ath9k: fix compile error in non-debug ath_debug_stat_tx() stub
[pandora-kernel.git] / net / bluetooth / rfcomm / core.c
1 /*
2    RFCOMM implementation for Linux Bluetooth stack (BlueZ).
3    Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com>
4    Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org>
5
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License version 2 as
8    published by the Free Software Foundation;
9
10    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21    SOFTWARE IS DISCLAIMED.
22 */
23
24 /*
25  * Bluetooth RFCOMM core.
26  */
27
28 #include <linux/module.h>
29 #include <linux/errno.h>
30 #include <linux/kernel.h>
31 #include <linux/sched.h>
32 #include <linux/signal.h>
33 #include <linux/init.h>
34 #include <linux/wait.h>
35 #include <linux/device.h>
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
38 #include <linux/net.h>
39 #include <linux/mutex.h>
40 #include <linux/kthread.h>
41 #include <linux/slab.h>
42
43 #include <net/sock.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46
47 #include <net/bluetooth/bluetooth.h>
48 #include <net/bluetooth/hci_core.h>
49 #include <net/bluetooth/l2cap.h>
50 #include <net/bluetooth/rfcomm.h>
51
52 #define VERSION "1.11"
53
54 static int disable_cfc;
55 static int l2cap_ertm;
56 static int channel_mtu = -1;
57 static unsigned int l2cap_mtu = RFCOMM_MAX_L2CAP_MTU;
58
59 static struct task_struct *rfcomm_thread;
60
61 static DEFINE_MUTEX(rfcomm_mutex);
62 #define rfcomm_lock()   mutex_lock(&rfcomm_mutex)
63 #define rfcomm_unlock() mutex_unlock(&rfcomm_mutex)
64
65 static unsigned long rfcomm_event;
66
67 static LIST_HEAD(session_list);
68
69 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len);
70 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci);
71 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci);
72 static int rfcomm_queue_disc(struct rfcomm_dlc *d);
73 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type);
74 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d);
75 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig);
76 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len);
77 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits);
78 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr);
79
80 static void rfcomm_process_connect(struct rfcomm_session *s);
81
82 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src,
83                                                         bdaddr_t *dst,
84                                                         u8 sec_level,
85                                                         int *err);
86 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst);
87 static void rfcomm_session_del(struct rfcomm_session *s);
88
89 /* ---- RFCOMM frame parsing macros ---- */
90 #define __get_dlci(b)     ((b & 0xfc) >> 2)
91 #define __get_channel(b)  ((b & 0xf8) >> 3)
92 #define __get_dir(b)      ((b & 0x04) >> 2)
93 #define __get_type(b)     ((b & 0xef))
94
95 #define __test_ea(b)      ((b & 0x01))
96 #define __test_cr(b)      ((b & 0x02))
97 #define __test_pf(b)      ((b & 0x10))
98
99 #define __addr(cr, dlci)       (((dlci & 0x3f) << 2) | (cr << 1) | 0x01)
100 #define __ctrl(type, pf)       (((type & 0xef) | (pf << 4)))
101 #define __dlci(dir, chn)       (((chn & 0x1f) << 1) | dir)
102 #define __srv_channel(dlci)    (dlci >> 1)
103 #define __dir(dlci)            (dlci & 0x01)
104
105 #define __len8(len)       (((len) << 1) | 1)
106 #define __len16(len)      ((len) << 1)
107
108 /* MCC macros */
109 #define __mcc_type(cr, type)   (((type << 2) | (cr << 1) | 0x01))
110 #define __get_mcc_type(b) ((b & 0xfc) >> 2)
111 #define __get_mcc_len(b)  ((b & 0xfe) >> 1)
112
113 /* RPN macros */
114 #define __rpn_line_settings(data, stop, parity)  ((data & 0x3) | ((stop & 0x1) << 2) | ((parity & 0x7) << 3))
115 #define __get_rpn_data_bits(line) ((line) & 0x3)
116 #define __get_rpn_stop_bits(line) (((line) >> 2) & 0x1)
117 #define __get_rpn_parity(line)    (((line) >> 3) & 0x7)
118
119 static inline void rfcomm_schedule(void)
120 {
121         if (!rfcomm_thread)
122                 return;
123         set_bit(RFCOMM_SCHED_WAKEUP, &rfcomm_event);
124         wake_up_process(rfcomm_thread);
125 }
126
127 static inline void rfcomm_session_put(struct rfcomm_session *s)
128 {
129         if (atomic_dec_and_test(&s->refcnt))
130                 rfcomm_session_del(s);
131 }
132
133 /* ---- RFCOMM FCS computation ---- */
134
135 /* reversed, 8-bit, poly=0x07 */
136 static unsigned char rfcomm_crc_table[256] = {
137         0x00, 0x91, 0xe3, 0x72, 0x07, 0x96, 0xe4, 0x75,
138         0x0e, 0x9f, 0xed, 0x7c, 0x09, 0x98, 0xea, 0x7b,
139         0x1c, 0x8d, 0xff, 0x6e, 0x1b, 0x8a, 0xf8, 0x69,
140         0x12, 0x83, 0xf1, 0x60, 0x15, 0x84, 0xf6, 0x67,
141
142         0x38, 0xa9, 0xdb, 0x4a, 0x3f, 0xae, 0xdc, 0x4d,
143         0x36, 0xa7, 0xd5, 0x44, 0x31, 0xa0, 0xd2, 0x43,
144         0x24, 0xb5, 0xc7, 0x56, 0x23, 0xb2, 0xc0, 0x51,
145         0x2a, 0xbb, 0xc9, 0x58, 0x2d, 0xbc, 0xce, 0x5f,
146
147         0x70, 0xe1, 0x93, 0x02, 0x77, 0xe6, 0x94, 0x05,
148         0x7e, 0xef, 0x9d, 0x0c, 0x79, 0xe8, 0x9a, 0x0b,
149         0x6c, 0xfd, 0x8f, 0x1e, 0x6b, 0xfa, 0x88, 0x19,
150         0x62, 0xf3, 0x81, 0x10, 0x65, 0xf4, 0x86, 0x17,
151
152         0x48, 0xd9, 0xab, 0x3a, 0x4f, 0xde, 0xac, 0x3d,
153         0x46, 0xd7, 0xa5, 0x34, 0x41, 0xd0, 0xa2, 0x33,
154         0x54, 0xc5, 0xb7, 0x26, 0x53, 0xc2, 0xb0, 0x21,
155         0x5a, 0xcb, 0xb9, 0x28, 0x5d, 0xcc, 0xbe, 0x2f,
156
157         0xe0, 0x71, 0x03, 0x92, 0xe7, 0x76, 0x04, 0x95,
158         0xee, 0x7f, 0x0d, 0x9c, 0xe9, 0x78, 0x0a, 0x9b,
159         0xfc, 0x6d, 0x1f, 0x8e, 0xfb, 0x6a, 0x18, 0x89,
160         0xf2, 0x63, 0x11, 0x80, 0xf5, 0x64, 0x16, 0x87,
161
162         0xd8, 0x49, 0x3b, 0xaa, 0xdf, 0x4e, 0x3c, 0xad,
163         0xd6, 0x47, 0x35, 0xa4, 0xd1, 0x40, 0x32, 0xa3,
164         0xc4, 0x55, 0x27, 0xb6, 0xc3, 0x52, 0x20, 0xb1,
165         0xca, 0x5b, 0x29, 0xb8, 0xcd, 0x5c, 0x2e, 0xbf,
166
167         0x90, 0x01, 0x73, 0xe2, 0x97, 0x06, 0x74, 0xe5,
168         0x9e, 0x0f, 0x7d, 0xec, 0x99, 0x08, 0x7a, 0xeb,
169         0x8c, 0x1d, 0x6f, 0xfe, 0x8b, 0x1a, 0x68, 0xf9,
170         0x82, 0x13, 0x61, 0xf0, 0x85, 0x14, 0x66, 0xf7,
171
172         0xa8, 0x39, 0x4b, 0xda, 0xaf, 0x3e, 0x4c, 0xdd,
173         0xa6, 0x37, 0x45, 0xd4, 0xa1, 0x30, 0x42, 0xd3,
174         0xb4, 0x25, 0x57, 0xc6, 0xb3, 0x22, 0x50, 0xc1,
175         0xba, 0x2b, 0x59, 0xc8, 0xbd, 0x2c, 0x5e, 0xcf
176 };
177
178 /* CRC on 2 bytes */
179 #define __crc(data) (rfcomm_crc_table[rfcomm_crc_table[0xff ^ data[0]] ^ data[1]])
180
181 /* FCS on 2 bytes */
182 static inline u8 __fcs(u8 *data)
183 {
184         return 0xff - __crc(data);
185 }
186
187 /* FCS on 3 bytes */
188 static inline u8 __fcs2(u8 *data)
189 {
190         return 0xff - rfcomm_crc_table[__crc(data) ^ data[2]];
191 }
192
193 /* Check FCS */
194 static inline int __check_fcs(u8 *data, int type, u8 fcs)
195 {
196         u8 f = __crc(data);
197
198         if (type != RFCOMM_UIH)
199                 f = rfcomm_crc_table[f ^ data[2]];
200
201         return rfcomm_crc_table[f ^ fcs] != 0xcf;
202 }
203
204 /* ---- L2CAP callbacks ---- */
205 static void rfcomm_l2state_change(struct sock *sk)
206 {
207         BT_DBG("%p state %d", sk, sk->sk_state);
208         rfcomm_schedule();
209 }
210
211 static void rfcomm_l2data_ready(struct sock *sk, int bytes)
212 {
213         BT_DBG("%p bytes %d", sk, bytes);
214         rfcomm_schedule();
215 }
216
217 static int rfcomm_l2sock_create(struct socket **sock)
218 {
219         int err;
220
221         BT_DBG("");
222
223         err = sock_create_kern(PF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_L2CAP, sock);
224         if (!err) {
225                 struct sock *sk = (*sock)->sk;
226                 sk->sk_data_ready   = rfcomm_l2data_ready;
227                 sk->sk_state_change = rfcomm_l2state_change;
228         }
229         return err;
230 }
231
232 static inline int rfcomm_check_security(struct rfcomm_dlc *d)
233 {
234         struct sock *sk = d->session->sock->sk;
235         __u8 auth_type;
236
237         switch (d->sec_level) {
238         case BT_SECURITY_HIGH:
239                 auth_type = HCI_AT_GENERAL_BONDING_MITM;
240                 break;
241         case BT_SECURITY_MEDIUM:
242                 auth_type = HCI_AT_GENERAL_BONDING;
243                 break;
244         default:
245                 auth_type = HCI_AT_NO_BONDING;
246                 break;
247         }
248
249         return hci_conn_security(l2cap_pi(sk)->conn->hcon, d->sec_level,
250                                                                 auth_type);
251 }
252
253 static void rfcomm_session_timeout(unsigned long arg)
254 {
255         struct rfcomm_session *s = (void *) arg;
256
257         BT_DBG("session %p state %ld", s, s->state);
258
259         set_bit(RFCOMM_TIMED_OUT, &s->flags);
260         rfcomm_schedule();
261 }
262
263 static void rfcomm_session_set_timer(struct rfcomm_session *s, long timeout)
264 {
265         BT_DBG("session %p state %ld timeout %ld", s, s->state, timeout);
266
267         if (!mod_timer(&s->timer, jiffies + timeout))
268                 rfcomm_session_hold(s);
269 }
270
271 static void rfcomm_session_clear_timer(struct rfcomm_session *s)
272 {
273         BT_DBG("session %p state %ld", s, s->state);
274
275         if (timer_pending(&s->timer) && del_timer(&s->timer))
276                 rfcomm_session_put(s);
277 }
278
279 /* ---- RFCOMM DLCs ---- */
280 static void rfcomm_dlc_timeout(unsigned long arg)
281 {
282         struct rfcomm_dlc *d = (void *) arg;
283
284         BT_DBG("dlc %p state %ld", d, d->state);
285
286         set_bit(RFCOMM_TIMED_OUT, &d->flags);
287         rfcomm_dlc_put(d);
288         rfcomm_schedule();
289 }
290
291 static void rfcomm_dlc_set_timer(struct rfcomm_dlc *d, long timeout)
292 {
293         BT_DBG("dlc %p state %ld timeout %ld", d, d->state, timeout);
294
295         if (!mod_timer(&d->timer, jiffies + timeout))
296                 rfcomm_dlc_hold(d);
297 }
298
299 static void rfcomm_dlc_clear_timer(struct rfcomm_dlc *d)
300 {
301         BT_DBG("dlc %p state %ld", d, d->state);
302
303         if (timer_pending(&d->timer) && del_timer(&d->timer))
304                 rfcomm_dlc_put(d);
305 }
306
307 static void rfcomm_dlc_clear_state(struct rfcomm_dlc *d)
308 {
309         BT_DBG("%p", d);
310
311         d->state      = BT_OPEN;
312         d->flags      = 0;
313         d->mscex      = 0;
314         d->sec_level  = BT_SECURITY_LOW;
315         d->mtu        = RFCOMM_DEFAULT_MTU;
316         d->v24_sig    = RFCOMM_V24_RTC | RFCOMM_V24_RTR | RFCOMM_V24_DV;
317
318         d->cfc        = RFCOMM_CFC_DISABLED;
319         d->rx_credits = RFCOMM_DEFAULT_CREDITS;
320 }
321
322 struct rfcomm_dlc *rfcomm_dlc_alloc(gfp_t prio)
323 {
324         struct rfcomm_dlc *d = kzalloc(sizeof(*d), prio);
325
326         if (!d)
327                 return NULL;
328
329         setup_timer(&d->timer, rfcomm_dlc_timeout, (unsigned long)d);
330
331         skb_queue_head_init(&d->tx_queue);
332         spin_lock_init(&d->lock);
333         atomic_set(&d->refcnt, 1);
334
335         rfcomm_dlc_clear_state(d);
336
337         BT_DBG("%p", d);
338
339         return d;
340 }
341
342 void rfcomm_dlc_free(struct rfcomm_dlc *d)
343 {
344         BT_DBG("%p", d);
345
346         skb_queue_purge(&d->tx_queue);
347         kfree(d);
348 }
349
350 static void rfcomm_dlc_link(struct rfcomm_session *s, struct rfcomm_dlc *d)
351 {
352         BT_DBG("dlc %p session %p", d, s);
353
354         rfcomm_session_hold(s);
355
356         rfcomm_session_clear_timer(s);
357         rfcomm_dlc_hold(d);
358         list_add(&d->list, &s->dlcs);
359         d->session = s;
360 }
361
362 static void rfcomm_dlc_unlink(struct rfcomm_dlc *d)
363 {
364         struct rfcomm_session *s = d->session;
365
366         BT_DBG("dlc %p refcnt %d session %p", d, atomic_read(&d->refcnt), s);
367
368         list_del(&d->list);
369         d->session = NULL;
370         rfcomm_dlc_put(d);
371
372         if (list_empty(&s->dlcs))
373                 rfcomm_session_set_timer(s, RFCOMM_IDLE_TIMEOUT);
374
375         rfcomm_session_put(s);
376 }
377
378 static struct rfcomm_dlc *rfcomm_dlc_get(struct rfcomm_session *s, u8 dlci)
379 {
380         struct rfcomm_dlc *d;
381         struct list_head *p;
382
383         list_for_each(p, &s->dlcs) {
384                 d = list_entry(p, struct rfcomm_dlc, list);
385                 if (d->dlci == dlci)
386                         return d;
387         }
388         return NULL;
389 }
390
391 static int __rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel)
392 {
393         struct rfcomm_session *s;
394         int err = 0;
395         u8 dlci;
396
397         BT_DBG("dlc %p state %ld %s %s channel %d",
398                         d, d->state, batostr(src), batostr(dst), channel);
399
400         if (channel < 1 || channel > 30)
401                 return -EINVAL;
402
403         if (d->state != BT_OPEN && d->state != BT_CLOSED)
404                 return 0;
405
406         s = rfcomm_session_get(src, dst);
407         if (!s) {
408                 s = rfcomm_session_create(src, dst, d->sec_level, &err);
409                 if (!s)
410                         return err;
411         }
412
413         dlci = __dlci(!s->initiator, channel);
414
415         /* Check if DLCI already exists */
416         if (rfcomm_dlc_get(s, dlci))
417                 return -EBUSY;
418
419         rfcomm_dlc_clear_state(d);
420
421         d->dlci     = dlci;
422         d->addr     = __addr(s->initiator, dlci);
423         d->priority = 7;
424
425         d->state = BT_CONFIG;
426         rfcomm_dlc_link(s, d);
427
428         d->out = 1;
429
430         d->mtu = s->mtu;
431         d->cfc = (s->cfc == RFCOMM_CFC_UNKNOWN) ? 0 : s->cfc;
432
433         if (s->state == BT_CONNECTED) {
434                 if (rfcomm_check_security(d))
435                         rfcomm_send_pn(s, 1, d);
436                 else
437                         set_bit(RFCOMM_AUTH_PENDING, &d->flags);
438         }
439
440         rfcomm_dlc_set_timer(d, RFCOMM_CONN_TIMEOUT);
441
442         return 0;
443 }
444
445 int rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel)
446 {
447         int r;
448
449         rfcomm_lock();
450
451         r = __rfcomm_dlc_open(d, src, dst, channel);
452
453         rfcomm_unlock();
454         return r;
455 }
456
457 static int __rfcomm_dlc_close(struct rfcomm_dlc *d, int err)
458 {
459         struct rfcomm_session *s = d->session;
460         if (!s)
461                 return 0;
462
463         BT_DBG("dlc %p state %ld dlci %d err %d session %p",
464                         d, d->state, d->dlci, err, s);
465
466         switch (d->state) {
467         case BT_CONNECT:
468         case BT_CONFIG:
469                 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) {
470                         set_bit(RFCOMM_AUTH_REJECT, &d->flags);
471                         rfcomm_schedule();
472                         break;
473                 }
474                 /* Fall through */
475
476         case BT_CONNECTED:
477                 d->state = BT_DISCONN;
478                 if (skb_queue_empty(&d->tx_queue)) {
479                         rfcomm_send_disc(s, d->dlci);
480                         rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT);
481                 } else {
482                         rfcomm_queue_disc(d);
483                         rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT * 2);
484                 }
485                 break;
486
487         case BT_OPEN:
488         case BT_CONNECT2:
489                 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) {
490                         set_bit(RFCOMM_AUTH_REJECT, &d->flags);
491                         rfcomm_schedule();
492                         break;
493                 }
494                 /* Fall through */
495
496         default:
497                 rfcomm_dlc_clear_timer(d);
498
499                 rfcomm_dlc_lock(d);
500                 d->state = BT_CLOSED;
501                 d->state_change(d, err);
502                 rfcomm_dlc_unlock(d);
503
504                 skb_queue_purge(&d->tx_queue);
505                 rfcomm_dlc_unlink(d);
506         }
507
508         return 0;
509 }
510
511 int rfcomm_dlc_close(struct rfcomm_dlc *d, int err)
512 {
513         int r;
514
515         rfcomm_lock();
516
517         r = __rfcomm_dlc_close(d, err);
518
519         rfcomm_unlock();
520         return r;
521 }
522
523 int rfcomm_dlc_send(struct rfcomm_dlc *d, struct sk_buff *skb)
524 {
525         int len = skb->len;
526
527         if (d->state != BT_CONNECTED)
528                 return -ENOTCONN;
529
530         BT_DBG("dlc %p mtu %d len %d", d, d->mtu, len);
531
532         if (len > d->mtu)
533                 return -EINVAL;
534
535         rfcomm_make_uih(skb, d->addr);
536         skb_queue_tail(&d->tx_queue, skb);
537
538         if (!test_bit(RFCOMM_TX_THROTTLED, &d->flags))
539                 rfcomm_schedule();
540         return len;
541 }
542
543 void __rfcomm_dlc_throttle(struct rfcomm_dlc *d)
544 {
545         BT_DBG("dlc %p state %ld", d, d->state);
546
547         if (!d->cfc) {
548                 d->v24_sig |= RFCOMM_V24_FC;
549                 set_bit(RFCOMM_MSC_PENDING, &d->flags);
550         }
551         rfcomm_schedule();
552 }
553
554 void __rfcomm_dlc_unthrottle(struct rfcomm_dlc *d)
555 {
556         BT_DBG("dlc %p state %ld", d, d->state);
557
558         if (!d->cfc) {
559                 d->v24_sig &= ~RFCOMM_V24_FC;
560                 set_bit(RFCOMM_MSC_PENDING, &d->flags);
561         }
562         rfcomm_schedule();
563 }
564
565 /*
566    Set/get modem status functions use _local_ status i.e. what we report
567    to the other side.
568    Remote status is provided by dlc->modem_status() callback.
569  */
570 int rfcomm_dlc_set_modem_status(struct rfcomm_dlc *d, u8 v24_sig)
571 {
572         BT_DBG("dlc %p state %ld v24_sig 0x%x",
573                         d, d->state, v24_sig);
574
575         if (test_bit(RFCOMM_RX_THROTTLED, &d->flags))
576                 v24_sig |= RFCOMM_V24_FC;
577         else
578                 v24_sig &= ~RFCOMM_V24_FC;
579
580         d->v24_sig = v24_sig;
581
582         if (!test_and_set_bit(RFCOMM_MSC_PENDING, &d->flags))
583                 rfcomm_schedule();
584
585         return 0;
586 }
587
588 int rfcomm_dlc_get_modem_status(struct rfcomm_dlc *d, u8 *v24_sig)
589 {
590         BT_DBG("dlc %p state %ld v24_sig 0x%x",
591                         d, d->state, d->v24_sig);
592
593         *v24_sig = d->v24_sig;
594         return 0;
595 }
596
597 /* ---- RFCOMM sessions ---- */
598 static struct rfcomm_session *rfcomm_session_add(struct socket *sock, int state)
599 {
600         struct rfcomm_session *s = kzalloc(sizeof(*s), GFP_KERNEL);
601
602         if (!s)
603                 return NULL;
604
605         BT_DBG("session %p sock %p", s, sock);
606
607         setup_timer(&s->timer, rfcomm_session_timeout, (unsigned long) s);
608
609         INIT_LIST_HEAD(&s->dlcs);
610         s->state = state;
611         s->sock  = sock;
612
613         s->mtu = RFCOMM_DEFAULT_MTU;
614         s->cfc = disable_cfc ? RFCOMM_CFC_DISABLED : RFCOMM_CFC_UNKNOWN;
615
616         /* Do not increment module usage count for listening sessions.
617          * Otherwise we won't be able to unload the module. */
618         if (state != BT_LISTEN)
619                 if (!try_module_get(THIS_MODULE)) {
620                         kfree(s);
621                         return NULL;
622                 }
623
624         list_add(&s->list, &session_list);
625
626         return s;
627 }
628
629 static void rfcomm_session_del(struct rfcomm_session *s)
630 {
631         int state = s->state;
632
633         BT_DBG("session %p state %ld", s, s->state);
634
635         list_del(&s->list);
636
637         if (state == BT_CONNECTED)
638                 rfcomm_send_disc(s, 0);
639
640         rfcomm_session_clear_timer(s);
641         sock_release(s->sock);
642         kfree(s);
643
644         if (state != BT_LISTEN)
645                 module_put(THIS_MODULE);
646 }
647
648 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst)
649 {
650         struct rfcomm_session *s;
651         struct list_head *p, *n;
652         struct bt_sock *sk;
653         list_for_each_safe(p, n, &session_list) {
654                 s = list_entry(p, struct rfcomm_session, list);
655                 sk = bt_sk(s->sock->sk);
656
657                 if ((!bacmp(src, BDADDR_ANY) || !bacmp(&sk->src, src)) &&
658                                 !bacmp(&sk->dst, dst))
659                         return s;
660         }
661         return NULL;
662 }
663
664 static void rfcomm_session_close(struct rfcomm_session *s, int err)
665 {
666         struct rfcomm_dlc *d;
667         struct list_head *p, *n;
668
669         BT_DBG("session %p state %ld err %d", s, s->state, err);
670
671         rfcomm_session_hold(s);
672
673         s->state = BT_CLOSED;
674
675         /* Close all dlcs */
676         list_for_each_safe(p, n, &s->dlcs) {
677                 d = list_entry(p, struct rfcomm_dlc, list);
678                 d->state = BT_CLOSED;
679                 __rfcomm_dlc_close(d, err);
680         }
681
682         rfcomm_session_clear_timer(s);
683         rfcomm_session_put(s);
684 }
685
686 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src,
687                                                         bdaddr_t *dst,
688                                                         u8 sec_level,
689                                                         int *err)
690 {
691         struct rfcomm_session *s = NULL;
692         struct sockaddr_l2 addr;
693         struct socket *sock;
694         struct sock *sk;
695
696         BT_DBG("%s %s", batostr(src), batostr(dst));
697
698         *err = rfcomm_l2sock_create(&sock);
699         if (*err < 0)
700                 return NULL;
701
702         bacpy(&addr.l2_bdaddr, src);
703         addr.l2_family = AF_BLUETOOTH;
704         addr.l2_psm    = 0;
705         addr.l2_cid    = 0;
706         *err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr));
707         if (*err < 0)
708                 goto failed;
709
710         /* Set L2CAP options */
711         sk = sock->sk;
712         lock_sock(sk);
713         l2cap_pi(sk)->imtu = l2cap_mtu;
714         l2cap_pi(sk)->sec_level = sec_level;
715         if (l2cap_ertm)
716                 l2cap_pi(sk)->mode = L2CAP_MODE_ERTM;
717         release_sock(sk);
718
719         s = rfcomm_session_add(sock, BT_BOUND);
720         if (!s) {
721                 *err = -ENOMEM;
722                 goto failed;
723         }
724
725         s->initiator = 1;
726
727         bacpy(&addr.l2_bdaddr, dst);
728         addr.l2_family = AF_BLUETOOTH;
729         addr.l2_psm    = cpu_to_le16(RFCOMM_PSM);
730         addr.l2_cid    = 0;
731         *err = kernel_connect(sock, (struct sockaddr *) &addr, sizeof(addr), O_NONBLOCK);
732         if (*err == 0 || *err == -EINPROGRESS)
733                 return s;
734
735         rfcomm_session_del(s);
736         return NULL;
737
738 failed:
739         sock_release(sock);
740         return NULL;
741 }
742
743 void rfcomm_session_getaddr(struct rfcomm_session *s, bdaddr_t *src, bdaddr_t *dst)
744 {
745         struct sock *sk = s->sock->sk;
746         if (src)
747                 bacpy(src, &bt_sk(sk)->src);
748         if (dst)
749                 bacpy(dst, &bt_sk(sk)->dst);
750 }
751
752 /* ---- RFCOMM frame sending ---- */
753 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len)
754 {
755         struct socket *sock = s->sock;
756         struct kvec iv = { data, len };
757         struct msghdr msg;
758
759         BT_DBG("session %p len %d", s, len);
760
761         memset(&msg, 0, sizeof(msg));
762
763         return kernel_sendmsg(sock, &msg, &iv, 1, len);
764 }
765
766 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci)
767 {
768         struct rfcomm_cmd cmd;
769
770         BT_DBG("%p dlci %d", s, dlci);
771
772         cmd.addr = __addr(s->initiator, dlci);
773         cmd.ctrl = __ctrl(RFCOMM_SABM, 1);
774         cmd.len  = __len8(0);
775         cmd.fcs  = __fcs2((u8 *) &cmd);
776
777         return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
778 }
779
780 static int rfcomm_send_ua(struct rfcomm_session *s, u8 dlci)
781 {
782         struct rfcomm_cmd cmd;
783
784         BT_DBG("%p dlci %d", s, dlci);
785
786         cmd.addr = __addr(!s->initiator, dlci);
787         cmd.ctrl = __ctrl(RFCOMM_UA, 1);
788         cmd.len  = __len8(0);
789         cmd.fcs  = __fcs2((u8 *) &cmd);
790
791         return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
792 }
793
794 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci)
795 {
796         struct rfcomm_cmd cmd;
797
798         BT_DBG("%p dlci %d", s, dlci);
799
800         cmd.addr = __addr(s->initiator, dlci);
801         cmd.ctrl = __ctrl(RFCOMM_DISC, 1);
802         cmd.len  = __len8(0);
803         cmd.fcs  = __fcs2((u8 *) &cmd);
804
805         return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
806 }
807
808 static int rfcomm_queue_disc(struct rfcomm_dlc *d)
809 {
810         struct rfcomm_cmd *cmd;
811         struct sk_buff *skb;
812
813         BT_DBG("dlc %p dlci %d", d, d->dlci);
814
815         skb = alloc_skb(sizeof(*cmd), GFP_KERNEL);
816         if (!skb)
817                 return -ENOMEM;
818
819         cmd = (void *) __skb_put(skb, sizeof(*cmd));
820         cmd->addr = d->addr;
821         cmd->ctrl = __ctrl(RFCOMM_DISC, 1);
822         cmd->len  = __len8(0);
823         cmd->fcs  = __fcs2((u8 *) cmd);
824
825         skb_queue_tail(&d->tx_queue, skb);
826         rfcomm_schedule();
827         return 0;
828 }
829
830 static int rfcomm_send_dm(struct rfcomm_session *s, u8 dlci)
831 {
832         struct rfcomm_cmd cmd;
833
834         BT_DBG("%p dlci %d", s, dlci);
835
836         cmd.addr = __addr(!s->initiator, dlci);
837         cmd.ctrl = __ctrl(RFCOMM_DM, 1);
838         cmd.len  = __len8(0);
839         cmd.fcs  = __fcs2((u8 *) &cmd);
840
841         return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
842 }
843
844 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type)
845 {
846         struct rfcomm_hdr *hdr;
847         struct rfcomm_mcc *mcc;
848         u8 buf[16], *ptr = buf;
849
850         BT_DBG("%p cr %d type %d", s, cr, type);
851
852         hdr = (void *) ptr; ptr += sizeof(*hdr);
853         hdr->addr = __addr(s->initiator, 0);
854         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
855         hdr->len  = __len8(sizeof(*mcc) + 1);
856
857         mcc = (void *) ptr; ptr += sizeof(*mcc);
858         mcc->type = __mcc_type(cr, RFCOMM_NSC);
859         mcc->len  = __len8(1);
860
861         /* Type that we didn't like */
862         *ptr = __mcc_type(cr, type); ptr++;
863
864         *ptr = __fcs(buf); ptr++;
865
866         return rfcomm_send_frame(s, buf, ptr - buf);
867 }
868
869 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d)
870 {
871         struct rfcomm_hdr *hdr;
872         struct rfcomm_mcc *mcc;
873         struct rfcomm_pn  *pn;
874         u8 buf[16], *ptr = buf;
875
876         BT_DBG("%p cr %d dlci %d mtu %d", s, cr, d->dlci, d->mtu);
877
878         hdr = (void *) ptr; ptr += sizeof(*hdr);
879         hdr->addr = __addr(s->initiator, 0);
880         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
881         hdr->len  = __len8(sizeof(*mcc) + sizeof(*pn));
882
883         mcc = (void *) ptr; ptr += sizeof(*mcc);
884         mcc->type = __mcc_type(cr, RFCOMM_PN);
885         mcc->len  = __len8(sizeof(*pn));
886
887         pn = (void *) ptr; ptr += sizeof(*pn);
888         pn->dlci        = d->dlci;
889         pn->priority    = d->priority;
890         pn->ack_timer   = 0;
891         pn->max_retrans = 0;
892
893         if (s->cfc) {
894                 pn->flow_ctrl = cr ? 0xf0 : 0xe0;
895                 pn->credits = RFCOMM_DEFAULT_CREDITS;
896         } else {
897                 pn->flow_ctrl = 0;
898                 pn->credits   = 0;
899         }
900
901         if (cr && channel_mtu >= 0)
902                 pn->mtu = cpu_to_le16(channel_mtu);
903         else
904                 pn->mtu = cpu_to_le16(d->mtu);
905
906         *ptr = __fcs(buf); ptr++;
907
908         return rfcomm_send_frame(s, buf, ptr - buf);
909 }
910
911 int rfcomm_send_rpn(struct rfcomm_session *s, int cr, u8 dlci,
912                         u8 bit_rate, u8 data_bits, u8 stop_bits,
913                         u8 parity, u8 flow_ctrl_settings,
914                         u8 xon_char, u8 xoff_char, u16 param_mask)
915 {
916         struct rfcomm_hdr *hdr;
917         struct rfcomm_mcc *mcc;
918         struct rfcomm_rpn *rpn;
919         u8 buf[16], *ptr = buf;
920
921         BT_DBG("%p cr %d dlci %d bit_r 0x%x data_b 0x%x stop_b 0x%x parity 0x%x"
922                         " flwc_s 0x%x xon_c 0x%x xoff_c 0x%x p_mask 0x%x",
923                 s, cr, dlci, bit_rate, data_bits, stop_bits, parity,
924                 flow_ctrl_settings, xon_char, xoff_char, param_mask);
925
926         hdr = (void *) ptr; ptr += sizeof(*hdr);
927         hdr->addr = __addr(s->initiator, 0);
928         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
929         hdr->len  = __len8(sizeof(*mcc) + sizeof(*rpn));
930
931         mcc = (void *) ptr; ptr += sizeof(*mcc);
932         mcc->type = __mcc_type(cr, RFCOMM_RPN);
933         mcc->len  = __len8(sizeof(*rpn));
934
935         rpn = (void *) ptr; ptr += sizeof(*rpn);
936         rpn->dlci          = __addr(1, dlci);
937         rpn->bit_rate      = bit_rate;
938         rpn->line_settings = __rpn_line_settings(data_bits, stop_bits, parity);
939         rpn->flow_ctrl     = flow_ctrl_settings;
940         rpn->xon_char      = xon_char;
941         rpn->xoff_char     = xoff_char;
942         rpn->param_mask    = cpu_to_le16(param_mask);
943
944         *ptr = __fcs(buf); ptr++;
945
946         return rfcomm_send_frame(s, buf, ptr - buf);
947 }
948
949 static int rfcomm_send_rls(struct rfcomm_session *s, int cr, u8 dlci, u8 status)
950 {
951         struct rfcomm_hdr *hdr;
952         struct rfcomm_mcc *mcc;
953         struct rfcomm_rls *rls;
954         u8 buf[16], *ptr = buf;
955
956         BT_DBG("%p cr %d status 0x%x", s, cr, status);
957
958         hdr = (void *) ptr; ptr += sizeof(*hdr);
959         hdr->addr = __addr(s->initiator, 0);
960         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
961         hdr->len  = __len8(sizeof(*mcc) + sizeof(*rls));
962
963         mcc = (void *) ptr; ptr += sizeof(*mcc);
964         mcc->type = __mcc_type(cr, RFCOMM_RLS);
965         mcc->len  = __len8(sizeof(*rls));
966
967         rls = (void *) ptr; ptr += sizeof(*rls);
968         rls->dlci   = __addr(1, dlci);
969         rls->status = status;
970
971         *ptr = __fcs(buf); ptr++;
972
973         return rfcomm_send_frame(s, buf, ptr - buf);
974 }
975
976 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig)
977 {
978         struct rfcomm_hdr *hdr;
979         struct rfcomm_mcc *mcc;
980         struct rfcomm_msc *msc;
981         u8 buf[16], *ptr = buf;
982
983         BT_DBG("%p cr %d v24 0x%x", s, cr, v24_sig);
984
985         hdr = (void *) ptr; ptr += sizeof(*hdr);
986         hdr->addr = __addr(s->initiator, 0);
987         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
988         hdr->len  = __len8(sizeof(*mcc) + sizeof(*msc));
989
990         mcc = (void *) ptr; ptr += sizeof(*mcc);
991         mcc->type = __mcc_type(cr, RFCOMM_MSC);
992         mcc->len  = __len8(sizeof(*msc));
993
994         msc = (void *) ptr; ptr += sizeof(*msc);
995         msc->dlci    = __addr(1, dlci);
996         msc->v24_sig = v24_sig | 0x01;
997
998         *ptr = __fcs(buf); ptr++;
999
1000         return rfcomm_send_frame(s, buf, ptr - buf);
1001 }
1002
1003 static int rfcomm_send_fcoff(struct rfcomm_session *s, int cr)
1004 {
1005         struct rfcomm_hdr *hdr;
1006         struct rfcomm_mcc *mcc;
1007         u8 buf[16], *ptr = buf;
1008
1009         BT_DBG("%p cr %d", s, cr);
1010
1011         hdr = (void *) ptr; ptr += sizeof(*hdr);
1012         hdr->addr = __addr(s->initiator, 0);
1013         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
1014         hdr->len  = __len8(sizeof(*mcc));
1015
1016         mcc = (void *) ptr; ptr += sizeof(*mcc);
1017         mcc->type = __mcc_type(cr, RFCOMM_FCOFF);
1018         mcc->len  = __len8(0);
1019
1020         *ptr = __fcs(buf); ptr++;
1021
1022         return rfcomm_send_frame(s, buf, ptr - buf);
1023 }
1024
1025 static int rfcomm_send_fcon(struct rfcomm_session *s, int cr)
1026 {
1027         struct rfcomm_hdr *hdr;
1028         struct rfcomm_mcc *mcc;
1029         u8 buf[16], *ptr = buf;
1030
1031         BT_DBG("%p cr %d", s, cr);
1032
1033         hdr = (void *) ptr; ptr += sizeof(*hdr);
1034         hdr->addr = __addr(s->initiator, 0);
1035         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
1036         hdr->len  = __len8(sizeof(*mcc));
1037
1038         mcc = (void *) ptr; ptr += sizeof(*mcc);
1039         mcc->type = __mcc_type(cr, RFCOMM_FCON);
1040         mcc->len  = __len8(0);
1041
1042         *ptr = __fcs(buf); ptr++;
1043
1044         return rfcomm_send_frame(s, buf, ptr - buf);
1045 }
1046
1047 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len)
1048 {
1049         struct socket *sock = s->sock;
1050         struct kvec iv[3];
1051         struct msghdr msg;
1052         unsigned char hdr[5], crc[1];
1053
1054         if (len > 125)
1055                 return -EINVAL;
1056
1057         BT_DBG("%p cr %d", s, cr);
1058
1059         hdr[0] = __addr(s->initiator, 0);
1060         hdr[1] = __ctrl(RFCOMM_UIH, 0);
1061         hdr[2] = 0x01 | ((len + 2) << 1);
1062         hdr[3] = 0x01 | ((cr & 0x01) << 1) | (RFCOMM_TEST << 2);
1063         hdr[4] = 0x01 | (len << 1);
1064
1065         crc[0] = __fcs(hdr);
1066
1067         iv[0].iov_base = hdr;
1068         iv[0].iov_len  = 5;
1069         iv[1].iov_base = pattern;
1070         iv[1].iov_len  = len;
1071         iv[2].iov_base = crc;
1072         iv[2].iov_len  = 1;
1073
1074         memset(&msg, 0, sizeof(msg));
1075
1076         return kernel_sendmsg(sock, &msg, iv, 3, 6 + len);
1077 }
1078
1079 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits)
1080 {
1081         struct rfcomm_hdr *hdr;
1082         u8 buf[16], *ptr = buf;
1083
1084         BT_DBG("%p addr %d credits %d", s, addr, credits);
1085
1086         hdr = (void *) ptr; ptr += sizeof(*hdr);
1087         hdr->addr = addr;
1088         hdr->ctrl = __ctrl(RFCOMM_UIH, 1);
1089         hdr->len  = __len8(0);
1090
1091         *ptr = credits; ptr++;
1092
1093         *ptr = __fcs(buf); ptr++;
1094
1095         return rfcomm_send_frame(s, buf, ptr - buf);
1096 }
1097
1098 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr)
1099 {
1100         struct rfcomm_hdr *hdr;
1101         int len = skb->len;
1102         u8 *crc;
1103
1104         if (len > 127) {
1105                 hdr = (void *) skb_push(skb, 4);
1106                 put_unaligned(cpu_to_le16(__len16(len)), (__le16 *) &hdr->len);
1107         } else {
1108                 hdr = (void *) skb_push(skb, 3);
1109                 hdr->len = __len8(len);
1110         }
1111         hdr->addr = addr;
1112         hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
1113
1114         crc = skb_put(skb, 1);
1115         *crc = __fcs((void *) hdr);
1116 }
1117
1118 /* ---- RFCOMM frame reception ---- */
1119 static int rfcomm_recv_ua(struct rfcomm_session *s, u8 dlci)
1120 {
1121         BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1122
1123         if (dlci) {
1124                 /* Data channel */
1125                 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1126                 if (!d) {
1127                         rfcomm_send_dm(s, dlci);
1128                         return 0;
1129                 }
1130
1131                 switch (d->state) {
1132                 case BT_CONNECT:
1133                         rfcomm_dlc_clear_timer(d);
1134
1135                         rfcomm_dlc_lock(d);
1136                         d->state = BT_CONNECTED;
1137                         d->state_change(d, 0);
1138                         rfcomm_dlc_unlock(d);
1139
1140                         rfcomm_send_msc(s, 1, dlci, d->v24_sig);
1141                         break;
1142
1143                 case BT_DISCONN:
1144                         d->state = BT_CLOSED;
1145                         __rfcomm_dlc_close(d, 0);
1146
1147                         if (list_empty(&s->dlcs)) {
1148                                 s->state = BT_DISCONN;
1149                                 rfcomm_send_disc(s, 0);
1150                         }
1151
1152                         break;
1153                 }
1154         } else {
1155                 /* Control channel */
1156                 switch (s->state) {
1157                 case BT_CONNECT:
1158                         s->state = BT_CONNECTED;
1159                         rfcomm_process_connect(s);
1160                         break;
1161
1162                 case BT_DISCONN:
1163                         /* When socket is closed and we are not RFCOMM
1164                          * initiator rfcomm_process_rx already calls
1165                          * rfcomm_session_put() */
1166                         if (s->sock->sk->sk_state != BT_CLOSED)
1167                                 rfcomm_session_put(s);
1168                         break;
1169                 }
1170         }
1171         return 0;
1172 }
1173
1174 static int rfcomm_recv_dm(struct rfcomm_session *s, u8 dlci)
1175 {
1176         int err = 0;
1177
1178         BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1179
1180         if (dlci) {
1181                 /* Data DLC */
1182                 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1183                 if (d) {
1184                         if (d->state == BT_CONNECT || d->state == BT_CONFIG)
1185                                 err = ECONNREFUSED;
1186                         else
1187                                 err = ECONNRESET;
1188
1189                         d->state = BT_CLOSED;
1190                         __rfcomm_dlc_close(d, err);
1191                 }
1192         } else {
1193                 if (s->state == BT_CONNECT)
1194                         err = ECONNREFUSED;
1195                 else
1196                         err = ECONNRESET;
1197
1198                 s->state = BT_CLOSED;
1199                 rfcomm_session_close(s, err);
1200         }
1201         return 0;
1202 }
1203
1204 static int rfcomm_recv_disc(struct rfcomm_session *s, u8 dlci)
1205 {
1206         int err = 0;
1207
1208         BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1209
1210         if (dlci) {
1211                 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1212                 if (d) {
1213                         rfcomm_send_ua(s, dlci);
1214
1215                         if (d->state == BT_CONNECT || d->state == BT_CONFIG)
1216                                 err = ECONNREFUSED;
1217                         else
1218                                 err = ECONNRESET;
1219
1220                         d->state = BT_CLOSED;
1221                         __rfcomm_dlc_close(d, err);
1222                 } else
1223                         rfcomm_send_dm(s, dlci);
1224
1225         } else {
1226                 rfcomm_send_ua(s, 0);
1227
1228                 if (s->state == BT_CONNECT)
1229                         err = ECONNREFUSED;
1230                 else
1231                         err = ECONNRESET;
1232
1233                 s->state = BT_CLOSED;
1234                 rfcomm_session_close(s, err);
1235         }
1236
1237         return 0;
1238 }
1239
1240 void rfcomm_dlc_accept(struct rfcomm_dlc *d)
1241 {
1242         struct sock *sk = d->session->sock->sk;
1243
1244         BT_DBG("dlc %p", d);
1245
1246         rfcomm_send_ua(d->session, d->dlci);
1247
1248         rfcomm_dlc_clear_timer(d);
1249
1250         rfcomm_dlc_lock(d);
1251         d->state = BT_CONNECTED;
1252         d->state_change(d, 0);
1253         rfcomm_dlc_unlock(d);
1254
1255         if (d->role_switch)
1256                 hci_conn_switch_role(l2cap_pi(sk)->conn->hcon, 0x00);
1257
1258         rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig);
1259 }
1260
1261 static void rfcomm_check_accept(struct rfcomm_dlc *d)
1262 {
1263         if (rfcomm_check_security(d)) {
1264                 if (d->defer_setup) {
1265                         set_bit(RFCOMM_DEFER_SETUP, &d->flags);
1266                         rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1267
1268                         rfcomm_dlc_lock(d);
1269                         d->state = BT_CONNECT2;
1270                         d->state_change(d, 0);
1271                         rfcomm_dlc_unlock(d);
1272                 } else
1273                         rfcomm_dlc_accept(d);
1274         } else {
1275                 set_bit(RFCOMM_AUTH_PENDING, &d->flags);
1276                 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1277         }
1278 }
1279
1280 static int rfcomm_recv_sabm(struct rfcomm_session *s, u8 dlci)
1281 {
1282         struct rfcomm_dlc *d;
1283         u8 channel;
1284
1285         BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1286
1287         if (!dlci) {
1288                 rfcomm_send_ua(s, 0);
1289
1290                 if (s->state == BT_OPEN) {
1291                         s->state = BT_CONNECTED;
1292                         rfcomm_process_connect(s);
1293                 }
1294                 return 0;
1295         }
1296
1297         /* Check if DLC exists */
1298         d = rfcomm_dlc_get(s, dlci);
1299         if (d) {
1300                 if (d->state == BT_OPEN) {
1301                         /* DLC was previously opened by PN request */
1302                         rfcomm_check_accept(d);
1303                 }
1304                 return 0;
1305         }
1306
1307         /* Notify socket layer about incoming connection */
1308         channel = __srv_channel(dlci);
1309         if (rfcomm_connect_ind(s, channel, &d)) {
1310                 d->dlci = dlci;
1311                 d->addr = __addr(s->initiator, dlci);
1312                 rfcomm_dlc_link(s, d);
1313
1314                 rfcomm_check_accept(d);
1315         } else {
1316                 rfcomm_send_dm(s, dlci);
1317         }
1318
1319         return 0;
1320 }
1321
1322 static int rfcomm_apply_pn(struct rfcomm_dlc *d, int cr, struct rfcomm_pn *pn)
1323 {
1324         struct rfcomm_session *s = d->session;
1325
1326         BT_DBG("dlc %p state %ld dlci %d mtu %d fc 0x%x credits %d",
1327                         d, d->state, d->dlci, pn->mtu, pn->flow_ctrl, pn->credits);
1328
1329         if ((pn->flow_ctrl == 0xf0 && s->cfc != RFCOMM_CFC_DISABLED) ||
1330                                                 pn->flow_ctrl == 0xe0) {
1331                 d->cfc = RFCOMM_CFC_ENABLED;
1332                 d->tx_credits = pn->credits;
1333         } else {
1334                 d->cfc = RFCOMM_CFC_DISABLED;
1335                 set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1336         }
1337
1338         if (s->cfc == RFCOMM_CFC_UNKNOWN)
1339                 s->cfc = d->cfc;
1340
1341         d->priority = pn->priority;
1342
1343         d->mtu = __le16_to_cpu(pn->mtu);
1344
1345         if (cr && d->mtu > s->mtu)
1346                 d->mtu = s->mtu;
1347
1348         return 0;
1349 }
1350
1351 static int rfcomm_recv_pn(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1352 {
1353         struct rfcomm_pn *pn = (void *) skb->data;
1354         struct rfcomm_dlc *d;
1355         u8 dlci = pn->dlci;
1356
1357         BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1358
1359         if (!dlci)
1360                 return 0;
1361
1362         d = rfcomm_dlc_get(s, dlci);
1363         if (d) {
1364                 if (cr) {
1365                         /* PN request */
1366                         rfcomm_apply_pn(d, cr, pn);
1367                         rfcomm_send_pn(s, 0, d);
1368                 } else {
1369                         /* PN response */
1370                         switch (d->state) {
1371                         case BT_CONFIG:
1372                                 rfcomm_apply_pn(d, cr, pn);
1373
1374                                 d->state = BT_CONNECT;
1375                                 rfcomm_send_sabm(s, d->dlci);
1376                                 break;
1377                         }
1378                 }
1379         } else {
1380                 u8 channel = __srv_channel(dlci);
1381
1382                 if (!cr)
1383                         return 0;
1384
1385                 /* PN request for non existing DLC.
1386                  * Assume incoming connection. */
1387                 if (rfcomm_connect_ind(s, channel, &d)) {
1388                         d->dlci = dlci;
1389                         d->addr = __addr(s->initiator, dlci);
1390                         rfcomm_dlc_link(s, d);
1391
1392                         rfcomm_apply_pn(d, cr, pn);
1393
1394                         d->state = BT_OPEN;
1395                         rfcomm_send_pn(s, 0, d);
1396                 } else {
1397                         rfcomm_send_dm(s, dlci);
1398                 }
1399         }
1400         return 0;
1401 }
1402
1403 static int rfcomm_recv_rpn(struct rfcomm_session *s, int cr, int len, struct sk_buff *skb)
1404 {
1405         struct rfcomm_rpn *rpn = (void *) skb->data;
1406         u8 dlci = __get_dlci(rpn->dlci);
1407
1408         u8 bit_rate  = 0;
1409         u8 data_bits = 0;
1410         u8 stop_bits = 0;
1411         u8 parity    = 0;
1412         u8 flow_ctrl = 0;
1413         u8 xon_char  = 0;
1414         u8 xoff_char = 0;
1415         u16 rpn_mask = RFCOMM_RPN_PM_ALL;
1416
1417         BT_DBG("dlci %d cr %d len 0x%x bitr 0x%x line 0x%x flow 0x%x xonc 0x%x xoffc 0x%x pm 0x%x",
1418                 dlci, cr, len, rpn->bit_rate, rpn->line_settings, rpn->flow_ctrl,
1419                 rpn->xon_char, rpn->xoff_char, rpn->param_mask);
1420
1421         if (!cr)
1422                 return 0;
1423
1424         if (len == 1) {
1425                 /* This is a request, return default (according to ETSI TS 07.10) settings */
1426                 bit_rate  = RFCOMM_RPN_BR_9600;
1427                 data_bits = RFCOMM_RPN_DATA_8;
1428                 stop_bits = RFCOMM_RPN_STOP_1;
1429                 parity    = RFCOMM_RPN_PARITY_NONE;
1430                 flow_ctrl = RFCOMM_RPN_FLOW_NONE;
1431                 xon_char  = RFCOMM_RPN_XON_CHAR;
1432                 xoff_char = RFCOMM_RPN_XOFF_CHAR;
1433                 goto rpn_out;
1434         }
1435
1436         /* Check for sane values, ignore/accept bit_rate, 8 bits, 1 stop bit,
1437          * no parity, no flow control lines, normal XON/XOFF chars */
1438
1439         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_BITRATE)) {
1440                 bit_rate = rpn->bit_rate;
1441                 if (bit_rate > RFCOMM_RPN_BR_230400) {
1442                         BT_DBG("RPN bit rate mismatch 0x%x", bit_rate);
1443                         bit_rate = RFCOMM_RPN_BR_9600;
1444                         rpn_mask ^= RFCOMM_RPN_PM_BITRATE;
1445                 }
1446         }
1447
1448         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_DATA)) {
1449                 data_bits = __get_rpn_data_bits(rpn->line_settings);
1450                 if (data_bits != RFCOMM_RPN_DATA_8) {
1451                         BT_DBG("RPN data bits mismatch 0x%x", data_bits);
1452                         data_bits = RFCOMM_RPN_DATA_8;
1453                         rpn_mask ^= RFCOMM_RPN_PM_DATA;
1454                 }
1455         }
1456
1457         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_STOP)) {
1458                 stop_bits = __get_rpn_stop_bits(rpn->line_settings);
1459                 if (stop_bits != RFCOMM_RPN_STOP_1) {
1460                         BT_DBG("RPN stop bits mismatch 0x%x", stop_bits);
1461                         stop_bits = RFCOMM_RPN_STOP_1;
1462                         rpn_mask ^= RFCOMM_RPN_PM_STOP;
1463                 }
1464         }
1465
1466         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_PARITY)) {
1467                 parity = __get_rpn_parity(rpn->line_settings);
1468                 if (parity != RFCOMM_RPN_PARITY_NONE) {
1469                         BT_DBG("RPN parity mismatch 0x%x", parity);
1470                         parity = RFCOMM_RPN_PARITY_NONE;
1471                         rpn_mask ^= RFCOMM_RPN_PM_PARITY;
1472                 }
1473         }
1474
1475         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_FLOW)) {
1476                 flow_ctrl = rpn->flow_ctrl;
1477                 if (flow_ctrl != RFCOMM_RPN_FLOW_NONE) {
1478                         BT_DBG("RPN flow ctrl mismatch 0x%x", flow_ctrl);
1479                         flow_ctrl = RFCOMM_RPN_FLOW_NONE;
1480                         rpn_mask ^= RFCOMM_RPN_PM_FLOW;
1481                 }
1482         }
1483
1484         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XON)) {
1485                 xon_char = rpn->xon_char;
1486                 if (xon_char != RFCOMM_RPN_XON_CHAR) {
1487                         BT_DBG("RPN XON char mismatch 0x%x", xon_char);
1488                         xon_char = RFCOMM_RPN_XON_CHAR;
1489                         rpn_mask ^= RFCOMM_RPN_PM_XON;
1490                 }
1491         }
1492
1493         if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XOFF)) {
1494                 xoff_char = rpn->xoff_char;
1495                 if (xoff_char != RFCOMM_RPN_XOFF_CHAR) {
1496                         BT_DBG("RPN XOFF char mismatch 0x%x", xoff_char);
1497                         xoff_char = RFCOMM_RPN_XOFF_CHAR;
1498                         rpn_mask ^= RFCOMM_RPN_PM_XOFF;
1499                 }
1500         }
1501
1502 rpn_out:
1503         rfcomm_send_rpn(s, 0, dlci, bit_rate, data_bits, stop_bits,
1504                         parity, flow_ctrl, xon_char, xoff_char, rpn_mask);
1505
1506         return 0;
1507 }
1508
1509 static int rfcomm_recv_rls(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1510 {
1511         struct rfcomm_rls *rls = (void *) skb->data;
1512         u8 dlci = __get_dlci(rls->dlci);
1513
1514         BT_DBG("dlci %d cr %d status 0x%x", dlci, cr, rls->status);
1515
1516         if (!cr)
1517                 return 0;
1518
1519         /* We should probably do something with this information here. But
1520          * for now it's sufficient just to reply -- Bluetooth 1.1 says it's
1521          * mandatory to recognise and respond to RLS */
1522
1523         rfcomm_send_rls(s, 0, dlci, rls->status);
1524
1525         return 0;
1526 }
1527
1528 static int rfcomm_recv_msc(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1529 {
1530         struct rfcomm_msc *msc = (void *) skb->data;
1531         struct rfcomm_dlc *d;
1532         u8 dlci = __get_dlci(msc->dlci);
1533
1534         BT_DBG("dlci %d cr %d v24 0x%x", dlci, cr, msc->v24_sig);
1535
1536         d = rfcomm_dlc_get(s, dlci);
1537         if (!d)
1538                 return 0;
1539
1540         if (cr) {
1541                 if (msc->v24_sig & RFCOMM_V24_FC && !d->cfc)
1542                         set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1543                 else
1544                         clear_bit(RFCOMM_TX_THROTTLED, &d->flags);
1545
1546                 rfcomm_dlc_lock(d);
1547
1548                 d->remote_v24_sig = msc->v24_sig;
1549
1550                 if (d->modem_status)
1551                         d->modem_status(d, msc->v24_sig);
1552
1553                 rfcomm_dlc_unlock(d);
1554
1555                 rfcomm_send_msc(s, 0, dlci, msc->v24_sig);
1556
1557                 d->mscex |= RFCOMM_MSCEX_RX;
1558         } else
1559                 d->mscex |= RFCOMM_MSCEX_TX;
1560
1561         return 0;
1562 }
1563
1564 static int rfcomm_recv_mcc(struct rfcomm_session *s, struct sk_buff *skb)
1565 {
1566         struct rfcomm_mcc *mcc = (void *) skb->data;
1567         u8 type, cr, len;
1568
1569         cr   = __test_cr(mcc->type);
1570         type = __get_mcc_type(mcc->type);
1571         len  = __get_mcc_len(mcc->len);
1572
1573         BT_DBG("%p type 0x%x cr %d", s, type, cr);
1574
1575         skb_pull(skb, 2);
1576
1577         switch (type) {
1578         case RFCOMM_PN:
1579                 rfcomm_recv_pn(s, cr, skb);
1580                 break;
1581
1582         case RFCOMM_RPN:
1583                 rfcomm_recv_rpn(s, cr, len, skb);
1584                 break;
1585
1586         case RFCOMM_RLS:
1587                 rfcomm_recv_rls(s, cr, skb);
1588                 break;
1589
1590         case RFCOMM_MSC:
1591                 rfcomm_recv_msc(s, cr, skb);
1592                 break;
1593
1594         case RFCOMM_FCOFF:
1595                 if (cr) {
1596                         set_bit(RFCOMM_TX_THROTTLED, &s->flags);
1597                         rfcomm_send_fcoff(s, 0);
1598                 }
1599                 break;
1600
1601         case RFCOMM_FCON:
1602                 if (cr) {
1603                         clear_bit(RFCOMM_TX_THROTTLED, &s->flags);
1604                         rfcomm_send_fcon(s, 0);
1605                 }
1606                 break;
1607
1608         case RFCOMM_TEST:
1609                 if (cr)
1610                         rfcomm_send_test(s, 0, skb->data, skb->len);
1611                 break;
1612
1613         case RFCOMM_NSC:
1614                 break;
1615
1616         default:
1617                 BT_ERR("Unknown control type 0x%02x", type);
1618                 rfcomm_send_nsc(s, cr, type);
1619                 break;
1620         }
1621         return 0;
1622 }
1623
1624 static int rfcomm_recv_data(struct rfcomm_session *s, u8 dlci, int pf, struct sk_buff *skb)
1625 {
1626         struct rfcomm_dlc *d;
1627
1628         BT_DBG("session %p state %ld dlci %d pf %d", s, s->state, dlci, pf);
1629
1630         d = rfcomm_dlc_get(s, dlci);
1631         if (!d) {
1632                 rfcomm_send_dm(s, dlci);
1633                 goto drop;
1634         }
1635
1636         if (pf && d->cfc) {
1637                 u8 credits = *(u8 *) skb->data; skb_pull(skb, 1);
1638
1639                 d->tx_credits += credits;
1640                 if (d->tx_credits)
1641                         clear_bit(RFCOMM_TX_THROTTLED, &d->flags);
1642         }
1643
1644         if (skb->len && d->state == BT_CONNECTED) {
1645                 rfcomm_dlc_lock(d);
1646                 d->rx_credits--;
1647                 d->data_ready(d, skb);
1648                 rfcomm_dlc_unlock(d);
1649                 return 0;
1650         }
1651
1652 drop:
1653         kfree_skb(skb);
1654         return 0;
1655 }
1656
1657 static int rfcomm_recv_frame(struct rfcomm_session *s, struct sk_buff *skb)
1658 {
1659         struct rfcomm_hdr *hdr = (void *) skb->data;
1660         u8 type, dlci, fcs;
1661
1662         dlci = __get_dlci(hdr->addr);
1663         type = __get_type(hdr->ctrl);
1664
1665         /* Trim FCS */
1666         skb->len--; skb->tail--;
1667         fcs = *(u8 *)skb_tail_pointer(skb);
1668
1669         if (__check_fcs(skb->data, type, fcs)) {
1670                 BT_ERR("bad checksum in packet");
1671                 kfree_skb(skb);
1672                 return -EILSEQ;
1673         }
1674
1675         if (__test_ea(hdr->len))
1676                 skb_pull(skb, 3);
1677         else
1678                 skb_pull(skb, 4);
1679
1680         switch (type) {
1681         case RFCOMM_SABM:
1682                 if (__test_pf(hdr->ctrl))
1683                         rfcomm_recv_sabm(s, dlci);
1684                 break;
1685
1686         case RFCOMM_DISC:
1687                 if (__test_pf(hdr->ctrl))
1688                         rfcomm_recv_disc(s, dlci);
1689                 break;
1690
1691         case RFCOMM_UA:
1692                 if (__test_pf(hdr->ctrl))
1693                         rfcomm_recv_ua(s, dlci);
1694                 break;
1695
1696         case RFCOMM_DM:
1697                 rfcomm_recv_dm(s, dlci);
1698                 break;
1699
1700         case RFCOMM_UIH:
1701                 if (dlci)
1702                         return rfcomm_recv_data(s, dlci, __test_pf(hdr->ctrl), skb);
1703
1704                 rfcomm_recv_mcc(s, skb);
1705                 break;
1706
1707         default:
1708                 BT_ERR("Unknown packet type 0x%02x", type);
1709                 break;
1710         }
1711         kfree_skb(skb);
1712         return 0;
1713 }
1714
1715 /* ---- Connection and data processing ---- */
1716
1717 static void rfcomm_process_connect(struct rfcomm_session *s)
1718 {
1719         struct rfcomm_dlc *d;
1720         struct list_head *p, *n;
1721
1722         BT_DBG("session %p state %ld", s, s->state);
1723
1724         list_for_each_safe(p, n, &s->dlcs) {
1725                 d = list_entry(p, struct rfcomm_dlc, list);
1726                 if (d->state == BT_CONFIG) {
1727                         d->mtu = s->mtu;
1728                         if (rfcomm_check_security(d)) {
1729                                 rfcomm_send_pn(s, 1, d);
1730                         } else {
1731                                 set_bit(RFCOMM_AUTH_PENDING, &d->flags);
1732                                 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1733                         }
1734                 }
1735         }
1736 }
1737
1738 /* Send data queued for the DLC.
1739  * Return number of frames left in the queue.
1740  */
1741 static inline int rfcomm_process_tx(struct rfcomm_dlc *d)
1742 {
1743         struct sk_buff *skb;
1744         int err;
1745
1746         BT_DBG("dlc %p state %ld cfc %d rx_credits %d tx_credits %d",
1747                         d, d->state, d->cfc, d->rx_credits, d->tx_credits);
1748
1749         /* Send pending MSC */
1750         if (test_and_clear_bit(RFCOMM_MSC_PENDING, &d->flags))
1751                 rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig);
1752
1753         if (d->cfc) {
1754                 /* CFC enabled.
1755                  * Give them some credits */
1756                 if (!test_bit(RFCOMM_RX_THROTTLED, &d->flags) &&
1757                                 d->rx_credits <= (d->cfc >> 2)) {
1758                         rfcomm_send_credits(d->session, d->addr, d->cfc - d->rx_credits);
1759                         d->rx_credits = d->cfc;
1760                 }
1761         } else {
1762                 /* CFC disabled.
1763                  * Give ourselves some credits */
1764                 d->tx_credits = 5;
1765         }
1766
1767         if (test_bit(RFCOMM_TX_THROTTLED, &d->flags))
1768                 return skb_queue_len(&d->tx_queue);
1769
1770         while (d->tx_credits && (skb = skb_dequeue(&d->tx_queue))) {
1771                 err = rfcomm_send_frame(d->session, skb->data, skb->len);
1772                 if (err < 0) {
1773                         skb_queue_head(&d->tx_queue, skb);
1774                         break;
1775                 }
1776                 kfree_skb(skb);
1777                 d->tx_credits--;
1778         }
1779
1780         if (d->cfc && !d->tx_credits) {
1781                 /* We're out of TX credits.
1782                  * Set TX_THROTTLED flag to avoid unnesary wakeups by dlc_send. */
1783                 set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1784         }
1785
1786         return skb_queue_len(&d->tx_queue);
1787 }
1788
1789 static inline void rfcomm_process_dlcs(struct rfcomm_session *s)
1790 {
1791         struct rfcomm_dlc *d;
1792         struct list_head *p, *n;
1793
1794         BT_DBG("session %p state %ld", s, s->state);
1795
1796         list_for_each_safe(p, n, &s->dlcs) {
1797                 d = list_entry(p, struct rfcomm_dlc, list);
1798
1799                 if (test_bit(RFCOMM_TIMED_OUT, &d->flags)) {
1800                         __rfcomm_dlc_close(d, ETIMEDOUT);
1801                         continue;
1802                 }
1803
1804                 if (test_and_clear_bit(RFCOMM_AUTH_ACCEPT, &d->flags)) {
1805                         rfcomm_dlc_clear_timer(d);
1806                         if (d->out) {
1807                                 rfcomm_send_pn(s, 1, d);
1808                                 rfcomm_dlc_set_timer(d, RFCOMM_CONN_TIMEOUT);
1809                         } else {
1810                                 if (d->defer_setup) {
1811                                         set_bit(RFCOMM_DEFER_SETUP, &d->flags);
1812                                         rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1813
1814                                         rfcomm_dlc_lock(d);
1815                                         d->state = BT_CONNECT2;
1816                                         d->state_change(d, 0);
1817                                         rfcomm_dlc_unlock(d);
1818                                 } else
1819                                         rfcomm_dlc_accept(d);
1820                         }
1821                         continue;
1822                 } else if (test_and_clear_bit(RFCOMM_AUTH_REJECT, &d->flags)) {
1823                         rfcomm_dlc_clear_timer(d);
1824                         if (!d->out)
1825                                 rfcomm_send_dm(s, d->dlci);
1826                         else
1827                                 d->state = BT_CLOSED;
1828                         __rfcomm_dlc_close(d, ECONNREFUSED);
1829                         continue;
1830                 }
1831
1832                 if (test_bit(RFCOMM_SEC_PENDING, &d->flags))
1833                         continue;
1834
1835                 if (test_bit(RFCOMM_TX_THROTTLED, &s->flags))
1836                         continue;
1837
1838                 if ((d->state == BT_CONNECTED || d->state == BT_DISCONN) &&
1839                                                 d->mscex == RFCOMM_MSCEX_OK)
1840                         rfcomm_process_tx(d);
1841         }
1842 }
1843
1844 static inline void rfcomm_process_rx(struct rfcomm_session *s)
1845 {
1846         struct socket *sock = s->sock;
1847         struct sock *sk = sock->sk;
1848         struct sk_buff *skb;
1849
1850         BT_DBG("session %p state %ld qlen %d", s, s->state, skb_queue_len(&sk->sk_receive_queue));
1851
1852         /* Get data directly from socket receive queue without copying it. */
1853         while ((skb = skb_dequeue(&sk->sk_receive_queue))) {
1854                 skb_orphan(skb);
1855                 rfcomm_recv_frame(s, skb);
1856         }
1857
1858         if (sk->sk_state == BT_CLOSED) {
1859                 if (!s->initiator)
1860                         rfcomm_session_put(s);
1861
1862                 rfcomm_session_close(s, sk->sk_err);
1863         }
1864 }
1865
1866 static inline void rfcomm_accept_connection(struct rfcomm_session *s)
1867 {
1868         struct socket *sock = s->sock, *nsock;
1869         int err;
1870
1871         /* Fast check for a new connection.
1872          * Avoids unnesesary socket allocations. */
1873         if (list_empty(&bt_sk(sock->sk)->accept_q))
1874                 return;
1875
1876         BT_DBG("session %p", s);
1877
1878         err = kernel_accept(sock, &nsock, O_NONBLOCK);
1879         if (err < 0)
1880                 return;
1881
1882         /* Set our callbacks */
1883         nsock->sk->sk_data_ready   = rfcomm_l2data_ready;
1884         nsock->sk->sk_state_change = rfcomm_l2state_change;
1885
1886         s = rfcomm_session_add(nsock, BT_OPEN);
1887         if (s) {
1888                 rfcomm_session_hold(s);
1889
1890                 /* We should adjust MTU on incoming sessions.
1891                  * L2CAP MTU minus UIH header and FCS. */
1892                 s->mtu = min(l2cap_pi(nsock->sk)->omtu, l2cap_pi(nsock->sk)->imtu) - 5;
1893
1894                 rfcomm_schedule();
1895         } else
1896                 sock_release(nsock);
1897 }
1898
1899 static inline void rfcomm_check_connection(struct rfcomm_session *s)
1900 {
1901         struct sock *sk = s->sock->sk;
1902
1903         BT_DBG("%p state %ld", s, s->state);
1904
1905         switch (sk->sk_state) {
1906         case BT_CONNECTED:
1907                 s->state = BT_CONNECT;
1908
1909                 /* We can adjust MTU on outgoing sessions.
1910                  * L2CAP MTU minus UIH header and FCS. */
1911                 s->mtu = min(l2cap_pi(sk)->omtu, l2cap_pi(sk)->imtu) - 5;
1912
1913                 rfcomm_send_sabm(s, 0);
1914                 break;
1915
1916         case BT_CLOSED:
1917                 s->state = BT_CLOSED;
1918                 rfcomm_session_close(s, sk->sk_err);
1919                 break;
1920         }
1921 }
1922
1923 static inline void rfcomm_process_sessions(void)
1924 {
1925         struct list_head *p, *n;
1926
1927         rfcomm_lock();
1928
1929         list_for_each_safe(p, n, &session_list) {
1930                 struct rfcomm_session *s;
1931                 s = list_entry(p, struct rfcomm_session, list);
1932
1933                 if (test_and_clear_bit(RFCOMM_TIMED_OUT, &s->flags)) {
1934                         s->state = BT_DISCONN;
1935                         rfcomm_send_disc(s, 0);
1936                         rfcomm_session_put(s);
1937                         continue;
1938                 }
1939
1940                 if (s->state == BT_LISTEN) {
1941                         rfcomm_accept_connection(s);
1942                         continue;
1943                 }
1944
1945                 rfcomm_session_hold(s);
1946
1947                 switch (s->state) {
1948                 case BT_BOUND:
1949                         rfcomm_check_connection(s);
1950                         break;
1951
1952                 default:
1953                         rfcomm_process_rx(s);
1954                         break;
1955                 }
1956
1957                 rfcomm_process_dlcs(s);
1958
1959                 rfcomm_session_put(s);
1960         }
1961
1962         rfcomm_unlock();
1963 }
1964
1965 static int rfcomm_add_listener(bdaddr_t *ba)
1966 {
1967         struct sockaddr_l2 addr;
1968         struct socket *sock;
1969         struct sock *sk;
1970         struct rfcomm_session *s;
1971         int    err = 0;
1972
1973         /* Create socket */
1974         err = rfcomm_l2sock_create(&sock);
1975         if (err < 0) {
1976                 BT_ERR("Create socket failed %d", err);
1977                 return err;
1978         }
1979
1980         /* Bind socket */
1981         bacpy(&addr.l2_bdaddr, ba);
1982         addr.l2_family = AF_BLUETOOTH;
1983         addr.l2_psm    = cpu_to_le16(RFCOMM_PSM);
1984         addr.l2_cid    = 0;
1985         err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr));
1986         if (err < 0) {
1987                 BT_ERR("Bind failed %d", err);
1988                 goto failed;
1989         }
1990
1991         /* Set L2CAP options */
1992         sk = sock->sk;
1993         lock_sock(sk);
1994         l2cap_pi(sk)->imtu = l2cap_mtu;
1995         release_sock(sk);
1996
1997         /* Start listening on the socket */
1998         err = kernel_listen(sock, 10);
1999         if (err) {
2000                 BT_ERR("Listen failed %d", err);
2001                 goto failed;
2002         }
2003
2004         /* Add listening session */
2005         s = rfcomm_session_add(sock, BT_LISTEN);
2006         if (!s)
2007                 goto failed;
2008
2009         rfcomm_session_hold(s);
2010         return 0;
2011 failed:
2012         sock_release(sock);
2013         return err;
2014 }
2015
2016 static void rfcomm_kill_listener(void)
2017 {
2018         struct rfcomm_session *s;
2019         struct list_head *p, *n;
2020
2021         BT_DBG("");
2022
2023         list_for_each_safe(p, n, &session_list) {
2024                 s = list_entry(p, struct rfcomm_session, list);
2025                 rfcomm_session_del(s);
2026         }
2027 }
2028
2029 static int rfcomm_run(void *unused)
2030 {
2031         BT_DBG("");
2032
2033         set_user_nice(current, -10);
2034
2035         rfcomm_add_listener(BDADDR_ANY);
2036
2037         while (!kthread_should_stop()) {
2038                 set_current_state(TASK_INTERRUPTIBLE);
2039                 if (!test_bit(RFCOMM_SCHED_WAKEUP, &rfcomm_event)) {
2040                         /* No pending events. Let's sleep.
2041                          * Incoming connections and data will wake us up. */
2042                         schedule();
2043                 }
2044                 set_current_state(TASK_RUNNING);
2045
2046                 /* Process stuff */
2047                 clear_bit(RFCOMM_SCHED_WAKEUP, &rfcomm_event);
2048                 rfcomm_process_sessions();
2049         }
2050
2051         rfcomm_kill_listener();
2052
2053         return 0;
2054 }
2055
2056 static void rfcomm_security_cfm(struct hci_conn *conn, u8 status, u8 encrypt)
2057 {
2058         struct rfcomm_session *s;
2059         struct rfcomm_dlc *d;
2060         struct list_head *p, *n;
2061
2062         BT_DBG("conn %p status 0x%02x encrypt 0x%02x", conn, status, encrypt);
2063
2064         s = rfcomm_session_get(&conn->hdev->bdaddr, &conn->dst);
2065         if (!s)
2066                 return;
2067
2068         rfcomm_session_hold(s);
2069
2070         list_for_each_safe(p, n, &s->dlcs) {
2071                 d = list_entry(p, struct rfcomm_dlc, list);
2072
2073                 if (test_and_clear_bit(RFCOMM_SEC_PENDING, &d->flags)) {
2074                         rfcomm_dlc_clear_timer(d);
2075                         if (status || encrypt == 0x00) {
2076                                 __rfcomm_dlc_close(d, ECONNREFUSED);
2077                                 continue;
2078                         }
2079                 }
2080
2081                 if (d->state == BT_CONNECTED && !status && encrypt == 0x00) {
2082                         if (d->sec_level == BT_SECURITY_MEDIUM) {
2083                                 set_bit(RFCOMM_SEC_PENDING, &d->flags);
2084                                 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
2085                                 continue;
2086                         } else if (d->sec_level == BT_SECURITY_HIGH) {
2087                                 __rfcomm_dlc_close(d, ECONNREFUSED);
2088                                 continue;
2089                         }
2090                 }
2091
2092                 if (!test_and_clear_bit(RFCOMM_AUTH_PENDING, &d->flags))
2093                         continue;
2094
2095                 if (!status)
2096                         set_bit(RFCOMM_AUTH_ACCEPT, &d->flags);
2097                 else
2098                         set_bit(RFCOMM_AUTH_REJECT, &d->flags);
2099         }
2100
2101         rfcomm_session_put(s);
2102
2103         rfcomm_schedule();
2104 }
2105
2106 static struct hci_cb rfcomm_cb = {
2107         .name           = "RFCOMM",
2108         .security_cfm   = rfcomm_security_cfm
2109 };
2110
2111 static int rfcomm_dlc_debugfs_show(struct seq_file *f, void *x)
2112 {
2113         struct rfcomm_session *s;
2114         struct list_head *pp, *p;
2115
2116         rfcomm_lock();
2117
2118         list_for_each(p, &session_list) {
2119                 s = list_entry(p, struct rfcomm_session, list);
2120                 list_for_each(pp, &s->dlcs) {
2121                         struct sock *sk = s->sock->sk;
2122                         struct rfcomm_dlc *d = list_entry(pp, struct rfcomm_dlc, list);
2123
2124                         seq_printf(f, "%s %s %ld %d %d %d %d\n",
2125                                                 batostr(&bt_sk(sk)->src),
2126                                                 batostr(&bt_sk(sk)->dst),
2127                                                 d->state, d->dlci, d->mtu,
2128                                                 d->rx_credits, d->tx_credits);
2129                 }
2130         }
2131
2132         rfcomm_unlock();
2133
2134         return 0;
2135 }
2136
2137 static int rfcomm_dlc_debugfs_open(struct inode *inode, struct file *file)
2138 {
2139         return single_open(file, rfcomm_dlc_debugfs_show, inode->i_private);
2140 }
2141
2142 static const struct file_operations rfcomm_dlc_debugfs_fops = {
2143         .open           = rfcomm_dlc_debugfs_open,
2144         .read           = seq_read,
2145         .llseek         = seq_lseek,
2146         .release        = single_release,
2147 };
2148
2149 static struct dentry *rfcomm_dlc_debugfs;
2150
2151 /* ---- Initialization ---- */
2152 static int __init rfcomm_init(void)
2153 {
2154         int err;
2155
2156         l2cap_load();
2157
2158         hci_register_cb(&rfcomm_cb);
2159
2160         rfcomm_thread = kthread_run(rfcomm_run, NULL, "krfcommd");
2161         if (IS_ERR(rfcomm_thread)) {
2162                 err = PTR_ERR(rfcomm_thread);
2163                 goto unregister;
2164         }
2165
2166         if (bt_debugfs) {
2167                 rfcomm_dlc_debugfs = debugfs_create_file("rfcomm_dlc", 0444,
2168                                 bt_debugfs, NULL, &rfcomm_dlc_debugfs_fops);
2169                 if (!rfcomm_dlc_debugfs)
2170                         BT_ERR("Failed to create RFCOMM debug file");
2171         }
2172
2173         err = rfcomm_init_ttys();
2174         if (err < 0)
2175                 goto stop;
2176
2177         err = rfcomm_init_sockets();
2178         if (err < 0)
2179                 goto cleanup;
2180
2181         BT_INFO("RFCOMM ver %s", VERSION);
2182
2183         return 0;
2184
2185 cleanup:
2186         rfcomm_cleanup_ttys();
2187
2188 stop:
2189         kthread_stop(rfcomm_thread);
2190
2191 unregister:
2192         hci_unregister_cb(&rfcomm_cb);
2193
2194         return err;
2195 }
2196
2197 static void __exit rfcomm_exit(void)
2198 {
2199         debugfs_remove(rfcomm_dlc_debugfs);
2200
2201         hci_unregister_cb(&rfcomm_cb);
2202
2203         kthread_stop(rfcomm_thread);
2204
2205         rfcomm_cleanup_ttys();
2206
2207         rfcomm_cleanup_sockets();
2208 }
2209
2210 module_init(rfcomm_init);
2211 module_exit(rfcomm_exit);
2212
2213 module_param(disable_cfc, bool, 0644);
2214 MODULE_PARM_DESC(disable_cfc, "Disable credit based flow control");
2215
2216 module_param(channel_mtu, int, 0644);
2217 MODULE_PARM_DESC(channel_mtu, "Default MTU for the RFCOMM channel");
2218
2219 module_param(l2cap_mtu, uint, 0644);
2220 MODULE_PARM_DESC(l2cap_mtu, "Default MTU for the L2CAP connection");
2221
2222 module_param(l2cap_ertm, bool, 0644);
2223 MODULE_PARM_DESC(l2cap_ertm, "Use L2CAP ERTM mode for connection");
2224
2225 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
2226 MODULE_DESCRIPTION("Bluetooth RFCOMM ver " VERSION);
2227 MODULE_VERSION(VERSION);
2228 MODULE_LICENSE("GPL");
2229 MODULE_ALIAS("bt-proto-3");