_level);
5468
5469 static void dev_change_rx_flags(struct net_device *dev, int flags)
5470 {
5471         const struct net_device_ops *ops = dev->netdev_ops;
5472
5473         if (ops->ndo_change_rx_flags)
5474                 ops->ndo_change_rx_flags(dev, flags);
5475 }
5476
5477 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5478 {
5479         unsigned int old_flags = dev->flags;
5480         kuid_t uid;
5481         kgid_t gid;
5482
5483         ASSERT_RTNL();
5484
5485         dev->flags |= IFF_PROMISC;
5486         dev->promiscuity += inc;
5487         if (dev->promiscuity == 0) {
5488                 /*
5489                  * Avoid overflow.
5490                  * If inc causes overflow, untouch promisc and return error.
5491                  */
5492                 if (inc < 0)
5493                         dev->flags &= ~IFF_PROMISC;
5494                 else {
5495                         dev->promiscuity -= inc;
5496                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5497                                 dev->name);
5498                         return -EOVERFLOW;
5499                 }
5500         }
5501         if (dev->flags != old_flags) {
5502                 pr_info("device %s %s promiscuous mode\n",
5503                         dev->name,
5504                         dev->flags & IFF_PROMISC ? "entered" : "left");
5505                 if (audit_enabled) {
5506                         current_uid_gid(&uid, &gid);
5507                         audit_log(current->audit_context, GFP_ATOMIC,
5508                                 AUDIT_ANOM_PROMISCUOUS,
5509                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5510                                 dev->name, (dev->flags & IFF_PROMISC),
5511                                 (old_flags & IFF_PROMISC),
5512                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5513                                 from_kuid(&init_user_ns, uid),
5514                                 from_kgid(&init_user_ns, gid),
5515                                 audit_get_sessionid(current));
5516                 }
5517
5518                 dev_change_rx_flags(dev, IFF_PROMISC);
5519         }
5520         if (notify)
5521                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5522         return 0;
5523 }
5524
5525 /**
5526  *      dev_set_promiscuity     - update promiscuity count on a device
5527  *      @dev: device
5528  *      @inc: modifier
5529  *
5530  *      Add or remove promiscuity from a device. While the count in the device
5531  *      remains above zero the interface remains promiscuous. Once it hits zero
5532  *      the device reverts back to normal filtering operation. A negative inc
5533  *      value is used to drop promiscuity on the device.
5534  *      Return 0 if successful or a negative errno code on error.
5535  */
5536 int dev_set_promiscuity(struct net_device *dev, int inc)
5537 {
5538         unsigned int old_flags = dev->flags;
5539         int err;
5540
5541         err = __dev_set_promiscuity(dev, inc, true);
5542         if (err < 0)
5543                 return err;
5544         if (dev->flags != old_flags)
5545                 dev_set_rx_mode(dev);
5546         return err;
5547 }
5548 EXPORT_SYMBOL(dev_set_promiscuity);
5549
5550 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5551 {
5552         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5553
5554         ASSERT_RTNL();
5555
5556         dev->flags |= IFF_ALLMULTI;
5557         dev->allmulti += inc;
5558         if (dev->allmulti == 0) {
5559                 /*
5560                  * Avoid overflow.
5561                  * If inc causes overflow, untouch allmulti and return error.
5562                  */
5563                 if (inc < 0)
5564                         dev->flags &= ~IFF_ALLMULTI;
5565                 else {
5566                         dev->allmulti -= inc;
5567                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5568                                 dev->name);
5569                         return -EOVERFLOW;
5570                 }
5571         }
5572         if (dev->flags ^ old_flags) {
5573                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5574                 dev_set_rx_mode(dev);
5575                 if (notify)
5576                         __dev_notify_flags(dev, old_flags,
5577                                            dev->gflags ^ old_gflags);
5578         }
5579         return 0;
5580 }
5581
5582 /**
5583  *      dev_set_allmulti        - update allmulti count on a device
5584  *      @dev: device
5585  *      @inc: modifier
5586  *
5587  *      Add or remove reception of all multicast frames to a device. While the
5588  *      count in the device remains above zero the interface remains listening
5589  *      to all interfaces. Once it hits zero the device reverts back to normal
5590  *      filtering operation. A negative @inc value is used to drop the counter
5591  *      when releasing a resource needing all multicasts.
5592  *      Return 0 if successful or a negative errno code on error.
5593  */
5594
5595 int dev_set_allmulti(struct net_device *dev, int inc)
5596 {
5597         return __dev_set_allmulti(dev, inc, true);
5598 }
5599 EXPORT_SYMBOL(dev_set_allmulti);
5600
5601 /*
5602  *      Upload unicast and multicast address lists to device and
5603  *      configure RX filtering. When the device doesn't support unicast
5604  *      filtering it is put in promiscuous mode while unicast addresses
5605  *      are present.
5606  */
5607 void __dev_set_rx_mode(struct net_device *dev)
5608 {
5609         const struct net_device_ops *ops = dev->netdev_ops;
5610
5611         /* dev_open will call this function so the list will stay sane. */
5612         if (!(dev->flags&IFF_UP))
5613                 return;
5614
5615         if (!netif_device_present(dev))
5616                 return;
5617
5618         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5619                 /* Unicast addresses changes may only happen under the rtnl,
5620                  * therefore calling __dev_set_promiscuity here is safe.
5621                  */
5622                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5623                         __dev_set_promiscuity(dev, 1, false);
5624                         dev->uc_promisc = true;
5625                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5626                         __dev_set_promiscuity(dev, -1, false);
5627                         dev->uc_promisc = false;
5628                 }
5629         }
5630
5631         if (ops->ndo_set_rx_mode)
5632                 ops->ndo_set_rx_mode(dev);
5633 }
5634
5635 void dev_set_rx_mode(struct net_device *dev)
5636 {
5637         netif_addr_lock_bh(dev);
5638         __dev_set_rx_mode(dev);
5639         netif_addr_unlock_bh(dev);
5640 }
5641
5642 /**
5643  *      dev_get_flags - get flags reported to userspace
5644  *      @dev: device
5645  *
5646  *      Get the combination of flag bits exported through APIs to userspace.
5647  */
5648 unsigned int dev_get_flags(const struct net_device *dev)
5649 {
5650         unsigned int flags;
5651
5652         flags = (dev->flags & ~(IFF_PROMISC |
5653                                 IFF_ALLMULTI |
5654                                 IFF_RUNNING |
5655                                 IFF_LOWER_UP |
5656                                 IFF_DORMANT)) |
5657                 (dev->gflags & (IFF_PROMISC |
5658                                 IFF_ALLMULTI));
5659
5660         if (netif_running(dev)) {
5661                 if (netif_oper_up(dev))
5662                         flags |= IFF_RUNNING;
5663                 if (netif_carrier_ok(dev))
5664                         flags |= IFF_LOWER_UP;
5665                 if (netif_dormant(dev))
5666                         flags |= IFF_DORMANT;
5667         }
5668
5669         return flags;
5670 }
5671 EXPORT_SYMBOL(dev_get_flags);
5672
5673 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5674 {
5675         unsigned int old_flags = dev->flags;
5676         int ret;
5677
5678         ASSERT_RTNL();
5679
5680         /*
5681          *      Set the flags on our device.
5682          */
5683
5684         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5685                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5686                                IFF_AUTOMEDIA)) |
5687                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5688                                     IFF_ALLMULTI));
5689
5690         /*
5691          *      Load in the correct multicast list now the flags have changed.
5692          */
5693
5694         if ((old_flags ^ flags) & IFF_MULTICAST)
5695                 dev_change_rx_flags(dev, IFF_MULTICAST);
5696
5697         dev_set_rx_mode(dev);
5698
5699         /*
5700          *      Have we downed the interface. We handle IFF_UP ourselves
5701          *      according to user attempts to set it, rather than blindly
5702          *      setting it.
5703          */
5704
5705         ret = 0;
5706         if ((old_flags ^ flags) & IFF_UP)
5707                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5708
5709         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5710                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5711                 unsigned int old_flags = dev->flags;
5712
5713                 dev->gflags ^= IFF_PROMISC;
5714
5715                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5716                         if (dev->flags != old_flags)
5717                                 dev_set_rx_mode(dev);
5718         }
5719
5720         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5721            is important. Some (broken) drivers set IFF_PROMISC, when
5722            IFF_ALLMULTI is requested not asking us and not reporting.
5723          */
5724         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5725                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5726
5727                 dev->gflags ^= IFF_ALLMULTI;
5728                 __dev_set_allmulti(dev, inc, false);
5729         }
5730
5731         return ret;
5732 }
5733
5734 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5735                         unsigned int gchanges)
5736 {
5737         unsigned int changes = dev->flags ^ old_flags;
5738
5739         if (gchanges)
5740                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5741
5742         if (changes & IFF_UP) {
5743                 if (dev->flags & IFF_UP)
5744                         call_netdevice_notifiers(NETDEV_UP, dev);
5745                 else
5746                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5747         }
5748
5749         if (dev->flags & IFF_UP &&
5750             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5751                 struct netdev_notifier_change_info change_info;
5752
5753                 change_info.flags_changed = changes;
5754                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5755                                               &change_info.info);
5756         }
5757 }
5758
5759 /**
5760  *      dev_change_flags - change device settings
5761  *      @dev: device
5762  *      @flags: device state flags
5763  *
5764  *      Change settings on device based state flags. The flags are
5765  *      in the userspace exported format.
5766  */
5767 int dev_change_flags(struct net_device *dev, unsigned int flags)
5768 {
5769         int ret;
5770         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5771
5772         ret = __dev_change_flags(dev, flags);
5773         if (ret < 0)
5774                 return ret;
5775
5776         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5777         __dev_notify_flags(dev, old_flags, changes);
5778         return ret;
5779 }
5780 EXPORT_SYMBOL(dev_change_flags);
5781
5782 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5783 {
5784         const struct net_device_ops *ops = dev->netdev_ops;
5785
5786         if (ops->ndo_change_mtu)
5787                 return ops->ndo_change_mtu(dev, new_mtu);
5788
5789         dev->mtu = new_mtu;
5790         return 0;
5791 }
5792
5793 /**
5794  *      dev_set_mtu - Change maximum transfer unit
5795  *      @dev: device
5796  *      @new_mtu: new transfer unit
5797  *
5798  *      Change the maximum transfer size of the network device.
5799  */
5800 int dev_set_mtu(struct net_device *dev, int new_mtu)
5801 {
5802         int err, orig_mtu;
5803
5804         if (new_mtu == dev->mtu)
5805                 return 0;
5806
5807         /*      MTU must be positive.    */
5808         if (new_mtu < 0)
5809                 return -EINVAL;
5810
5811         if (!netif_device_present(dev))
5812                 return -ENODEV;
5813
5814         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5815         err = notifier_to_errno(err);
5816         if (err)
5817                 return err;
5818
5819         orig_mtu = dev->mtu;
5820         err = __dev_set_mtu(dev, new_mtu);
5821
5822         if (!err) {
5823                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5824                 err = notifier_to_errno(err);
5825                 if (err) {
5826                         /* setting mtu back and notifying everyone again,
5827                          * so that they have a chance to revert changes.
5828                          */
5829                         __dev_set_mtu(dev, orig_mtu);
5830                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5831                 }
5832         }
5833         return err;
5834 }
5835 EXPORT_SYMBOL(dev_set_mtu);
5836
5837 /**
5838  *      dev_set_group - Change group this device belongs to
5839  *      @dev: device
5840  *      @new_group: group this device should belong to
5841  */
5842 void dev_set_group(struct net_device *dev, int new_group)
5843 {
5844         dev->group = new_group;
5845 }
5846 EXPORT_SYMBOL(dev_set_group);
5847
5848 /**
5849  *      dev_set_mac_address - Change Media Access Control Address
5850  *      @dev: device
5851  *      @sa: new address
5852  *
5853  *      Change the hardware (MAC) address of the device
5854  */
5855 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5856 {
5857         const struct net_device_ops *ops = dev->netdev_ops;
5858         int err;
5859
5860         if (!ops->ndo_set_mac_address)
5861                 return -EOPNOTSUPP;
5862         if (sa->sa_family != dev->type)
5863                 return -EINVAL;
5864         if (!netif_device_present(dev))
5865                 return -ENODEV;
5866         err = ops->ndo_set_mac_address(dev, sa);
5867         if (err)
5868                 return err;
5869         dev->addr_assign_type = NET_ADDR_SET;
5870         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5871         add_device_randomness(dev->dev_addr, dev->addr_len);
5872         return 0;
5873 }
5874 EXPORT_SYMBOL(dev_set_mac_address);
5875
5876 /**
5877  *      dev_change_carrier - Change device carrier
5878  *      @dev: device
5879  *      @new_carrier: new value
5880  *
5881  *      Change device carrier
5882  */
5883 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5884 {
5885         const struct net_device_ops *ops = dev->netdev_ops;
5886
5887         if (!ops->ndo_change_carrier)
5888                 return -EOPNOTSUPP;
5889         if (!netif_device_present(dev))
5890                 return -ENODEV;
5891         return ops->ndo_change_carrier(dev, new_carrier);
5892 }
5893 EXPORT_SYMBOL(dev_change_carrier);
5894
5895 /**
5896  *      dev_get_phys_port_id - Get device physical port ID
5897  *      @dev: device
5898  *      @ppid: port ID
5899  *
5900  *      Get device physical port ID
5901  */
5902 int dev_get_phys_port_id(struct net_device *dev,
5903                          struct netdev_phys_item_id *ppid)
5904 {
5905         const struct net_device_ops *ops = dev->netdev_ops;
5906
5907         if (!ops->ndo_get_phys_port_id)
5908                 return -EOPNOTSUPP;
5909         return ops->ndo_get_phys_port_id(dev, ppid);
5910 }
5911 EXPORT_SYMBOL(dev_get_phys_port_id);
5912
5913 /**
5914  *      dev_new_index   -       allocate an ifindex
5915  *      @net: the applicable net namespace
5916  *
5917  *      Returns a suitable unique value for a new device interface
5918  *      number.  The caller must hold the rtnl semaphore or the
5919  *      dev_base_lock to be sure it remains unique.
5920  */
5921 static int dev_new_index(struct net *net)
5922 {
5923         int ifindex = net->ifindex;
5924         for (;;) {
5925                 if (++ifindex <= 0)
5926                         ifindex = 1;
5927                 if (!__dev_get_by_index(net, ifindex))
5928                         return net->ifindex = ifindex;
5929         }
5930 }
5931
5932 /* Delayed registration/unregisteration */
5933 static LIST_HEAD(net_todo_list);
5934 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5935
5936 static void net_set_todo(struct net_device *dev)
5937 {
5938         list_add_tail(&dev->todo_list, &net_todo_list);
5939         dev_net(dev)->dev_unreg_count++;
5940 }
5941
5942 static void rollback_registered_many(struct list_head *head)
5943 {
5944         struct net_device *dev, *tmp;
5945         LIST_HEAD(close_head);
5946
5947         BUG_ON(dev_boot_phase);
5948         ASSERT_RTNL();
5949
5950         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5951                 /* Some devices call without registering
5952                  * for initialization unwind. Remove those
5953                  * devices and proceed with the remaining.
5954                  */
5955                 if (dev->reg_state == NETREG_UNINITIALIZED) {
5956                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5957                                  dev->name, dev);
5958
5959                         WARN_ON(1);
5960                         list_del(&dev->unreg_list);
5961                         continue;
5962                 }
5963                 dev->dismantle = true;
5964                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5965         }
5966
5967         /* If device is running, close it first. */
5968         list_for_each_entry(dev, head, unreg_list)
5969                 list_add_tail(&dev->close_list, &close_head);
5970         dev_close_many(&close_head);
5971
5972         list_for_each_entry(dev, head, unreg_list) {
5973                 /* And unlink it from device chain. */
5974                 unlist_netdevice(dev);
5975
5976                 dev->reg_state = NETREG_UNREGISTERING;
5977         }
5978
5979         synchronize_net();
5980
5981         list_for_each_entry(dev, head, unreg_list) {
5982                 struct sk_buff *skb = NULL;
5983
5984                 /* Shutdown queueing discipline. */
5985                 dev_shutdown(dev);
5986
5987
5988                 /* Notify protocols, that we are about to destroy
5989                    this device. They should clean all the things.
5990                 */
5991                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5992
5993                 if (!dev->rtnl_link_ops ||
5994                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5995                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5996                                                      GFP_KERNEL);
5997
5998                 /*
5999                  *      Flush the unicast and multicast chains
6000                  */
6001                 dev_uc_flush(dev);
6002                 dev_mc_flush(dev);
6003
6004                 if (dev->netdev_ops->ndo_uninit)
6005                         dev->netdev_ops->ndo_uninit(dev);
6006
6007                 if (skb)
6008                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6009
6010                 /* Notifier chain MUST detach us all upper devices. */
6011                 WARN_ON(netdev_has_any_upper_dev(dev));
6012
6013                 /* Remove entries from kobject tree */
6014                 netdev_unregister_kobject(dev);
6015 #ifdef CONFIG_XPS
6016                 /* Remove XPS queueing entries */
6017                 netif_reset_xps_queues_gt(dev, 0);
6018 #endif
6019         }
6020
6021         synchronize_net();
6022
6023         list_for_each_entry(dev, head, unreg_list)
6024                 dev_put(dev);
6025 }
6026
6027 static void rollback_registered(struct net_device *dev)
6028 {
6029         LIST_HEAD(single);
6030
6031         list_add(&dev->unreg_list, &single);
6032         rollback_registered_many(&single);
6033         list_del(&single);
6034 }
6035
6036 static netdev_features_t netdev_fix_features(struct net_device *dev,
6037         netdev_features_t features)
6038 {
6039         /* Fix illegal checksum combinations */
6040         if ((features & NETIF_F_HW_CSUM) &&
6041             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6042                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6043                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6044         }
6045
6046         /* TSO requires that SG is present as well. */
6047         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6048                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6049                 features &= ~NETIF_F_ALL_TSO;
6050         }
6051
6052         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6053                                         !(features & NETIF_F_IP_CSUM)) {
6054                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6055                 features &= ~NETIF_F_TSO;
6056                 features &= ~NETIF_F_TSO_ECN;
6057         }
6058
6059         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6060                                          !(features & NETIF_F_IPV6_CSUM)) {
6061                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6062                 features &= ~NETIF_F_TSO6;
6063         }
6064
6065         /* TSO ECN requires that TSO is present as well. */
6066         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6067                 features &= ~NETIF_F_TSO_ECN;
6068
6069         /* Software GSO depends on SG. */
6070         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6071                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6072                 features &= ~NETIF_F_GSO;
6073         }
6074
6075         /* UFO needs SG and checksumming */
6076         if (features & NETIF_F_UFO) {
6077                 /* maybe split UFO into V4 and V6? */
6078                 if (!((features & NETIF_F_GEN_CSUM) ||
6079                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6080                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6081                         netdev_dbg(dev,
6082                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6083                         features &= ~NETIF_F_UFO;
6084                 }
6085
6086                 if (!(features & NETIF_F_SG)) {
6087                         netdev_dbg(dev,
6088                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6089                         features &= ~NETIF_F_UFO;
6090                 }
6091         }
6092
6093 #ifdef CONFIG_NET_RX_BUSY_POLL
6094         if (dev->netdev_ops->ndo_busy_poll)
6095                 features |= NETIF_F_BUSY_POLL;
6096         else
6097 #endif
6098                 features &= ~NETIF_F_BUSY_POLL;
6099
6100         return features;
6101 }
6102
6103 int __netdev_update_features(struct net_device *dev)
6104 {
6105         netdev_features_t features;
6106         int err = 0;
6107
6108         ASSERT_RTNL();
6109
6110         features = netdev_get_wanted_features(dev);
6111
6112         if (dev->netdev_ops->ndo_fix_features)
6113                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6114
6115         /* driver might be less strict about feature dependencies */
6116         features = netdev_fix_features(dev, features);
6117
6118         if (dev->features == features)
6119                 return 0;
6120
6121         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6122                 &dev->features, &features);
6123
6124         if (dev->netdev_ops->ndo_set_features)
6125                 err = dev->netdev_ops->ndo_set_features(dev, features);
6126
6127         if (unlikely(err < 0)) {
6128                 netdev_err(dev,
6129                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6130                         err, &features, &dev->features);
6131                 return -1;
6132         }
6133
6134         if (!err)
6135                 dev->features = features;
6136
6137         return 1;
6138 }
6139
6140 /**
6141  *      netdev_update_features - recalculate device features
6142  *      @dev: the device to check
6143  *
6144  *      Recalculate dev->features set and send notifications if it
6145  *      has changed. Should be called after driver or hardware dependent
6146  *      conditions might have changed that influence the features.
6147  */
6148 void netdev_update_features(struct net_device *dev)
6149 {
6150         if (__netdev_update_features(dev))
6151                 netdev_features_change(dev);
6152 }
6153 EXPORT_SYMBOL(netdev_update_features);
6154
6155 /**
6156  *      netdev_change_features - recalculate device features
6157  *      @dev: the device to check
6158  *
6159  *      Recalculate dev->features set and send notifications even
6160  *      if they have not changed. Should be called instead of
6161  *      netdev_update_features() if also dev->vlan_features might
6162  *      have changed to allow the changes to be propagated to stacked
6163  *      VLAN devices.
6164  */
6165 void netdev_change_features(struct net_device *dev)
6166 {
6167         __netdev_update_features(dev);
6168         netdev_features_change(dev);
6169 }
6170 EXPORT_SYMBOL(netdev_change_features);
6171
6172 /**
6173  *      netif_stacked_transfer_operstate -      transfer operstate
6174  *      @rootdev: the root or lower level device to transfer state from
6175  *      @dev: the device to transfer operstate to
6176  *
6177  *      Transfer operational state from root to device. This is normally
6178  *      called when a stacking relationship exists between the root
6179  *      device and the device(a leaf device).
6180  */
6181 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6182                                         struct net_device *dev)
6183 {
6184         if (rootdev->operstate == IF_OPER_DORMANT)
6185                 netif_dormant_on(dev);
6186         else
6187                 netif_dormant_off(dev);
6188
6189         if (netif_carrier_ok(rootdev)) {
6190                 if (!netif_carrier_ok(dev))
6191                         netif_carrier_on(dev);
6192         } else {
6193                 if (netif_carrier_ok(dev))
6194                         netif_carrier_off(dev);
6195         }
6196 }
6197 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6198
6199 #ifdef CONFIG_SYSFS
6200 static int netif_alloc_rx_queues(struct net_device *dev)
6201 {
6202         unsigned int i, count = dev->num_rx_queues;
6203         struct netdev_rx_queue *rx;
6204         size_t sz = count * sizeof(*rx);
6205
6206         BUG_ON(count < 1);
6207
6208         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6209         if (!rx) {
6210                 rx = vzalloc(sz);
6211                 if (!rx)
6212                         return -ENOMEM;
6213         }
6214         dev->_rx = rx;
6215
6216         for (i = 0; i < count; i++)
6217                 rx[i].dev = dev;
6218         return 0;
6219 }
6220 #endif
6221
6222 static void netdev_init_one_queue(struct net_device *dev,
6223                                   struct netdev_queue *queue, void *_unused)
6224 {
6225         /* Initialize queue lock */
6226         spin_lock_init(&queue->_xmit_lock);
6227         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6228         queue->xmit_lock_owner = -1;
6229         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6230         queue->dev = dev;
6231 #ifdef CONFIG_BQL
6232         dql_init(&queue->dql, HZ);
6233 #endif
6234 }
6235
6236 static void netif_free_tx_queues(struct net_device *dev)
6237 {
6238         kvfree(dev->_tx);
6239 }
6240
6241 static int netif_alloc_netdev_queues(struct net_device *dev)
6242 {
6243         unsigned int count = dev->num_tx_queues;
6244         struct netdev_queue *tx;
6245         size_t sz = count * sizeof(*tx);
6246
6247         BUG_ON(count < 1 || count > 0xffff);
6248
6249         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6250         if (!tx) {
6251                 tx = vzalloc(sz);
6252                 if (!tx)
6253                         return -ENOMEM;
6254         }
6255         dev->_tx = tx;
6256
6257         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6258         spin_lock_init(&dev->tx_global_lock);
6259
6260         return 0;
6261 }
6262
6263 /**
6264  *      register_netdevice      - register a network device
6265  *      @dev: device to register
6266  *
6267  *      Take a completed network device structure and add it to the kernel
6268  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6269  *      chain. 0 is returned on success. A negative errno code is returned
6270  *      on a failure to set up the device, or if the name is a duplicate.
6271  *
6272  *      Callers must hold the rtnl semaphore. You may want
6273  *      register_netdev() instead of this.
6274  *
6275  *      BUGS:
6276  *      The locking appears insufficient to guarantee two parallel registers
6277  *      will not get the same name.
6278  */
6279
6280 int register_netdevice(struct net_device *dev)
6281 {
6282         int ret;
6283         struct net *net = dev_net(dev);
6284
6285         BUG_ON(dev_boot_phase);
6286         ASSERT_RTNL();
6287
6288         might_sleep();
6289
6290         /* When net_device's are persistent, this will be fatal. */
6291         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6292         BUG_ON(!net);
6293
6294         spin_lock_init(&dev->addr_list_lock);
6295         netdev_set_addr_lockdep_class(dev);
6296
6297         dev->iflink = -1;
6298
6299         ret = dev_get_valid_name(net, dev, dev->name);
6300         if (ret < 0)
6301                 goto out;
6302
6303         /* Init, if this function is available */
6304         if (dev->netdev_ops->ndo_init) {
6305                 ret = dev->netdev_ops->ndo_init(dev);
6306                 if (ret) {
6307                         if (ret > 0)
6308                                 ret = -EIO;
6309                         goto out;
6310                 }
6311         }
6312
6313         if (((dev->hw_features | dev->features) &
6314              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6315             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6316              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6317                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6318                 ret = -EINVAL;
6319                 goto err_uninit;
6320         }
6321
6322         ret = -EBUSY;
6323         if (!dev->ifindex)
6324                 dev->ifindex = dev_new_index(net);
6325         else if (__dev_get_by_index(net, dev->ifindex))
6326                 goto err_uninit;
6327
6328         if (dev->iflink == -1)
6329                 dev->iflink = dev->ifindex;
6330
6331         /* Transfer changeable features to wanted_features and enable
6332          * software offloads (GSO and GRO).
6333          */
6334         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6335         dev->features |= NETIF_F_SOFT_FEATURES;
6336         dev->wanted_features = dev->features & dev->hw_features;
6337
6338         if (!(dev->flags & IFF_LOOPBACK)) {
6339                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6340         }
6341
6342         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6343          */
6344         dev->vlan_features |= NETIF_F_HIGHDMA;
6345
6346         /* Make NETIF_F_SG inheritable to tunnel devices.
6347          */
6348         dev->hw_enc_features |= NETIF_F_SG;
6349
6350         /* Make NETIF_F_SG inheritable to MPLS.
6351          */
6352         dev->mpls_features |= NETIF_F_SG;
6353
6354         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6355         ret = notifier_to_errno(ret);
6356         if (ret)
6357                 goto err_uninit;
6358
6359         ret = netdev_register_kobject(dev);
6360         if (ret)
6361                 goto err_uninit;
6362         dev->reg_state = NETREG_REGISTERED;
6363
6364         __netdev_update_features(dev);
6365
6366         /*
6367          *      Default initial state at registry is that the
6368          *      device is present.
6369          */
6370
6371         set_bit(__LINK_STATE_PRESENT, &dev->state);
6372
6373         linkwatch_init_dev(dev);
6374
6375         dev_init_scheduler(dev);
6376         dev_hold(dev);
6377         list_netdevice(dev);
6378         add_device_randomness(dev->dev_addr, dev->addr_len);
6379
6380         /* If the device has permanent device address, driver should
6381          * set dev_addr and also addr_assign_type should be set to
6382          * NET_ADDR_PERM (default value).
6383          */
6384         if (dev->addr_assign_type == NET_ADDR_PERM)
6385                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6386
6387         /* Notify protocols, that a new device appeared. */
6388         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6389         ret = notifier_to_errno(ret);
6390         if (ret) {
6391                 rollback_registered(dev);
6392                 dev->reg_state = NETREG_UNREGISTERED;
6393         }
6394         /*
6395          *      Prevent userspace races by waiting until the network
6396          *      device is fully setup before sending notifications.
6397          */
6398         if (!dev->rtnl_link_ops ||
6399             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6400                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6401
6402 out:
6403         return ret;
6404
6405 err_uninit:
6406         if (dev->netdev_ops->ndo_uninit)
6407                 dev->netdev_ops->ndo_uninit(dev);
6408         goto out;
6409 }
6410 EXPORT_SYMBOL(register_netdevice);
6411
6412 /**
6413  *      init_dummy_netdev       - init a dummy network device for NAPI
6414  *      @dev: device to init
6415  *
6416  *      This takes a network device structure and initialize the minimum
6417  *      amount of fields so it can be used to schedule NAPI polls without
6418  *      registering a full blown interface. This is to be used by drivers
6419  *      that need to tie several hardware interfaces to a single NAPI
6420  *      poll scheduler due to HW limitations.
6421  */
6422 int init_dummy_netdev(struct net_device *dev)
6423 {
6424         /* Clear everything. Note we don't initialize spinlocks
6425          * are they aren't supposed to be taken by any of the
6426          * NAPI code and this dummy netdev is supposed to be
6427          * only ever used for NAPI polls
6428          */
6429         memset(dev, 0, sizeof(struct net_device));
6430
6431         /* make sure we BUG if trying to hit standard
6432          * register/unregister code path
6433          */
6434         dev->reg_state = NETREG_DUMMY;
6435
6436         /* NAPI wants this */
6437         INIT_LIST_HEAD(&dev->napi_list);
6438
6439         /* a dummy interface is started by default */
6440         set_bit(__LINK_STATE_PRESENT, &dev->state);
6441         set_bit(__LINK_STATE_START, &dev->state);
6442
6443         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6444          * because users of this 'device' dont need to change
6445          * its refcount.
6446          */
6447
6448         return 0;
6449 }
6450 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6451
6452
6453 /**
6454  *      register_netdev - register a network device
6455  *      @dev: device to register
6456  *
6457  *      Take a completed network device structure and add it to the kernel
6458  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6459  *      chain. 0 is returned on success. A negative errno code is returned
6460  *      on a failure to set up the device, or if the name is a duplicate.
6461  *
6462  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6463  *      and expands the device name if you passed a format string to
6464  *      alloc_netdev.
6465  */
6466 int register_netdev(struct net_device *dev)
6467 {
6468         int err;
6469
6470         rtnl_lock();
6471         err = register_netdevice(dev);
6472         rtnl_unlock();
6473         return err;
6474 }
6475 EXPORT_SYMBOL(register_netdev);
6476
6477 int netdev_refcnt_read(const struct net_device *dev)
6478 {
6479         int i, refcnt = 0;
6480
6481         for_each_possible_cpu(i)
6482                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6483         return refcnt;
6484 }
6485 EXPORT_SYMBOL(netdev_refcnt_read);
6486
6487 /**
6488  * netdev_wait_allrefs - wait until all references are gone.
6489  * @dev: target net_device
6490  *
6491  * This is called when unregistering network devices.
6492  *
6493  * Any protocol or device that holds a reference should register
6494  * for netdevice notification, and cleanup and put back the
6495  * reference if they receive an UNREGISTER event.
6496  * We can get stuck here if buggy protocols don't correctly
6497  * call dev_put.
6498  */
6499 static void netdev_wait_allrefs(struct net_device *dev)
6500 {
6501         unsigned long rebroadcast_time, warning_time;
6502         int refcnt;
6503
6504         linkwatch_forget_dev(dev);
6505
6506         rebroadcast_time = warning_time = jiffies;
6507         refcnt = netdev_refcnt_read(dev);
6508
6509         while (refcnt != 0) {
6510                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6511                         rtnl_lock();
6512
6513                         /* Rebroadcast unregister notification */
6514                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6515
6516                         __rtnl_unlock();
6517                         rcu_barrier();
6518                         rtnl_lock();
6519
6520                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6521                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6522                                      &dev->state)) {
6523                                 /* We must not have linkwatch events
6524                                  * pending on unregister. If this
6525                                  * happens, we simply run the queue
6526                                  * unscheduled, resulting in a noop
6527                                  * for this device.
6528                                  */
6529                                 linkwatch_run_queue();
6530                         }
6531
6532                         __rtnl_unlock();
6533
6534                         rebroadcast_time = jiffies;
6535                 }
6536
6537                 msleep(250);
6538
6539                 refcnt = netdev_refcnt_read(dev);
6540
6541                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6542                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6543                                  dev->name, refcnt);
6544                         warning_time = jiffies;
6545                 }
6546         }
6547 }
6548
6549 /* The sequence is:
6550  *
6551  *      rtnl_lock();
6552  *      ...
6553  *      register_netdevice(x1);
6554  *      register_netdevice(x2);
6555  *      ...
6556  *      unregister_netdevice(y1);
6557  *      unregister_netdevice(y2);
6558  *      ...
6559  *      rtnl_unlock();
6560  *      free_netdev(y1);
6561  *      free_netdev(y2);
6562  *
6563  * We are invoked by rtnl_unlock().
6564  * This allows us to deal with problems:
6565  * 1) We can delete sysfs objects which invoke hotplug
6566  *    without deadlocking with linkwatch via keventd.
6567  * 2) Since we run with the RTNL semaphore not held, we can sleep
6568  *    safely in order to wait for the netdev refcnt to drop to zero.
6569  *
6570  * We must not return until all unregister events added during
6571  * the interval the lock was held have been completed.
6572  */
6573 void netdev_run_todo(void)
6574 {
6575         struct list_head list;
6576
6577         /* Snapshot list, allow later requests */
6578         list_replace_init(&net_todo_list, &list);
6579
6580         __rtnl_unlock();
6581
6582
6583         /* Wait for rcu callbacks to finish before next phase */
6584         if (!list_empty(&list))
6585                 rcu_barrier();
6586
6587         while (!list_empty(&list)) {
6588                 struct net_device *dev
6589                         = list_first_entry(&list, struct net_device, todo_list);
6590                 list_del(&dev->todo_list);
6591
6592                 rtnl_lock();
6593                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6594                 __rtnl_unlock();
6595
6596                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6597                         pr_err("network todo '%s' but state %d\n",
6598                                dev->name, dev->reg_state);
6599                         dump_stack();
6600                         continue;
6601                 }
6602
6603                 dev->reg_state = NETREG_UNREGISTERED;
6604
6605                 on_each_cpu(flush_backlog, dev, 1);
6606
6607                 netdev_wait_allrefs(dev);
6608
6609                 /* paranoia */
6610                 BUG_ON(netdev_refcnt_read(dev));
6611                 BUG_ON(!list_empty(&dev->ptype_all));
6612                 BUG_ON(!list_empty(&dev->ptype_specific));
6613                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6614                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6615                 WARN_ON(dev->dn_ptr);
6616
6617                 if (dev->destructor)
6618                         dev->destructor(dev);
6619
6620                 /* Report a network device has been unregistered */
6621                 rtnl_lock();
6622                 dev_net(dev)->dev_unreg_count--;
6623                 __rtnl_unlock();
6624                 wake_up(&netdev_unregistering_wq);
6625
6626                 /* Free network device */
6627                 kobject_put(&dev->dev.kobj);
6628         }
6629 }
6630
6631 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6632  * fields in the same order, with only the type differing.
6633  */
6634 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6635                              const struct net_device_stats *netdev_stats)
6636 {
6637 #if BITS_PER_LONG == 64
6638         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6639         memcpy(stats64, netdev_stats, sizeof(*stats64));
6640 #else
6641         size_t i, n = sizeof(*stats64) / sizeof(u64);
6642         const unsigned long *src = (const unsigned long *)netdev_stats;
6643         u64 *dst = (u64 *)stats64;
6644
6645         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6646                      sizeof(*stats64) / sizeof(u64));
6647         for (i = 0; i < n; i++)
6648                 dst[i] = src[i];
6649 #endif
6650 }
6651 EXPORT_SYMBOL(netdev_stats_to_stats64);
6652
6653 /**
6654  *      dev_get_stats   - get network device statistics
6655  *      @dev: device to get statistics from
6656  *      @storage: place to store stats
6657  *
6658  *      Get network statistics from device. Return @storage.
6659  *      The device driver may provide its own method by setting
6660  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6661  *      otherwise the internal statistics structure is used.
6662  */
6663 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6664                                         struct rtnl_link_stats64 *storage)
6665 {
6666         const struct net_device_ops *ops = dev->netdev_ops;
6667
6668         if (ops->ndo_get_stats64) {
6669                 memset(storage, 0, sizeof(*storage));
6670                 ops->ndo_get_stats64(dev, storage);
6671         } else if (ops->ndo_get_stats) {
6672                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6673         } else {
6674                 netdev_stats_to_stats64(storage, &dev->stats);
6675         }
6676         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6677         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6678         return storage;
6679 }
6680 EXPORT_SYMBOL(dev_get_stats);
6681
6682 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6683 {
6684         struct netdev_queue *queue = dev_ingress_queue(dev);
6685
6686 #ifdef CONFIG_NET_CLS_ACT
6687         if (queue)
6688                 return queue;
6689         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6690         if (!queue)
6691                 return NULL;
6692         netdev_init_one_queue(dev, queue, NULL);
6693         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6694         queue->qdisc_sleeping = &noop_qdisc;
6695         rcu_assign_pointer(dev->ingress_queue, queue);
6696 #endif
6697         return queue;
6698 }
6699
6700 static const struct ethtool_ops default_ethtool_ops;
6701
6702 void netdev_set_default_ethtool_ops(struct net_device *dev,
6703                                     const struct ethtool_ops *ops)
6704 {
6705         if (dev->ethtool_ops == &default_ethtool_ops)
6706                 dev->ethtool_ops = ops;
6707 }
6708 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6709
6710 void netdev_freemem(struct net_device *dev)
6711 {
6712         char *addr = (char *)dev - dev->padded;
6713
6714         kvfree(addr);
6715 }
6716
6717 /**
6718  *      alloc_netdev_mqs - allocate network device
6719  *      @sizeof_priv:           size of private data to allocate space for
6720  *      @name:                  device name format string
6721  *      @name_assign_type:      origin of device name
6722  *      @setup:                 callback to initialize device
6723  *      @txqs:                  the number of TX subqueues to allocate
6724  *      @rxqs:                  the number of RX subqueues to allocate
6725  *
6726  *      Allocates a struct net_device with private data area for driver use
6727  *      and performs basic initialization.  Also allocates subqueue structs
6728  *      for each queue on the device.
6729  */
6730 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6731                 unsigned char name_assign_type,
6732                 void (*setup)(struct net_device *),
6733                 unsigned int txqs, unsigned int rxqs)
6734 {
6735         struct net_device *dev;
6736         size_t alloc_size;
6737         struct net_device *p;
6738
6739         BUG_ON(strlen(name) >= sizeof(dev->name));
6740
6741         if (txqs < 1) {
6742                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6743                 return NULL;
6744         }
6745
6746 #ifdef CONFIG_SYSFS
6747         if (rxqs < 1) {
6748                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6749                 return NULL;
6750         }
6751 #endif
6752
6753         alloc_size = sizeof(struct net_device);
6754         if (sizeof_priv) {
6755                 /* ensure 32-byte alignment of private area */
6756                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6757                 alloc_size += sizeof_priv;
6758         }
6759         /* ensure 32-byte alignment of whole construct */
6760         alloc_size += NETDEV_ALIGN - 1;
6761
6762         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6763         if (!p)
6764                 p = vzalloc(alloc_size);
6765         if (!p)
6766                 return NULL;
6767
6768         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6769         dev->padded = (char *)dev - (char *)p;
6770
6771         dev->pcpu_refcnt = alloc_percpu(int);
6772         if (!dev->pcpu_refcnt)
6773                 goto free_dev;
6774
6775         if (dev_addr_init(dev))
6776                 goto free_pcpu;
6777
6778         dev_mc_init(dev);
6779         dev_uc_init(dev);
6780
6781         dev_net_set(dev, &init_net);
6782
6783         dev->gso_max_size = GSO_MAX_SIZE;
6784         dev->gso_max_segs = GSO_MAX_SEGS;
6785         dev->gso_min_segs = 0;
6786
6787         INIT_LIST_HEAD(&dev->napi_list);
6788         INIT_LIST_HEAD(&dev->unreg_list);
6789         INIT_LIST_HEAD(&dev->close_list);
6790         INIT_LIST_HEAD(&dev->link_watch_list);
6791         INIT_LIST_HEAD(&dev->adj_list.upper);
6792         INIT_LIST_HEAD(&dev->adj_list.lower);
6793         INIT_LIST_HEAD(&dev->all_adj_list.upper);
6794         INIT_LIST_HEAD(&dev->all_adj_list.lower);
6795         INIT_LIST_HEAD(&dev->ptype_all);
6796         INIT_LIST_HEAD(&dev->ptype_specific);
6797         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6798         setup(dev);
6799
6800         dev->num_tx_queues = txqs;
6801         dev->real_num_tx_queues = txqs;
6802         if (netif_alloc_netdev_queues(dev))
6803                 goto free_all;
6804
6805 #ifdef CONFIG_SYSFS
6806         dev->num_rx_queues = rxqs;
6807         dev->real_num_rx_queues = rxqs;
6808         if (netif_alloc_rx_queues(dev))
6809                 goto free_all;
6810 #endif
6811
6812         strcpy(dev->name, name);
6813         dev->name_assign_type = name_assign_type;
6814         dev->group = INIT_NETDEV_GROUP;
6815         if (!dev->ethtool_ops)
6816                 dev->ethtool_ops = &default_ethtool_ops;
6817         return dev;
6818
6819 free_all:
6820         free_netdev(dev);
6821         return NULL;
6822
6823 free_pcpu:
6824         free_percpu(dev->pcpu_refcnt);
6825 free_dev:
6826         netdev_freemem(dev);
6827         return NULL;
6828 }
6829 EXPORT_SYMBOL(alloc_netdev_mqs);
6830
6831 /**
6832  *      free_netdev - free network device
6833  *      @dev: device
6834  *
6835  *      This function does the last stage of destroying an allocated device
6836  *      interface. The reference to the device object is released.
6837  *      If this is the last reference then it will be freed.
6838  */
6839 void free_netdev(struct net_device *dev)
6840 {
6841         struct napi_struct *p, *n;
6842
6843         release_net(dev_net(dev));
6844
6845         netif_free_tx_queues(dev);
6846 #ifdef CONFIG_SYSFS
6847         kvfree(dev->_rx);
6848 #endif
6849
6850         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6851
6852         /* Flush device addresses */
6853         dev_addr_flush(dev);
6854
6855         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6856                 netif_napi_del(p);
6857
6858         free_percpu(dev->pcpu_refcnt);
6859         dev->pcpu_refcnt = NULL;
6860
6861         /*  Compatibility with error handling in drivers */
6862         if (dev->reg_state == NETREG_UNINITIALIZED) {
6863                 netdev_freemem(dev);
6864                 return;
6865         }
6866
6867         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6868         dev->reg_state = NETREG_RELEASED;
6869
6870         /* will free via device release */
6871         put_device(&dev->dev);
6872 }
6873 EXPORT_SYMBOL(free_netdev);
6874
6875 /**
6876  *      synchronize_net -  Synchronize with packet receive processing
6877  *
6878  *      Wait for packets currently being received to be done.
6879  *      Does not block later packets from starting.
6880  */
6881 void synchronize_net(void)
6882 {
6883         might_sleep();
6884         if (rtnl_is_locked())
6885                 synchronize_rcu_expedited();
6886         else
6887                 synchronize_rcu();
6888 }
6889 EXPORT_SYMBOL(synchronize_net);
6890
6891 /**
6892  *      unregister_netdevice_queue - remove device from the kernel
6893  *      @dev: device
6894  *      @head: list
6895  *
6896  *      This function shuts down a device interface and removes it
6897  *      from the kernel tables.
6898  *      If head not NULL, device is queued to be unregistered later.
6899  *
6900  *      Callers must hold the rtnl semaphore.  You may want
6901  *      unregister_netdev() instead of this.
6902  */
6903
6904 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6905 {
6906         ASSERT_RTNL();
6907
6908         if (head) {
6909                 list_move_tail(&dev->unreg_list, head);
6910         } else {
6911                 rollback_registered(dev);
6912                 /* Finish processing unregister after unlock */
6913                 net_set_todo(dev);
6914         }
6915 }
6916 EXPORT_SYMBOL(unregister_netdevice_queue);
6917
6918 /**
6919  *      unregister_netdevice_many - unregister many devices
6920  *      @head: list of devices
6921  *
6922  *  Note: As most callers use a stack allocated list_head,
6923  *  we force a list_del() to make sure stack wont be corrupted later.
6924  */
6925 void unregister_netdevice_many(struct list_head *head)
6926 {
6927         struct net_device *dev;
6928
6929         if (!list_empty(head)) {
6930                 rollback_registered_many(head);
6931                 list_for_each_entry(dev, head, unreg_list)
6932                         net_set_todo(dev);
6933                 list_del(head);
6934         }
6935 }
6936 EXPORT_SYMBOL(unregister_netdevice_many);
6937
6938 /**
6939  *      unregister_netdev - remove device from the kernel
6940  *      @dev: device
6941  *
6942  *      This function shuts down a device interface and removes it
6943  *      from the kernel tables.
6944  *
6945  *      This is just a wrapper for unregister_netdevice that takes
6946  *      the rtnl semaphore.  In general you want to use this and not
6947  *      unregister_netdevice.
6948  */
6949 void unregister_netdev(struct net_device *dev)
6950 {
6951         rtnl_lock();
6952         unregister_netdevice(dev);
6953         rtnl_unlock();
6954 }
6955 EXPORT_SYMBOL(unregister_netdev);
6956
6957 /**
6958  *      dev_change_net_namespace - move device to different nethost namespace
6959  *      @dev: device
6960  *      @net: network namespace
6961  *      @pat: If not NULL name pattern to try if the current device name
6962  *            is already taken in the destination network namespace.
6963  *
6964  *      This function shuts down a device interface and moves it
6965  *      to a new network namespace. On success 0 is returned, on
6966  *      a failure a netagive errno code is returned.
6967  *
6968  *      Callers must hold the rtnl semaphore.
6969  */
6970
6971 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6972 {
6973         int err;
6974
6975         ASSERT_RTNL();
6976
6977         /* Don't allow namespace local devices to be moved. */
6978         err = -EINVAL;
6979         if (dev->features & NETIF_F_NETNS_LOCAL)
6980                 goto out;
6981
6982         /* Ensure the device has been registrered */
6983         if (dev->reg_state != NETREG_REGISTERED)
6984                 goto out;
6985
6986         /* Get out if there is nothing todo */
6987         err = 0;
6988         if (net_eq(dev_net(dev), net))
6989                 goto out;
6990
6991         /* Pick the destination device name, and ensure
6992          * we can use it in the destination network namespace.
6993          */
6994         err = -EEXIST;
6995         if (__dev_get_by_name(net, dev->name)) {
6996                 /* We get here if we can't use the current device name */
6997                 if (!pat)
6998                         goto out;
6999                 if (dev_get_valid_name(net, dev, pat) < 0)
7000                         goto out;
7001         }
7002
7003         /*
7004          * And now a mini version of register_netdevice unregister_netdevice.
7005          */
7006
7007         /* If device is running close it first. */
7008         dev_close(dev);
7009
7010         /* And unlink it from device chain */
7011         err = -ENODEV;
7012         unlist_netdevice(dev);
7013
7014         synchronize_net();
7015
7016         /* Shutdown queueing discipline. */
7017         dev_shutdown(dev);
7018
7019         /* Notify protocols, that we are about to destroy
7020            this device. They should clean all the things.
7021
7022            Note that dev->reg_state stays at NETREG_REGISTERED.
7023            This is wanted because this way 8021q and macvlan know
7024            the device is just moving and can keep their slaves up.
7025         */
7026         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7027         rcu_barrier();
7028         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7029         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7030
7031         /*
7032          *      Flush the unicast and multicast chains
7033          */
7034         dev_uc_flush(dev);
7035         dev_mc_flush(dev);
7036
7037         /* Send a netdev-removed uevent to the old namespace */
7038         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7039         netdev_adjacent_del_links(dev);
7040
7041         /* Actually switch the network namespace */
7042         dev_net_set(dev, net);
7043
7044         /* If there is an ifindex conflict assign a new one */
7045         if (__dev_get_by_index(net, dev->ifindex)) {
7046                 int iflink = (dev->iflink == dev->ifindex);
7047                 dev->ifindex = dev_new_index(net);
7048                 if (iflink)
7049                         dev->iflink = dev->ifindex;
7050         }
7051
7052         /* Send a netdev-add uevent to the new namespace */
7053         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7054         netdev_adjacent_add_links(dev);
7055
7056         /* Fixup kobjects */
7057         err = device_rename(&dev->dev, dev->name);
7058         WARN_ON(err);
7059
7060         /* Add the device back in the hashes */
7061         list_netdevice(dev);
7062
7063         /* Notify protocols, that a new device appeared. */
7064         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7065
7066         /*
7067          *      Prevent userspace races by waiting until the network
7068          *      device is fully setup before sending notifications.
7069          */
7070         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7071
7072         synchronize_net();
7073         err = 0;
7074 out:
7075         return err;
7076 }
7077 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7078
7079 static int dev_cpu_callback(struct notifier_block *nfb,
7080                             unsigned long action,
7081                             void *ocpu)
7082 {
7083         struct sk_buff **list_skb;
7084         struct sk_buff *skb;
7085         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7086         struct softnet_data *sd, *oldsd;
7087
7088         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7089                 return NOTIFY_OK;
7090
7091         local_irq_disable();
7092         cpu = smp_processor_id();
7093         sd = &per_cpu(softnet_data, cpu);
7094         oldsd = &per_cpu(softnet_data, oldcpu);
7095
7096         /* Find end of our completion_queue. */
7097         list_skb = &sd->completion_queue;
7098         while (*list_skb)
7099                 list_skb = &(*list_skb)->next;
7100         /* Append completion queue from offline CPU. */
7101         *list_skb = oldsd->completion_queue;
7102         oldsd->completion_queue = NULL;
7103
7104         /* Append output queue from offline CPU. */
7105         if (oldsd->output_queue) {
7106                 *sd->output_queue_tailp = oldsd->output_queue;
7107                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7108                 oldsd->output_queue = NULL;
7109                 oldsd->output_queue_tailp = &oldsd->output_queue;
7110         }
7111         /* Append NAPI poll list from offline CPU, with one exception :
7112          * process_backlog() must be called by cpu owning percpu backlog.
7113          * We properly handle process_queue & input_pkt_queue later.
7114          */
7115         while (!list_empty(&oldsd->poll_list)) {
7116                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7117                                                             struct napi_struct,
7118                                                             poll_list);
7119
7120                 list_del_init(&napi->poll_list);
7121                 if (napi->poll == process_backlog)
7122                         napi->state = 0;
7123                 else
7124                         ____napi_schedule(sd, napi);
7125         }
7126
7127         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7128         local_irq_enable();
7129
7130         /* Process offline CPU's input_pkt_queue */
7131         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7132                 netif_rx_ni(skb);
7133                 input_queue_head_incr(oldsd);
7134         }
7135         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7136                 netif_rx_ni(skb);
7137                 input_queue_head_incr(oldsd);
7138         }
7139
7140         return NOTIFY_OK;
7141 }
7142
7143
7144 /**
7145  *      netdev_increment_features - increment feature set by one
7146  *      @all: current feature set
7147  *      @one: new feature set
7148  *      @mask: mask feature set
7149  *
7150  *      Computes a new feature set after adding a device with feature set
7151  *      @one to the master device with current feature set @all.  Will not
7152  *      enable anything that is off in @mask. Returns the new feature set.
7153  */
7154 netdev_features_t netdev_increment_features(netdev_features_t all,
7155         netdev_features_t one, netdev_features_t mask)
7156 {
7157         if (mask & NETIF_F_GEN_CSUM)
7158                 mask |= NETIF_F_ALL_CSUM;
7159         mask |= NETIF_F_VLAN_CHALLENGED;
7160
7161         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7162         all &= one | ~NETIF_F_ALL_FOR_ALL;
7163
7164         /* If one device supports hw checksumming, set for all. */
7165         if (all & NETIF_F_GEN_CSUM)
7166                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7167
7168         return all;
7169 }
7170 EXPORT_SYMBOL(netdev_increment_features);
7171
7172 static struct hlist_head * __net_init netdev_create_hash(void)
7173 {
7174         int i;
7175         struct hlist_head *hash;
7176
7177         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7178         if (hash != NULL)
7179                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7180                         INIT_HLIST_HEAD(&hash[i]);
7181
7182         return hash;
7183 }
7184
7185 /* Initialize per network namespace state */
7186 static int __net_init netdev_init(struct net *net)
7187 {
7188         if (net != &init_net)
7189                 INIT_LIST_HEAD(&net->dev_base_head);
7190
7191         net->dev_name_head = netdev_create_hash();
7192         if (net->dev_name_head == NULL)
7193                 goto err_name;
7194
7195         net->dev_index_head = netdev_create_hash();
7196         if (net->dev_index_head == NULL)
7197                 goto err_idx;
7198
7199         return 0;
7200
7201 err_idx:
7202         kfree(net->dev_name_head);
7203 err_name:
7204         return -ENOMEM;
7205 }
7206
7207 /**
7208  *      netdev_drivername - network driver for the device
7209  *      @dev: network device
7210  *
7211  *      Determine network driver for device.
7212  */
7213 const char *netdev_drivername(const struct net_device *dev)
7214 {
7215         const struct device_driver *driver;
7216         const struct device *parent;
7217         const char *empty = "";
7218
7219         parent = dev->dev.parent;
7220         if (!parent)
7221                 return empty;
7222
7223         driver = parent->driver;
7224         if (driver && driver->name)
7225                 return driver->name;
7226         return empty;
7227 }
7228
7229 static void __netdev_printk(const char *level, const struct net_device *dev,
7230                             struct va_format *vaf)
7231 {
7232         if (dev && dev->dev.parent) {
7233                 dev_printk_emit(level[1] - '0',
7234                                 dev->dev.parent,
7235                                 "%s %s %s%s: %pV",
7236                                 dev_driver_string(dev->dev.parent),
7237                                 dev_name(dev->dev.parent),
7238                                 netdev_name(dev), netdev_reg_state(dev),
7239                                 vaf);
7240         } else if (dev) {
7241                 printk("%s%s%s: %pV",
7242                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7243         } else {
7244                 printk("%s(NULL net_device): %pV", level, vaf);
7245         }
7246 }
7247
7248 void netdev_printk(const char *level, const struct net_device *dev,
7249                    const char *format, ...)
7250 {
7251         struct va_format vaf;
7252         va_list args;
7253
7254         va_start(args, format);
7255
7256         vaf.fmt = format;
7257         vaf.va = &args;
7258
7259         __netdev_printk(level, dev, &vaf);
7260
7261         va_end(args);
7262 }
7263 EXPORT_SYMBOL(netdev_printk);
7264
7265 #define define_netdev_printk_level(func, level)                 \
7266 void func(const struct net_device *dev, const char *fmt, ...)   \
7267 {                                                               \
7268         struct va_format vaf;                                   \
7269         va_list args;                                           \
7270                                                                 \
7271         va_start(args, fmt);                                    \
7272                                                                 \
7273         vaf.fmt = fmt;                                          \
7274         vaf.va = &args;                                         \
7275                                                                 \
7276         __netdev_printk(level, dev, &vaf);                      \
7277                                                                 \
7278         va_end(args);                                           \
7279 }                                                               \
7280 EXPORT_SYMBOL(func);
7281
7282 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7283 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7284 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7285 define_netdev_printk_level(netdev_err, KERN_ERR);
7286 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7287 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7288 define_netdev_printk_level(netdev_info, KERN_INFO);
7289
7290 static void __net_exit netdev_exit(struct net *net)
7291 {
7292         kfree(net->dev_name_head);
7293         kfree(net->dev_index_head);
7294 }
7295
7296 static struct pernet_operations __net_initdata netdev_net_ops = {
7297         .init = netdev_init,
7298         .exit = netdev_exit,
7299 };
7300
7301 static void __net_exit default_device_exit(struct net *net)
7302 {
7303         struct net_device *dev, *aux;
7304         /*
7305          * Push all migratable network devices back to the
7306          * initial network namespace
7307          */
7308         rtnl_lock();
7309         for_each_netdev_safe(net, dev, aux) {
7310                 int err;
7311                 char fb_name[IFNAMSIZ];
7312
7313                 /* Ignore unmoveable devices (i.e. loopback) */
7314                 if (dev->features & NETIF_F_NETNS_LOCAL)
7315                         continue;
7316
7317                 /* Leave virtual devices for the generic cleanup */
7318                 if (dev->rtnl_link_ops)
7319                         continue;
7320
7321                 /* Push remaining network devices to init_net */
7322                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7323                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7324                 if (err) {
7325                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7326                                  __func__, dev->name, err);
7327                         BUG();
7328                 }
7329         }
7330         rtnl_unlock();
7331 }
7332
7333 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7334 {
7335         /* Return with the rtnl_lock held when there are no network
7336          * devices unregistering in any network namespace in net_list.
7337          */
7338         struct net *net;
7339         bool unregistering;
7340         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7341
7342         add_wait_queue(&netdev_unregistering_wq, &wait);
7343         for (;;) {
7344                 unregistering = false;
7345                 rtnl_lock();
7346                 list_for_each_entry(net, net_list, exit_list) {
7347                         if (net->dev_unreg_count > 0) {
7348                                 unregistering = true;
7349                                 break;
7350                         }
7351                 }
7352                 if (!unregistering)
7353                         break;
7354                 __rtnl_unlock();
7355
7356                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7357         }
7358         remove_wait_queue(&netdev_unregistering_wq, &wait);
7359 }
7360
7361 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7362 {
7363         /* At exit all network devices most be removed from a network
7364          * namespace.  Do this in the reverse order of registration.
7365          * Do this across as many network namespaces as possible to
7366          * improve batching efficiency.
7367          */
7368         struct net_device *dev;
7369         struct net *net;
7370         LIST_HEAD(dev_kill_list);
7371
7372         /* To prevent network device cleanup code from dereferencing
7373          * loopback devices or network devices that have been freed
7374          * wait here for all pending unregistrations to complete,
7375          * before unregistring the loopback device and allowing the
7376          * network namespace be freed.
7377          *
7378          * The netdev todo list containing all network devices
7379          * unregistrations that happen in default_device_exit_batch
7380          * will run in the rtnl_unlock() at the end of
7381          * default_device_exit_batch.
7382          */
7383         rtnl_lock_unregistering(net_list);
7384         list_for_each_entry(net, net_list, exit_list) {
7385                 for_each_netdev_reverse(net, dev) {
7386                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7387                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7388                         else
7389                                 unregister_netdevice_queue(dev, &dev_kill_list);
7390                 }
7391         }
7392         unregister_netdevice_many(&dev_kill_list);
7393         rtnl_unlock();
7394 }
7395
7396 static struct pernet_operations __net_initdata default_device_ops = {
7397         .exit = default_device_exit,
7398         .exit_batch = default_device_exit_batch,
7399 };
7400
7401 /*
7402  *      Initialize the DEV module. At boot time this walks the device list and
7403  *      unhooks any devices that fail to initialise (normally hardware not
7404  *      present) and leaves us with a valid list of present and active devices.
7405  *
7406  */
7407
7408 /*
7409  *       This is called single threaded during boot, so no need
7410  *       to take the rtnl semaphore.
7411  */
7412 static int __init net_dev_init(void)
7413 {
7414         int i, rc = -ENOMEM;
7415
7416         BUG_ON(!dev_boot_phase);
7417
7418         if (dev_proc_init())
7419                 goto out;
7420
7421         if (netdev_kobject_init())
7422                 goto out;
7423
7424         INIT_LIST_HEAD(&ptype_all);
7425         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7426                 INIT_LIST_HEAD(&ptype_base[i]);
7427
7428         INIT_LIST_HEAD(&offload_base);
7429
7430         if (register_pernet_subsys(&netdev_net_ops))
7431                 goto out;
7432
7433         /*
7434          *      Initialise the packet receive queues.
7435          */
7436
7437         for_each_possible_cpu(i) {
7438                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7439
7440                 skb_queue_head_init(&sd->input_pkt_queue);
7441                 skb_queue_head_init(&sd->process_queue);
7442                 INIT_LIST_HEAD(&sd->poll_list);
7443                 sd->output_queue_tailp = &sd->output_queue;
7444 #ifdef CONFIG_RPS
7445                 sd->csd.func = rps_trigger_softirq;
7446                 sd->csd.info = sd;
7447                 sd->cpu = i;
7448 #endif
7449
7450                 sd->backlog.poll = process_backlog;
7451                 sd->backlog.weight = weight_p;
7452         }
7453
7454         dev_boot_phase = 0;
7455
7456         /* The loopback device is special if any other network devices
7457          * is present in a network namespace the loopback device must
7458          * be present. Since we now dynamically allocate and free the
7459          * loopback device ensure this invariant is maintained by
7460          * keeping the loopback device as the first device on the
7461          * list of network devices.  Ensuring the loopback devices
7462          * is the first device that appears and the last network device
7463          * that disappears.
7464          */
7465         if (register_pernet_device(&loopback_net_ops))
7466                 goto out;
7467
7468         if (register_pernet_device(&default_device_ops))
7469                 goto out;
7470
7471         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7472         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7473
7474         hotcpu_notifier(dev_cpu_callback, 0);
7475         dst_init();
7476         rc = 0;
7477 out:
7478         return rc;
7479 }
7480
7481 subsys_initcall(net_dev_init);