net: validate_xmit_vlan() is static
[pandora-kernel.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly;       /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153                                          struct net_device *dev,
154                                          struct netdev_notifier_info *info);
155
156 /*
157  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158  * semaphore.
159  *
160  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161  *
162  * Writers must hold the rtnl semaphore while they loop through the
163  * dev_base_head list, and hold dev_base_lock for writing when they do the
164  * actual updates.  This allows pure readers to access the list even
165  * while a writer is preparing to update it.
166  *
167  * To put it another way, dev_base_lock is held for writing only to
168  * protect against pure readers; the rtnl semaphore provides the
169  * protection against other writers.
170  *
171  * See, for example usages, register_netdevice() and
172  * unregister_netdevice(), which must be called with the rtnl
173  * semaphore held.
174  */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188         while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206         spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220         struct net *net = dev_net(dev);
221
222         ASSERT_RTNL();
223
224         write_lock_bh(&dev_base_lock);
225         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227         hlist_add_head_rcu(&dev->index_hlist,
228                            dev_index_hash(net, dev->ifindex));
229         write_unlock_bh(&dev_base_lock);
230
231         dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235  * caller must respect a RCU grace period before freeing/reusing dev
236  */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239         ASSERT_RTNL();
240
241         /* Unlink dev from the device chain */
242         write_lock_bh(&dev_base_lock);
243         list_del_rcu(&dev->dev_list);
244         hlist_del_rcu(&dev->name_hlist);
245         hlist_del_rcu(&dev->index_hlist);
246         write_unlock_bh(&dev_base_lock);
247
248         dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252  *      Our notifier list
253  */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258  *      Device drivers call our routines to queue packets here. We empty the
259  *      queue in the local softnet handler.
260  */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268  * according to dev->type
269  */
270 static const unsigned short netdev_lock_type[] =
271         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309         int i;
310
311         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312                 if (netdev_lock_type[i] == dev_type)
313                         return i;
314         /* the last key is used by default */
315         return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319                                                  unsigned short dev_type)
320 {
321         int i;
322
323         i = netdev_lock_pos(dev_type);
324         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325                                    netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330         int i;
331
332         i = netdev_lock_pos(dev->type);
333         lockdep_set_class_and_name(&dev->addr_list_lock,
334                                    &netdev_addr_lock_key[i],
335                                    netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339                                                  unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349                 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354  *      Add a protocol ID to the list. Now that the input handler is
355  *      smarter we can dispense with all the messy stuff that used to be
356  *      here.
357  *
358  *      BEWARE!!! Protocol handlers, mangling input packets,
359  *      MUST BE last in hash buckets and checking protocol handlers
360  *      MUST start from promiscuous ptype_all chain in net_bh.
361  *      It is true now, do not change it.
362  *      Explanation follows: if protocol handler, mangling packet, will
363  *      be the first on list, it is not able to sense, that packet
364  *      is cloned and should be copied-on-write, so that it will
365  *      change it and subsequent readers will get broken packet.
366  *                                                      --ANK (980803)
367  */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371         if (pt->type == htons(ETH_P_ALL))
372                 return &ptype_all;
373         else
374                 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378  *      dev_add_pack - add packet handler
379  *      @pt: packet type declaration
380  *
381  *      Add a protocol handler to the networking stack. The passed &packet_type
382  *      is linked into kernel lists and may not be freed until it has been
383  *      removed from the kernel lists.
384  *
385  *      This call does not sleep therefore it can not
386  *      guarantee all CPU's that are in middle of receiving packets
387  *      will see the new packet type (until the next received packet).
388  */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392         struct list_head *head = ptype_head(pt);
393
394         spin_lock(&ptype_lock);
395         list_add_rcu(&pt->list, head);
396         spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401  *      __dev_remove_pack        - remove packet handler
402  *      @pt: packet type declaration
403  *
404  *      Remove a protocol handler that was previously added to the kernel
405  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
406  *      from the kernel lists and can be freed or reused once this function
407  *      returns.
408  *
409  *      The packet type might still be in use by receivers
410  *      and must not be freed until after all the CPU's have gone
411  *      through a quiescent state.
412  */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415         struct list_head *head = ptype_head(pt);
416         struct packet_type *pt1;
417
418         spin_lock(&ptype_lock);
419
420         list_for_each_entry(pt1, head, list) {
421                 if (pt == pt1) {
422                         list_del_rcu(&pt->list);
423                         goto out;
424                 }
425         }
426
427         pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429         spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434  *      dev_remove_pack  - remove packet handler
435  *      @pt: packet type declaration
436  *
437  *      Remove a protocol handler that was previously added to the kernel
438  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
439  *      from the kernel lists and can be freed or reused once this function
440  *      returns.
441  *
442  *      This call sleeps to guarantee that no CPU is looking at the packet
443  *      type after return.
444  */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447         __dev_remove_pack(pt);
448
449         synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455  *      dev_add_offload - register offload handlers
456  *      @po: protocol offload declaration
457  *
458  *      Add protocol offload handlers to the networking stack. The passed
459  *      &proto_offload is linked into kernel lists and may not be freed until
460  *      it has been removed from the kernel lists.
461  *
462  *      This call does not sleep therefore it can not
463  *      guarantee all CPU's that are in middle of receiving packets
464  *      will see the new offload handlers (until the next received packet).
465  */
466 void dev_add_offload(struct packet_offload *po)
467 {
468         struct list_head *head = &offload_base;
469
470         spin_lock(&offload_lock);
471         list_add_rcu(&po->list, head);
472         spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477  *      __dev_remove_offload     - remove offload handler
478  *      @po: packet offload declaration
479  *
480  *      Remove a protocol offload handler that was previously added to the
481  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
482  *      is removed from the kernel lists and can be freed or reused once this
483  *      function returns.
484  *
485  *      The packet type might still be in use by receivers
486  *      and must not be freed until after all the CPU's have gone
487  *      through a quiescent state.
488  */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491         struct list_head *head = &offload_base;
492         struct packet_offload *po1;
493
494         spin_lock(&offload_lock);
495
496         list_for_each_entry(po1, head, list) {
497                 if (po == po1) {
498                         list_del_rcu(&po->list);
499                         goto out;
500                 }
501         }
502
503         pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505         spin_unlock(&offload_lock);
506 }
507
508 /**
509  *      dev_remove_offload       - remove packet offload handler
510  *      @po: packet offload declaration
511  *
512  *      Remove a packet offload handler that was previously added to the kernel
513  *      offload handlers by dev_add_offload(). The passed &offload_type is
514  *      removed from the kernel lists and can be freed or reused once this
515  *      function returns.
516  *
517  *      This call sleeps to guarantee that no CPU is looking at the packet
518  *      type after return.
519  */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522         __dev_remove_offload(po);
523
524         synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530                       Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538  *      netdev_boot_setup_add   - add new setup entry
539  *      @name: name of the device
540  *      @map: configured settings for the device
541  *
542  *      Adds new setup entry to the dev_boot_setup list.  The function
543  *      returns 0 on error and 1 on success.  This is a generic routine to
544  *      all netdevices.
545  */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548         struct netdev_boot_setup *s;
549         int i;
550
551         s = dev_boot_setup;
552         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554                         memset(s[i].name, 0, sizeof(s[i].name));
555                         strlcpy(s[i].name, name, IFNAMSIZ);
556                         memcpy(&s[i].map, map, sizeof(s[i].map));
557                         break;
558                 }
559         }
560
561         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565  *      netdev_boot_setup_check - check boot time settings
566  *      @dev: the netdevice
567  *
568  *      Check boot time settings for the device.
569  *      The found settings are set for the device to be used
570  *      later in the device probing.
571  *      Returns 0 if no settings found, 1 if they are.
572  */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575         struct netdev_boot_setup *s = dev_boot_setup;
576         int i;
577
578         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580                     !strcmp(dev->name, s[i].name)) {
581                         dev->irq        = s[i].map.irq;
582                         dev->base_addr  = s[i].map.base_addr;
583                         dev->mem_start  = s[i].map.mem_start;
584                         dev->mem_end    = s[i].map.mem_end;
585                         return 1;
586                 }
587         }
588         return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594  *      netdev_boot_base        - get address from boot time settings
595  *      @prefix: prefix for network device
596  *      @unit: id for network device
597  *
598  *      Check boot time settings for the base address of device.
599  *      The found settings are set for the device to be used
600  *      later in the device probing.
601  *      Returns 0 if no settings found.
602  */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605         const struct netdev_boot_setup *s = dev_boot_setup;
606         char name[IFNAMSIZ];
607         int i;
608
609         sprintf(name, "%s%d", prefix, unit);
610
611         /*
612          * If device already registered then return base of 1
613          * to indicate not to probe for this interface
614          */
615         if (__dev_get_by_name(&init_net, name))
616                 return 1;
617
618         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619                 if (!strcmp(name, s[i].name))
620                         return s[i].map.base_addr;
621         return 0;
622 }
623
624 /*
625  * Saves at boot time configured settings for any netdevice.
626  */
627 int __init netdev_boot_setup(char *str)
628 {
629         int ints[5];
630         struct ifmap map;
631
632         str = get_options(str, ARRAY_SIZE(ints), ints);
633         if (!str || !*str)
634                 return 0;
635
636         /* Save settings */
637         memset(&map, 0, sizeof(map));
638         if (ints[0] > 0)
639                 map.irq = ints[1];
640         if (ints[0] > 1)
641                 map.base_addr = ints[2];
642         if (ints[0] > 2)
643                 map.mem_start = ints[3];
644         if (ints[0] > 3)
645                 map.mem_end = ints[4];
646
647         /* Add new entry to the list */
648         return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655                             Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660  *      __dev_get_by_name       - find a device by its name
661  *      @net: the applicable net namespace
662  *      @name: name to find
663  *
664  *      Find an interface by name. Must be called under RTNL semaphore
665  *      or @dev_base_lock. If the name is found a pointer to the device
666  *      is returned. If the name is not found then %NULL is returned. The
667  *      reference counters are not incremented so the caller must be
668  *      careful with locks.
669  */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673         struct net_device *dev;
674         struct hlist_head *head = dev_name_hash(net, name);
675
676         hlist_for_each_entry(dev, head, name_hlist)
677                 if (!strncmp(dev->name, name, IFNAMSIZ))
678                         return dev;
679
680         return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685  *      dev_get_by_name_rcu     - find a device by its name
686  *      @net: the applicable net namespace
687  *      @name: name to find
688  *
689  *      Find an interface by name.
690  *      If the name is found a pointer to the device is returned.
691  *      If the name is not found then %NULL is returned.
692  *      The reference counters are not incremented so the caller must be
693  *      careful with locks. The caller must hold RCU lock.
694  */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698         struct net_device *dev;
699         struct hlist_head *head = dev_name_hash(net, name);
700
701         hlist_for_each_entry_rcu(dev, head, name_hlist)
702                 if (!strncmp(dev->name, name, IFNAMSIZ))
703                         return dev;
704
705         return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710  *      dev_get_by_name         - find a device by its name
711  *      @net: the applicable net namespace
712  *      @name: name to find
713  *
714  *      Find an interface by name. This can be called from any
715  *      context and does its own locking. The returned handle has
716  *      the usage count incremented and the caller must use dev_put() to
717  *      release it when it is no longer needed. %NULL is returned if no
718  *      matching device is found.
719  */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723         struct net_device *dev;
724
725         rcu_read_lock();
726         dev = dev_get_by_name_rcu(net, name);
727         if (dev)
728                 dev_hold(dev);
729         rcu_read_unlock();
730         return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735  *      __dev_get_by_index - find a device by its ifindex
736  *      @net: the applicable net namespace
737  *      @ifindex: index of device
738  *
739  *      Search for an interface by index. Returns %NULL if the device
740  *      is not found or a pointer to the device. The device has not
741  *      had its reference counter increased so the caller must be careful
742  *      about locking. The caller must hold either the RTNL semaphore
743  *      or @dev_base_lock.
744  */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748         struct net_device *dev;
749         struct hlist_head *head = dev_index_hash(net, ifindex);
750
751         hlist_for_each_entry(dev, head, index_hlist)
752                 if (dev->ifindex == ifindex)
753                         return dev;
754
755         return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760  *      dev_get_by_index_rcu - find a device by its ifindex
761  *      @net: the applicable net namespace
762  *      @ifindex: index of device
763  *
764  *      Search for an interface by index. Returns %NULL if the device
765  *      is not found or a pointer to the device. The device has not
766  *      had its reference counter increased so the caller must be careful
767  *      about locking. The caller must hold RCU lock.
768  */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772         struct net_device *dev;
773         struct hlist_head *head = dev_index_hash(net, ifindex);
774
775         hlist_for_each_entry_rcu(dev, head, index_hlist)
776                 if (dev->ifindex == ifindex)
777                         return dev;
778
779         return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785  *      dev_get_by_index - find a device by its ifindex
786  *      @net: the applicable net namespace
787  *      @ifindex: index of device
788  *
789  *      Search for an interface by index. Returns NULL if the device
790  *      is not found or a pointer to the device. The device returned has
791  *      had a reference added and the pointer is safe until the user calls
792  *      dev_put to indicate they have finished with it.
793  */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797         struct net_device *dev;
798
799         rcu_read_lock();
800         dev = dev_get_by_index_rcu(net, ifindex);
801         if (dev)
802                 dev_hold(dev);
803         rcu_read_unlock();
804         return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809  *      netdev_get_name - get a netdevice name, knowing its ifindex.
810  *      @net: network namespace
811  *      @name: a pointer to the buffer where the name will be stored.
812  *      @ifindex: the ifindex of the interface to get the name from.
813  *
814  *      The use of raw_seqcount_begin() and cond_resched() before
815  *      retrying is required as we want to give the writers a chance
816  *      to complete when CONFIG_PREEMPT is not set.
817  */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820         struct net_device *dev;
821         unsigned int seq;
822
823 retry:
824         seq = raw_seqcount_begin(&devnet_rename_seq);
825         rcu_read_lock();
826         dev = dev_get_by_index_rcu(net, ifindex);
827         if (!dev) {
828                 rcu_read_unlock();
829                 return -ENODEV;
830         }
831
832         strcpy(name, dev->name);
833         rcu_read_unlock();
834         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835                 cond_resched();
836                 goto retry;
837         }
838
839         return 0;
840 }
841
842 /**
843  *      dev_getbyhwaddr_rcu - find a device by its hardware address
844  *      @net: the applicable net namespace
845  *      @type: media type of device
846  *      @ha: hardware address
847  *
848  *      Search for an interface by MAC address. Returns NULL if the device
849  *      is not found or a pointer to the device.
850  *      The caller must hold RCU or RTNL.
851  *      The returned device has not had its ref count increased
852  *      and the caller must therefore be careful about locking
853  *
854  */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857                                        const char *ha)
858 {
859         struct net_device *dev;
860
861         for_each_netdev_rcu(net, dev)
862                 if (dev->type == type &&
863                     !memcmp(dev->dev_addr, ha, dev->addr_len))
864                         return dev;
865
866         return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872         struct net_device *dev;
873
874         ASSERT_RTNL();
875         for_each_netdev(net, dev)
876                 if (dev->type == type)
877                         return dev;
878
879         return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885         struct net_device *dev, *ret = NULL;
886
887         rcu_read_lock();
888         for_each_netdev_rcu(net, dev)
889                 if (dev->type == type) {
890                         dev_hold(dev);
891                         ret = dev;
892                         break;
893                 }
894         rcu_read_unlock();
895         return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900  *      __dev_get_by_flags - find any device with given flags
901  *      @net: the applicable net namespace
902  *      @if_flags: IFF_* values
903  *      @mask: bitmask of bits in if_flags to check
904  *
905  *      Search for any interface with the given flags. Returns NULL if a device
906  *      is not found or a pointer to the device. Must be called inside
907  *      rtnl_lock(), and result refcount is unchanged.
908  */
909
910 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
911                                       unsigned short mask)
912 {
913         struct net_device *dev, *ret;
914
915         ASSERT_RTNL();
916
917         ret = NULL;
918         for_each_netdev(net, dev) {
919                 if (((dev->flags ^ if_flags) & mask) == 0) {
920                         ret = dev;
921                         break;
922                 }
923         }
924         return ret;
925 }
926 EXPORT_SYMBOL(__dev_get_by_flags);
927
928 /**
929  *      dev_valid_name - check if name is okay for network device
930  *      @name: name string
931  *
932  *      Network device names need to be valid file names to
933  *      to allow sysfs to work.  We also disallow any kind of
934  *      whitespace.
935  */
936 bool dev_valid_name(const char *name)
937 {
938         if (*name == '\0')
939                 return false;
940         if (strlen(name) >= IFNAMSIZ)
941                 return false;
942         if (!strcmp(name, ".") || !strcmp(name, ".."))
943                 return false;
944
945         while (*name) {
946                 if (*name == '/' || isspace(*name))
947                         return false;
948                 name++;
949         }
950         return true;
951 }
952 EXPORT_SYMBOL(dev_valid_name);
953
954 /**
955  *      __dev_alloc_name - allocate a name for a device
956  *      @net: network namespace to allocate the device name in
957  *      @name: name format string
958  *      @buf:  scratch buffer and result name string
959  *
960  *      Passed a format string - eg "lt%d" it will try and find a suitable
961  *      id. It scans list of devices to build up a free map, then chooses
962  *      the first empty slot. The caller must hold the dev_base or rtnl lock
963  *      while allocating the name and adding the device in order to avoid
964  *      duplicates.
965  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
966  *      Returns the number of the unit assigned or a negative errno code.
967  */
968
969 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
970 {
971         int i = 0;
972         const char *p;
973         const int max_netdevices = 8*PAGE_SIZE;
974         unsigned long *inuse;
975         struct net_device *d;
976
977         p = strnchr(name, IFNAMSIZ-1, '%');
978         if (p) {
979                 /*
980                  * Verify the string as this thing may have come from
981                  * the user.  There must be either one "%d" and no other "%"
982                  * characters.
983                  */
984                 if (p[1] != 'd' || strchr(p + 2, '%'))
985                         return -EINVAL;
986
987                 /* Use one page as a bit array of possible slots */
988                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
989                 if (!inuse)
990                         return -ENOMEM;
991
992                 for_each_netdev(net, d) {
993                         if (!sscanf(d->name, name, &i))
994                                 continue;
995                         if (i < 0 || i >= max_netdevices)
996                                 continue;
997
998                         /*  avoid cases where sscanf is not exact inverse of printf */
999                         snprintf(buf, IFNAMSIZ, name, i);
1000                         if (!strncmp(buf, d->name, IFNAMSIZ))
1001                                 set_bit(i, inuse);
1002                 }
1003
1004                 i = find_first_zero_bit(inuse, max_netdevices);
1005                 free_page((unsigned long) inuse);
1006         }
1007
1008         if (buf != name)
1009                 snprintf(buf, IFNAMSIZ, name, i);
1010         if (!__dev_get_by_name(net, buf))
1011                 return i;
1012
1013         /* It is possible to run out of possible slots
1014          * when the name is long and there isn't enough space left
1015          * for the digits, or if all bits are used.
1016          */
1017         return -ENFILE;
1018 }
1019
1020 /**
1021  *      dev_alloc_name - allocate a name for a device
1022  *      @dev: device
1023  *      @name: name format string
1024  *
1025  *      Passed a format string - eg "lt%d" it will try and find a suitable
1026  *      id. It scans list of devices to build up a free map, then chooses
1027  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1028  *      while allocating the name and adding the device in order to avoid
1029  *      duplicates.
1030  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1031  *      Returns the number of the unit assigned or a negative errno code.
1032  */
1033
1034 int dev_alloc_name(struct net_device *dev, const char *name)
1035 {
1036         char buf[IFNAMSIZ];
1037         struct net *net;
1038         int ret;
1039
1040         BUG_ON(!dev_net(dev));
1041         net = dev_net(dev);
1042         ret = __dev_alloc_name(net, name, buf);
1043         if (ret >= 0)
1044                 strlcpy(dev->name, buf, IFNAMSIZ);
1045         return ret;
1046 }
1047 EXPORT_SYMBOL(dev_alloc_name);
1048
1049 static int dev_alloc_name_ns(struct net *net,
1050                              struct net_device *dev,
1051                              const char *name)
1052 {
1053         char buf[IFNAMSIZ];
1054         int ret;
1055
1056         ret = __dev_alloc_name(net, name, buf);
1057         if (ret >= 0)
1058                 strlcpy(dev->name, buf, IFNAMSIZ);
1059         return ret;
1060 }
1061
1062 static int dev_get_valid_name(struct net *net,
1063                               struct net_device *dev,
1064                               const char *name)
1065 {
1066         BUG_ON(!net);
1067
1068         if (!dev_valid_name(name))
1069                 return -EINVAL;
1070
1071         if (strchr(name, '%'))
1072                 return dev_alloc_name_ns(net, dev, name);
1073         else if (__dev_get_by_name(net, name))
1074                 return -EEXIST;
1075         else if (dev->name != name)
1076                 strlcpy(dev->name, name, IFNAMSIZ);
1077
1078         return 0;
1079 }
1080
1081 /**
1082  *      dev_change_name - change name of a device
1083  *      @dev: device
1084  *      @newname: name (or format string) must be at least IFNAMSIZ
1085  *
1086  *      Change name of a device, can pass format strings "eth%d".
1087  *      for wildcarding.
1088  */
1089 int dev_change_name(struct net_device *dev, const char *newname)
1090 {
1091         unsigned char old_assign_type;
1092         char oldname[IFNAMSIZ];
1093         int err = 0;
1094         int ret;
1095         struct net *net;
1096
1097         ASSERT_RTNL();
1098         BUG_ON(!dev_net(dev));
1099
1100         net = dev_net(dev);
1101         if (dev->flags & IFF_UP)
1102                 return -EBUSY;
1103
1104         write_seqcount_begin(&devnet_rename_seq);
1105
1106         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1107                 write_seqcount_end(&devnet_rename_seq);
1108                 return 0;
1109         }
1110
1111         memcpy(oldname, dev->name, IFNAMSIZ);
1112
1113         err = dev_get_valid_name(net, dev, newname);
1114         if (err < 0) {
1115                 write_seqcount_end(&devnet_rename_seq);
1116                 return err;
1117         }
1118
1119         if (oldname[0] && !strchr(oldname, '%'))
1120                 netdev_info(dev, "renamed from %s\n", oldname);
1121
1122         old_assign_type = dev->name_assign_type;
1123         dev->name_assign_type = NET_NAME_RENAMED;
1124
1125 rollback:
1126         ret = device_rename(&dev->dev, dev->name);
1127         if (ret) {
1128                 memcpy(dev->name, oldname, IFNAMSIZ);
1129                 dev->name_assign_type = old_assign_type;
1130                 write_seqcount_end(&devnet_rename_seq);
1131                 return ret;
1132         }
1133
1134         write_seqcount_end(&devnet_rename_seq);
1135
1136         netdev_adjacent_rename_links(dev, oldname);
1137
1138         write_lock_bh(&dev_base_lock);
1139         hlist_del_rcu(&dev->name_hlist);
1140         write_unlock_bh(&dev_base_lock);
1141
1142         synchronize_rcu();
1143
1144         write_lock_bh(&dev_base_lock);
1145         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1146         write_unlock_bh(&dev_base_lock);
1147
1148         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1149         ret = notifier_to_errno(ret);
1150
1151         if (ret) {
1152                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1153                 if (err >= 0) {
1154                         err = ret;
1155                         write_seqcount_begin(&devnet_rename_seq);
1156                         memcpy(dev->name, oldname, IFNAMSIZ);
1157                         memcpy(oldname, newname, IFNAMSIZ);
1158                         dev->name_assign_type = old_assign_type;
1159                         old_assign_type = NET_NAME_RENAMED;
1160                         goto rollback;
1161                 } else {
1162                         pr_err("%s: name change rollback failed: %d\n",
1163                                dev->name, ret);
1164                 }
1165         }
1166
1167         return err;
1168 }
1169
1170 /**
1171  *      dev_set_alias - change ifalias of a device
1172  *      @dev: device
1173  *      @alias: name up to IFALIASZ
1174  *      @len: limit of bytes to copy from info
1175  *
1176  *      Set ifalias for a device,
1177  */
1178 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1179 {
1180         char *new_ifalias;
1181
1182         ASSERT_RTNL();
1183
1184         if (len >= IFALIASZ)
1185                 return -EINVAL;
1186
1187         if (!len) {
1188                 kfree(dev->ifalias);
1189                 dev->ifalias = NULL;
1190                 return 0;
1191         }
1192
1193         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1194         if (!new_ifalias)
1195                 return -ENOMEM;
1196         dev->ifalias = new_ifalias;
1197
1198         strlcpy(dev->ifalias, alias, len+1);
1199         return len;
1200 }
1201
1202
1203 /**
1204  *      netdev_features_change - device changes features
1205  *      @dev: device to cause notification
1206  *
1207  *      Called to indicate a device has changed features.
1208  */
1209 void netdev_features_change(struct net_device *dev)
1210 {
1211         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1212 }
1213 EXPORT_SYMBOL(netdev_features_change);
1214
1215 /**
1216  *      netdev_state_change - device changes state
1217  *      @dev: device to cause notification
1218  *
1219  *      Called to indicate a device has changed state. This function calls
1220  *      the notifier chains for netdev_chain and sends a NEWLINK message
1221  *      to the routing socket.
1222  */
1223 void netdev_state_change(struct net_device *dev)
1224 {
1225         if (dev->flags & IFF_UP) {
1226                 struct netdev_notifier_change_info change_info;
1227
1228                 change_info.flags_changed = 0;
1229                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1230                                               &change_info.info);
1231                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1232         }
1233 }
1234 EXPORT_SYMBOL(netdev_state_change);
1235
1236 /**
1237  *      netdev_notify_peers - notify network peers about existence of @dev
1238  *      @dev: network device
1239  *
1240  * Generate traffic such that interested network peers are aware of
1241  * @dev, such as by generating a gratuitous ARP. This may be used when
1242  * a device wants to inform the rest of the network about some sort of
1243  * reconfiguration such as a failover event or virtual machine
1244  * migration.
1245  */
1246 void netdev_notify_peers(struct net_device *dev)
1247 {
1248         rtnl_lock();
1249         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1250         rtnl_unlock();
1251 }
1252 EXPORT_SYMBOL(netdev_notify_peers);
1253
1254 static int __dev_open(struct net_device *dev)
1255 {
1256         const struct net_device_ops *ops = dev->netdev_ops;
1257         int ret;
1258
1259         ASSERT_RTNL();
1260
1261         if (!netif_device_present(dev))
1262                 return -ENODEV;
1263
1264         /* Block netpoll from trying to do any rx path servicing.
1265          * If we don't do this there is a chance ndo_poll_controller
1266          * or ndo_poll may be running while we open the device
1267          */
1268         netpoll_poll_disable(dev);
1269
1270         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1271         ret = notifier_to_errno(ret);
1272         if (ret)
1273                 return ret;
1274
1275         set_bit(__LINK_STATE_START, &dev->state);
1276
1277         if (ops->ndo_validate_addr)
1278                 ret = ops->ndo_validate_addr(dev);
1279
1280         if (!ret && ops->ndo_open)
1281                 ret = ops->ndo_open(dev);
1282
1283         netpoll_poll_enable(dev);
1284
1285         if (ret)
1286                 clear_bit(__LINK_STATE_START, &dev->state);
1287         else {
1288                 dev->flags |= IFF_UP;
1289                 net_dmaengine_get();
1290                 dev_set_rx_mode(dev);
1291                 dev_activate(dev);
1292                 add_device_randomness(dev->dev_addr, dev->addr_len);
1293         }
1294
1295         return ret;
1296 }
1297
1298 /**
1299  *      dev_open        - prepare an interface for use.
1300  *      @dev:   device to open
1301  *
1302  *      Takes a device from down to up state. The device's private open
1303  *      function is invoked and then the multicast lists are loaded. Finally
1304  *      the device is moved into the up state and a %NETDEV_UP message is
1305  *      sent to the netdev notifier chain.
1306  *
1307  *      Calling this function on an active interface is a nop. On a failure
1308  *      a negative errno code is returned.
1309  */
1310 int dev_open(struct net_device *dev)
1311 {
1312         int ret;
1313
1314         if (dev->flags & IFF_UP)
1315                 return 0;
1316
1317         ret = __dev_open(dev);
1318         if (ret < 0)
1319                 return ret;
1320
1321         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1322         call_netdevice_notifiers(NETDEV_UP, dev);
1323
1324         return ret;
1325 }
1326 EXPORT_SYMBOL(dev_open);
1327
1328 static int __dev_close_many(struct list_head *head)
1329 {
1330         struct net_device *dev;
1331
1332         ASSERT_RTNL();
1333         might_sleep();
1334
1335         list_for_each_entry(dev, head, close_list) {
1336                 /* Temporarily disable netpoll until the interface is down */
1337                 netpoll_poll_disable(dev);
1338
1339                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1340
1341                 clear_bit(__LINK_STATE_START, &dev->state);
1342
1343                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1344                  * can be even on different cpu. So just clear netif_running().
1345                  *
1346                  * dev->stop() will invoke napi_disable() on all of it's
1347                  * napi_struct instances on this device.
1348                  */
1349                 smp_mb__after_atomic(); /* Commit netif_running(). */
1350         }
1351
1352         dev_deactivate_many(head);
1353
1354         list_for_each_entry(dev, head, close_list) {
1355                 const struct net_device_ops *ops = dev->netdev_ops;
1356
1357                 /*
1358                  *      Call the device specific close. This cannot fail.
1359                  *      Only if device is UP
1360                  *
1361                  *      We allow it to be called even after a DETACH hot-plug
1362                  *      event.
1363                  */
1364                 if (ops->ndo_stop)
1365                         ops->ndo_stop(dev);
1366
1367                 dev->flags &= ~IFF_UP;
1368                 net_dmaengine_put();
1369                 netpoll_poll_enable(dev);
1370         }
1371
1372         return 0;
1373 }
1374
1375 static int __dev_close(struct net_device *dev)
1376 {
1377         int retval;
1378         LIST_HEAD(single);
1379
1380         list_add(&dev->close_list, &single);
1381         retval = __dev_close_many(&single);
1382         list_del(&single);
1383
1384         return retval;
1385 }
1386
1387 static int dev_close_many(struct list_head *head)
1388 {
1389         struct net_device *dev, *tmp;
1390
1391         /* Remove the devices that don't need to be closed */
1392         list_for_each_entry_safe(dev, tmp, head, close_list)
1393                 if (!(dev->flags & IFF_UP))
1394                         list_del_init(&dev->close_list);
1395
1396         __dev_close_many(head);
1397
1398         list_for_each_entry_safe(dev, tmp, head, close_list) {
1399                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401                 list_del_init(&dev->close_list);
1402         }
1403
1404         return 0;
1405 }
1406
1407 /**
1408  *      dev_close - shutdown an interface.
1409  *      @dev: device to shutdown
1410  *
1411  *      This function moves an active device into down state. A
1412  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414  *      chain.
1415  */
1416 int dev_close(struct net_device *dev)
1417 {
1418         if (dev->flags & IFF_UP) {
1419                 LIST_HEAD(single);
1420
1421                 list_add(&dev->close_list, &single);
1422                 dev_close_many(&single);
1423                 list_del(&single);
1424         }
1425         return 0;
1426 }
1427 EXPORT_SYMBOL(dev_close);
1428
1429
1430 /**
1431  *      dev_disable_lro - disable Large Receive Offload on a device
1432  *      @dev: device
1433  *
1434  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1435  *      called under RTNL.  This is needed if received packets may be
1436  *      forwarded to another interface.
1437  */
1438 void dev_disable_lro(struct net_device *dev)
1439 {
1440         /*
1441          * If we're trying to disable lro on a vlan device
1442          * use the underlying physical device instead
1443          */
1444         if (is_vlan_dev(dev))
1445                 dev = vlan_dev_real_dev(dev);
1446
1447         /* the same for macvlan devices */
1448         if (netif_is_macvlan(dev))
1449                 dev = macvlan_dev_real_dev(dev);
1450
1451         dev->wanted_features &= ~NETIF_F_LRO;
1452         netdev_update_features(dev);
1453
1454         if (unlikely(dev->features & NETIF_F_LRO))
1455                 netdev_WARN(dev, "failed to disable LRO!\n");
1456 }
1457 EXPORT_SYMBOL(dev_disable_lro);
1458
1459 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1460                                    struct net_device *dev)
1461 {
1462         struct netdev_notifier_info info;
1463
1464         netdev_notifier_info_init(&info, dev);
1465         return nb->notifier_call(nb, val, &info);
1466 }
1467
1468 static int dev_boot_phase = 1;
1469
1470 /**
1471  *      register_netdevice_notifier - register a network notifier block
1472  *      @nb: notifier
1473  *
1474  *      Register a notifier to be called when network device events occur.
1475  *      The notifier passed is linked into the kernel structures and must
1476  *      not be reused until it has been unregistered. A negative errno code
1477  *      is returned on a failure.
1478  *
1479  *      When registered all registration and up events are replayed
1480  *      to the new notifier to allow device to have a race free
1481  *      view of the network device list.
1482  */
1483
1484 int register_netdevice_notifier(struct notifier_block *nb)
1485 {
1486         struct net_device *dev;
1487         struct net_device *last;
1488         struct net *net;
1489         int err;
1490
1491         rtnl_lock();
1492         err = raw_notifier_chain_register(&netdev_chain, nb);
1493         if (err)
1494                 goto unlock;
1495         if (dev_boot_phase)
1496                 goto unlock;
1497         for_each_net(net) {
1498                 for_each_netdev(net, dev) {
1499                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1500                         err = notifier_to_errno(err);
1501                         if (err)
1502                                 goto rollback;
1503
1504                         if (!(dev->flags & IFF_UP))
1505                                 continue;
1506
1507                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1508                 }
1509         }
1510
1511 unlock:
1512         rtnl_unlock();
1513         return err;
1514
1515 rollback:
1516         last = dev;
1517         for_each_net(net) {
1518                 for_each_netdev(net, dev) {
1519                         if (dev == last)
1520                                 goto outroll;
1521
1522                         if (dev->flags & IFF_UP) {
1523                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1524                                                         dev);
1525                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1526                         }
1527                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1528                 }
1529         }
1530
1531 outroll:
1532         raw_notifier_chain_unregister(&netdev_chain, nb);
1533         goto unlock;
1534 }
1535 EXPORT_SYMBOL(register_netdevice_notifier);
1536
1537 /**
1538  *      unregister_netdevice_notifier - unregister a network notifier block
1539  *      @nb: notifier
1540  *
1541  *      Unregister a notifier previously registered by
1542  *      register_netdevice_notifier(). The notifier is unlinked into the
1543  *      kernel structures and may then be reused. A negative errno code
1544  *      is returned on a failure.
1545  *
1546  *      After unregistering unregister and down device events are synthesized
1547  *      for all devices on the device list to the removed notifier to remove
1548  *      the need for special case cleanup code.
1549  */
1550
1551 int unregister_netdevice_notifier(struct notifier_block *nb)
1552 {
1553         struct net_device *dev;
1554         struct net *net;
1555         int err;
1556
1557         rtnl_lock();
1558         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1559         if (err)
1560                 goto unlock;
1561
1562         for_each_net(net) {
1563                 for_each_netdev(net, dev) {
1564                         if (dev->flags & IFF_UP) {
1565                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1566                                                         dev);
1567                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1568                         }
1569                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1570                 }
1571         }
1572 unlock:
1573         rtnl_unlock();
1574         return err;
1575 }
1576 EXPORT_SYMBOL(unregister_netdevice_notifier);
1577
1578 /**
1579  *      call_netdevice_notifiers_info - call all network notifier blocks
1580  *      @val: value passed unmodified to notifier function
1581  *      @dev: net_device pointer passed unmodified to notifier function
1582  *      @info: notifier information data
1583  *
1584  *      Call all network notifier blocks.  Parameters and return value
1585  *      are as for raw_notifier_call_chain().
1586  */
1587
1588 static int call_netdevice_notifiers_info(unsigned long val,
1589                                          struct net_device *dev,
1590                                          struct netdev_notifier_info *info)
1591 {
1592         ASSERT_RTNL();
1593         netdev_notifier_info_init(info, dev);
1594         return raw_notifier_call_chain(&netdev_chain, val, info);
1595 }
1596
1597 /**
1598  *      call_netdevice_notifiers - call all network notifier blocks
1599  *      @val: value passed unmodified to notifier function
1600  *      @dev: net_device pointer passed unmodified to notifier function
1601  *
1602  *      Call all network notifier blocks.  Parameters and return value
1603  *      are as for raw_notifier_call_chain().
1604  */
1605
1606 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1607 {
1608         struct netdev_notifier_info info;
1609
1610         return call_netdevice_notifiers_info(val, dev, &info);
1611 }
1612 EXPORT_SYMBOL(call_netdevice_notifiers);
1613
1614 static struct static_key netstamp_needed __read_mostly;
1615 #ifdef HAVE_JUMP_LABEL
1616 /* We are not allowed to call static_key_slow_dec() from irq context
1617  * If net_disable_timestamp() is called from irq context, defer the
1618  * static_key_slow_dec() calls.
1619  */
1620 static atomic_t netstamp_needed_deferred;
1621 #endif
1622
1623 void net_enable_timestamp(void)
1624 {
1625 #ifdef HAVE_JUMP_LABEL
1626         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1627
1628         if (deferred) {
1629                 while (--deferred)
1630                         static_key_slow_dec(&netstamp_needed);
1631                 return;
1632         }
1633 #endif
1634         static_key_slow_inc(&netstamp_needed);
1635 }
1636 EXPORT_SYMBOL(net_enable_timestamp);
1637
1638 void net_disable_timestamp(void)
1639 {
1640 #ifdef HAVE_JUMP_LABEL
1641         if (in_interrupt()) {
1642                 atomic_inc(&netstamp_needed_deferred);
1643                 return;
1644         }
1645 #endif
1646         static_key_slow_dec(&netstamp_needed);
1647 }
1648 EXPORT_SYMBOL(net_disable_timestamp);
1649
1650 static inline void net_timestamp_set(struct sk_buff *skb)
1651 {
1652         skb->tstamp.tv64 = 0;
1653         if (static_key_false(&netstamp_needed))
1654                 __net_timestamp(skb);
1655 }
1656
1657 #define net_timestamp_check(COND, SKB)                  \
1658         if (static_key_false(&netstamp_needed)) {               \
1659                 if ((COND) && !(SKB)->tstamp.tv64)      \
1660                         __net_timestamp(SKB);           \
1661         }                                               \
1662
1663 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1664 {
1665         unsigned int len;
1666
1667         if (!(dev->flags & IFF_UP))
1668                 return false;
1669
1670         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1671         if (skb->len <= len)
1672                 return true;
1673
1674         /* if TSO is enabled, we don't care about the length as the packet
1675          * could be forwarded without being segmented before
1676          */
1677         if (skb_is_gso(skb))
1678                 return true;
1679
1680         return false;
1681 }
1682 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1683
1684 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1685 {
1686         if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1687                 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1688                         atomic_long_inc(&dev->rx_dropped);
1689                         kfree_skb(skb);
1690                         return NET_RX_DROP;
1691                 }
1692         }
1693
1694         if (unlikely(!is_skb_forwardable(dev, skb))) {
1695                 atomic_long_inc(&dev->rx_dropped);
1696                 kfree_skb(skb);
1697                 return NET_RX_DROP;
1698         }
1699
1700         skb_scrub_packet(skb, true);
1701         skb->protocol = eth_type_trans(skb, dev);
1702
1703         return 0;
1704 }
1705 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1706
1707 /**
1708  * dev_forward_skb - loopback an skb to another netif
1709  *
1710  * @dev: destination network device
1711  * @skb: buffer to forward
1712  *
1713  * return values:
1714  *      NET_RX_SUCCESS  (no congestion)
1715  *      NET_RX_DROP     (packet was dropped, but freed)
1716  *
1717  * dev_forward_skb can be used for injecting an skb from the
1718  * start_xmit function of one device into the receive queue
1719  * of another device.
1720  *
1721  * The receiving device may be in another namespace, so
1722  * we have to clear all information in the skb that could
1723  * impact namespace isolation.
1724  */
1725 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1726 {
1727         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1728 }
1729 EXPORT_SYMBOL_GPL(dev_forward_skb);
1730
1731 static inline int deliver_skb(struct sk_buff *skb,
1732                               struct packet_type *pt_prev,
1733                               struct net_device *orig_dev)
1734 {
1735         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1736                 return -ENOMEM;
1737         atomic_inc(&skb->users);
1738         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1739 }
1740
1741 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1742 {
1743         if (!ptype->af_packet_priv || !skb->sk)
1744                 return false;
1745
1746         if (ptype->id_match)
1747                 return ptype->id_match(ptype, skb->sk);
1748         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1749                 return true;
1750
1751         return false;
1752 }
1753
1754 /*
1755  *      Support routine. Sends outgoing frames to any network
1756  *      taps currently in use.
1757  */
1758
1759 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1760 {
1761         struct packet_type *ptype;
1762         struct sk_buff *skb2 = NULL;
1763         struct packet_type *pt_prev = NULL;
1764
1765         rcu_read_lock();
1766         list_for_each_entry_rcu(ptype, &ptype_all, list) {
1767                 /* Never send packets back to the socket
1768                  * they originated from - MvS (miquels@drinkel.ow.org)
1769                  */
1770                 if ((ptype->dev == dev || !ptype->dev) &&
1771                     (!skb_loop_sk(ptype, skb))) {
1772                         if (pt_prev) {
1773                                 deliver_skb(skb2, pt_prev, skb->dev);
1774                                 pt_prev = ptype;
1775                                 continue;
1776                         }
1777
1778                         skb2 = skb_clone(skb, GFP_ATOMIC);
1779                         if (!skb2)
1780                                 break;
1781
1782                         net_timestamp_set(skb2);
1783
1784                         /* skb->nh should be correctly
1785                            set by sender, so that the second statement is
1786                            just protection against buggy protocols.
1787                          */
1788                         skb_reset_mac_header(skb2);
1789
1790                         if (skb_network_header(skb2) < skb2->data ||
1791                             skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1792                                 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1793                                                      ntohs(skb2->protocol),
1794                                                      dev->name);
1795                                 skb_reset_network_header(skb2);
1796                         }
1797
1798                         skb2->transport_header = skb2->network_header;
1799                         skb2->pkt_type = PACKET_OUTGOING;
1800                         pt_prev = ptype;
1801                 }
1802         }
1803         if (pt_prev)
1804                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1805         rcu_read_unlock();
1806 }
1807
1808 /**
1809  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1810  * @dev: Network device
1811  * @txq: number of queues available
1812  *
1813  * If real_num_tx_queues is changed the tc mappings may no longer be
1814  * valid. To resolve this verify the tc mapping remains valid and if
1815  * not NULL the mapping. With no priorities mapping to this
1816  * offset/count pair it will no longer be used. In the worst case TC0
1817  * is invalid nothing can be done so disable priority mappings. If is
1818  * expected that drivers will fix this mapping if they can before
1819  * calling netif_set_real_num_tx_queues.
1820  */
1821 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1822 {
1823         int i;
1824         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1825
1826         /* If TC0 is invalidated disable TC mapping */
1827         if (tc->offset + tc->count > txq) {
1828                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1829                 dev->num_tc = 0;
1830                 return;
1831         }
1832
1833         /* Invalidated prio to tc mappings set to TC0 */
1834         for (i = 1; i < TC_BITMASK + 1; i++) {
1835                 int q = netdev_get_prio_tc_map(dev, i);
1836
1837                 tc = &dev->tc_to_txq[q];
1838                 if (tc->offset + tc->count > txq) {
1839                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1840                                 i, q);
1841                         netdev_set_prio_tc_map(dev, i, 0);
1842                 }
1843         }
1844 }
1845
1846 #ifdef CONFIG_XPS
1847 static DEFINE_MUTEX(xps_map_mutex);
1848 #define xmap_dereference(P)             \
1849         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1850
1851 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1852                                         int cpu, u16 index)
1853 {
1854         struct xps_map *map = NULL;
1855         int pos;
1856
1857         if (dev_maps)
1858                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1859
1860         for (pos = 0; map && pos < map->len; pos++) {
1861                 if (map->queues[pos] == index) {
1862                         if (map->len > 1) {
1863                                 map->queues[pos] = map->queues[--map->len];
1864                         } else {
1865                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1866                                 kfree_rcu(map, rcu);
1867                                 map = NULL;
1868                         }
1869                         break;
1870                 }
1871         }
1872
1873         return map;
1874 }
1875
1876 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1877 {
1878         struct xps_dev_maps *dev_maps;
1879         int cpu, i;
1880         bool active = false;
1881
1882         mutex_lock(&xps_map_mutex);
1883         dev_maps = xmap_dereference(dev->xps_maps);
1884
1885         if (!dev_maps)
1886                 goto out_no_maps;
1887
1888         for_each_possible_cpu(cpu) {
1889                 for (i = index; i < dev->num_tx_queues; i++) {
1890                         if (!remove_xps_queue(dev_maps, cpu, i))
1891                                 break;
1892                 }
1893                 if (i == dev->num_tx_queues)
1894                         active = true;
1895         }
1896
1897         if (!active) {
1898                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1899                 kfree_rcu(dev_maps, rcu);
1900         }
1901
1902         for (i = index; i < dev->num_tx_queues; i++)
1903                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1904                                              NUMA_NO_NODE);
1905
1906 out_no_maps:
1907         mutex_unlock(&xps_map_mutex);
1908 }
1909
1910 static struct xps_map *expand_xps_map(struct xps_map *map,
1911                                       int cpu, u16 index)
1912 {
1913         struct xps_map *new_map;
1914         int alloc_len = XPS_MIN_MAP_ALLOC;
1915         int i, pos;
1916
1917         for (pos = 0; map && pos < map->len; pos++) {
1918                 if (map->queues[pos] != index)
1919                         continue;
1920                 return map;
1921         }
1922
1923         /* Need to add queue to this CPU's existing map */
1924         if (map) {
1925                 if (pos < map->alloc_len)
1926                         return map;
1927
1928                 alloc_len = map->alloc_len * 2;
1929         }
1930
1931         /* Need to allocate new map to store queue on this CPU's map */
1932         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1933                                cpu_to_node(cpu));
1934         if (!new_map)
1935                 return NULL;
1936
1937         for (i = 0; i < pos; i++)
1938                 new_map->queues[i] = map->queues[i];
1939         new_map->alloc_len = alloc_len;
1940         new_map->len = pos;
1941
1942         return new_map;
1943 }
1944
1945 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1946                         u16 index)
1947 {
1948         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1949         struct xps_map *map, *new_map;
1950         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1951         int cpu, numa_node_id = -2;
1952         bool active = false;
1953
1954         mutex_lock(&xps_map_mutex);
1955
1956         dev_maps = xmap_dereference(dev->xps_maps);
1957
1958         /* allocate memory for queue storage */
1959         for_each_online_cpu(cpu) {
1960                 if (!cpumask_test_cpu(cpu, mask))
1961                         continue;
1962
1963                 if (!new_dev_maps)
1964                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1965                 if (!new_dev_maps) {
1966                         mutex_unlock(&xps_map_mutex);
1967                         return -ENOMEM;
1968                 }
1969
1970                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1971                                  NULL;
1972
1973                 map = expand_xps_map(map, cpu, index);
1974                 if (!map)
1975                         goto error;
1976
1977                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978         }
1979
1980         if (!new_dev_maps)
1981                 goto out_no_new_maps;
1982
1983         for_each_possible_cpu(cpu) {
1984                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1985                         /* add queue to CPU maps */
1986                         int pos = 0;
1987
1988                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1989                         while ((pos < map->len) && (map->queues[pos] != index))
1990                                 pos++;
1991
1992                         if (pos == map->len)
1993                                 map->queues[map->len++] = index;
1994 #ifdef CONFIG_NUMA
1995                         if (numa_node_id == -2)
1996                                 numa_node_id = cpu_to_node(cpu);
1997                         else if (numa_node_id != cpu_to_node(cpu))
1998                                 numa_node_id = -1;
1999 #endif
2000                 } else if (dev_maps) {
2001                         /* fill in the new device map from the old device map */
2002                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2003                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2004                 }
2005
2006         }
2007
2008         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2009
2010         /* Cleanup old maps */
2011         if (dev_maps) {
2012                 for_each_possible_cpu(cpu) {
2013                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2014                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2015                         if (map && map != new_map)
2016                                 kfree_rcu(map, rcu);
2017                 }
2018
2019                 kfree_rcu(dev_maps, rcu);
2020         }
2021
2022         dev_maps = new_dev_maps;
2023         active = true;
2024
2025 out_no_new_maps:
2026         /* update Tx queue numa node */
2027         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2028                                      (numa_node_id >= 0) ? numa_node_id :
2029                                      NUMA_NO_NODE);
2030
2031         if (!dev_maps)
2032                 goto out_no_maps;
2033
2034         /* removes queue from unused CPUs */
2035         for_each_possible_cpu(cpu) {
2036                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2037                         continue;
2038
2039                 if (remove_xps_queue(dev_maps, cpu, index))
2040                         active = true;
2041         }
2042
2043         /* free map if not active */
2044         if (!active) {
2045                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2046                 kfree_rcu(dev_maps, rcu);
2047         }
2048
2049 out_no_maps:
2050         mutex_unlock(&xps_map_mutex);
2051
2052         return 0;
2053 error:
2054         /* remove any maps that we added */
2055         for_each_possible_cpu(cpu) {
2056                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2057                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2058                                  NULL;
2059                 if (new_map && new_map != map)
2060                         kfree(new_map);
2061         }
2062
2063         mutex_unlock(&xps_map_mutex);
2064
2065         kfree(new_dev_maps);
2066         return -ENOMEM;
2067 }
2068 EXPORT_SYMBOL(netif_set_xps_queue);
2069
2070 #endif
2071 /*
2072  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2073  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2074  */
2075 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2076 {
2077         int rc;
2078
2079         if (txq < 1 || txq > dev->num_tx_queues)
2080                 return -EINVAL;
2081
2082         if (dev->reg_state == NETREG_REGISTERED ||
2083             dev->reg_state == NETREG_UNREGISTERING) {
2084                 ASSERT_RTNL();
2085
2086                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2087                                                   txq);
2088                 if (rc)
2089                         return rc;
2090
2091                 if (dev->num_tc)
2092                         netif_setup_tc(dev, txq);
2093
2094                 if (txq < dev->real_num_tx_queues) {
2095                         qdisc_reset_all_tx_gt(dev, txq);
2096 #ifdef CONFIG_XPS
2097                         netif_reset_xps_queues_gt(dev, txq);
2098 #endif
2099                 }
2100         }
2101
2102         dev->real_num_tx_queues = txq;
2103         return 0;
2104 }
2105 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2106
2107 #ifdef CONFIG_SYSFS
2108 /**
2109  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2110  *      @dev: Network device
2111  *      @rxq: Actual number of RX queues
2112  *
2113  *      This must be called either with the rtnl_lock held or before
2114  *      registration of the net device.  Returns 0 on success, or a
2115  *      negative error code.  If called before registration, it always
2116  *      succeeds.
2117  */
2118 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2119 {
2120         int rc;
2121
2122         if (rxq < 1 || rxq > dev->num_rx_queues)
2123                 return -EINVAL;
2124
2125         if (dev->reg_state == NETREG_REGISTERED) {
2126                 ASSERT_RTNL();
2127
2128                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2129                                                   rxq);
2130                 if (rc)
2131                         return rc;
2132         }
2133
2134         dev->real_num_rx_queues = rxq;
2135         return 0;
2136 }
2137 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2138 #endif
2139
2140 /**
2141  * netif_get_num_default_rss_queues - default number of RSS queues
2142  *
2143  * This routine should set an upper limit on the number of RSS queues
2144  * used by default by multiqueue devices.
2145  */
2146 int netif_get_num_default_rss_queues(void)
2147 {
2148         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2149 }
2150 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2151
2152 static inline void __netif_reschedule(struct Qdisc *q)
2153 {
2154         struct softnet_data *sd;
2155         unsigned long flags;
2156
2157         local_irq_save(flags);
2158         sd = &__get_cpu_var(softnet_data);
2159         q->next_sched = NULL;
2160         *sd->output_queue_tailp = q;
2161         sd->output_queue_tailp = &q->next_sched;
2162         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2163         local_irq_restore(flags);
2164 }
2165
2166 void __netif_schedule(struct Qdisc *q)
2167 {
2168         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2169                 __netif_reschedule(q);
2170 }
2171 EXPORT_SYMBOL(__netif_schedule);
2172
2173 struct dev_kfree_skb_cb {
2174         enum skb_free_reason reason;
2175 };
2176
2177 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2178 {
2179         return (struct dev_kfree_skb_cb *)skb->cb;
2180 }
2181
2182 void netif_schedule_queue(struct netdev_queue *txq)
2183 {
2184         rcu_read_lock();
2185         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2186                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2187
2188                 __netif_schedule(q);
2189         }
2190         rcu_read_unlock();
2191 }
2192 EXPORT_SYMBOL(netif_schedule_queue);
2193
2194 /**
2195  *      netif_wake_subqueue - allow sending packets on subqueue
2196  *      @dev: network device
2197  *      @queue_index: sub queue index
2198  *
2199  * Resume individual transmit queue of a device with multiple transmit queues.
2200  */
2201 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2202 {
2203         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2204
2205         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2206                 struct Qdisc *q;
2207
2208                 rcu_read_lock();
2209                 q = rcu_dereference(txq->qdisc);
2210                 __netif_schedule(q);
2211                 rcu_read_unlock();
2212         }
2213 }
2214 EXPORT_SYMBOL(netif_wake_subqueue);
2215
2216 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2217 {
2218         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2219                 struct Qdisc *q;
2220
2221                 rcu_read_lock();
2222                 q = rcu_dereference(dev_queue->qdisc);
2223                 __netif_schedule(q);
2224                 rcu_read_unlock();
2225         }
2226 }
2227 EXPORT_SYMBOL(netif_tx_wake_queue);
2228
2229 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2230 {
2231         unsigned long flags;
2232
2233         if (likely(atomic_read(&skb->users) == 1)) {
2234                 smp_rmb();
2235                 atomic_set(&skb->users, 0);
2236         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2237                 return;
2238         }
2239         get_kfree_skb_cb(skb)->reason = reason;
2240         local_irq_save(flags);
2241         skb->next = __this_cpu_read(softnet_data.completion_queue);
2242         __this_cpu_write(softnet_data.completion_queue, skb);
2243         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2244         local_irq_restore(flags);
2245 }
2246 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2247
2248 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2249 {
2250         if (in_irq() || irqs_disabled())
2251                 __dev_kfree_skb_irq(skb, reason);
2252         else
2253                 dev_kfree_skb(skb);
2254 }
2255 EXPORT_SYMBOL(__dev_kfree_skb_any);
2256
2257
2258 /**
2259  * netif_device_detach - mark device as removed
2260  * @dev: network device
2261  *
2262  * Mark device as removed from system and therefore no longer available.
2263  */
2264 void netif_device_detach(struct net_device *dev)
2265 {
2266         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2267             netif_running(dev)) {
2268                 netif_tx_stop_all_queues(dev);
2269         }
2270 }
2271 EXPORT_SYMBOL(netif_device_detach);
2272
2273 /**
2274  * netif_device_attach - mark device as attached
2275  * @dev: network device
2276  *
2277  * Mark device as attached from system and restart if needed.
2278  */
2279 void netif_device_attach(struct net_device *dev)
2280 {
2281         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2282             netif_running(dev)) {
2283                 netif_tx_wake_all_queues(dev);
2284                 __netdev_watchdog_up(dev);
2285         }
2286 }
2287 EXPORT_SYMBOL(netif_device_attach);
2288
2289 static void skb_warn_bad_offload(const struct sk_buff *skb)
2290 {
2291         static const netdev_features_t null_features = 0;
2292         struct net_device *dev = skb->dev;
2293         const char *driver = "";
2294
2295         if (!net_ratelimit())
2296                 return;
2297
2298         if (dev && dev->dev.parent)
2299                 driver = dev_driver_string(dev->dev.parent);
2300
2301         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2302              "gso_type=%d ip_summed=%d\n",
2303              driver, dev ? &dev->features : &null_features,
2304              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2305              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2306              skb_shinfo(skb)->gso_type, skb->ip_summed);
2307 }
2308
2309 /*
2310  * Invalidate hardware checksum when packet is to be mangled, and
2311  * complete checksum manually on outgoing path.
2312  */
2313 int skb_checksum_help(struct sk_buff *skb)
2314 {
2315         __wsum csum;
2316         int ret = 0, offset;
2317
2318         if (skb->ip_summed == CHECKSUM_COMPLETE)
2319                 goto out_set_summed;
2320
2321         if (unlikely(skb_shinfo(skb)->gso_size)) {
2322                 skb_warn_bad_offload(skb);
2323                 return -EINVAL;
2324         }
2325
2326         /* Before computing a checksum, we should make sure no frag could
2327          * be modified by an external entity : checksum could be wrong.
2328          */
2329         if (skb_has_shared_frag(skb)) {
2330                 ret = __skb_linearize(skb);
2331                 if (ret)
2332                         goto out;
2333         }
2334
2335         offset = skb_checksum_start_offset(skb);
2336         BUG_ON(offset >= skb_headlen(skb));
2337         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2338
2339         offset += skb->csum_offset;
2340         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2341
2342         if (skb_cloned(skb) &&
2343             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2344                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2345                 if (ret)
2346                         goto out;
2347         }
2348
2349         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2350 out_set_summed:
2351         skb->ip_summed = CHECKSUM_NONE;
2352 out:
2353         return ret;
2354 }
2355 EXPORT_SYMBOL(skb_checksum_help);
2356
2357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2358 {
2359         unsigned int vlan_depth = skb->mac_len;
2360         __be16 type = skb->protocol;
2361
2362         /* Tunnel gso handlers can set protocol to ethernet. */
2363         if (type == htons(ETH_P_TEB)) {
2364                 struct ethhdr *eth;
2365
2366                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2367                         return 0;
2368
2369                 eth = (struct ethhdr *)skb_mac_header(skb);
2370                 type = eth->h_proto;
2371         }
2372
2373         /* if skb->protocol is 802.1Q/AD then the header should already be
2374          * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2375          * ETH_HLEN otherwise
2376          */
2377         if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2378                 if (vlan_depth) {
2379                         if (WARN_ON(vlan_depth < VLAN_HLEN))
2380                                 return 0;
2381                         vlan_depth -= VLAN_HLEN;
2382                 } else {
2383                         vlan_depth = ETH_HLEN;
2384                 }
2385                 do {
2386                         struct vlan_hdr *vh;
2387
2388                         if (unlikely(!pskb_may_pull(skb,
2389                                                     vlan_depth + VLAN_HLEN)))
2390                                 return 0;
2391
2392                         vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2393                         type = vh->h_vlan_encapsulated_proto;
2394                         vlan_depth += VLAN_HLEN;
2395                 } while (type == htons(ETH_P_8021Q) ||
2396                          type == htons(ETH_P_8021AD));
2397         }
2398
2399         *depth = vlan_depth;
2400
2401         return type;
2402 }
2403
2404 /**
2405  *      skb_mac_gso_segment - mac layer segmentation handler.
2406  *      @skb: buffer to segment
2407  *      @features: features for the output path (see dev->features)
2408  */
2409 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2410                                     netdev_features_t features)
2411 {
2412         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2413         struct packet_offload *ptype;
2414         int vlan_depth = skb->mac_len;
2415         __be16 type = skb_network_protocol(skb, &vlan_depth);
2416
2417         if (unlikely(!type))
2418                 return ERR_PTR(-EINVAL);
2419
2420         __skb_pull(skb, vlan_depth);
2421
2422         rcu_read_lock();
2423         list_for_each_entry_rcu(ptype, &offload_base, list) {
2424                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2425                         segs = ptype->callbacks.gso_segment(skb, features);
2426                         break;
2427                 }
2428         }
2429         rcu_read_unlock();
2430
2431         __skb_push(skb, skb->data - skb_mac_header(skb));
2432
2433         return segs;
2434 }
2435 EXPORT_SYMBOL(skb_mac_gso_segment);
2436
2437
2438 /* openvswitch calls this on rx path, so we need a different check.
2439  */
2440 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2441 {
2442         if (tx_path)
2443                 return skb->ip_summed != CHECKSUM_PARTIAL;
2444         else
2445                 return skb->ip_summed == CHECKSUM_NONE;
2446 }
2447
2448 /**
2449  *      __skb_gso_segment - Perform segmentation on skb.
2450  *      @skb: buffer to segment
2451  *      @features: features for the output path (see dev->features)
2452  *      @tx_path: whether it is called in TX path
2453  *
2454  *      This function segments the given skb and returns a list of segments.
2455  *
2456  *      It may return NULL if the skb requires no segmentation.  This is
2457  *      only possible when GSO is used for verifying header integrity.
2458  */
2459 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2460                                   netdev_features_t features, bool tx_path)
2461 {
2462         if (unlikely(skb_needs_check(skb, tx_path))) {
2463                 int err;
2464
2465                 skb_warn_bad_offload(skb);
2466
2467                 err = skb_cow_head(skb, 0);
2468                 if (err < 0)
2469                         return ERR_PTR(err);
2470         }
2471
2472         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2473         SKB_GSO_CB(skb)->encap_level = 0;
2474
2475         skb_reset_mac_header(skb);
2476         skb_reset_mac_len(skb);
2477
2478         return skb_mac_gso_segment(skb, features);
2479 }
2480 EXPORT_SYMBOL(__skb_gso_segment);
2481
2482 /* Take action when hardware reception checksum errors are detected. */
2483 #ifdef CONFIG_BUG
2484 void netdev_rx_csum_fault(struct net_device *dev)
2485 {
2486         if (net_ratelimit()) {
2487                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2488                 dump_stack();
2489         }
2490 }
2491 EXPORT_SYMBOL(netdev_rx_csum_fault);
2492 #endif
2493
2494 /* Actually, we should eliminate this check as soon as we know, that:
2495  * 1. IOMMU is present and allows to map all the memory.
2496  * 2. No high memory really exists on this machine.
2497  */
2498
2499 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2500 {
2501 #ifdef CONFIG_HIGHMEM
2502         int i;
2503         if (!(dev->features & NETIF_F_HIGHDMA)) {
2504                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2505                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2506                         if (PageHighMem(skb_frag_page(frag)))
2507                                 return 1;
2508                 }
2509         }
2510
2511         if (PCI_DMA_BUS_IS_PHYS) {
2512                 struct device *pdev = dev->dev.parent;
2513
2514                 if (!pdev)
2515                         return 0;
2516                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2517                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2518                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2519                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2520                                 return 1;
2521                 }
2522         }
2523 #endif
2524         return 0;
2525 }
2526
2527 /* If MPLS offload request, verify we are testing hardware MPLS features
2528  * instead of standard features for the netdev.
2529  */
2530 #ifdef CONFIG_NET_MPLS_GSO
2531 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2532                                            netdev_features_t features,
2533                                            __be16 type)
2534 {
2535         if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2536                 features &= skb->dev->mpls_features;
2537
2538         return features;
2539 }
2540 #else
2541 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2542                                            netdev_features_t features,
2543                                            __be16 type)
2544 {
2545         return features;
2546 }
2547 #endif
2548
2549 static netdev_features_t harmonize_features(struct sk_buff *skb,
2550         netdev_features_t features)
2551 {
2552         int tmp;
2553         __be16 type;
2554
2555         type = skb_network_protocol(skb, &tmp);
2556         features = net_mpls_features(skb, features, type);
2557
2558         if (skb->ip_summed != CHECKSUM_NONE &&
2559             !can_checksum_protocol(features, type)) {
2560                 features &= ~NETIF_F_ALL_CSUM;
2561         } else if (illegal_highdma(skb->dev, skb)) {
2562                 features &= ~NETIF_F_SG;
2563         }
2564
2565         return features;
2566 }
2567
2568 netdev_features_t netif_skb_features(struct sk_buff *skb)
2569 {
2570         const struct net_device *dev = skb->dev;
2571         netdev_features_t features = dev->features;
2572         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2573         __be16 protocol = skb->protocol;
2574
2575         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2576                 features &= ~NETIF_F_GSO_MASK;
2577
2578         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2579                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2580                 protocol = veh->h_vlan_encapsulated_proto;
2581         } else if (!vlan_tx_tag_present(skb)) {
2582                 return harmonize_features(skb, features);
2583         }
2584
2585         features = netdev_intersect_features(features,
2586                                              dev->vlan_features |
2587                                              NETIF_F_HW_VLAN_CTAG_TX |
2588                                              NETIF_F_HW_VLAN_STAG_TX);
2589
2590         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2591                 features = netdev_intersect_features(features,
2592                                                      NETIF_F_SG |
2593                                                      NETIF_F_HIGHDMA |
2594                                                      NETIF_F_FRAGLIST |
2595                                                      NETIF_F_GEN_CSUM |
2596                                                      NETIF_F_HW_VLAN_CTAG_TX |
2597                                                      NETIF_F_HW_VLAN_STAG_TX);
2598
2599         return harmonize_features(skb, features);
2600 }
2601 EXPORT_SYMBOL(netif_skb_features);
2602
2603 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2604                     struct netdev_queue *txq, bool more)
2605 {
2606         unsigned int len;
2607         int rc;
2608
2609         if (!list_empty(&ptype_all))
2610                 dev_queue_xmit_nit(skb, dev);
2611
2612         len = skb->len;
2613         trace_net_dev_start_xmit(skb, dev);
2614         rc = netdev_start_xmit(skb, dev, txq, more);
2615         trace_net_dev_xmit(skb, rc, dev, len);
2616
2617         return rc;
2618 }
2619
2620 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2621                                     struct netdev_queue *txq, int *ret)
2622 {
2623         struct sk_buff *skb = first;
2624         int rc = NETDEV_TX_OK;
2625
2626         while (skb) {
2627                 struct sk_buff *next = skb->next;
2628
2629                 skb->next = NULL;
2630                 rc = xmit_one(skb, dev, txq, next != NULL);
2631                 if (unlikely(!dev_xmit_complete(rc))) {
2632                         skb->next = next;
2633                         goto out;
2634                 }
2635
2636                 skb = next;
2637                 if (netif_xmit_stopped(txq) && skb) {
2638                         rc = NETDEV_TX_BUSY;
2639                         break;
2640                 }
2641         }
2642
2643 out:
2644         *ret = rc;
2645         return skb;
2646 }
2647
2648 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2649                                           netdev_features_t features)
2650 {
2651         if (vlan_tx_tag_present(skb) &&
2652             !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2653                 skb = __vlan_put_tag(skb, skb->vlan_proto,
2654                                      vlan_tx_tag_get(skb));
2655                 if (skb)
2656                         skb->vlan_tci = 0;
2657         }
2658         return skb;
2659 }
2660
2661 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2662 {
2663         netdev_features_t features;
2664
2665         if (skb->next)
2666                 return skb;
2667
2668         /* If device doesn't need skb->dst, release it right now while
2669          * its hot in this cpu cache
2670          */
2671         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2672                 skb_dst_drop(skb);
2673
2674         features = netif_skb_features(skb);
2675         skb = validate_xmit_vlan(skb, features);
2676         if (unlikely(!skb))
2677                 goto out_null;
2678
2679         /* If encapsulation offload request, verify we are testing
2680          * hardware encapsulation features instead of standard
2681          * features for the netdev
2682          */
2683         if (skb->encapsulation)
2684                 features &= dev->hw_enc_features;
2685
2686         if (netif_needs_gso(skb, features)) {
2687                 struct sk_buff *segs;
2688
2689                 segs = skb_gso_segment(skb, features);
2690                 if (IS_ERR(segs)) {
2691                         segs = NULL;
2692                 } else if (segs) {
2693                         consume_skb(skb);
2694                         skb = segs;
2695                 }
2696         } else {
2697                 if (skb_needs_linearize(skb, features) &&
2698                     __skb_linearize(skb))
2699                         goto out_kfree_skb;
2700
2701                 /* If packet is not checksummed and device does not
2702                  * support checksumming for this protocol, complete
2703                  * checksumming here.
2704                  */
2705                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2706                         if (skb->encapsulation)
2707                                 skb_set_inner_transport_header(skb,
2708                                                                skb_checksum_start_offset(skb));
2709                         else
2710                                 skb_set_transport_header(skb,
2711                                                          skb_checksum_start_offset(skb));
2712                         if (!(features & NETIF_F_ALL_CSUM) &&
2713                             skb_checksum_help(skb))
2714                                 goto out_kfree_skb;
2715                 }
2716         }
2717
2718         return skb;
2719
2720 out_kfree_skb:
2721         kfree_skb(skb);
2722 out_null:
2723         return NULL;
2724 }
2725
2726 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2727 {
2728         struct sk_buff *next, *head = NULL, *tail;
2729
2730         for (; skb != NULL; skb = next) {
2731                 next = skb->next;
2732                 skb->next = NULL;
2733
2734                 /* in case skb wont be segmented, point to itself */
2735                 skb->prev = skb;
2736
2737                 skb = validate_xmit_skb(skb, dev);
2738                 if (!skb)
2739                         continue;
2740
2741                 if (!head)
2742                         head = skb;
2743                 else
2744                         tail->next = skb;
2745                 /* If skb was segmented, skb->prev points to
2746                  * the last segment. If not, it still contains skb.
2747                  */
2748                 tail = skb->prev;
2749         }
2750         return head;
2751 }
2752
2753 static void qdisc_pkt_len_init(struct sk_buff *skb)
2754 {
2755         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2756
2757         qdisc_skb_cb(skb)->pkt_len = skb->len;
2758
2759         /* To get more precise estimation of bytes sent on wire,
2760          * we add to pkt_len the headers size of all segments
2761          */
2762         if (shinfo->gso_size)  {
2763                 unsigned int hdr_len;
2764                 u16 gso_segs = shinfo->gso_segs;
2765
2766                 /* mac layer + network layer */
2767                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2768
2769                 /* + transport layer */
2770                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2771                         hdr_len += tcp_hdrlen(skb);
2772                 else
2773                         hdr_len += sizeof(struct udphdr);
2774
2775                 if (shinfo->gso_type & SKB_GSO_DODGY)
2776                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2777                                                 shinfo->gso_size);
2778
2779                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2780         }
2781 }
2782
2783 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2784                                  struct net_device *dev,
2785                                  struct netdev_queue *txq)
2786 {
2787         spinlock_t *root_lock = qdisc_lock(q);
2788         bool contended;
2789         int rc;
2790
2791         qdisc_pkt_len_init(skb);
2792         qdisc_calculate_pkt_len(skb, q);
2793         /*
2794          * Heuristic to force contended enqueues to serialize on a
2795          * separate lock before trying to get qdisc main lock.
2796          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2797          * often and dequeue packets faster.
2798          */
2799         contended = qdisc_is_running(q);
2800         if (unlikely(contended))
2801                 spin_lock(&q->busylock);
2802
2803         spin_lock(root_lock);
2804         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2805                 kfree_skb(skb);
2806                 rc = NET_XMIT_DROP;
2807         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2808                    qdisc_run_begin(q)) {
2809                 /*
2810                  * This is a work-conserving queue; there are no old skbs
2811                  * waiting to be sent out; and the qdisc is not running -
2812                  * xmit the skb directly.
2813                  */
2814                 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2815                         skb_dst_force(skb);
2816
2817                 qdisc_bstats_update(q, skb);
2818
2819                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2820                         if (unlikely(contended)) {
2821                                 spin_unlock(&q->busylock);
2822                                 contended = false;
2823                         }
2824                         __qdisc_run(q);
2825                 } else
2826                         qdisc_run_end(q);
2827
2828                 rc = NET_XMIT_SUCCESS;
2829         } else {
2830                 skb_dst_force(skb);
2831                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2832                 if (qdisc_run_begin(q)) {
2833                         if (unlikely(contended)) {
2834                                 spin_unlock(&q->busylock);
2835                                 contended = false;
2836                         }
2837                         __qdisc_run(q);
2838                 }
2839         }
2840         spin_unlock(root_lock);
2841         if (unlikely(contended))
2842                 spin_unlock(&q->busylock);
2843         return rc;
2844 }
2845
2846 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2847 static void skb_update_prio(struct sk_buff *skb)
2848 {
2849         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2850
2851         if (!skb->priority && skb->sk && map) {
2852                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2853
2854                 if (prioidx < map->priomap_len)
2855                         skb->priority = map->priomap[prioidx];
2856         }
2857 }
2858 #else
2859 #define skb_update_prio(skb)
2860 #endif
2861
2862 static DEFINE_PER_CPU(int, xmit_recursion);
2863 #define RECURSION_LIMIT 10
2864
2865 /**
2866  *      dev_loopback_xmit - loop back @skb
2867  *      @skb: buffer to transmit
2868  */
2869 int dev_loopback_xmit(struct sk_buff *skb)
2870 {
2871         skb_reset_mac_header(skb);
2872         __skb_pull(skb, skb_network_offset(skb));
2873         skb->pkt_type = PACKET_LOOPBACK;
2874         skb->ip_summed = CHECKSUM_UNNECESSARY;
2875         WARN_ON(!skb_dst(skb));
2876         skb_dst_force(skb);
2877         netif_rx_ni(skb);
2878         return 0;
2879 }
2880 EXPORT_SYMBOL(dev_loopback_xmit);
2881
2882 /**
2883  *      __dev_queue_xmit - transmit a buffer
2884  *      @skb: buffer to transmit
2885  *      @accel_priv: private data used for L2 forwarding offload
2886  *
2887  *      Queue a buffer for transmission to a network device. The caller must
2888  *      have set the device and priority and built the buffer before calling
2889  *      this function. The function can be called from an interrupt.
2890  *
2891  *      A negative errno code is returned on a failure. A success does not
2892  *      guarantee the frame will be transmitted as it may be dropped due
2893  *      to congestion or traffic shaping.
2894  *
2895  * -----------------------------------------------------------------------------------
2896  *      I notice this method can also return errors from the queue disciplines,
2897  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2898  *      be positive.
2899  *
2900  *      Regardless of the return value, the skb is consumed, so it is currently
2901  *      difficult to retry a send to this method.  (You can bump the ref count
2902  *      before sending to hold a reference for retry if you are careful.)
2903  *
2904  *      When calling this method, interrupts MUST be enabled.  This is because
2905  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2906  *          --BLG
2907  */
2908 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2909 {
2910         struct net_device *dev = skb->dev;
2911         struct netdev_queue *txq;
2912         struct Qdisc *q;
2913         int rc = -ENOMEM;
2914
2915         skb_reset_mac_header(skb);
2916
2917         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2918                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2919
2920         /* Disable soft irqs for various locks below. Also
2921          * stops preemption for RCU.
2922          */
2923         rcu_read_lock_bh();
2924
2925         skb_update_prio(skb);
2926
2927         txq = netdev_pick_tx(dev, skb, accel_priv);
2928         q = rcu_dereference_bh(txq->qdisc);
2929
2930 #ifdef CONFIG_NET_CLS_ACT
2931         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2932 #endif
2933         trace_net_dev_queue(skb);
2934         if (q->enqueue) {
2935                 rc = __dev_xmit_skb(skb, q, dev, txq);
2936                 goto out;
2937         }
2938
2939         /* The device has no queue. Common case for software devices:
2940            loopback, all the sorts of tunnels...
2941
2942            Really, it is unlikely that netif_tx_lock protection is necessary
2943            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2944            counters.)
2945            However, it is possible, that they rely on protection
2946            made by us here.
2947
2948            Check this and shot the lock. It is not prone from deadlocks.
2949            Either shot noqueue qdisc, it is even simpler 8)
2950          */
2951         if (dev->flags & IFF_UP) {
2952                 int cpu = smp_processor_id(); /* ok because BHs are off */
2953
2954                 if (txq->xmit_lock_owner != cpu) {
2955
2956                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2957                                 goto recursion_alert;
2958
2959                         skb = validate_xmit_skb(skb, dev);
2960                         if (!skb)
2961                                 goto drop;
2962
2963                         HARD_TX_LOCK(dev, txq, cpu);
2964
2965                         if (!netif_xmit_stopped(txq)) {
2966                                 __this_cpu_inc(xmit_recursion);
2967                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2968                                 __this_cpu_dec(xmit_recursion);
2969                                 if (dev_xmit_complete(rc)) {
2970                                         HARD_TX_UNLOCK(dev, txq);
2971                                         goto out;
2972                                 }
2973                         }
2974                         HARD_TX_UNLOCK(dev, txq);
2975                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2976                                              dev->name);
2977                 } else {
2978                         /* Recursion is detected! It is possible,
2979                          * unfortunately
2980                          */
2981 recursion_alert:
2982                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2983                                              dev->name);
2984                 }
2985         }
2986
2987         rc = -ENETDOWN;
2988 drop:
2989         rcu_read_unlock_bh();
2990
2991         atomic_long_inc(&dev->tx_dropped);
2992         kfree_skb_list(skb);
2993         return rc;
2994 out:
2995         rcu_read_unlock_bh();
2996         return rc;
2997 }
2998
2999 int dev_queue_xmit(struct sk_buff *skb)
3000 {
3001         return __dev_queue_xmit(skb, NULL);
3002 }
3003 EXPORT_SYMBOL(dev_queue_xmit);
3004
3005 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3006 {
3007         return __dev_queue_xmit(skb, accel_priv);
3008 }
3009 EXPORT_SYMBOL(dev_queue_xmit_accel);
3010
3011
3012 /*=======================================================================
3013                         Receiver routines
3014   =======================================================================*/
3015
3016 int netdev_max_backlog __read_mostly = 1000;
3017 EXPORT_SYMBOL(netdev_max_backlog);
3018
3019 int netdev_tstamp_prequeue __read_mostly = 1;
3020 int netdev_budget __read_mostly = 300;
3021 int weight_p __read_mostly = 64;            /* old backlog weight */
3022
3023 /* Called with irq disabled */
3024 static inline void ____napi_schedule(struct softnet_data *sd,
3025                                      struct napi_struct *napi)
3026 {
3027         list_add_tail(&napi->poll_list, &sd->poll_list);
3028         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3029 }
3030
3031 #ifdef CONFIG_RPS
3032
3033 /* One global table that all flow-based protocols share. */
3034 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3035 EXPORT_SYMBOL(rps_sock_flow_table);
3036
3037 struct static_key rps_needed __read_mostly;
3038
3039 static struct rps_dev_flow *
3040 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3041             struct rps_dev_flow *rflow, u16 next_cpu)
3042 {
3043         if (next_cpu != RPS_NO_CPU) {
3044 #ifdef CONFIG_RFS_ACCEL
3045                 struct netdev_rx_queue *rxqueue;
3046                 struct rps_dev_flow_table *flow_table;
3047                 struct rps_dev_flow *old_rflow;
3048                 u32 flow_id;
3049                 u16 rxq_index;
3050                 int rc;
3051
3052                 /* Should we steer this flow to a different hardware queue? */
3053                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3054                     !(dev->features & NETIF_F_NTUPLE))
3055                         goto out;
3056                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3057                 if (rxq_index == skb_get_rx_queue(skb))
3058                         goto out;
3059
3060                 rxqueue = dev->_rx + rxq_index;
3061                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3062                 if (!flow_table)
3063                         goto out;
3064                 flow_id = skb_get_hash(skb) & flow_table->mask;
3065                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3066                                                         rxq_index, flow_id);
3067                 if (rc < 0)
3068                         goto out;
3069                 old_rflow = rflow;
3070                 rflow = &flow_table->flows[flow_id];
3071                 rflow->filter = rc;
3072                 if (old_rflow->filter == rflow->filter)
3073                         old_rflow->filter = RPS_NO_FILTER;
3074         out:
3075 #endif
3076                 rflow->last_qtail =
3077                         per_cpu(softnet_data, next_cpu).input_queue_head;
3078         }
3079
3080         rflow->cpu = next_cpu;
3081         return rflow;
3082 }
3083
3084 /*
3085  * get_rps_cpu is called from netif_receive_skb and returns the target
3086  * CPU from the RPS map of the receiving queue for a given skb.
3087  * rcu_read_lock must be held on entry.
3088  */
3089 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3090                        struct rps_dev_flow **rflowp)
3091 {
3092         struct netdev_rx_queue *rxqueue;
3093         struct rps_map *map;
3094         struct rps_dev_flow_table *flow_table;
3095         struct rps_sock_flow_table *sock_flow_table;
3096         int cpu = -1;
3097         u16 tcpu;
3098         u32 hash;
3099
3100         if (skb_rx_queue_recorded(skb)) {
3101                 u16 index = skb_get_rx_queue(skb);
3102                 if (unlikely(index >= dev->real_num_rx_queues)) {
3103                         WARN_ONCE(dev->real_num_rx_queues > 1,
3104                                   "%s received packet on queue %u, but number "
3105                                   "of RX queues is %u\n",
3106                                   dev->name, index, dev->real_num_rx_queues);
3107                         goto done;
3108                 }
3109                 rxqueue = dev->_rx + index;
3110         } else
3111                 rxqueue = dev->_rx;
3112
3113         map = rcu_dereference(rxqueue->rps_map);
3114         if (map) {
3115                 if (map->len == 1 &&
3116                     !rcu_access_pointer(rxqueue->rps_flow_table)) {
3117                         tcpu = map->cpus[0];
3118                         if (cpu_online(tcpu))
3119                                 cpu = tcpu;
3120                         goto done;
3121                 }
3122         } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3123                 goto done;
3124         }
3125
3126         skb_reset_network_header(skb);
3127         hash = skb_get_hash(skb);
3128         if (!hash)
3129                 goto done;
3130
3131         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3132         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3133         if (flow_table && sock_flow_table) {
3134                 u16 next_cpu;
3135                 struct rps_dev_flow *rflow;
3136
3137                 rflow = &flow_table->flows[hash & flow_table->mask];
3138                 tcpu = rflow->cpu;
3139
3140                 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3141
3142                 /*
3143                  * If the desired CPU (where last recvmsg was done) is
3144                  * different from current CPU (one in the rx-queue flow
3145                  * table entry), switch if one of the following holds:
3146                  *   - Current CPU is unset (equal to RPS_NO_CPU).
3147                  *   - Current CPU is offline.
3148                  *   - The current CPU's queue tail has advanced beyond the
3149                  *     last packet that was enqueued using this table entry.
3150                  *     This guarantees that all previous packets for the flow
3151                  *     have been dequeued, thus preserving in order delivery.
3152                  */
3153                 if (unlikely(tcpu != next_cpu) &&
3154                     (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3155                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3156                       rflow->last_qtail)) >= 0)) {
3157                         tcpu = next_cpu;
3158                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3159                 }
3160
3161                 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3162                         *rflowp = rflow;
3163                         cpu = tcpu;
3164                         goto done;
3165                 }
3166         }
3167
3168         if (map) {
3169                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3170                 if (cpu_online(tcpu)) {
3171                         cpu = tcpu;
3172                         goto done;
3173                 }
3174         }
3175
3176 done:
3177         return cpu;
3178 }
3179
3180 #ifdef CONFIG_RFS_ACCEL
3181
3182 /**
3183  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3184  * @dev: Device on which the filter was set
3185  * @rxq_index: RX queue index
3186  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3187  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3188  *
3189  * Drivers that implement ndo_rx_flow_steer() should periodically call
3190  * this function for each installed filter and remove the filters for
3191  * which it returns %true.
3192  */
3193 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3194                          u32 flow_id, u16 filter_id)
3195 {
3196         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3197         struct rps_dev_flow_table *flow_table;
3198         struct rps_dev_flow *rflow;
3199         bool expire = true;
3200         int cpu;
3201
3202         rcu_read_lock();
3203         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3204         if (flow_table && flow_id <= flow_table->mask) {
3205                 rflow = &flow_table->flows[flow_id];
3206                 cpu = ACCESS_ONCE(rflow->cpu);
3207                 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3208                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3209                            rflow->last_qtail) <
3210                      (int)(10 * flow_table->mask)))
3211                         expire = false;
3212         }
3213         rcu_read_unlock();
3214         return expire;
3215 }
3216 EXPORT_SYMBOL(rps_may_expire_flow);
3217
3218 #endif /* CONFIG_RFS_ACCEL */
3219
3220 /* Called from hardirq (IPI) context */
3221 static void rps_trigger_softirq(void *data)
3222 {
3223         struct softnet_data *sd = data;
3224
3225         ____napi_schedule(sd, &sd->backlog);
3226         sd->received_rps++;
3227 }
3228
3229 #endif /* CONFIG_RPS */
3230
3231 /*
3232  * Check if this softnet_data structure is another cpu one
3233  * If yes, queue it to our IPI list and return 1
3234  * If no, return 0
3235  */
3236 static int rps_ipi_queued(struct softnet_data *sd)
3237 {
3238 #ifdef CONFIG_RPS
3239         struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3240
3241         if (sd != mysd) {
3242                 sd->rps_ipi_next = mysd->rps_ipi_list;
3243                 mysd->rps_ipi_list = sd;
3244
3245                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3246                 return 1;
3247         }
3248 #endif /* CONFIG_RPS */
3249         return 0;
3250 }
3251
3252 #ifdef CONFIG_NET_FLOW_LIMIT
3253 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3254 #endif
3255
3256 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3257 {
3258 #ifdef CONFIG_NET_FLOW_LIMIT
3259         struct sd_flow_limit *fl;
3260         struct softnet_data *sd;
3261         unsigned int old_flow, new_flow;
3262
3263         if (qlen < (netdev_max_backlog >> 1))
3264                 return false;
3265
3266         sd = &__get_cpu_var(softnet_data);
3267
3268         rcu_read_lock();
3269         fl = rcu_dereference(sd->flow_limit);
3270         if (fl) {
3271                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3272                 old_flow = fl->history[fl->history_head];
3273                 fl->history[fl->history_head] = new_flow;
3274
3275                 fl->history_head++;
3276                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3277
3278                 if (likely(fl->buckets[old_flow]))
3279                         fl->buckets[old_flow]--;
3280
3281                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3282                         fl->count++;
3283                         rcu_read_unlock();
3284                         return true;
3285                 }
3286         }
3287         rcu_read_unlock();
3288 #endif
3289         return false;
3290 }
3291
3292 /*
3293  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3294  * queue (may be a remote CPU queue).
3295  */
3296 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3297                               unsigned int *qtail)
3298 {
3299         struct softnet_data *sd;
3300         unsigned long flags;
3301         unsigned int qlen;
3302
3303         sd = &per_cpu(softnet_data, cpu);
3304
3305         local_irq_save(flags);
3306
3307         rps_lock(sd);
3308         qlen = skb_queue_len(&sd->input_pkt_queue);
3309         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3310                 if (skb_queue_len(&sd->input_pkt_queue)) {
3311 enqueue:
3312                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3313                         input_queue_tail_incr_save(sd, qtail);
3314                         rps_unlock(sd);
3315                         local_irq_restore(flags);
3316                         return NET_RX_SUCCESS;
3317                 }
3318
3319                 /* Schedule NAPI for backlog device
3320                  * We can use non atomic operation since we own the queue lock
3321                  */
3322                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3323                         if (!rps_ipi_queued(sd))
3324                                 ____napi_schedule(sd, &sd->backlog);
3325                 }
3326                 goto enqueue;
3327         }
3328
3329         sd->dropped++;
3330         rps_unlock(sd);
3331
3332         local_irq_restore(flags);
3333
3334         atomic_long_inc(&skb->dev->rx_dropped);
3335         kfree_skb(skb);
3336         return NET_RX_DROP;
3337 }
3338
3339 static int netif_rx_internal(struct sk_buff *skb)
3340 {
3341         int ret;
3342
3343         net_timestamp_check(netdev_tstamp_prequeue, skb);
3344
3345         trace_netif_rx(skb);
3346 #ifdef CONFIG_RPS
3347         if (static_key_false(&rps_needed)) {
3348                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3349                 int cpu;
3350
3351                 preempt_disable();
3352                 rcu_read_lock();
3353
3354                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3355                 if (cpu < 0)
3356                         cpu = smp_processor_id();
3357
3358                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3359
3360                 rcu_read_unlock();
3361                 preempt_enable();
3362         } else
3363 #endif
3364         {
3365                 unsigned int qtail;
3366                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3367                 put_cpu();
3368         }
3369         return ret;
3370 }
3371
3372 /**
3373  *      netif_rx        -       post buffer to the network code
3374  *      @skb: buffer to post
3375  *
3376  *      This function receives a packet from a device driver and queues it for
3377  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3378  *      may be dropped during processing for congestion control or by the
3379  *      protocol layers.
3380  *
3381  *      return values:
3382  *      NET_RX_SUCCESS  (no congestion)
3383  *      NET_RX_DROP     (packet was dropped)
3384  *
3385  */
3386
3387 int netif_rx(struct sk_buff *skb)
3388 {
3389         trace_netif_rx_entry(skb);
3390
3391         return netif_rx_internal(skb);
3392 }
3393 EXPORT_SYMBOL(netif_rx);
3394
3395 int netif_rx_ni(struct sk_buff *skb)
3396 {
3397         int err;
3398
3399         trace_netif_rx_ni_entry(skb);
3400
3401         preempt_disable();
3402         err = netif_rx_internal(skb);
3403         if (local_softirq_pending())
3404                 do_softirq();
3405         preempt_enable();
3406
3407         return err;
3408 }
3409 EXPORT_SYMBOL(netif_rx_ni);
3410
3411 static void net_tx_action(struct softirq_action *h)
3412 {
3413         struct softnet_data *sd = &__get_cpu_var(softnet_data);
3414
3415         if (sd->completion_queue) {
3416                 struct sk_buff *clist;
3417
3418                 local_irq_disable();
3419                 clist = sd->completion_queue;
3420                 sd->completion_queue = NULL;
3421                 local_irq_enable();
3422
3423                 while (clist) {
3424                         struct sk_buff *skb = clist;
3425                         clist = clist->next;
3426
3427                         WARN_ON(atomic_read(&skb->users));
3428                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3429                                 trace_consume_skb(skb);
3430                         else
3431                                 trace_kfree_skb(skb, net_tx_action);
3432                         __kfree_skb(skb);
3433                 }
3434         }
3435
3436         if (sd->output_queue) {
3437                 struct Qdisc *head;
3438
3439                 local_irq_disable();
3440                 head = sd->output_queue;
3441                 sd->output_queue = NULL;
3442                 sd->output_queue_tailp = &sd->output_queue;
3443                 local_irq_enable();
3444
3445                 while (head) {
3446                         struct Qdisc *q = head;
3447                         spinlock_t *root_lock;
3448
3449                         head = head->next_sched;
3450
3451                         root_lock = qdisc_lock(q);
3452                         if (spin_trylock(root_lock)) {
3453                                 smp_mb__before_atomic();
3454                                 clear_bit(__QDISC_STATE_SCHED,
3455                                           &q->state);
3456                                 qdisc_run(q);
3457                                 spin_unlock(root_lock);
3458                         } else {
3459                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3460                                               &q->state)) {
3461                                         __netif_reschedule(q);
3462                                 } else {
3463                                         smp_mb__before_atomic();
3464                                         clear_bit(__QDISC_STATE_SCHED,
3465                                                   &q->state);
3466                                 }
3467                         }
3468                 }
3469         }
3470 }
3471
3472 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3473     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3474 /* This hook is defined here for ATM LANE */
3475 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3476                              unsigned char *addr) __read_mostly;
3477 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3478 #endif
3479
3480 #ifdef CONFIG_NET_CLS_ACT
3481 /* TODO: Maybe we should just force sch_ingress to be compiled in
3482  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3483  * a compare and 2 stores extra right now if we dont have it on
3484  * but have CONFIG_NET_CLS_ACT
3485  * NOTE: This doesn't stop any functionality; if you dont have
3486  * the ingress scheduler, you just can't add policies on ingress.
3487  *
3488  */
3489 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3490 {
3491         struct net_device *dev = skb->dev;
3492         u32 ttl = G_TC_RTTL(skb->tc_verd);
3493         int result = TC_ACT_OK;
3494         struct Qdisc *q;
3495
3496         if (unlikely(MAX_RED_LOOP < ttl++)) {
3497                 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3498                                      skb->skb_iif, dev->ifindex);
3499                 return TC_ACT_SHOT;
3500         }
3501
3502         skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3503         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3504
3505         q = rcu_dereference(rxq->qdisc);
3506         if (q != &noop_qdisc) {
3507                 spin_lock(qdisc_lock(q));
3508                 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3509                         result = qdisc_enqueue_root(skb, q);
3510                 spin_unlock(qdisc_lock(q));
3511         }
3512
3513         return result;
3514 }
3515
3516 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3517                                          struct packet_type **pt_prev,
3518                                          int *ret, struct net_device *orig_dev)
3519 {
3520         struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3521
3522         if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3523                 goto out;
3524
3525         if (*pt_prev) {
3526                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3527                 *pt_prev = NULL;
3528         }
3529
3530         switch (ing_filter(skb, rxq)) {
3531         case TC_ACT_SHOT:
3532         case TC_ACT_STOLEN:
3533                 kfree_skb(skb);
3534                 return NULL;
3535         }
3536
3537 out:
3538         skb->tc_verd = 0;
3539         return skb;
3540 }
3541 #endif
3542
3543 /**
3544  *      netdev_rx_handler_register - register receive handler
3545  *      @dev: device to register a handler for
3546  *      @rx_handler: receive handler to register
3547  *      @rx_handler_data: data pointer that is used by rx handler
3548  *
3549  *      Register a receive handler for a device. This handler will then be
3550  *      called from __netif_receive_skb. A negative errno code is returned
3551  *      on a failure.
3552  *
3553  *      The caller must hold the rtnl_mutex.
3554  *
3555  *      For a general description of rx_handler, see enum rx_handler_result.
3556  */
3557 int netdev_rx_handler_register(struct net_device *dev,
3558                                rx_handler_func_t *rx_handler,
3559                                void *rx_handler_data)
3560 {
3561         ASSERT_RTNL();
3562
3563         if (dev->rx_handler)
3564                 return -EBUSY;
3565
3566         /* Note: rx_handler_data must be set before rx_handler */
3567         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3568         rcu_assign_pointer(dev->rx_handler, rx_handler);
3569
3570         return 0;
3571 }
3572 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3573
3574 /**
3575  *      netdev_rx_handler_unregister - unregister receive handler
3576  *      @dev: device to unregister a handler from
3577  *
3578  *      Unregister a receive handler from a device.
3579  *
3580  *      The caller must hold the rtnl_mutex.
3581  */
3582 void netdev_rx_handler_unregister(struct net_device *dev)
3583 {
3584
3585         ASSERT_RTNL();
3586         RCU_INIT_POINTER(dev->rx_handler, NULL);
3587         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3588          * section has a guarantee to see a non NULL rx_handler_data
3589          * as well.
3590          */
3591         synchronize_net();
3592         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3593 }
3594 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3595
3596 /*
3597  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3598  * the special handling of PFMEMALLOC skbs.
3599  */
3600 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3601 {
3602         switch (skb->protocol) {
3603         case htons(ETH_P_ARP):
3604         case htons(ETH_P_IP):
3605         case htons(ETH_P_IPV6):
3606         case htons(ETH_P_8021Q):
3607         case htons(ETH_P_8021AD):
3608                 return true;
3609         default:
3610                 return false;
3611         }
3612 }
3613
3614 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3615 {
3616         struct packet_type *ptype, *pt_prev;
3617         rx_handler_func_t *rx_handler;
3618         struct net_device *orig_dev;
3619         struct net_device *null_or_dev;
3620         bool deliver_exact = false;
3621         int ret = NET_RX_DROP;
3622         __be16 type;
3623
3624         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3625
3626         trace_netif_receive_skb(skb);
3627
3628         orig_dev = skb->dev;
3629
3630         skb_reset_network_header(skb);
3631         if (!skb_transport_header_was_set(skb))
3632                 skb_reset_transport_header(skb);
3633         skb_reset_mac_len(skb);
3634
3635         pt_prev = NULL;
3636
3637         rcu_read_lock();
3638
3639 another_round:
3640         skb->skb_iif = skb->dev->ifindex;
3641
3642         __this_cpu_inc(softnet_data.processed);
3643
3644         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3645             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3646                 skb = skb_vlan_untag(skb);
3647                 if (unlikely(!skb))
3648                         goto unlock;
3649         }
3650
3651 #ifdef CONFIG_NET_CLS_ACT
3652         if (skb->tc_verd & TC_NCLS) {
3653                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3654                 goto ncls;
3655         }
3656 #endif
3657
3658         if (pfmemalloc)
3659                 goto skip_taps;
3660
3661         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3662                 if (!ptype->dev || ptype->dev == skb->dev) {
3663                         if (pt_prev)
3664                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3665                         pt_prev = ptype;
3666                 }
3667         }
3668
3669 skip_taps:
3670 #ifdef CONFIG_NET_CLS_ACT
3671         skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3672         if (!skb)
3673                 goto unlock;
3674 ncls:
3675 #endif
3676
3677         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3678                 goto drop;
3679
3680         if (vlan_tx_tag_present(skb)) {
3681                 if (pt_prev) {
3682                         ret = deliver_skb(skb, pt_prev, orig_dev);
3683                         pt_prev = NULL;
3684                 }
3685                 if (vlan_do_receive(&skb))
3686                         goto another_round;
3687                 else if (unlikely(!skb))
3688                         goto unlock;
3689         }
3690
3691         rx_handler = rcu_dereference(skb->dev->rx_handler);
3692         if (rx_handler) {
3693                 if (pt_prev) {
3694                         ret = deliver_skb(skb, pt_prev, orig_dev);
3695                         pt_prev = NULL;
3696                 }
3697                 switch (rx_handler(&skb)) {
3698                 case RX_HANDLER_CONSUMED:
3699                         ret = NET_RX_SUCCESS;
3700                         goto unlock;
3701                 case RX_HANDLER_ANOTHER:
3702                         goto another_round;
3703                 case RX_HANDLER_EXACT:
3704                         deliver_exact = true;
3705                 case RX_HANDLER_PASS:
3706                         break;
3707                 default:
3708                         BUG();
3709                 }
3710         }
3711
3712         if (unlikely(vlan_tx_tag_present(skb))) {
3713                 if (vlan_tx_tag_get_id(skb))
3714                         skb->pkt_type = PACKET_OTHERHOST;
3715                 /* Note: we might in the future use prio bits
3716                  * and set skb->priority like in vlan_do_receive()
3717                  * For the time being, just ignore Priority Code Point
3718                  */
3719                 skb->vlan_tci = 0;
3720         }
3721
3722         /* deliver only exact match when indicated */
3723         null_or_dev = deliver_exact ? skb->dev : NULL;
3724
3725         type = skb->protocol;
3726         list_for_each_entry_rcu(ptype,
3727                         &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3728                 if (ptype->type == type &&
3729                     (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3730                      ptype->dev == orig_dev)) {
3731                         if (pt_prev)
3732                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3733                         pt_prev = ptype;
3734                 }
3735         }
3736
3737         if (pt_prev) {
3738                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3739                         goto drop;
3740                 else
3741                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3742         } else {
3743 drop:
3744                 atomic_long_inc(&skb->dev->rx_dropped);
3745                 kfree_skb(skb);
3746                 /* Jamal, now you will not able to escape explaining
3747                  * me how you were going to use this. :-)
3748                  */
3749                 ret = NET_RX_DROP;
3750         }
3751
3752 unlock:
3753         rcu_read_unlock();
3754         return ret;
3755 }
3756
3757 static int __netif_receive_skb(struct sk_buff *skb)
3758 {
3759         int ret;
3760
3761         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3762                 unsigned long pflags = current->flags;
3763
3764                 /*
3765                  * PFMEMALLOC skbs are special, they should
3766                  * - be delivered to SOCK_MEMALLOC sockets only
3767                  * - stay away from userspace
3768                  * - have bounded memory usage
3769                  *
3770                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3771                  * context down to all allocation sites.
3772                  */
3773                 current->flags |= PF_MEMALLOC;
3774                 ret = __netif_receive_skb_core(skb, true);
3775                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3776         } else
3777                 ret = __netif_receive_skb_core(skb, false);
3778
3779         return ret;
3780 }
3781
3782 static int netif_receive_skb_internal(struct sk_buff *skb)
3783 {
3784         net_timestamp_check(netdev_tstamp_prequeue, skb);
3785
3786         if (skb_defer_rx_timestamp(skb))
3787                 return NET_RX_SUCCESS;
3788
3789 #ifdef CONFIG_RPS
3790         if (static_key_false(&rps_needed)) {
3791                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3792                 int cpu, ret;
3793
3794                 rcu_read_lock();
3795
3796                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3797
3798                 if (cpu >= 0) {
3799                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3800                         rcu_read_unlock();
3801                         return ret;
3802                 }
3803                 rcu_read_unlock();
3804         }
3805 #endif
3806         return __netif_receive_skb(skb);
3807 }
3808
3809 /**
3810  *      netif_receive_skb - process receive buffer from network
3811  *      @skb: buffer to process
3812  *
3813  *      netif_receive_skb() is the main receive data processing function.
3814  *      It always succeeds. The buffer may be dropped during processing
3815  *      for congestion control or by the protocol layers.
3816  *
3817  *      This function may only be called from softirq context and interrupts
3818  *      should be enabled.
3819  *
3820  *      Return values (usually ignored):
3821  *      NET_RX_SUCCESS: no congestion
3822  *      NET_RX_DROP: packet was dropped
3823  */
3824 int netif_receive_skb(struct sk_buff *skb)
3825 {
3826         trace_netif_receive_skb_entry(skb);
3827
3828         return netif_receive_skb_internal(skb);
3829 }
3830 EXPORT_SYMBOL(netif_receive_skb);
3831
3832 /* Network device is going away, flush any packets still pending
3833  * Called with irqs disabled.
3834  */
3835 static void flush_backlog(void *arg)
3836 {
3837         struct net_device *dev = arg;
3838         struct softnet_data *sd = &__get_cpu_var(softnet_data);
3839         struct sk_buff *skb, *tmp;
3840
3841         rps_lock(sd);
3842         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3843                 if (skb->dev == dev) {
3844                         __skb_unlink(skb, &sd->input_pkt_queue);
3845                         kfree_skb(skb);
3846                         input_queue_head_incr(sd);
3847                 }
3848         }
3849         rps_unlock(sd);
3850
3851         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3852                 if (skb->dev == dev) {
3853                         __skb_unlink(skb, &sd->process_queue);
3854                         kfree_skb(skb);
3855                         input_queue_head_incr(sd);
3856                 }
3857         }
3858 }
3859
3860 static int napi_gro_complete(struct sk_buff *skb)
3861 {
3862         struct packet_offload *ptype;
3863         __be16 type = skb->protocol;
3864         struct list_head *head = &offload_base;
3865         int err = -ENOENT;
3866
3867         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3868
3869         if (NAPI_GRO_CB(skb)->count == 1) {
3870                 skb_shinfo(skb)->gso_size = 0;
3871                 goto out;
3872         }
3873
3874         rcu_read_lock();
3875         list_for_each_entry_rcu(ptype, head, list) {
3876                 if (ptype->type != type || !ptype->callbacks.gro_complete)
3877                         continue;
3878
3879                 err = ptype->callbacks.gro_complete(skb, 0);
3880                 break;
3881         }
3882         rcu_read_unlock();
3883
3884         if (err) {
3885                 WARN_ON(&ptype->list == head);
3886                 kfree_skb(skb);
3887                 return NET_RX_SUCCESS;
3888         }
3889
3890 out:
3891         return netif_receive_skb_internal(skb);
3892 }
3893
3894 /* napi->gro_list contains packets ordered by age.
3895  * youngest packets at the head of it.
3896  * Complete skbs in reverse order to reduce latencies.
3897  */
3898 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3899 {
3900         struct sk_buff *skb, *prev = NULL;
3901
3902         /* scan list and build reverse chain */
3903         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3904                 skb->prev = prev;
3905                 prev = skb;
3906         }
3907
3908         for (skb = prev; skb; skb = prev) {
3909                 skb->next = NULL;
3910
3911                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3912                         return;
3913
3914                 prev = skb->prev;
3915                 napi_gro_complete(skb);
3916                 napi->gro_count--;
3917         }
3918
3919         napi->gro_list = NULL;
3920 }
3921 EXPORT_SYMBOL(napi_gro_flush);
3922
3923 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3924 {
3925         struct sk_buff *p;
3926         unsigned int maclen = skb->dev->hard_header_len;
3927         u32 hash = skb_get_hash_raw(skb);
3928
3929         for (p = napi->gro_list; p; p = p->next) {
3930                 unsigned long diffs;
3931
3932                 NAPI_GRO_CB(p)->flush = 0;
3933
3934                 if (hash != skb_get_hash_raw(p)) {
3935                         NAPI_GRO_CB(p)->same_flow = 0;
3936                         continue;
3937                 }
3938
3939                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3940                 diffs |= p->vlan_tci ^ skb->vlan_tci;
3941                 if (maclen == ETH_HLEN)
3942                         diffs |= compare_ether_header(skb_mac_header(p),
3943                                                       skb_mac_header(skb));
3944                 else if (!diffs)
3945                         diffs = memcmp(skb_mac_header(p),
3946                                        skb_mac_header(skb),
3947                                        maclen);
3948                 NAPI_GRO_CB(p)->same_flow = !diffs;
3949         }
3950 }
3951
3952 static void skb_gro_reset_offset(struct sk_buff *skb)
3953 {
3954         const struct skb_shared_info *pinfo = skb_shinfo(skb);
3955         const skb_frag_t *frag0 = &pinfo->frags[0];
3956
3957         NAPI_GRO_CB(skb)->data_offset = 0;
3958         NAPI_GRO_CB(skb)->frag0 = NULL;
3959         NAPI_GRO_CB(skb)->frag0_len = 0;
3960
3961         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3962             pinfo->nr_frags &&
3963             !PageHighMem(skb_frag_page(frag0))) {
3964                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3965                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3966         }
3967 }
3968
3969 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3970 {
3971         struct skb_shared_info *pinfo = skb_shinfo(skb);
3972
3973         BUG_ON(skb->end - skb->tail < grow);
3974
3975         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3976
3977         skb->data_len -= grow;
3978         skb->tail += grow;
3979
3980         pinfo->frags[0].page_offset += grow;
3981         skb_frag_size_sub(&pinfo->frags[0], grow);
3982
3983         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3984                 skb_frag_unref(skb, 0);
3985                 memmove(pinfo->frags, pinfo->frags + 1,
3986                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3987         }
3988 }
3989
3990 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3991 {
3992         struct sk_buff **pp = NULL;
3993         struct packet_offload *ptype;
3994         __be16 type = skb->protocol;
3995         struct list_head *head = &offload_base;
3996         int same_flow;
3997         enum gro_result ret;
3998         int grow;
3999
4000         if (!(skb->dev->features & NETIF_F_GRO))
4001                 goto normal;
4002
4003         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4004                 goto normal;
4005
4006         gro_list_prepare(napi, skb);
4007
4008         rcu_read_lock();
4009         list_for_each_entry_rcu(ptype, head, list) {
4010                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4011                         continue;
4012
4013                 skb_set_network_header(skb, skb_gro_offset(skb));
4014                 skb_reset_mac_len(skb);
4015                 NAPI_GRO_CB(skb)->same_flow = 0;
4016                 NAPI_GRO_CB(skb)->flush = 0;
4017                 NAPI_GRO_CB(skb)->free = 0;
4018                 NAPI_GRO_CB(skb)->udp_mark = 0;
4019
4020                 /* Setup for GRO checksum validation */
4021                 switch (skb->ip_summed) {
4022                 case CHECKSUM_COMPLETE:
4023                         NAPI_GRO_CB(skb)->csum = skb->csum;
4024                         NAPI_GRO_CB(skb)->csum_valid = 1;
4025                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4026                         break;
4027                 case CHECKSUM_UNNECESSARY:
4028                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4029                         NAPI_GRO_CB(skb)->csum_valid = 0;
4030                         break;
4031                 default:
4032                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4033                         NAPI_GRO_CB(skb)->csum_valid = 0;
4034                 }
4035
4036                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4037                 break;
4038         }
4039         rcu_read_unlock();
4040
4041         if (&ptype->list == head)
4042                 goto normal;
4043
4044         same_flow = NAPI_GRO_CB(skb)->same_flow;
4045         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4046
4047         if (pp) {
4048                 struct sk_buff *nskb = *pp;
4049
4050                 *pp = nskb->next;
4051                 nskb->next = NULL;
4052                 napi_gro_complete(nskb);
4053                 napi->gro_count--;
4054         }
4055
4056         if (same_flow)
4057                 goto ok;
4058
4059         if (NAPI_GRO_CB(skb)->flush)
4060                 goto normal;
4061
4062         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4063                 struct sk_buff *nskb = napi->gro_list;
4064
4065                 /* locate the end of the list to select the 'oldest' flow */
4066                 while (nskb->next) {
4067                         pp = &nskb->next;
4068                         nskb = *pp;
4069                 }
4070                 *pp = NULL;
4071                 nskb->next = NULL;
4072                 napi_gro_complete(nskb);
4073         } else {
4074                 napi->gro_count++;
4075         }
4076         NAPI_GRO_CB(skb)->count = 1;
4077         NAPI_GRO_CB(skb)->age = jiffies;
4078         NAPI_GRO_CB(skb)->last = skb;
4079         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4080         skb->next = napi->gro_list;
4081         napi->gro_list = skb;
4082         ret = GRO_HELD;
4083
4084 pull:
4085         grow = skb_gro_offset(skb) - skb_headlen(skb);
4086         if (grow > 0)
4087                 gro_pull_from_frag0(skb, grow);
4088 ok:
4089         return ret;
4090
4091 normal:
4092         ret = GRO_NORMAL;
4093         goto pull;
4094 }
4095
4096 struct packet_offload *gro_find_receive_by_type(__be16 type)
4097 {
4098         struct list_head *offload_head = &offload_base;
4099         struct packet_offload *ptype;
4100
4101         list_for_each_entry_rcu(ptype, offload_head, list) {
4102                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4103                         continue;
4104                 return ptype;
4105         }
4106         return NULL;
4107 }
4108 EXPORT_SYMBOL(gro_find_receive_by_type);
4109
4110 struct packet_offload *gro_find_complete_by_type(__be16 type)
4111 {
4112         struct list_head *offload_head = &offload_base;
4113         struct packet_offload *ptype;
4114
4115         list_for_each_entry_rcu(ptype, offload_head, list) {
4116                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4117                         continue;
4118                 return ptype;
4119         }
4120         return NULL;
4121 }
4122 EXPORT_SYMBOL(gro_find_complete_by_type);
4123
4124 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4125 {
4126         switch (ret) {
4127         case GRO_NORMAL:
4128                 if (netif_receive_skb_internal(skb))
4129                         ret = GRO_DROP;
4130                 break;
4131
4132         case GRO_DROP:
4133                 kfree_skb(skb);
4134                 break;
4135
4136         case GRO_MERGED_FREE:
4137                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4138                         kmem_cache_free(skbuff_head_cache, skb);
4139                 else
4140                         __kfree_skb(skb);
4141                 break;
4142
4143         case GRO_HELD:
4144         case GRO_MERGED:
4145                 break;
4146         }
4147
4148         return ret;
4149 }
4150
4151 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4152 {
4153         trace_napi_gro_receive_entry(skb);
4154
4155         skb_gro_reset_offset(skb);
4156
4157         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4158 }
4159 EXPORT_SYMBOL(napi_gro_receive);
4160
4161 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4162 {
4163         __skb_pull(skb, skb_headlen(skb));
4164         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4165         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4166         skb->vlan_tci = 0;
4167         skb->dev = napi->dev;
4168         skb->skb_iif = 0;
4169         skb->encapsulation = 0;
4170         skb_shinfo(skb)->gso_type = 0;
4171         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4172
4173         napi->skb = skb;
4174 }
4175
4176 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4177 {
4178         struct sk_buff *skb = napi->skb;
4179
4180         if (!skb) {
4181                 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4182                 napi->skb = skb;
4183         }
4184         return skb;
4185 }
4186 EXPORT_SYMBOL(napi_get_frags);
4187
4188 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4189                                       struct sk_buff *skb,
4190                                       gro_result_t ret)
4191 {
4192         switch (ret) {
4193         case GRO_NORMAL:
4194         case GRO_HELD:
4195                 __skb_push(skb, ETH_HLEN);
4196                 skb->protocol = eth_type_trans(skb, skb->dev);
4197                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4198                         ret = GRO_DROP;
4199                 break;
4200
4201         case GRO_DROP:
4202         case GRO_MERGED_FREE:
4203                 napi_reuse_skb(napi, skb);
4204                 break;
4205
4206         case GRO_MERGED:
4207                 break;
4208         }
4209
4210         return ret;
4211 }
4212
4213 /* Upper GRO stack assumes network header starts at gro_offset=0
4214  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4215  * We copy ethernet header into skb->data to have a common layout.
4216  */
4217 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4218 {
4219         struct sk_buff *skb = napi->skb;
4220         const struct ethhdr *eth;
4221         unsigned int hlen = sizeof(*eth);
4222
4223         napi->skb = NULL;
4224
4225         skb_reset_mac_header(skb);
4226         skb_gro_reset_offset(skb);
4227
4228         eth = skb_gro_header_fast(skb, 0);
4229         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4230                 eth = skb_gro_header_slow(skb, hlen, 0);
4231                 if (unlikely(!eth)) {
4232                         napi_reuse_skb(napi, skb);
4233                         return NULL;
4234                 }
4235         } else {
4236                 gro_pull_from_frag0(skb, hlen);
4237                 NAPI_GRO_CB(skb)->frag0 += hlen;
4238                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4239         }
4240         __skb_pull(skb, hlen);
4241
4242         /*
4243          * This works because the only protocols we care about don't require
4244          * special handling.
4245          * We'll fix it up properly in napi_frags_finish()
4246          */
4247         skb->protocol = eth->h_proto;
4248
4249         return skb;
4250 }
4251
4252 gro_result_t napi_gro_frags(struct napi_struct *napi)
4253 {
4254         struct sk_buff *skb = napi_frags_skb(napi);
4255
4256         if (!skb)
4257                 return GRO_DROP;
4258
4259         trace_napi_gro_frags_entry(skb);
4260
4261         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4262 }
4263 EXPORT_SYMBOL(napi_gro_frags);
4264
4265 /* Compute the checksum from gro_offset and return the folded value
4266  * after adding in any pseudo checksum.
4267  */
4268 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4269 {
4270         __wsum wsum;
4271         __sum16 sum;
4272
4273         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4274
4275         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4276         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4277         if (likely(!sum)) {
4278                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4279                     !skb->csum_complete_sw)
4280                         netdev_rx_csum_fault(skb->dev);
4281         }
4282
4283         NAPI_GRO_CB(skb)->csum = wsum;
4284         NAPI_GRO_CB(skb)->csum_valid = 1;
4285
4286         return sum;
4287 }
4288 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4289
4290 /*
4291  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4292  * Note: called with local irq disabled, but exits with local irq enabled.
4293  */
4294 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4295 {
4296 #ifdef CONFIG_RPS
4297         struct softnet_data *remsd = sd->rps_ipi_list;
4298
4299         if (remsd) {
4300                 sd->rps_ipi_list = NULL;
4301
4302                 local_irq_enable();
4303
4304                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4305                 while (remsd) {
4306                         struct softnet_data *next = remsd->rps_ipi_next;
4307
4308                         if (cpu_online(remsd->cpu))
4309                                 smp_call_function_single_async(remsd->cpu,
4310                                                            &remsd->csd);
4311                         remsd = next;
4312                 }
4313         } else
4314 #endif
4315                 local_irq_enable();
4316 }
4317
4318 static int process_backlog(struct napi_struct *napi, int quota)
4319 {
4320         int work = 0;
4321         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4322
4323 #ifdef CONFIG_RPS
4324         /* Check if we have pending ipi, its better to send them now,
4325          * not waiting net_rx_action() end.
4326          */
4327         if (sd->rps_ipi_list) {
4328                 local_irq_disable();
4329                 net_rps_action_and_irq_enable(sd);
4330         }
4331 #endif
4332         napi->weight = weight_p;
4333         local_irq_disable();
4334         while (1) {
4335                 struct sk_buff *skb;
4336
4337                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4338                         local_irq_enable();
4339                         __netif_receive_skb(skb);
4340                         local_irq_disable();
4341                         input_queue_head_incr(sd);
4342                         if (++work >= quota) {
4343                                 local_irq_enable();
4344                                 return work;
4345                         }
4346                 }
4347
4348                 rps_lock(sd);
4349                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4350                         /*
4351                          * Inline a custom version of __napi_complete().
4352                          * only current cpu owns and manipulates this napi,
4353                          * and NAPI_STATE_SCHED is the only possible flag set
4354                          * on backlog.
4355                          * We can use a plain write instead of clear_bit(),
4356                          * and we dont need an smp_mb() memory barrier.
4357                          */
4358                         list_del(&napi->poll_list);
4359                         napi->state = 0;
4360                         rps_unlock(sd);
4361
4362                         break;
4363                 }
4364
4365                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4366                                            &sd->process_queue);
4367                 rps_unlock(sd);
4368         }
4369         local_irq_enable();
4370
4371         return work;
4372 }
4373
4374 /**
4375  * __napi_schedule - schedule for receive
4376  * @n: entry to schedule
4377  *
4378  * The entry's receive function will be scheduled to run
4379  */
4380 void __napi_schedule(struct napi_struct *n)
4381 {
4382         unsigned long flags;
4383
4384         local_irq_save(flags);
4385         ____napi_schedule(&__get_cpu_var(softnet_data), n);
4386         local_irq_restore(flags);
4387 }
4388 EXPORT_SYMBOL(__napi_schedule);
4389
4390 void __napi_complete(struct napi_struct *n)
4391 {
4392         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4393         BUG_ON(n->gro_list);
4394
4395         list_del(&n->poll_list);
4396         smp_mb__before_atomic();
4397         clear_bit(NAPI_STATE_SCHED, &n->state);
4398 }
4399 EXPORT_SYMBOL(__napi_complete);
4400
4401 void napi_complete(struct napi_struct *n)
4402 {
4403         unsigned long flags;
4404
4405         /*
4406          * don't let napi dequeue from the cpu poll list
4407          * just in case its running on a different cpu
4408          */
4409         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4410                 return;
4411
4412         napi_gro_flush(n, false);
4413         local_irq_save(flags);
4414         __napi_complete(n);
4415         local_irq_restore(flags);
4416 }
4417 EXPORT_SYMBOL(napi_complete);
4418
4419 /* must be called under rcu_read_lock(), as we dont take a reference */
4420 struct napi_struct *napi_by_id(unsigned int napi_id)
4421 {
4422         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4423         struct napi_struct *napi;
4424
4425         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4426                 if (napi->napi_id == napi_id)
4427                         return napi;
4428
4429         return NULL;
4430 }
4431 EXPORT_SYMBOL_GPL(napi_by_id);
4432
4433 void napi_hash_add(struct napi_struct *napi)
4434 {
4435         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4436
4437                 spin_lock(&napi_hash_lock);
4438
4439                 /* 0 is not a valid id, we also skip an id that is taken
4440                  * we expect both events to be extremely rare
4441                  */
4442                 napi->napi_id = 0;
4443                 while (!napi->napi_id) {
4444                         napi->napi_id = ++napi_gen_id;
4445                         if (napi_by_id(napi->napi_id))
4446                                 napi->napi_id = 0;
4447                 }
4448
4449                 hlist_add_head_rcu(&napi->napi_hash_node,
4450                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4451
4452                 spin_unlock(&napi_hash_lock);
4453         }
4454 }
4455 EXPORT_SYMBOL_GPL(napi_hash_add);
4456
4457 /* Warning : caller is responsible to make sure rcu grace period
4458  * is respected before freeing memory containing @napi
4459  */
4460 void napi_hash_del(struct napi_struct *napi)
4461 {
4462         spin_lock(&napi_hash_lock);
4463
4464         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4465                 hlist_del_rcu(&napi->napi_hash_node);
4466
4467         spin_unlock(&napi_hash_lock);
4468 }
4469 EXPORT_SYMBOL_GPL(napi_hash_del);
4470
4471 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4472                     int (*poll)(struct napi_struct *, int), int weight)
4473 {
4474         INIT_LIST_HEAD(&napi->poll_list);
4475         napi->gro_count = 0;
4476         napi->gro_list = NULL;
4477         napi->skb = NULL;
4478         napi->poll = poll;
4479         if (weight > NAPI_POLL_WEIGHT)
4480                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4481                             weight, dev->name);
4482         napi->weight = weight;
4483         list_add(&napi->dev_list, &dev->napi_list);
4484         napi->dev = dev;
4485 #ifdef CONFIG_NETPOLL
4486         spin_lock_init(&napi->poll_lock);
4487         napi->poll_owner = -1;
4488 #endif
4489         set_bit(NAPI_STATE_SCHED, &napi->state);
4490 }
4491 EXPORT_SYMBOL(netif_napi_add);
4492
4493 void netif_napi_del(struct napi_struct *napi)
4494 {
4495         list_del_init(&napi->dev_list);
4496         napi_free_frags(napi);
4497
4498         kfree_skb_list(napi->gro_list);
4499         napi->gro_list = NULL;
4500         napi->gro_count = 0;
4501 }
4502 EXPORT_SYMBOL(netif_napi_del);
4503
4504 static void net_rx_action(struct softirq_action *h)
4505 {
4506         struct softnet_data *sd = &__get_cpu_var(softnet_data);
4507         unsigned long time_limit = jiffies + 2;
4508         int budget = netdev_budget;
4509         void *have;
4510
4511         local_irq_disable();
4512
4513         while (!list_empty(&sd->poll_list)) {
4514                 struct napi_struct *n;
4515                 int work, weight;
4516
4517                 /* If softirq window is exhuasted then punt.
4518                  * Allow this to run for 2 jiffies since which will allow
4519                  * an average latency of 1.5/HZ.
4520                  */
4521                 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4522                         goto softnet_break;
4523
4524                 local_irq_enable();
4525
4526                 /* Even though interrupts have been re-enabled, this
4527                  * access is safe because interrupts can only add new
4528                  * entries to the tail of this list, and only ->poll()
4529                  * calls can remove this head entry from the list.
4530                  */
4531                 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4532
4533                 have = netpoll_poll_lock(n);
4534
4535                 weight = n->weight;
4536
4537                 /* This NAPI_STATE_SCHED test is for avoiding a race
4538                  * with netpoll's poll_napi().  Only the entity which
4539                  * obtains the lock and sees NAPI_STATE_SCHED set will
4540                  * actually make the ->poll() call.  Therefore we avoid
4541                  * accidentally calling ->poll() when NAPI is not scheduled.
4542                  */
4543                 work = 0;
4544                 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4545                         work = n->poll(n, weight);
4546                         trace_napi_poll(n);
4547                 }
4548
4549                 WARN_ON_ONCE(work > weight);
4550
4551                 budget -= work;
4552
4553                 local_irq_disable();
4554
4555                 /* Drivers must not modify the NAPI state if they
4556                  * consume the entire weight.  In such cases this code
4557                  * still "owns" the NAPI instance and therefore can
4558                  * move the instance around on the list at-will.
4559                  */
4560                 if (unlikely(work == weight)) {
4561                         if (unlikely(napi_disable_pending(n))) {
4562                                 local_irq_enable();
4563                                 napi_complete(n);
4564                                 local_irq_disable();
4565                         } else {
4566                                 if (n->gro_list) {
4567                                         /* flush too old packets
4568                                          * If HZ < 1000, flush all packets.
4569                                          */
4570                                         local_irq_enable();
4571                                         napi_gro_flush(n, HZ >= 1000);
4572                                         local_irq_disable();
4573                                 }
4574                                 list_move_tail(&n->poll_list, &sd->poll_list);
4575                         }
4576                 }
4577
4578                 netpoll_poll_unlock(have);
4579         }
4580 out:
4581         net_rps_action_and_irq_enable(sd);
4582
4583 #ifdef CONFIG_NET_DMA
4584         /*
4585          * There may not be any more sk_buffs coming right now, so push
4586          * any pending DMA copies to hardware
4587          */
4588         dma_issue_pending_all();
4589 #endif
4590
4591         return;
4592
4593 softnet_break:
4594         sd->time_squeeze++;
4595         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4596         goto out;
4597 }
4598
4599 struct netdev_adjacent {
4600         struct net_device *dev;
4601
4602         /* upper master flag, there can only be one master device per list */
4603         bool master;
4604
4605         /* counter for the number of times this device was added to us */
4606         u16 ref_nr;
4607
4608         /* private field for the users */
4609         void *private;
4610
4611         struct list_head list;
4612         struct rcu_head rcu;
4613 };
4614
4615 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4616                                                  struct net_device *adj_dev,
4617                                                  struct list_head *adj_list)
4618 {
4619         struct netdev_adjacent *adj;
4620
4621         list_for_each_entry(adj, adj_list, list) {
4622                 if (adj->dev == adj_dev)
4623                         return adj;
4624         }
4625         return NULL;
4626 }
4627
4628 /**
4629  * netdev_has_upper_dev - Check if device is linked to an upper device
4630  * @dev: device
4631  * @upper_dev: upper device to check
4632  *
4633  * Find out if a device is linked to specified upper device and return true
4634  * in case it is. Note that this checks only immediate upper device,
4635  * not through a complete stack of devices. The caller must hold the RTNL lock.
4636  */
4637 bool netdev_has_upper_dev(struct net_device *dev,
4638                           struct net_device *upper_dev)
4639 {
4640         ASSERT_RTNL();
4641
4642         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4643 }
4644 EXPORT_SYMBOL(netdev_has_upper_dev);
4645
4646 /**
4647  * netdev_has_any_upper_dev - Check if device is linked to some device
4648  * @dev: device
4649  *
4650  * Find out if a device is linked to an upper device and return true in case
4651  * it is. The caller must hold the RTNL lock.
4652  */
4653 static bool netdev_has_any_upper_dev(struct net_device *dev)
4654 {
4655         ASSERT_RTNL();
4656
4657         return !list_empty(&dev->all_adj_list.upper);
4658 }
4659
4660 /**
4661  * netdev_master_upper_dev_get - Get master upper device
4662  * @dev: device
4663  *
4664  * Find a master upper device and return pointer to it or NULL in case
4665  * it's not there. The caller must hold the RTNL lock.
4666  */
4667 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4668 {
4669         struct netdev_adjacent *upper;
4670
4671         ASSERT_RTNL();
4672
4673         if (list_empty(&dev->adj_list.upper))
4674                 return NULL;
4675
4676         upper = list_first_entry(&dev->adj_list.upper,
4677                                  struct netdev_adjacent, list);
4678         if (likely(upper->master))
4679                 return upper->dev;
4680         return NULL;
4681 }
4682 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4683
4684 void *netdev_adjacent_get_private(struct list_head *adj_list)
4685 {
4686         struct netdev_adjacent *adj;
4687
4688         adj = list_entry(adj_list, struct netdev_adjacent, list);
4689
4690         return adj->private;
4691 }
4692 EXPORT_SYMBOL(netdev_adjacent_get_private);
4693
4694 /**
4695  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4696  * @dev: device
4697  * @iter: list_head ** of the current position
4698  *
4699  * Gets the next device from the dev's upper list, starting from iter
4700  * position. The caller must hold RCU read lock.
4701  */
4702 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4703                                                  struct list_head **iter)
4704 {
4705         struct netdev_adjacent *upper;
4706
4707         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4708
4709         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4710
4711         if (&upper->list == &dev->adj_list.upper)
4712                 return NULL;
4713
4714         *iter = &upper->list;
4715
4716         return upper->dev;
4717 }
4718 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4719
4720 /**
4721  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4722  * @dev: device
4723  * @iter: list_head ** of the current position
4724  *
4725  * Gets the next device from the dev's upper list, starting from iter
4726  * position. The caller must hold RCU read lock.
4727  */
4728 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4729                                                      struct list_head **iter)
4730 {
4731         struct netdev_adjacent *upper;
4732
4733         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4734
4735         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4736
4737         if (&upper->list == &dev->all_adj_list.upper)
4738                 return NULL;
4739
4740         *iter = &upper->list;
4741
4742         return upper->dev;
4743 }
4744 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4745
4746 /**
4747  * netdev_lower_get_next_private - Get the next ->private from the
4748  *                                 lower neighbour list
4749  * @dev: device
4750  * @iter: list_head ** of the current position
4751  *
4752  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4753  * list, starting from iter position. The caller must hold either hold the
4754  * RTNL lock or its own locking that guarantees that the neighbour lower
4755  * list will remain unchainged.
4756  */
4757 void *netdev_lower_get_next_private(struct net_device *dev,
4758                                     struct list_head **iter)
4759 {
4760         struct netdev_adjacent *lower;
4761
4762         lower = list_entry(*iter, struct netdev_adjacent, list);
4763
4764         if (&lower->list == &dev->adj_list.lower)
4765                 return NULL;
4766
4767         *iter = lower->list.next;
4768
4769         return lower->private;
4770 }
4771 EXPORT_SYMBOL(netdev_lower_get_next_private);
4772
4773 /**
4774  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4775  *                                     lower neighbour list, RCU
4776  *                                     variant
4777  * @dev: device
4778  * @iter: list_head ** of the current position
4779  *
4780  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4781  * list, starting from iter position. The caller must hold RCU read lock.
4782  */
4783 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4784                                         struct list_head **iter)
4785 {
4786         struct netdev_adjacent *lower;
4787
4788         WARN_ON_ONCE(!rcu_read_lock_held());
4789
4790         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4791
4792         if (&lower->list == &dev->adj_list.lower)
4793                 return NULL;
4794
4795         *iter = &lower->list;
4796
4797         return lower->private;
4798 }
4799 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4800
4801 /**
4802  * netdev_lower_get_next - Get the next device from the lower neighbour
4803  *                         list
4804  * @dev: device
4805  * @iter: list_head ** of the current position
4806  *
4807  * Gets the next netdev_adjacent from the dev's lower neighbour
4808  * list, starting from iter position. The caller must hold RTNL lock or
4809  * its own locking that guarantees that the neighbour lower
4810  * list will remain unchainged.
4811  */
4812 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4813 {
4814         struct netdev_adjacent *lower;
4815
4816         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4817
4818         if (&lower->list == &dev->adj_list.lower)
4819                 return NULL;
4820
4821         *iter = &lower->list;
4822
4823         return lower->dev;
4824 }
4825 EXPORT_SYMBOL(netdev_lower_get_next);
4826
4827 /**
4828  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4829  *                                     lower neighbour list, RCU
4830  *                                     variant
4831  * @dev: device
4832  *
4833  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4834  * list. The caller must hold RCU read lock.
4835  */
4836 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4837 {
4838         struct netdev_adjacent *lower;
4839
4840         lower = list_first_or_null_rcu(&dev->adj_list.lower,
4841                         struct netdev_adjacent, list);
4842         if (lower)
4843                 return lower->private;
4844         return NULL;
4845 }
4846 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4847
4848 /**
4849  * netdev_master_upper_dev_get_rcu - Get master upper device
4850  * @dev: device
4851  *
4852  * Find a master upper device and return pointer to it or NULL in case
4853  * it's not there. The caller must hold the RCU read lock.
4854  */
4855 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4856 {
4857         struct netdev_adjacent *upper;
4858
4859         upper = list_first_or_null_rcu(&dev->adj_list.upper,
4860                                        struct netdev_adjacent, list);
4861         if (upper && likely(upper->master))
4862                 return upper->dev;
4863         return NULL;
4864 }
4865 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4866
4867 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4868                               struct net_device *adj_dev,
4869                               struct list_head *dev_list)
4870 {
4871         char linkname[IFNAMSIZ+7];
4872         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4873                 "upper_%s" : "lower_%s", adj_dev->name);
4874         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4875                                  linkname);
4876 }
4877 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4878                                char *name,
4879                                struct list_head *dev_list)
4880 {
4881         char linkname[IFNAMSIZ+7];
4882         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4883                 "upper_%s" : "lower_%s", name);
4884         sysfs_remove_link(&(dev->dev.kobj), linkname);
4885 }
4886
4887 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4888                                                  struct net_device *adj_dev,
4889                                                  struct list_head *dev_list)
4890 {
4891         return (dev_list == &dev->adj_list.upper ||
4892                 dev_list == &dev->adj_list.lower) &&
4893                 net_eq(dev_net(dev), dev_net(adj_dev));
4894 }
4895
4896 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4897                                         struct net_device *adj_dev,
4898                                         struct list_head *dev_list,
4899                                         void *private, bool master)
4900 {
4901         struct netdev_adjacent *adj;
4902         int ret;
4903
4904         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4905
4906         if (adj) {
4907                 adj->ref_nr++;
4908                 return 0;
4909         }
4910
4911         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4912         if (!adj)
4913                 return -ENOMEM;
4914
4915         adj->dev = adj_dev;
4916         adj->master = master;
4917         adj->ref_nr = 1;
4918         adj->private = private;
4919         dev_hold(adj_dev);
4920
4921         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4922                  adj_dev->name, dev->name, adj_dev->name);
4923
4924         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4925                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4926                 if (ret)
4927                         goto free_adj;
4928         }
4929
4930         /* Ensure that master link is always the first item in list. */
4931         if (master) {
4932                 ret = sysfs_create_link(&(dev->dev.kobj),
4933                                         &(adj_dev->dev.kobj), "master");
4934                 if (ret)
4935                         goto remove_symlinks;
4936
4937                 list_add_rcu(&adj->list, dev_list);
4938         } else {
4939                 list_add_tail_rcu(&adj->list, dev_list);
4940         }
4941
4942         return 0;
4943
4944 remove_symlinks:
4945         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4946                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4947 free_adj:
4948         kfree(adj);
4949         dev_put(adj_dev);
4950
4951         return ret;
4952 }
4953
4954 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4955                                          struct net_device *adj_dev,
4956                                          struct list_head *dev_list)
4957 {
4958         struct netdev_adjacent *adj;
4959
4960         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4961
4962         if (!adj) {
4963                 pr_err("tried to remove device %s from %s\n",
4964                        dev->name, adj_dev->name);
4965                 BUG();
4966         }
4967
4968         if (adj->ref_nr > 1) {
4969                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4970                          adj->ref_nr-1);
4971                 adj->ref_nr--;
4972                 return;
4973         }
4974
4975         if (adj->master)
4976                 sysfs_remove_link(&(dev->dev.kobj), "master");
4977
4978         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4979                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4980
4981         list_del_rcu(&adj->list);
4982         pr_debug("dev_put for %s, because link removed from %s to %s\n",
4983                  adj_dev->name, dev->name, adj_dev->name);
4984         dev_put(adj_dev);
4985         kfree_rcu(adj, rcu);
4986 }
4987
4988 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4989                                             struct net_device *upper_dev,
4990                                             struct list_head *up_list,
4991                                             struct list_head *down_list,
4992                                             void *private, bool master)
4993 {
4994         int ret;
4995
4996         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4997                                            master);
4998         if (ret)
4999                 return ret;
5000
5001         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5002                                            false);
5003         if (ret) {
5004                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5005                 return ret;
5006         }
5007
5008         return 0;
5009 }
5010
5011 static int __netdev_adjacent_dev_link(struct net_device *dev,
5012                                       struct net_device *upper_dev)
5013 {
5014         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5015                                                 &dev->all_adj_list.upper,
5016                                                 &upper_dev->all_adj_list.lower,
5017                                                 NULL, false);
5018 }
5019
5020 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5021                                                struct net_device *upper_dev,
5022                                                struct list_head *up_list,
5023                                                struct list_head *down_list)
5024 {
5025         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5026         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5027 }
5028
5029 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5030                                          struct net_device *upper_dev)
5031 {
5032         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5033                                            &dev->all_adj_list.upper,
5034                                            &upper_dev->all_adj_list.lower);
5035 }
5036
5037 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5038                                                 struct net_device *upper_dev,
5039                                                 void *private, bool master)
5040 {
5041         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5042
5043         if (ret)
5044                 return ret;
5045
5046         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5047                                                &dev->adj_list.upper,
5048                                                &upper_dev->adj_list.lower,
5049                                                private, master);
5050         if (ret) {
5051                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5052                 return ret;
5053         }
5054
5055         return 0;
5056 }
5057
5058 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5059                                                    struct net_device *upper_dev)
5060 {
5061         __netdev_adjacent_dev_unlink(dev, upper_dev);
5062         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5063                                            &dev->adj_list.upper,
5064                                            &upper_dev->adj_list.lower);
5065 }
5066
5067 static int __netdev_upper_dev_link(struct net_device *dev,
5068                                    struct net_device *upper_dev, bool master,
5069                                    void *private)
5070 {
5071         struct netdev_adjacent *i, *j, *to_i, *to_j;
5072         int ret = 0;
5073
5074         ASSERT_RTNL();
5075
5076         if (dev == upper_dev)
5077                 return -EBUSY;
5078
5079         /* To prevent loops, check if dev is not upper device to upper_dev. */
5080         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5081                 return -EBUSY;
5082
5083         if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5084                 return -EEXIST;
5085
5086         if (master && netdev_master_upper_dev_get(dev))
5087                 return -EBUSY;
5088
5089         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5090                                                    master);
5091         if (ret)
5092                 return ret;
5093
5094         /* Now that we linked these devs, make all the upper_dev's
5095          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5096          * versa, and don't forget the devices itself. All of these
5097          * links are non-neighbours.
5098          */
5099         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5100                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5101                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5102                                  i->dev->name, j->dev->name);
5103                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5104                         if (ret)
5105                                 goto rollback_mesh;
5106                 }
5107         }
5108
5109         /* add dev to every upper_dev's upper device */
5110         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5111                 pr_debug("linking %s's upper device %s with %s\n",
5112                          upper_dev->name, i->dev->name, dev->name);
5113                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5114                 if (ret)
5115                         goto rollback_upper_mesh;
5116         }
5117
5118         /* add upper_dev to every dev's lower device */
5119         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5120                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5121                          i->dev->name, upper_dev->name);
5122                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5123                 if (ret)
5124                         goto rollback_lower_mesh;
5125         }
5126
5127         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5128         return 0;
5129
5130 rollback_lower_mesh:
5131         to_i = i;
5132         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5133                 if (i == to_i)
5134                         break;
5135                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5136         }
5137
5138         i = NULL;
5139
5140 rollback_upper_mesh:
5141         to_i = i;
5142         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5143                 if (i == to_i)
5144                         break;
5145                 __netdev_adjacent_dev_unlink(dev, i->dev);
5146         }
5147
5148         i = j = NULL;
5149
5150 rollback_mesh:
5151         to_i = i;
5152         to_j = j;
5153         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5154                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5155                         if (i == to_i && j == to_j)
5156                                 break;
5157                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5158                 }
5159                 if (i == to_i)
5160                         break;
5161         }
5162
5163         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5164
5165         return ret;
5166 }
5167
5168 /**
5169  * netdev_upper_dev_link - Add a link to the upper device
5170  * @dev: device
5171  * @upper_dev: new upper device
5172  *
5173  * Adds a link to device which is upper to this one. The caller must hold
5174  * the RTNL lock. On a failure a negative errno code is returned.
5175  * On success the reference counts are adjusted and the function
5176  * returns zero.
5177  */
5178 int netdev_upper_dev_link(struct net_device *dev,
5179                           struct net_device *upper_dev)
5180 {
5181         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5182 }
5183 EXPORT_SYMBOL(netdev_upper_dev_link);
5184
5185 /**
5186  * netdev_master_upper_dev_link - Add a master link to the upper device
5187  * @dev: device
5188  * @upper_dev: new upper device
5189  *
5190  * Adds a link to device which is upper to this one. In this case, only
5191  * one master upper device can be linked, although other non-master devices
5192  * might be linked as well. The caller must hold the RTNL lock.
5193  * On a failure a negative errno code is returned. On success the reference
5194  * counts are adjusted and the function returns zero.
5195  */
5196 int netdev_master_upper_dev_link(struct net_device *dev,
5197                                  struct net_device *upper_dev)
5198 {
5199         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5200 }
5201 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5202
5203 int netdev_master_upper_dev_link_private(struct net_device *dev,
5204                                          struct net_device *upper_dev,
5205                                          void *private)
5206 {
5207         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5208 }
5209 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5210
5211 /**
5212  * netdev_upper_dev_unlink - Removes a link to upper device
5213  * @dev: device
5214  * @upper_dev: new upper device
5215  *
5216  * Removes a link to device which is upper to this one. The caller must hold
5217  * the RTNL lock.
5218  */
5219 void netdev_upper_dev_unlink(struct net_device *dev,
5220                              struct net_device *upper_dev)
5221 {
5222         struct netdev_adjacent *i, *j;
5223         ASSERT_RTNL();
5224
5225         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5226
5227         /* Here is the tricky part. We must remove all dev's lower
5228          * devices from all upper_dev's upper devices and vice
5229          * versa, to maintain the graph relationship.
5230          */
5231         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5232                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5233                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5234
5235         /* remove also the devices itself from lower/upper device
5236          * list
5237          */
5238         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5239                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5240
5241         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5242                 __netdev_adjacent_dev_unlink(dev, i->dev);
5243
5244         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5245 }
5246 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5247
5248 void netdev_adjacent_add_links(struct net_device *dev)
5249 {
5250         struct netdev_adjacent *iter;
5251
5252         struct net *net = dev_net(dev);
5253
5254         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5255                 if (!net_eq(net,dev_net(iter->dev)))
5256                         continue;
5257                 netdev_adjacent_sysfs_add(iter->dev, dev,
5258                                           &iter->dev->adj_list.lower);
5259                 netdev_adjacent_sysfs_add(dev, iter->dev,
5260                                           &dev->adj_list.upper);
5261         }
5262
5263         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5264                 if (!net_eq(net,dev_net(iter->dev)))
5265                         continue;
5266                 netdev_adjacent_sysfs_add(iter->dev, dev,
5267                                           &iter->dev->adj_list.upper);
5268                 netdev_adjacent_sysfs_add(dev, iter->dev,
5269                                           &dev->adj_list.lower);
5270         }
5271 }
5272
5273 void netdev_adjacent_del_links(struct net_device *dev)
5274 {
5275         struct netdev_adjacent *iter;
5276
5277         struct net *net = dev_net(dev);
5278
5279         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5280                 if (!net_eq(net,dev_net(iter->dev)))
5281                         continue;
5282                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5283                                           &iter->dev->adj_list.lower);
5284                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5285                                           &dev->adj_list.upper);
5286         }
5287
5288         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5289                 if (!net_eq(net,dev_net(iter->dev)))
5290                         continue;
5291                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5292                                           &iter->dev->adj_list.upper);
5293                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5294                                           &dev->adj_list.lower);
5295         }
5296 }
5297
5298 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5299 {
5300         struct netdev_adjacent *iter;
5301
5302         struct net *net = dev_net(dev);
5303
5304         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5305                 if (!net_eq(net,dev_net(iter->dev)))
5306                         continue;
5307                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5308                                           &iter->dev->adj_list.lower);
5309                 netdev_adjacent_sysfs_add(iter->dev, dev,
5310                                           &iter->dev->adj_list.lower);
5311         }
5312
5313         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5314                 if (!net_eq(net,dev_net(iter->dev)))
5315                         continue;
5316                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5317                                           &iter->dev->adj_list.upper);
5318                 netdev_adjacent_sysfs_add(iter->dev, dev,
5319                                           &iter->dev->adj_list.upper);
5320         }
5321 }
5322
5323 void *netdev_lower_dev_get_private(struct net_device *dev,
5324                                    struct net_device *lower_dev)
5325 {
5326         struct netdev_adjacent *lower;
5327
5328         if (!lower_dev)
5329                 return NULL;
5330         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5331         if (!lower)
5332                 return NULL;
5333
5334         return lower->private;
5335 }
5336 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5337
5338
5339 int dev_get_nest_level(struct net_device *dev,
5340                        bool (*type_check)(struct net_device *dev))
5341 {
5342         struct net_device *lower = NULL;
5343         struct list_head *iter;
5344         int max_nest = -1;
5345         int nest;
5346
5347         ASSERT_RTNL();
5348
5349         netdev_for_each_lower_dev(dev, lower, iter) {
5350                 nest = dev_get_nest_level(lower, type_check);
5351                 if (max_nest < nest)
5352                         max_nest = nest;
5353         }
5354
5355         if (type_check(dev))
5356                 max_nest++;
5357
5358         return max_nest;
5359 }
5360 EXPORT_SYMBOL(dev_get_nest_level);
5361
5362 static void dev_change_rx_flags(struct net_device *dev, int flags)
5363 {
5364         const struct net_device_ops *ops = dev->netdev_ops;
5365
5366         if (ops->ndo_change_rx_flags)
5367                 ops->ndo_change_rx_flags(dev, flags);
5368 }
5369
5370 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5371 {
5372         unsigned int old_flags = dev->flags;
5373         kuid_t uid;
5374         kgid_t gid;
5375
5376         ASSERT_RTNL();
5377
5378         dev->flags |= IFF_PROMISC;
5379         dev->promiscuity += inc;
5380         if (dev->promiscuity == 0) {
5381                 /*
5382                  * Avoid overflow.
5383                  * If inc causes overflow, untouch promisc and return error.
5384                  */
5385                 if (inc < 0)
5386                         dev->flags &= ~IFF_PROMISC;
5387                 else {
5388                         dev->promiscuity -= inc;
5389                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5390                                 dev->name);
5391                         return -EOVERFLOW;
5392                 }
5393         }
5394         if (dev->flags != old_flags) {
5395                 pr_info("device %s %s promiscuous mode\n",
5396                         dev->name,
5397                         dev->flags & IFF_PROMISC ? "entered" : "left");
5398                 if (audit_enabled) {
5399                         current_uid_gid(&uid, &gid);
5400                         audit_log(current->audit_context, GFP_ATOMIC,
5401                                 AUDIT_ANOM_PROMISCUOUS,
5402                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5403                                 dev->name, (dev->flags & IFF_PROMISC),
5404                                 (old_flags & IFF_PROMISC),
5405                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5406                                 from_kuid(&init_user_ns, uid),
5407                                 from_kgid(&init_user_ns, gid),
5408                                 audit_get_sessionid(current));
5409                 }
5410
5411                 dev_change_rx_flags(dev, IFF_PROMISC);
5412         }
5413         if (notify)
5414                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5415         return 0;
5416 }
5417
5418 /**
5419  *      dev_set_promiscuity     - update promiscuity count on a device
5420  *      @dev: device
5421  *      @inc: modifier
5422  *
5423  *      Add or remove promiscuity from a device. While the count in the device
5424  *      remains above zero the interface remains promiscuous. Once it hits zero
5425  *      the device reverts back to normal filtering operation. A negative inc
5426  *      value is used to drop promiscuity on the device.
5427  *      Return 0 if successful or a negative errno code on error.
5428  */
5429 int dev_set_promiscuity(struct net_device *dev, int inc)
5430 {
5431         unsigned int old_flags = dev->flags;
5432         int err;
5433
5434         err = __dev_set_promiscuity(dev, inc, true);
5435         if (err < 0)
5436                 return err;
5437         if (dev->flags != old_flags)
5438                 dev_set_rx_mode(dev);
5439         return err;
5440 }
5441 EXPORT_SYMBOL(dev_set_promiscuity);
5442
5443 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5444 {
5445         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5446
5447         ASSERT_RTNL();
5448
5449         dev->flags |= IFF_ALLMULTI;
5450         dev->allmulti += inc;
5451         if (dev->allmulti == 0) {
5452                 /*
5453                  * Avoid overflow.
5454                  * If inc causes overflow, untouch allmulti and return error.
5455                  */
5456                 if (inc < 0)
5457                         dev->flags &= ~IFF_ALLMULTI;
5458                 else {
5459                         dev->allmulti -= inc;
5460                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5461                                 dev->name);
5462                         return -EOVERFLOW;
5463                 }
5464         }
5465         if (dev->flags ^ old_flags) {
5466                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5467                 dev_set_rx_mode(dev);
5468                 if (notify)
5469                         __dev_notify_flags(dev, old_flags,
5470                                            dev->gflags ^ old_gflags);
5471         }
5472         return 0;
5473 }
5474
5475 /**
5476  *      dev_set_allmulti        - update allmulti count on a device
5477  *      @dev: device
5478  *      @inc: modifier
5479  *
5480  *      Add or remove reception of all multicast frames to a device. While the
5481  *      count in the device remains above zero the interface remains listening
5482  *      to all interfaces. Once it hits zero the device reverts back to normal
5483  *      filtering operation. A negative @inc value is used to drop the counter
5484  *      when releasing a resource needing all multicasts.
5485  *      Return 0 if successful or a negative errno code on error.
5486  */
5487
5488 int dev_set_allmulti(struct net_device *dev, int inc)
5489 {
5490         return __dev_set_allmulti(dev, inc, true);
5491 }
5492 EXPORT_SYMBOL(dev_set_allmulti);
5493
5494 /*
5495  *      Upload unicast and multicast address lists to device and
5496  *      configure RX filtering. When the device doesn't support unicast
5497  *      filtering it is put in promiscuous mode while unicast addresses
5498  *      are present.
5499  */
5500 void __dev_set_rx_mode(struct net_device *dev)
5501 {
5502         const struct net_device_ops *ops = dev->netdev_ops;
5503
5504         /* dev_open will call this function so the list will stay sane. */
5505         if (!(dev->flags&IFF_UP))
5506                 return;
5507
5508         if (!netif_device_present(dev))
5509                 return;
5510
5511         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5512                 /* Unicast addresses changes may only happen under the rtnl,
5513                  * therefore calling __dev_set_promiscuity here is safe.
5514                  */
5515                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5516                         __dev_set_promiscuity(dev, 1, false);
5517                         dev->uc_promisc = true;
5518                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5519                         __dev_set_promiscuity(dev, -1, false);
5520                         dev->uc_promisc = false;
5521                 }
5522         }
5523
5524         if (ops->ndo_set_rx_mode)
5525                 ops->ndo_set_rx_mode(dev);
5526 }
5527
5528 void dev_set_rx_mode(struct net_device *dev)
5529 {
5530         netif_addr_lock_bh(dev);
5531         __dev_set_rx_mode(dev);
5532         netif_addr_unlock_bh(dev);
5533 }
5534
5535 /**
5536  *      dev_get_flags - get flags reported to userspace
5537  *      @dev: device
5538  *
5539  *      Get the combination of flag bits exported through APIs to userspace.
5540  */
5541 unsigned int dev_get_flags(const struct net_device *dev)
5542 {
5543         unsigned int flags;
5544
5545         flags = (dev->flags & ~(IFF_PROMISC |
5546                                 IFF_ALLMULTI |
5547                                 IFF_RUNNING |
5548                                 IFF_LOWER_UP |
5549                                 IFF_DORMANT)) |
5550                 (dev->gflags & (IFF_PROMISC |
5551                                 IFF_ALLMULTI));
5552
5553         if (netif_running(dev)) {
5554                 if (netif_oper_up(dev))
5555                         flags |= IFF_RUNNING;
5556                 if (netif_carrier_ok(dev))
5557                         flags |= IFF_LOWER_UP;
5558                 if (netif_dormant(dev))
5559                         flags |= IFF_DORMANT;
5560         }
5561
5562         return flags;
5563 }
5564 EXPORT_SYMBOL(dev_get_flags);
5565
5566 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5567 {
5568         unsigned int old_flags = dev->flags;
5569         int ret;
5570
5571         ASSERT_RTNL();
5572
5573         /*
5574          *      Set the flags on our device.
5575          */
5576
5577         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5578                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5579                                IFF_AUTOMEDIA)) |
5580                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5581                                     IFF_ALLMULTI));
5582
5583         /*
5584          *      Load in the correct multicast list now the flags have changed.
5585          */
5586
5587         if ((old_flags ^ flags) & IFF_MULTICAST)
5588                 dev_change_rx_flags(dev, IFF_MULTICAST);
5589
5590         dev_set_rx_mode(dev);
5591
5592         /*
5593          *      Have we downed the interface. We handle IFF_UP ourselves
5594          *      according to user attempts to set it, rather than blindly
5595          *      setting it.
5596          */
5597
5598         ret = 0;
5599         if ((old_flags ^ flags) & IFF_UP)
5600                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5601
5602         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5603                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5604                 unsigned int old_flags = dev->flags;
5605
5606                 dev->gflags ^= IFF_PROMISC;
5607
5608                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5609                         if (dev->flags != old_flags)
5610                                 dev_set_rx_mode(dev);
5611         }
5612
5613         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5614            is important. Some (broken) drivers set IFF_PROMISC, when
5615            IFF_ALLMULTI is requested not asking us and not reporting.
5616          */
5617         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5618                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5619
5620                 dev->gflags ^= IFF_ALLMULTI;
5621                 __dev_set_allmulti(dev, inc, false);
5622         }
5623
5624         return ret;
5625 }
5626
5627 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5628                         unsigned int gchanges)
5629 {
5630         unsigned int changes = dev->flags ^ old_flags;
5631
5632         if (gchanges)
5633                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5634
5635         if (changes & IFF_UP) {
5636                 if (dev->flags & IFF_UP)
5637                         call_netdevice_notifiers(NETDEV_UP, dev);
5638                 else
5639                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5640         }
5641
5642         if (dev->flags & IFF_UP &&
5643             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5644                 struct netdev_notifier_change_info change_info;
5645
5646                 change_info.flags_changed = changes;
5647                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5648                                               &change_info.info);
5649         }
5650 }
5651
5652 /**
5653  *      dev_change_flags - change device settings
5654  *      @dev: device
5655  *      @flags: device state flags
5656  *
5657  *      Change settings on device based state flags. The flags are
5658  *      in the userspace exported format.
5659  */
5660 int dev_change_flags(struct net_device *dev, unsigned int flags)
5661 {
5662         int ret;
5663         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5664
5665         ret = __dev_change_flags(dev, flags);
5666         if (ret < 0)
5667                 return ret;
5668
5669         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5670         __dev_notify_flags(dev, old_flags, changes);
5671         return ret;
5672 }
5673 EXPORT_SYMBOL(dev_change_flags);
5674
5675 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5676 {
5677         const struct net_device_ops *ops = dev->netdev_ops;
5678
5679         if (ops->ndo_change_mtu)
5680                 return ops->ndo_change_mtu(dev, new_mtu);
5681
5682         dev->mtu = new_mtu;
5683         return 0;
5684 }
5685
5686 /**
5687  *      dev_set_mtu - Change maximum transfer unit
5688  *      @dev: device
5689  *      @new_mtu: new transfer unit
5690  *
5691  *      Change the maximum transfer size of the network device.
5692  */
5693 int dev_set_mtu(struct net_device *dev, int new_mtu)
5694 {
5695         int err, orig_mtu;
5696
5697         if (new_mtu == dev->mtu)
5698                 return 0;
5699
5700         /*      MTU must be positive.    */
5701         if (new_mtu < 0)
5702                 return -EINVAL;
5703
5704         if (!netif_device_present(dev))
5705                 return -ENODEV;
5706
5707         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5708         err = notifier_to_errno(err);
5709         if (err)
5710                 return err;
5711
5712         orig_mtu = dev->mtu;
5713         err = __dev_set_mtu(dev, new_mtu);
5714
5715         if (!err) {
5716                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5717                 err = notifier_to_errno(err);
5718                 if (err) {
5719                         /* setting mtu back and notifying everyone again,
5720                          * so that they have a chance to revert changes.
5721                          */
5722                         __dev_set_mtu(dev, orig_mtu);
5723                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5724                 }
5725         }
5726         return err;
5727 }
5728 EXPORT_SYMBOL(dev_set_mtu);
5729
5730 /**
5731  *      dev_set_group - Change group this device belongs to
5732  *      @dev: device
5733  *      @new_group: group this device should belong to
5734  */
5735 void dev_set_group(struct net_device *dev, int new_group)
5736 {
5737         dev->group = new_group;
5738 }
5739 EXPORT_SYMBOL(dev_set_group);
5740
5741 /**
5742  *      dev_set_mac_address - Change Media Access Control Address
5743  *      @dev: device
5744  *      @sa: new address
5745  *
5746  *      Change the hardware (MAC) address of the device
5747  */
5748 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5749 {
5750         const struct net_device_ops *ops = dev->netdev_ops;
5751         int err;
5752
5753         if (!ops->ndo_set_mac_address)
5754                 return -EOPNOTSUPP;
5755         if (sa->sa_family != dev->type)
5756                 return -EINVAL;
5757         if (!netif_device_present(dev))
5758                 return -ENODEV;
5759         err = ops->ndo_set_mac_address(dev, sa);
5760         if (err)
5761                 return err;
5762         dev->addr_assign_type = NET_ADDR_SET;
5763         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5764         add_device_randomness(dev->dev_addr, dev->addr_len);
5765         return 0;
5766 }
5767 EXPORT_SYMBOL(dev_set_mac_address);
5768
5769 /**
5770  *      dev_change_carrier - Change device carrier
5771  *      @dev: device
5772  *      @new_carrier: new value
5773  *
5774  *      Change device carrier
5775  */
5776 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5777 {
5778         const struct net_device_ops *ops = dev->netdev_ops;
5779
5780         if (!ops->ndo_change_carrier)
5781                 return -EOPNOTSUPP;
5782         if (!netif_device_present(dev))
5783                 return -ENODEV;
5784         return ops->ndo_change_carrier(dev, new_carrier);
5785 }
5786 EXPORT_SYMBOL(dev_change_carrier);
5787
5788 /**
5789  *      dev_get_phys_port_id - Get device physical port ID
5790  *      @dev: device
5791  *      @ppid: port ID
5792  *
5793  *      Get device physical port ID
5794  */
5795 int dev_get_phys_port_id(struct net_device *dev,
5796                          struct netdev_phys_port_id *ppid)
5797 {
5798         const struct net_device_ops *ops = dev->netdev_ops;
5799
5800         if (!ops->ndo_get_phys_port_id)
5801                 return -EOPNOTSUPP;
5802         return ops->ndo_get_phys_port_id(dev, ppid);
5803 }
5804 EXPORT_SYMBOL(dev_get_phys_port_id);
5805
5806 /**
5807  *      dev_new_index   -       allocate an ifindex
5808  *      @net: the applicable net namespace
5809  *
5810  *      Returns a suitable unique value for a new device interface
5811  *      number.  The caller must hold the rtnl semaphore or the
5812  *      dev_base_lock to be sure it remains unique.
5813  */
5814 static int dev_new_index(struct net *net)
5815 {
5816         int ifindex = net->ifindex;
5817         for (;;) {
5818                 if (++ifindex <= 0)
5819                         ifindex = 1;
5820                 if (!__dev_get_by_index(net, ifindex))
5821                         return net->ifindex = ifindex;
5822         }
5823 }
5824
5825 /* Delayed registration/unregisteration */
5826 static LIST_HEAD(net_todo_list);
5827 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5828
5829 static void net_set_todo(struct net_device *dev)
5830 {
5831         list_add_tail(&dev->todo_list, &net_todo_list);
5832         dev_net(dev)->dev_unreg_count++;
5833 }
5834
5835 static void rollback_registered_many(struct list_head *head)
5836 {
5837         struct net_device *dev, *tmp;
5838         LIST_HEAD(close_head);
5839
5840         BUG_ON(dev_boot_phase);
5841         ASSERT_RTNL();
5842
5843         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5844                 /* Some devices call without registering
5845                  * for initialization unwind. Remove those
5846                  * devices and proceed with the remaining.
5847                  */
5848                 if (dev->reg_state == NETREG_UNINITIALIZED) {
5849                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5850                                  dev->name, dev);
5851
5852                         WARN_ON(1);
5853                         list_del(&dev->unreg_list);
5854                         continue;
5855                 }
5856                 dev->dismantle = true;
5857                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5858         }
5859
5860         /* If device is running, close it first. */
5861         list_for_each_entry(dev, head, unreg_list)
5862                 list_add_tail(&dev->close_list, &close_head);
5863         dev_close_many(&close_head);
5864
5865         list_for_each_entry(dev, head, unreg_list) {
5866                 /* And unlink it from device chain. */
5867                 unlist_netdevice(dev);
5868
5869                 dev->reg_state = NETREG_UNREGISTERING;
5870         }
5871
5872         synchronize_net();
5873
5874         list_for_each_entry(dev, head, unreg_list) {
5875                 /* Shutdown queueing discipline. */
5876                 dev_shutdown(dev);
5877
5878
5879                 /* Notify protocols, that we are about to destroy
5880                    this device. They should clean all the things.
5881                 */
5882                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5883
5884                 /*
5885                  *      Flush the unicast and multicast chains
5886                  */
5887                 dev_uc_flush(dev);
5888                 dev_mc_flush(dev);
5889
5890                 if (dev->netdev_ops->ndo_uninit)
5891                         dev->netdev_ops->ndo_uninit(dev);
5892
5893                 if (!dev->rtnl_link_ops ||
5894                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5895                         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5896
5897                 /* Notifier chain MUST detach us all upper devices. */
5898                 WARN_ON(netdev_has_any_upper_dev(dev));
5899
5900                 /* Remove entries from kobject tree */
5901                 netdev_unregister_kobject(dev);
5902 #ifdef CONFIG_XPS
5903                 /* Remove XPS queueing entries */
5904                 netif_reset_xps_queues_gt(dev, 0);
5905 #endif
5906         }
5907
5908         synchronize_net();
5909
5910         list_for_each_entry(dev, head, unreg_list)
5911                 dev_put(dev);
5912 }
5913
5914 static void rollback_registered(struct net_device *dev)
5915 {
5916         LIST_HEAD(single);
5917
5918         list_add(&dev->unreg_list, &single);
5919         rollback_registered_many(&single);
5920         list_del(&single);
5921 }
5922
5923 static netdev_features_t netdev_fix_features(struct net_device *dev,
5924         netdev_features_t features)
5925 {
5926         /* Fix illegal checksum combinations */
5927         if ((features & NETIF_F_HW_CSUM) &&
5928             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5929                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5930                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5931         }
5932
5933         /* TSO requires that SG is present as well. */
5934         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5935                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5936                 features &= ~NETIF_F_ALL_TSO;
5937         }
5938
5939         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5940                                         !(features & NETIF_F_IP_CSUM)) {
5941                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5942                 features &= ~NETIF_F_TSO;
5943                 features &= ~NETIF_F_TSO_ECN;
5944         }
5945
5946         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5947                                          !(features & NETIF_F_IPV6_CSUM)) {
5948                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5949                 features &= ~NETIF_F_TSO6;
5950         }
5951
5952         /* TSO ECN requires that TSO is present as well. */
5953         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5954                 features &= ~NETIF_F_TSO_ECN;
5955
5956         /* Software GSO depends on SG. */
5957         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5958                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5959                 features &= ~NETIF_F_GSO;
5960         }
5961
5962         /* UFO needs SG and checksumming */
5963         if (features & NETIF_F_UFO) {
5964                 /* maybe split UFO into V4 and V6? */
5965                 if (!((features & NETIF_F_GEN_CSUM) ||
5966                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5967                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5968                         netdev_dbg(dev,
5969                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5970                         features &= ~NETIF_F_UFO;
5971                 }
5972
5973                 if (!(features & NETIF_F_SG)) {
5974                         netdev_dbg(dev,
5975                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5976                         features &= ~NETIF_F_UFO;
5977                 }
5978         }
5979
5980 #ifdef CONFIG_NET_RX_BUSY_POLL
5981         if (dev->netdev_ops->ndo_busy_poll)
5982                 features |= NETIF_F_BUSY_POLL;
5983         else
5984 #endif
5985                 features &= ~NETIF_F_BUSY_POLL;
5986
5987         return features;
5988 }
5989
5990 int __netdev_update_features(struct net_device *dev)
5991 {
5992         netdev_features_t features;
5993         int err = 0;
5994
5995         ASSERT_RTNL();
5996
5997         features = netdev_get_wanted_features(dev);
5998
5999         if (dev->netdev_ops->ndo_fix_features)
6000                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6001
6002         /* driver might be less strict about feature dependencies */
6003         features = netdev_fix_features(dev, features);
6004
6005         if (dev->features == features)
6006                 return 0;
6007
6008         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6009                 &dev->features, &features);
6010
6011         if (dev->netdev_ops->ndo_set_features)
6012                 err = dev->netdev_ops->ndo_set_features(dev, features);
6013
6014         if (unlikely(err < 0)) {
6015                 netdev_err(dev,
6016                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6017                         err, &features, &dev->features);
6018                 return -1;
6019         }
6020
6021         if (!err)
6022                 dev->features = features;
6023
6024         return 1;
6025 }
6026
6027 /**
6028  *      netdev_update_features - recalculate device features
6029  *      @dev: the device to check
6030  *
6031  *      Recalculate dev->features set and send notifications if it
6032  *      has changed. Should be called after driver or hardware dependent
6033  *      conditions might have changed that influence the features.
6034  */
6035 void netdev_update_features(struct net_device *dev)
6036 {
6037         if (__netdev_update_features(dev))
6038                 netdev_features_change(dev);
6039 }
6040 EXPORT_SYMBOL(netdev_update_features);
6041
6042 /**
6043  *      netdev_change_features - recalculate device features
6044  *      @dev: the device to check
6045  *
6046  *      Recalculate dev->features set and send notifications even
6047  *      if they have not changed. Should be called instead of
6048  *      netdev_update_features() if also dev->vlan_features might
6049  *      have changed to allow the changes to be propagated to stacked
6050  *      VLAN devices.
6051  */
6052 void netdev_change_features(struct net_device *dev)
6053 {
6054         __netdev_update_features(dev);
6055         netdev_features_change(dev);
6056 }
6057 EXPORT_SYMBOL(netdev_change_features);
6058
6059 /**
6060  *      netif_stacked_transfer_operstate -      transfer operstate
6061  *      @rootdev: the root or lower level device to transfer state from
6062  *      @dev: the device to transfer operstate to
6063  *
6064  *      Transfer operational state from root to device. This is normally
6065  *      called when a stacking relationship exists between the root
6066  *      device and the device(a leaf device).
6067  */
6068 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6069                                         struct net_device *dev)
6070 {
6071         if (rootdev->operstate == IF_OPER_DORMANT)
6072                 netif_dormant_on(dev);
6073         else
6074                 netif_dormant_off(dev);
6075
6076         if (netif_carrier_ok(rootdev)) {
6077                 if (!netif_carrier_ok(dev))
6078                         netif_carrier_on(dev);
6079         } else {
6080                 if (netif_carrier_ok(dev))
6081                         netif_carrier_off(dev);
6082         }
6083 }
6084 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6085
6086 #ifdef CONFIG_SYSFS
6087 static int netif_alloc_rx_queues(struct net_device *dev)
6088 {
6089         unsigned int i, count = dev->num_rx_queues;
6090         struct netdev_rx_queue *rx;
6091
6092         BUG_ON(count < 1);
6093
6094         rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6095         if (!rx)
6096                 return -ENOMEM;
6097
6098         dev->_rx = rx;
6099
6100         for (i = 0; i < count; i++)
6101                 rx[i].dev = dev;
6102         return 0;
6103 }
6104 #endif
6105
6106 static void netdev_init_one_queue(struct net_device *dev,
6107                                   struct netdev_queue *queue, void *_unused)
6108 {
6109         /* Initialize queue lock */
6110         spin_lock_init(&queue->_xmit_lock);
6111         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6112         queue->xmit_lock_owner = -1;
6113         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6114         queue->dev = dev;
6115 #ifdef CONFIG_BQL
6116         dql_init(&queue->dql, HZ);
6117 #endif
6118 }
6119
6120 static void netif_free_tx_queues(struct net_device *dev)
6121 {
6122         kvfree(dev->_tx);
6123 }
6124
6125 static int netif_alloc_netdev_queues(struct net_device *dev)
6126 {
6127         unsigned int count = dev->num_tx_queues;
6128         struct netdev_queue *tx;
6129         size_t sz = count * sizeof(*tx);
6130
6131         BUG_ON(count < 1 || count > 0xffff);
6132
6133         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6134         if (!tx) {
6135                 tx = vzalloc(sz);
6136                 if (!tx)
6137                         return -ENOMEM;
6138         }
6139         dev->_tx = tx;
6140
6141         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6142         spin_lock_init(&dev->tx_global_lock);
6143
6144         return 0;
6145 }
6146
6147 /**
6148  *      register_netdevice      - register a network device
6149  *      @dev: device to register
6150  *
6151  *      Take a completed network device structure and add it to the kernel
6152  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6153  *      chain. 0 is returned on success. A negative errno code is returned
6154  *      on a failure to set up the device, or if the name is a duplicate.
6155  *
6156  *      Callers must hold the rtnl semaphore. You may want
6157  *      register_netdev() instead of this.
6158  *
6159  *      BUGS:
6160  *      The locking appears insufficient to guarantee two parallel registers
6161  *      will not get the same name.
6162  */
6163
6164 int register_netdevice(struct net_device *dev)
6165 {
6166         int ret;
6167         struct net *net = dev_net(dev);
6168
6169         BUG_ON(dev_boot_phase);
6170         ASSERT_RTNL();
6171
6172         might_sleep();
6173
6174         /* When net_device's are persistent, this will be fatal. */
6175         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6176         BUG_ON(!net);
6177
6178         spin_lock_init(&dev->addr_list_lock);
6179         netdev_set_addr_lockdep_class(dev);
6180
6181         dev->iflink = -1;
6182
6183         ret = dev_get_valid_name(net, dev, dev->name);
6184         if (ret < 0)
6185                 goto out;
6186
6187         /* Init, if this function is available */
6188         if (dev->netdev_ops->ndo_init) {
6189                 ret = dev->netdev_ops->ndo_init(dev);
6190                 if (ret) {
6191                         if (ret > 0)
6192                                 ret = -EIO;
6193                         goto out;
6194                 }
6195         }
6196
6197         if (((dev->hw_features | dev->features) &
6198              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6199             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6200              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6201                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6202                 ret = -EINVAL;
6203                 goto err_uninit;
6204         }
6205
6206         ret = -EBUSY;
6207         if (!dev->ifindex)
6208                 dev->ifindex = dev_new_index(net);
6209         else if (__dev_get_by_index(net, dev->ifindex))
6210                 goto err_uninit;
6211
6212         if (dev->iflink == -1)
6213                 dev->iflink = dev->ifindex;
6214
6215         /* Transfer changeable features to wanted_features and enable
6216          * software offloads (GSO and GRO).
6217          */
6218         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6219         dev->features |= NETIF_F_SOFT_FEATURES;
6220         dev->wanted_features = dev->features & dev->hw_features;
6221
6222         if (!(dev->flags & IFF_LOOPBACK)) {
6223                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6224         }
6225
6226         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6227          */
6228         dev->vlan_features |= NETIF_F_HIGHDMA;
6229
6230         /* Make NETIF_F_SG inheritable to tunnel devices.
6231          */
6232         dev->hw_enc_features |= NETIF_F_SG;
6233
6234         /* Make NETIF_F_SG inheritable to MPLS.
6235          */
6236         dev->mpls_features |= NETIF_F_SG;
6237
6238         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6239         ret = notifier_to_errno(ret);
6240         if (ret)
6241                 goto err_uninit;
6242
6243         ret = netdev_register_kobject(dev);
6244         if (ret)
6245                 goto err_uninit;
6246         dev->reg_state = NETREG_REGISTERED;
6247
6248         __netdev_update_features(dev);
6249
6250         /*
6251          *      Default initial state at registry is that the
6252          *      device is present.
6253          */
6254
6255         set_bit(__LINK_STATE_PRESENT, &dev->state);
6256
6257         linkwatch_init_dev(dev);
6258
6259         dev_init_scheduler(dev);
6260         dev_hold(dev);
6261         list_netdevice(dev);
6262         add_device_randomness(dev->dev_addr, dev->addr_len);
6263
6264         /* If the device has permanent device address, driver should
6265          * set dev_addr and also addr_assign_type should be set to
6266          * NET_ADDR_PERM (default value).
6267          */
6268         if (dev->addr_assign_type == NET_ADDR_PERM)
6269                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6270
6271         /* Notify protocols, that a new device appeared. */
6272         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6273         ret = notifier_to_errno(ret);
6274         if (ret) {
6275                 rollback_registered(dev);
6276                 dev->reg_state = NETREG_UNREGISTERED;
6277         }
6278         /*
6279          *      Prevent userspace races by waiting until the network
6280          *      device is fully setup before sending notifications.
6281          */
6282         if (!dev->rtnl_link_ops ||
6283             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6284                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6285
6286 out:
6287         return ret;
6288
6289 err_uninit:
6290         if (dev->netdev_ops->ndo_uninit)
6291                 dev->netdev_ops->ndo_uninit(dev);
6292         goto out;
6293 }
6294 EXPORT_SYMBOL(register_netdevice);
6295
6296 /**
6297  *      init_dummy_netdev       - init a dummy network device for NAPI
6298  *      @dev: device to init
6299  *
6300  *      This takes a network device structure and initialize the minimum
6301  *      amount of fields so it can be used to schedule NAPI polls without
6302  *      registering a full blown interface. This is to be used by drivers
6303  *      that need to tie several hardware interfaces to a single NAPI
6304  *      poll scheduler due to HW limitations.
6305  */
6306 int init_dummy_netdev(struct net_device *dev)
6307 {
6308         /* Clear everything. Note we don't initialize spinlocks
6309          * are they aren't supposed to be taken by any of the
6310          * NAPI code and this dummy netdev is supposed to be
6311          * only ever used for NAPI polls
6312          */
6313         memset(dev, 0, sizeof(struct net_device));
6314
6315         /* make sure we BUG if trying to hit standard
6316          * register/unregister code path
6317          */
6318         dev->reg_state = NETREG_DUMMY;
6319
6320         /* NAPI wants this */
6321         INIT_LIST_HEAD(&dev->napi_list);
6322
6323         /* a dummy interface is started by default */
6324         set_bit(__LINK_STATE_PRESENT, &dev->state);
6325         set_bit(__LINK_STATE_START, &dev->state);
6326
6327         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6328          * because users of this 'device' dont need to change
6329          * its refcount.
6330          */
6331
6332         return 0;
6333 }
6334 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6335
6336
6337 /**
6338  *      register_netdev - register a network device
6339  *      @dev: device to register
6340  *
6341  *      Take a completed network device structure and add it to the kernel
6342  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6343  *      chain. 0 is returned on success. A negative errno code is returned
6344  *      on a failure to set up the device, or if the name is a duplicate.
6345  *
6346  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6347  *      and expands the device name if you passed a format string to
6348  *      alloc_netdev.
6349  */
6350 int register_netdev(struct net_device *dev)
6351 {
6352         int err;
6353
6354         rtnl_lock();
6355         err = register_netdevice(dev);
6356         rtnl_unlock();
6357         return err;
6358 }
6359 EXPORT_SYMBOL(register_netdev);
6360
6361 int netdev_refcnt_read(const struct net_device *dev)
6362 {
6363         int i, refcnt = 0;
6364
6365         for_each_possible_cpu(i)
6366                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6367         return refcnt;
6368 }
6369 EXPORT_SYMBOL(netdev_refcnt_read);
6370
6371 /**
6372  * netdev_wait_allrefs - wait until all references are gone.
6373  * @dev: target net_device
6374  *
6375  * This is called when unregistering network devices.
6376  *
6377  * Any protocol or device that holds a reference should register
6378  * for netdevice notification, and cleanup and put back the
6379  * reference if they receive an UNREGISTER event.
6380  * We can get stuck here if buggy protocols don't correctly
6381  * call dev_put.
6382  */
6383 static void netdev_wait_allrefs(struct net_device *dev)
6384 {
6385         unsigned long rebroadcast_time, warning_time;
6386         int refcnt;
6387
6388         linkwatch_forget_dev(dev);
6389
6390         rebroadcast_time = warning_time = jiffies;
6391         refcnt = netdev_refcnt_read(dev);
6392
6393         while (refcnt != 0) {
6394                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6395                         rtnl_lock();
6396
6397                         /* Rebroadcast unregister notification */
6398                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6399
6400                         __rtnl_unlock();
6401                         rcu_barrier();
6402                         rtnl_lock();
6403
6404                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6405                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6406                                      &dev->state)) {
6407                                 /* We must not have linkwatch events
6408                                  * pending on unregister. If this
6409                                  * happens, we simply run the queue
6410                                  * unscheduled, resulting in a noop
6411                                  * for this device.
6412                                  */
6413                                 linkwatch_run_queue();
6414                         }
6415
6416                         __rtnl_unlock();
6417
6418                         rebroadcast_time = jiffies;
6419                 }
6420
6421                 msleep(250);
6422
6423                 refcnt = netdev_refcnt_read(dev);
6424
6425                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6426                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6427                                  dev->name, refcnt);
6428                         warning_time = jiffies;
6429                 }
6430         }
6431 }
6432
6433 /* The sequence is:
6434  *
6435  *      rtnl_lock();
6436  *      ...
6437  *      register_netdevice(x1);
6438  *      register_netdevice(x2);
6439  *      ...
6440  *      unregister_netdevice(y1);
6441  *      unregister_netdevice(y2);
6442  *      ...
6443  *      rtnl_unlock();
6444  *      free_netdev(y1);
6445  *      free_netdev(y2);
6446  *
6447  * We are invoked by rtnl_unlock().
6448  * This allows us to deal with problems:
6449  * 1) We can delete sysfs objects which invoke hotplug
6450  *    without deadlocking with linkwatch via keventd.
6451  * 2) Since we run with the RTNL semaphore not held, we can sleep
6452  *    safely in order to wait for the netdev refcnt to drop to zero.
6453  *
6454  * We must not return until all unregister events added during
6455  * the interval the lock was held have been completed.
6456  */
6457 void netdev_run_todo(void)
6458 {
6459         struct list_head list;
6460
6461         /* Snapshot list, allow later requests */
6462         list_replace_init(&net_todo_list, &list);
6463
6464         __rtnl_unlock();
6465
6466
6467         /* Wait for rcu callbacks to finish before next phase */
6468         if (!list_empty(&list))
6469                 rcu_barrier();
6470
6471         while (!list_empty(&list)) {
6472                 struct net_device *dev
6473                         = list_first_entry(&list, struct net_device, todo_list);
6474                 list_del(&dev->todo_list);
6475
6476                 rtnl_lock();
6477                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6478                 __rtnl_unlock();
6479
6480                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6481                         pr_err("network todo '%s' but state %d\n",
6482                                dev->name, dev->reg_state);
6483                         dump_stack();
6484                         continue;
6485                 }
6486
6487                 dev->reg_state = NETREG_UNREGISTERED;
6488
6489                 on_each_cpu(flush_backlog, dev, 1);
6490
6491                 netdev_wait_allrefs(dev);
6492
6493                 /* paranoia */
6494                 BUG_ON(netdev_refcnt_read(dev));
6495                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6496                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6497                 WARN_ON(dev->dn_ptr);
6498
6499                 if (dev->destructor)
6500                         dev->destructor(dev);
6501
6502                 /* Report a network device has been unregistered */
6503                 rtnl_lock();
6504                 dev_net(dev)->dev_unreg_count--;
6505                 __rtnl_unlock();
6506                 wake_up(&netdev_unregistering_wq);
6507
6508                 /* Free network device */
6509                 kobject_put(&dev->dev.kobj);
6510         }
6511 }
6512
6513 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6514  * fields in the same order, with only the type differing.
6515  */
6516 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6517                              const struct net_device_stats *netdev_stats)
6518 {
6519 #if BITS_PER_LONG == 64
6520         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6521         memcpy(stats64, netdev_stats, sizeof(*stats64));
6522 #else
6523         size_t i, n = sizeof(*stats64) / sizeof(u64);
6524         const unsigned long *src = (const unsigned long *)netdev_stats;
6525         u64 *dst = (u64 *)stats64;
6526
6527         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6528                      sizeof(*stats64) / sizeof(u64));
6529         for (i = 0; i < n; i++)
6530                 dst[i] = src[i];
6531 #endif
6532 }
6533 EXPORT_SYMBOL(netdev_stats_to_stats64);
6534
6535 /**
6536  *      dev_get_stats   - get network device statistics
6537  *      @dev: device to get statistics from
6538  *      @storage: place to store stats
6539  *
6540  *      Get network statistics from device. Return @storage.
6541  *      The device driver may provide its own method by setting
6542  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6543  *      otherwise the internal statistics structure is used.
6544  */
6545 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6546                                         struct rtnl_link_stats64 *storage)
6547 {
6548         const struct net_device_ops *ops = dev->netdev_ops;
6549
6550         if (ops->ndo_get_stats64) {
6551                 memset(storage, 0, sizeof(*storage));
6552                 ops->ndo_get_stats64(dev, storage);
6553         } else if (ops->ndo_get_stats) {
6554                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6555         } else {
6556                 netdev_stats_to_stats64(storage, &dev->stats);
6557         }
6558         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6559         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6560         return storage;
6561 }
6562 EXPORT_SYMBOL(dev_get_stats);
6563
6564 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6565 {
6566         struct netdev_queue *queue = dev_ingress_queue(dev);
6567
6568 #ifdef CONFIG_NET_CLS_ACT
6569         if (queue)
6570                 return queue;
6571         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6572         if (!queue)
6573                 return NULL;
6574         netdev_init_one_queue(dev, queue, NULL);
6575         queue->qdisc = &noop_qdisc;
6576         queue->qdisc_sleeping = &noop_qdisc;
6577         rcu_assign_pointer(dev->ingress_queue, queue);
6578 #endif
6579         return queue;
6580 }
6581
6582 static const struct ethtool_ops default_ethtool_ops;
6583
6584 void netdev_set_default_ethtool_ops(struct net_device *dev,
6585                                     const struct ethtool_ops *ops)
6586 {
6587         if (dev->ethtool_ops == &default_ethtool_ops)
6588                 dev->ethtool_ops = ops;
6589 }
6590 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6591
6592 void netdev_freemem(struct net_device *dev)
6593 {
6594         char *addr = (char *)dev - dev->padded;
6595
6596         kvfree(addr);
6597 }
6598
6599 /**
6600  *      alloc_netdev_mqs - allocate network device
6601  *      @sizeof_priv:           size of private data to allocate space for
6602  *      @name:                  device name format string
6603  *      @name_assign_type:      origin of device name
6604  *      @setup:                 callback to initialize device
6605  *      @txqs:                  the number of TX subqueues to allocate
6606  *      @rxqs:                  the number of RX subqueues to allocate
6607  *
6608  *      Allocates a struct net_device with private data area for driver use
6609  *      and performs basic initialization.  Also allocates subqueue structs
6610  *      for each queue on the device.
6611  */
6612 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6613                 unsigned char name_assign_type,
6614                 void (*setup)(struct net_device *),
6615                 unsigned int txqs, unsigned int rxqs)
6616 {
6617         struct net_device *dev;
6618         size_t alloc_size;
6619         struct net_device *p;
6620
6621         BUG_ON(strlen(name) >= sizeof(dev->name));
6622
6623         if (txqs < 1) {
6624                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6625                 return NULL;
6626         }
6627
6628 #ifdef CONFIG_SYSFS
6629         if (rxqs < 1) {
6630                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6631                 return NULL;
6632         }
6633 #endif
6634
6635         alloc_size = sizeof(struct net_device);
6636         if (sizeof_priv) {
6637                 /* ensure 32-byte alignment of private area */
6638                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6639                 alloc_size += sizeof_priv;
6640         }
6641         /* ensure 32-byte alignment of whole construct */
6642         alloc_size += NETDEV_ALIGN - 1;
6643
6644         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6645         if (!p)
6646                 p = vzalloc(alloc_size);
6647         if (!p)
6648                 return NULL;
6649
6650         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6651         dev->padded = (char *)dev - (char *)p;
6652
6653         dev->pcpu_refcnt = alloc_percpu(int);
6654         if (!dev->pcpu_refcnt)
6655                 goto free_dev;
6656
6657         if (dev_addr_init(dev))
6658                 goto free_pcpu;
6659
6660         dev_mc_init(dev);
6661         dev_uc_init(dev);
6662
6663         dev_net_set(dev, &init_net);
6664
6665         dev->gso_max_size = GSO_MAX_SIZE;
6666         dev->gso_max_segs = GSO_MAX_SEGS;
6667         dev->gso_min_segs = 0;
6668
6669         INIT_LIST_HEAD(&dev->napi_list);
6670         INIT_LIST_HEAD(&dev->unreg_list);
6671         INIT_LIST_HEAD(&dev->close_list);
6672         INIT_LIST_HEAD(&dev->link_watch_list);
6673         INIT_LIST_HEAD(&dev->adj_list.upper);
6674         INIT_LIST_HEAD(&dev->adj_list.lower);
6675         INIT_LIST_HEAD(&dev->all_adj_list.upper);
6676         INIT_LIST_HEAD(&dev->all_adj_list.lower);
6677         dev->priv_flags = IFF_XMIT_DST_RELEASE;
6678         setup(dev);
6679
6680         dev->num_tx_queues = txqs;
6681         dev->real_num_tx_queues = txqs;
6682         if (netif_alloc_netdev_queues(dev))
6683                 goto free_all;
6684
6685 #ifdef CONFIG_SYSFS
6686         dev->num_rx_queues = rxqs;
6687         dev->real_num_rx_queues = rxqs;
6688         if (netif_alloc_rx_queues(dev))
6689                 goto free_all;
6690 #endif
6691
6692         strcpy(dev->name, name);
6693         dev->name_assign_type = name_assign_type;
6694         dev->group = INIT_NETDEV_GROUP;
6695         if (!dev->ethtool_ops)
6696                 dev->ethtool_ops = &default_ethtool_ops;
6697         return dev;
6698
6699 free_all:
6700         free_netdev(dev);
6701         return NULL;
6702
6703 free_pcpu:
6704         free_percpu(dev->pcpu_refcnt);
6705 free_dev:
6706         netdev_freemem(dev);
6707         return NULL;
6708 }
6709 EXPORT_SYMBOL(alloc_netdev_mqs);
6710
6711 /**
6712  *      free_netdev - free network device
6713  *      @dev: device
6714  *
6715  *      This function does the last stage of destroying an allocated device
6716  *      interface. The reference to the device object is released.
6717  *      If this is the last reference then it will be freed.
6718  */
6719 void free_netdev(struct net_device *dev)
6720 {
6721         struct napi_struct *p, *n;
6722
6723         release_net(dev_net(dev));
6724
6725         netif_free_tx_queues(dev);
6726 #ifdef CONFIG_SYSFS
6727         kfree(dev->_rx);
6728 #endif
6729
6730         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6731
6732         /* Flush device addresses */
6733         dev_addr_flush(dev);
6734
6735         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6736                 netif_napi_del(p);
6737
6738         free_percpu(dev->pcpu_refcnt);
6739         dev->pcpu_refcnt = NULL;
6740
6741         /*  Compatibility with error handling in drivers */
6742         if (dev->reg_state == NETREG_UNINITIALIZED) {
6743                 netdev_freemem(dev);
6744                 return;
6745         }
6746
6747         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6748         dev->reg_state = NETREG_RELEASED;
6749
6750         /* will free via device release */
6751         put_device(&dev->dev);
6752 }
6753 EXPORT_SYMBOL(free_netdev);
6754
6755 /**
6756  *      synchronize_net -  Synchronize with packet receive processing
6757  *
6758  *      Wait for packets currently being received to be done.
6759  *      Does not block later packets from starting.
6760  */
6761 void synchronize_net(void)
6762 {
6763         might_sleep();
6764         if (rtnl_is_locked())
6765                 synchronize_rcu_expedited();
6766         else
6767                 synchronize_rcu();
6768 }
6769 EXPORT_SYMBOL(synchronize_net);
6770
6771 /**
6772  *      unregister_netdevice_queue - remove device from the kernel
6773  *      @dev: device
6774  *      @head: list
6775  *
6776  *      This function shuts down a device interface and removes it
6777  *      from the kernel tables.
6778  *      If head not NULL, device is queued to be unregistered later.
6779  *
6780  *      Callers must hold the rtnl semaphore.  You may want
6781  *      unregister_netdev() instead of this.
6782  */
6783
6784 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6785 {
6786         ASSERT_RTNL();
6787
6788         if (head) {
6789                 list_move_tail(&dev->unreg_list, head);
6790         } else {
6791                 rollback_registered(dev);
6792                 /* Finish processing unregister after unlock */
6793                 net_set_todo(dev);
6794         }
6795 }
6796 EXPORT_SYMBOL(unregister_netdevice_queue);
6797
6798 /**
6799  *      unregister_netdevice_many - unregister many devices
6800  *      @head: list of devices
6801  *
6802  *  Note: As most callers use a stack allocated list_head,
6803  *  we force a list_del() to make sure stack wont be corrupted later.
6804  */
6805 void unregister_netdevice_many(struct list_head *head)
6806 {
6807         struct net_device *dev;
6808
6809         if (!list_empty(head)) {
6810                 rollback_registered_many(head);
6811                 list_for_each_entry(dev, head, unreg_list)
6812                         net_set_todo(dev);
6813                 list_del(head);
6814         }
6815 }
6816 EXPORT_SYMBOL(unregister_netdevice_many);
6817
6818 /**
6819  *      unregister_netdev - remove device from the kernel
6820  *      @dev: device
6821  *
6822  *      This function shuts down a device interface and removes it
6823  *      from the kernel tables.
6824  *
6825  *      This is just a wrapper for unregister_netdevice that takes
6826  *      the rtnl semaphore.  In general you want to use this and not
6827  *      unregister_netdevice.
6828  */
6829 void unregister_netdev(struct net_device *dev)
6830 {
6831         rtnl_lock();
6832         unregister_netdevice(dev);
6833         rtnl_unlock();
6834 }
6835 EXPORT_SYMBOL(unregister_netdev);
6836
6837 /**
6838  *      dev_change_net_namespace - move device to different nethost namespace
6839  *      @dev: device
6840  *      @net: network namespace
6841  *      @pat: If not NULL name pattern to try if the current device name
6842  *            is already taken in the destination network namespace.
6843  *
6844  *      This function shuts down a device interface and moves it
6845  *      to a new network namespace. On success 0 is returned, on
6846  *      a failure a netagive errno code is returned.
6847  *
6848  *      Callers must hold the rtnl semaphore.
6849  */
6850
6851 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6852 {
6853         int err;
6854
6855         ASSERT_RTNL();
6856
6857         /* Don't allow namespace local devices to be moved. */
6858         err = -EINVAL;
6859         if (dev->features & NETIF_F_NETNS_LOCAL)
6860                 goto out;
6861
6862         /* Ensure the device has been registrered */
6863         if (dev->reg_state != NETREG_REGISTERED)
6864                 goto out;
6865
6866         /* Get out if there is nothing todo */
6867         err = 0;
6868         if (net_eq(dev_net(dev), net))
6869                 goto out;
6870
6871         /* Pick the destination device name, and ensure
6872          * we can use it in the destination network namespace.
6873          */
6874         err = -EEXIST;
6875         if (__dev_get_by_name(net, dev->name)) {
6876                 /* We get here if we can't use the current device name */
6877                 if (!pat)
6878                         goto out;
6879                 if (dev_get_valid_name(net, dev, pat) < 0)
6880                         goto out;
6881         }
6882
6883         /*
6884          * And now a mini version of register_netdevice unregister_netdevice.
6885          */
6886
6887         /* If device is running close it first. */
6888         dev_close(dev);
6889
6890         /* And unlink it from device chain */
6891         err = -ENODEV;
6892         unlist_netdevice(dev);
6893
6894         synchronize_net();
6895
6896         /* Shutdown queueing discipline. */
6897         dev_shutdown(dev);
6898
6899         /* Notify protocols, that we are about to destroy
6900            this device. They should clean all the things.
6901
6902            Note that dev->reg_state stays at NETREG_REGISTERED.
6903            This is wanted because this way 8021q and macvlan know
6904            the device is just moving and can keep their slaves up.
6905         */
6906         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6907         rcu_barrier();
6908         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6909         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6910
6911         /*
6912          *      Flush the unicast and multicast chains
6913          */
6914         dev_uc_flush(dev);
6915         dev_mc_flush(dev);
6916
6917         /* Send a netdev-removed uevent to the old namespace */
6918         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6919         netdev_adjacent_del_links(dev);
6920
6921         /* Actually switch the network namespace */
6922         dev_net_set(dev, net);
6923
6924         /* If there is an ifindex conflict assign a new one */
6925         if (__dev_get_by_index(net, dev->ifindex)) {
6926                 int iflink = (dev->iflink == dev->ifindex);
6927                 dev->ifindex = dev_new_index(net);
6928                 if (iflink)
6929                         dev->iflink = dev->ifindex;
6930         }
6931
6932         /* Send a netdev-add uevent to the new namespace */
6933         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6934         netdev_adjacent_add_links(dev);
6935
6936         /* Fixup kobjects */
6937         err = device_rename(&dev->dev, dev->name);
6938         WARN_ON(err);
6939
6940         /* Add the device back in the hashes */
6941         list_netdevice(dev);
6942
6943         /* Notify protocols, that a new device appeared. */
6944         call_netdevice_notifiers(NETDEV_REGISTER, dev);
6945
6946         /*
6947          *      Prevent userspace races by waiting until the network
6948          *      device is fully setup before sending notifications.
6949          */
6950         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6951
6952         synchronize_net();
6953         err = 0;
6954 out:
6955         return err;
6956 }
6957 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6958
6959 static int dev_cpu_callback(struct notifier_block *nfb,
6960                             unsigned long action,
6961                             void *ocpu)
6962 {
6963         struct sk_buff **list_skb;
6964         struct sk_buff *skb;
6965         unsigned int cpu, oldcpu = (unsigned long)ocpu;
6966         struct softnet_data *sd, *oldsd;
6967
6968         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6969                 return NOTIFY_OK;
6970
6971         local_irq_disable();
6972         cpu = smp_processor_id();
6973         sd = &per_cpu(softnet_data, cpu);
6974         oldsd = &per_cpu(softnet_data, oldcpu);
6975
6976         /* Find end of our completion_queue. */
6977         list_skb = &sd->completion_queue;
6978         while (*list_skb)
6979                 list_skb = &(*list_skb)->next;
6980         /* Append completion queue from offline CPU. */
6981         *list_skb = oldsd->completion_queue;
6982         oldsd->completion_queue = NULL;
6983
6984         /* Append output queue from offline CPU. */
6985         if (oldsd->output_queue) {
6986                 *sd->output_queue_tailp = oldsd->output_queue;
6987                 sd->output_queue_tailp = oldsd->output_queue_tailp;
6988                 oldsd->output_queue = NULL;
6989                 oldsd->output_queue_tailp = &oldsd->output_queue;
6990         }
6991         /* Append NAPI poll list from offline CPU. */
6992         if (!list_empty(&oldsd->poll_list)) {
6993                 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6994                 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6995         }
6996
6997         raise_softirq_irqoff(NET_TX_SOFTIRQ);
6998         local_irq_enable();
6999
7000         /* Process offline CPU's input_pkt_queue */
7001         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7002                 netif_rx_internal(skb);
7003                 input_queue_head_incr(oldsd);
7004         }
7005         while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
7006                 netif_rx_internal(skb);
7007                 input_queue_head_incr(oldsd);
7008         }
7009
7010         return NOTIFY_OK;
7011 }
7012
7013
7014 /**
7015  *      netdev_increment_features - increment feature set by one
7016  *      @all: current feature set
7017  *      @one: new feature set
7018  *      @mask: mask feature set
7019  *
7020  *      Computes a new feature set after adding a device with feature set
7021  *      @one to the master device with current feature set @all.  Will not
7022  *      enable anything that is off in @mask. Returns the new feature set.
7023  */
7024 netdev_features_t netdev_increment_features(netdev_features_t all,
7025         netdev_features_t one, netdev_features_t mask)
7026 {
7027         if (mask & NETIF_F_GEN_CSUM)
7028                 mask |= NETIF_F_ALL_CSUM;
7029         mask |= NETIF_F_VLAN_CHALLENGED;
7030
7031         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7032         all &= one | ~NETIF_F_ALL_FOR_ALL;
7033
7034         /* If one device supports hw checksumming, set for all. */
7035         if (all & NETIF_F_GEN_CSUM)
7036                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7037
7038         return all;
7039 }
7040 EXPORT_SYMBOL(netdev_increment_features);
7041
7042 static struct hlist_head * __net_init netdev_create_hash(void)
7043 {
7044         int i;
7045         struct hlist_head *hash;
7046
7047         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7048         if (hash != NULL)
7049                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7050                         INIT_HLIST_HEAD(&hash[i]);
7051
7052         return hash;
7053 }
7054
7055 /* Initialize per network namespace state */
7056 static int __net_init netdev_init(struct net *net)
7057 {
7058         if (net != &init_net)
7059                 INIT_LIST_HEAD(&net->dev_base_head);
7060
7061         net->dev_name_head = netdev_create_hash();
7062         if (net->dev_name_head == NULL)
7063                 goto err_name;
7064
7065         net->dev_index_head = netdev_create_hash();
7066         if (net->dev_index_head == NULL)
7067                 goto err_idx;
7068
7069         return 0;
7070
7071 err_idx:
7072         kfree(net->dev_name_head);
7073 err_name:
7074         return -ENOMEM;
7075 }
7076
7077 /**
7078  *      netdev_drivername - network driver for the device
7079  *      @dev: network device
7080  *
7081  *      Determine network driver for device.
7082  */
7083 const char *netdev_drivername(const struct net_device *dev)
7084 {
7085         const struct device_driver *driver;
7086         const struct device *parent;
7087         const char *empty = "";
7088
7089         parent = dev->dev.parent;
7090         if (!parent)
7091                 return empty;
7092
7093         driver = parent->driver;
7094         if (driver && driver->name)
7095                 return driver->name;
7096         return empty;
7097 }
7098
7099 static void __netdev_printk(const char *level, const struct net_device *dev,
7100                             struct va_format *vaf)
7101 {
7102         if (dev && dev->dev.parent) {
7103                 dev_printk_emit(level[1] - '0',
7104                                 dev->dev.parent,
7105                                 "%s %s %s%s: %pV",
7106                                 dev_driver_string(dev->dev.parent),
7107                                 dev_name(dev->dev.parent),
7108                                 netdev_name(dev), netdev_reg_state(dev),
7109                                 vaf);
7110         } else if (dev) {
7111                 printk("%s%s%s: %pV",
7112                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7113         } else {
7114                 printk("%s(NULL net_device): %pV", level, vaf);
7115         }
7116 }
7117
7118 void netdev_printk(const char *level, const struct net_device *dev,
7119                    const char *format, ...)
7120 {
7121         struct va_format vaf;
7122         va_list args;
7123
7124         va_start(args, format);
7125
7126         vaf.fmt = format;
7127         vaf.va = &args;
7128
7129         __netdev_printk(level, dev, &vaf);
7130
7131         va_end(args);
7132 }
7133 EXPORT_SYMBOL(netdev_printk);
7134
7135 #define define_netdev_printk_level(func, level)                 \
7136 void func(const struct net_device *dev, const char *fmt, ...)   \
7137 {                                                               \
7138         struct va_format vaf;                                   \
7139         va_list args;                                           \
7140                                                                 \
7141         va_start(args, fmt);                                    \
7142                                                                 \
7143         vaf.fmt = fmt;                                          \
7144         vaf.va = &args;                                         \
7145                                                                 \
7146         __netdev_printk(level, dev, &vaf);                      \
7147                                                                 \
7148         va_end(args);                                           \
7149 }                                                               \
7150 EXPORT_SYMBOL(func);
7151
7152 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7153 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7154 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7155 define_netdev_printk_level(netdev_err, KERN_ERR);
7156 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7157 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7158 define_netdev_printk_level(netdev_info, KERN_INFO);
7159
7160 static void __net_exit netdev_exit(struct net *net)
7161 {
7162         kfree(net->dev_name_head);
7163         kfree(net->dev_index_head);
7164 }
7165
7166 static struct pernet_operations __net_initdata netdev_net_ops = {
7167         .init = netdev_init,
7168         .exit = netdev_exit,
7169 };
7170
7171 static void __net_exit default_device_exit(struct net *net)
7172 {
7173         struct net_device *dev, *aux;
7174         /*
7175          * Push all migratable network devices back to the
7176          * initial network namespace
7177          */
7178         rtnl_lock();
7179         for_each_netdev_safe(net, dev, aux) {
7180                 int err;
7181                 char fb_name[IFNAMSIZ];
7182
7183                 /* Ignore unmoveable devices (i.e. loopback) */
7184                 if (dev->features & NETIF_F_NETNS_LOCAL)
7185                         continue;
7186
7187                 /* Leave virtual devices for the generic cleanup */
7188                 if (dev->rtnl_link_ops)
7189                         continue;
7190
7191                 /* Push remaining network devices to init_net */
7192                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7193                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7194                 if (err) {
7195                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7196                                  __func__, dev->name, err);
7197                         BUG();
7198                 }
7199         }
7200         rtnl_unlock();
7201 }
7202
7203 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7204 {
7205         /* Return with the rtnl_lock held when there are no network
7206          * devices unregistering in any network namespace in net_list.
7207          */
7208         struct net *net;
7209         bool unregistering;
7210         DEFINE_WAIT(wait);
7211
7212         for (;;) {
7213                 prepare_to_wait(&netdev_unregistering_wq, &wait,
7214                                 TASK_UNINTERRUPTIBLE);
7215                 unregistering = false;
7216                 rtnl_lock();
7217                 list_for_each_entry(net, net_list, exit_list) {
7218                         if (net->dev_unreg_count > 0) {
7219                                 unregistering = true;
7220                                 break;
7221                         }
7222                 }
7223                 if (!unregistering)
7224                         break;
7225                 __rtnl_unlock();
7226                 schedule();
7227         }
7228         finish_wait(&netdev_unregistering_wq, &wait);
7229 }
7230
7231 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7232 {
7233         /* At exit all network devices most be removed from a network
7234          * namespace.  Do this in the reverse order of registration.
7235          * Do this across as many network namespaces as possible to
7236          * improve batching efficiency.
7237          */
7238         struct net_device *dev;
7239         struct net *net;
7240         LIST_HEAD(dev_kill_list);
7241
7242         /* To prevent network device cleanup code from dereferencing
7243          * loopback devices or network devices that have been freed
7244          * wait here for all pending unregistrations to complete,
7245          * before unregistring the loopback device and allowing the
7246          * network namespace be freed.
7247          *
7248          * The netdev todo list containing all network devices
7249          * unregistrations that happen in default_device_exit_batch
7250          * will run in the rtnl_unlock() at the end of
7251          * default_device_exit_batch.
7252          */
7253         rtnl_lock_unregistering(net_list);
7254         list_for_each_entry(net, net_list, exit_list) {
7255                 for_each_netdev_reverse(net, dev) {
7256                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7257                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7258                         else
7259                                 unregister_netdevice_queue(dev, &dev_kill_list);
7260                 }
7261         }
7262         unregister_netdevice_many(&dev_kill_list);
7263         rtnl_unlock();
7264 }
7265
7266 static struct pernet_operations __net_initdata default_device_ops = {
7267         .exit = default_device_exit,
7268         .exit_batch = default_device_exit_batch,
7269 };
7270
7271 /*
7272  *      Initialize the DEV module. At boot time this walks the device list and
7273  *      unhooks any devices that fail to initialise (normally hardware not
7274  *      present) and leaves us with a valid list of present and active devices.
7275  *
7276  */
7277
7278 /*
7279  *       This is called single threaded during boot, so no need
7280  *       to take the rtnl semaphore.
7281  */
7282 static int __init net_dev_init(void)
7283 {
7284         int i, rc = -ENOMEM;
7285
7286         BUG_ON(!dev_boot_phase);
7287
7288         if (dev_proc_init())
7289                 goto out;
7290
7291         if (netdev_kobject_init())
7292                 goto out;
7293
7294         INIT_LIST_HEAD(&ptype_all);
7295         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7296                 INIT_LIST_HEAD(&ptype_base[i]);
7297
7298         INIT_LIST_HEAD(&offload_base);
7299
7300         if (register_pernet_subsys(&netdev_net_ops))
7301                 goto out;
7302
7303         /*
7304          *      Initialise the packet receive queues.
7305          */
7306
7307         for_each_possible_cpu(i) {
7308                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7309
7310                 skb_queue_head_init(&sd->input_pkt_queue);
7311                 skb_queue_head_init(&sd->process_queue);
7312                 INIT_LIST_HEAD(&sd->poll_list);
7313                 sd->output_queue_tailp = &sd->output_queue;
7314 #ifdef CONFIG_RPS
7315                 sd->csd.func = rps_trigger_softirq;
7316                 sd->csd.info = sd;
7317                 sd->cpu = i;
7318 #endif
7319
7320                 sd->backlog.poll = process_backlog;
7321                 sd->backlog.weight = weight_p;
7322         }
7323
7324         dev_boot_phase = 0;
7325
7326         /* The loopback device is special if any other network devices
7327          * is present in a network namespace the loopback device must
7328          * be present. Since we now dynamically allocate and free the
7329          * loopback device ensure this invariant is maintained by
7330          * keeping the loopback device as the first device on the
7331          * list of network devices.  Ensuring the loopback devices
7332          * is the first device that appears and the last network device
7333          * that disappears.
7334          */
7335         if (register_pernet_device(&loopback_net_ops))
7336                 goto out;
7337
7338         if (register_pernet_device(&default_device_ops))
7339                 goto out;
7340
7341         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7342         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7343
7344         hotcpu_notifier(dev_cpu_callback, 0);
7345         dst_init();
7346         rc = 0;
7347 out:
7348         return rc;
7349 }
7350
7351 subsys_initcall(net_dev_init);