mm: compaction: make isolate_lru_page() filter-aware
[pandora-kernel.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         shrinker->nr = 0;
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 unsigned long total_scan;
251                 unsigned long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 /*
259                  * copy the current shrinker scan count into a local variable
260                  * and zero it so that other concurrent shrinker invocations
261                  * don't also do this scanning work.
262                  */
263                 do {
264                         nr = shrinker->nr;
265                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267                 total_scan = nr;
268                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
270                 delta *= max_pass;
271                 do_div(delta, lru_pages + 1);
272                 total_scan += delta;
273                 if (total_scan < 0) {
274                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
275                                "delete nr=%ld\n",
276                                shrinker->shrink, total_scan);
277                         total_scan = max_pass;
278                 }
279
280                 /*
281                  * We need to avoid excessive windup on filesystem shrinkers
282                  * due to large numbers of GFP_NOFS allocations causing the
283                  * shrinkers to return -1 all the time. This results in a large
284                  * nr being built up so when a shrink that can do some work
285                  * comes along it empties the entire cache due to nr >>>
286                  * max_pass.  This is bad for sustaining a working set in
287                  * memory.
288                  *
289                  * Hence only allow the shrinker to scan the entire cache when
290                  * a large delta change is calculated directly.
291                  */
292                 if (delta < max_pass / 4)
293                         total_scan = min(total_scan, max_pass / 2);
294
295                 /*
296                  * Avoid risking looping forever due to too large nr value:
297                  * never try to free more than twice the estimate number of
298                  * freeable entries.
299                  */
300                 if (total_scan > max_pass * 2)
301                         total_scan = max_pass * 2;
302
303                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
304                                         nr_pages_scanned, lru_pages,
305                                         max_pass, delta, total_scan);
306
307                 while (total_scan >= batch_size) {
308                         int nr_before;
309
310                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
312                                                         batch_size);
313                         if (shrink_ret == -1)
314                                 break;
315                         if (shrink_ret < nr_before)
316                                 ret += nr_before - shrink_ret;
317                         count_vm_events(SLABS_SCANNED, batch_size);
318                         total_scan -= batch_size;
319
320                         cond_resched();
321                 }
322
323                 /*
324                  * move the unused scan count back into the shrinker in a
325                  * manner that handles concurrent updates. If we exhausted the
326                  * scan, there is no need to do an update.
327                  */
328                 do {
329                         nr = shrinker->nr;
330                         new_nr = total_scan + nr;
331                         if (total_scan <= 0)
332                                 break;
333                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 /*
499                  * Wait on writeback if requested to. This happens when
500                  * direct reclaiming a large contiguous area and the
501                  * first attempt to free a range of pages fails.
502                  */
503                 if (PageWriteback(page) &&
504                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
505                         wait_on_page_writeback(page);
506
507                 if (!PageWriteback(page)) {
508                         /* synchronous write or broken a_ops? */
509                         ClearPageReclaim(page);
510                 }
511                 trace_mm_vmscan_writepage(page,
512                         trace_reclaim_flags(page, sc->reclaim_mode));
513                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
514                 return PAGE_SUCCESS;
515         }
516
517         return PAGE_CLEAN;
518 }
519
520 /*
521  * Same as remove_mapping, but if the page is removed from the mapping, it
522  * gets returned with a refcount of 0.
523  */
524 static int __remove_mapping(struct address_space *mapping, struct page *page)
525 {
526         BUG_ON(!PageLocked(page));
527         BUG_ON(mapping != page_mapping(page));
528
529         spin_lock_irq(&mapping->tree_lock);
530         /*
531          * The non racy check for a busy page.
532          *
533          * Must be careful with the order of the tests. When someone has
534          * a ref to the page, it may be possible that they dirty it then
535          * drop the reference. So if PageDirty is tested before page_count
536          * here, then the following race may occur:
537          *
538          * get_user_pages(&page);
539          * [user mapping goes away]
540          * write_to(page);
541          *                              !PageDirty(page)    [good]
542          * SetPageDirty(page);
543          * put_page(page);
544          *                              !page_count(page)   [good, discard it]
545          *
546          * [oops, our write_to data is lost]
547          *
548          * Reversing the order of the tests ensures such a situation cannot
549          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550          * load is not satisfied before that of page->_count.
551          *
552          * Note that if SetPageDirty is always performed via set_page_dirty,
553          * and thus under tree_lock, then this ordering is not required.
554          */
555         if (!page_freeze_refs(page, 2))
556                 goto cannot_free;
557         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558         if (unlikely(PageDirty(page))) {
559                 page_unfreeze_refs(page, 2);
560                 goto cannot_free;
561         }
562
563         if (PageSwapCache(page)) {
564                 swp_entry_t swap = { .val = page_private(page) };
565                 __delete_from_swap_cache(page);
566                 spin_unlock_irq(&mapping->tree_lock);
567                 swapcache_free(swap, page);
568         } else {
569                 void (*freepage)(struct page *);
570
571                 freepage = mapping->a_ops->freepage;
572
573                 __delete_from_page_cache(page);
574                 spin_unlock_irq(&mapping->tree_lock);
575                 mem_cgroup_uncharge_cache_page(page);
576
577                 if (freepage != NULL)
578                         freepage(page);
579         }
580
581         return 1;
582
583 cannot_free:
584         spin_unlock_irq(&mapping->tree_lock);
585         return 0;
586 }
587
588 /*
589  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
590  * someone else has a ref on the page, abort and return 0.  If it was
591  * successfully detached, return 1.  Assumes the caller has a single ref on
592  * this page.
593  */
594 int remove_mapping(struct address_space *mapping, struct page *page)
595 {
596         if (__remove_mapping(mapping, page)) {
597                 /*
598                  * Unfreezing the refcount with 1 rather than 2 effectively
599                  * drops the pagecache ref for us without requiring another
600                  * atomic operation.
601                  */
602                 page_unfreeze_refs(page, 1);
603                 return 1;
604         }
605         return 0;
606 }
607
608 /**
609  * putback_lru_page - put previously isolated page onto appropriate LRU list
610  * @page: page to be put back to appropriate lru list
611  *
612  * Add previously isolated @page to appropriate LRU list.
613  * Page may still be unevictable for other reasons.
614  *
615  * lru_lock must not be held, interrupts must be enabled.
616  */
617 void putback_lru_page(struct page *page)
618 {
619         int lru;
620         int active = !!TestClearPageActive(page);
621         int was_unevictable = PageUnevictable(page);
622
623         VM_BUG_ON(PageLRU(page));
624
625 redo:
626         ClearPageUnevictable(page);
627
628         if (page_evictable(page, NULL)) {
629                 /*
630                  * For evictable pages, we can use the cache.
631                  * In event of a race, worst case is we end up with an
632                  * unevictable page on [in]active list.
633                  * We know how to handle that.
634                  */
635                 lru = active + page_lru_base_type(page);
636                 lru_cache_add_lru(page, lru);
637         } else {
638                 /*
639                  * Put unevictable pages directly on zone's unevictable
640                  * list.
641                  */
642                 lru = LRU_UNEVICTABLE;
643                 add_page_to_unevictable_list(page);
644                 /*
645                  * When racing with an mlock clearing (page is
646                  * unlocked), make sure that if the other thread does
647                  * not observe our setting of PG_lru and fails
648                  * isolation, we see PG_mlocked cleared below and move
649                  * the page back to the evictable list.
650                  *
651                  * The other side is TestClearPageMlocked().
652                  */
653                 smp_mb();
654         }
655
656         /*
657          * page's status can change while we move it among lru. If an evictable
658          * page is on unevictable list, it never be freed. To avoid that,
659          * check after we added it to the list, again.
660          */
661         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662                 if (!isolate_lru_page(page)) {
663                         put_page(page);
664                         goto redo;
665                 }
666                 /* This means someone else dropped this page from LRU
667                  * So, it will be freed or putback to LRU again. There is
668                  * nothing to do here.
669                  */
670         }
671
672         if (was_unevictable && lru != LRU_UNEVICTABLE)
673                 count_vm_event(UNEVICTABLE_PGRESCUED);
674         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675                 count_vm_event(UNEVICTABLE_PGCULLED);
676
677         put_page(page);         /* drop ref from isolate */
678 }
679
680 enum page_references {
681         PAGEREF_RECLAIM,
682         PAGEREF_RECLAIM_CLEAN,
683         PAGEREF_KEEP,
684         PAGEREF_ACTIVATE,
685 };
686
687 static enum page_references page_check_references(struct page *page,
688                                                   struct scan_control *sc)
689 {
690         int referenced_ptes, referenced_page;
691         unsigned long vm_flags;
692
693         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694         referenced_page = TestClearPageReferenced(page);
695
696         /* Lumpy reclaim - ignore references */
697         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
698                 return PAGEREF_RECLAIM;
699
700         /*
701          * Mlock lost the isolation race with us.  Let try_to_unmap()
702          * move the page to the unevictable list.
703          */
704         if (vm_flags & VM_LOCKED)
705                 return PAGEREF_RECLAIM;
706
707         if (referenced_ptes) {
708                 if (PageAnon(page))
709                         return PAGEREF_ACTIVATE;
710                 /*
711                  * All mapped pages start out with page table
712                  * references from the instantiating fault, so we need
713                  * to look twice if a mapped file page is used more
714                  * than once.
715                  *
716                  * Mark it and spare it for another trip around the
717                  * inactive list.  Another page table reference will
718                  * lead to its activation.
719                  *
720                  * Note: the mark is set for activated pages as well
721                  * so that recently deactivated but used pages are
722                  * quickly recovered.
723                  */
724                 SetPageReferenced(page);
725
726                 if (referenced_page)
727                         return PAGEREF_ACTIVATE;
728
729                 return PAGEREF_KEEP;
730         }
731
732         /* Reclaim if clean, defer dirty pages to writeback */
733         if (referenced_page && !PageSwapBacked(page))
734                 return PAGEREF_RECLAIM_CLEAN;
735
736         return PAGEREF_RECLAIM;
737 }
738
739 static noinline_for_stack void free_page_list(struct list_head *free_pages)
740 {
741         struct pagevec freed_pvec;
742         struct page *page, *tmp;
743
744         pagevec_init(&freed_pvec, 1);
745
746         list_for_each_entry_safe(page, tmp, free_pages, lru) {
747                 list_del(&page->lru);
748                 if (!pagevec_add(&freed_pvec, page)) {
749                         __pagevec_free(&freed_pvec);
750                         pagevec_reinit(&freed_pvec);
751                 }
752         }
753
754         pagevec_free(&freed_pvec);
755 }
756
757 /*
758  * shrink_page_list() returns the number of reclaimed pages
759  */
760 static unsigned long shrink_page_list(struct list_head *page_list,
761                                       struct zone *zone,
762                                       struct scan_control *sc)
763 {
764         LIST_HEAD(ret_pages);
765         LIST_HEAD(free_pages);
766         int pgactivate = 0;
767         unsigned long nr_dirty = 0;
768         unsigned long nr_congested = 0;
769         unsigned long nr_reclaimed = 0;
770
771         cond_resched();
772
773         while (!list_empty(page_list)) {
774                 enum page_references references;
775                 struct address_space *mapping;
776                 struct page *page;
777                 int may_enter_fs;
778
779                 cond_resched();
780
781                 page = lru_to_page(page_list);
782                 list_del(&page->lru);
783
784                 if (!trylock_page(page))
785                         goto keep;
786
787                 VM_BUG_ON(PageActive(page));
788                 VM_BUG_ON(page_zone(page) != zone);
789
790                 sc->nr_scanned++;
791
792                 if (unlikely(!page_evictable(page, NULL)))
793                         goto cull_mlocked;
794
795                 if (!sc->may_unmap && page_mapped(page))
796                         goto keep_locked;
797
798                 /* Double the slab pressure for mapped and swapcache pages */
799                 if (page_mapped(page) || PageSwapCache(page))
800                         sc->nr_scanned++;
801
802                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805                 if (PageWriteback(page)) {
806                         /*
807                          * Synchronous reclaim is performed in two passes,
808                          * first an asynchronous pass over the list to
809                          * start parallel writeback, and a second synchronous
810                          * pass to wait for the IO to complete.  Wait here
811                          * for any page for which writeback has already
812                          * started.
813                          */
814                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
815                             may_enter_fs)
816                                 wait_on_page_writeback(page);
817                         else {
818                                 unlock_page(page);
819                                 goto keep_lumpy;
820                         }
821                 }
822
823                 references = page_check_references(page, sc);
824                 switch (references) {
825                 case PAGEREF_ACTIVATE:
826                         goto activate_locked;
827                 case PAGEREF_KEEP:
828                         goto keep_locked;
829                 case PAGEREF_RECLAIM:
830                 case PAGEREF_RECLAIM_CLEAN:
831                         ; /* try to reclaim the page below */
832                 }
833
834                 /*
835                  * Anonymous process memory has backing store?
836                  * Try to allocate it some swap space here.
837                  */
838                 if (PageAnon(page) && !PageSwapCache(page)) {
839                         if (!(sc->gfp_mask & __GFP_IO))
840                                 goto keep_locked;
841                         if (!add_to_swap(page))
842                                 goto activate_locked;
843                         may_enter_fs = 1;
844                 }
845
846                 mapping = page_mapping(page);
847
848                 /*
849                  * The page is mapped into the page tables of one or more
850                  * processes. Try to unmap it here.
851                  */
852                 if (page_mapped(page) && mapping) {
853                         switch (try_to_unmap(page, TTU_UNMAP)) {
854                         case SWAP_FAIL:
855                                 goto activate_locked;
856                         case SWAP_AGAIN:
857                                 goto keep_locked;
858                         case SWAP_MLOCK:
859                                 goto cull_mlocked;
860                         case SWAP_SUCCESS:
861                                 ; /* try to free the page below */
862                         }
863                 }
864
865                 if (PageDirty(page)) {
866                         nr_dirty++;
867
868                         if (references == PAGEREF_RECLAIM_CLEAN)
869                                 goto keep_locked;
870                         if (!may_enter_fs)
871                                 goto keep_locked;
872                         if (!sc->may_writepage)
873                                 goto keep_locked;
874
875                         /* Page is dirty, try to write it out here */
876                         switch (pageout(page, mapping, sc)) {
877                         case PAGE_KEEP:
878                                 nr_congested++;
879                                 goto keep_locked;
880                         case PAGE_ACTIVATE:
881                                 goto activate_locked;
882                         case PAGE_SUCCESS:
883                                 if (PageWriteback(page))
884                                         goto keep_lumpy;
885                                 if (PageDirty(page))
886                                         goto keep;
887
888                                 /*
889                                  * A synchronous write - probably a ramdisk.  Go
890                                  * ahead and try to reclaim the page.
891                                  */
892                                 if (!trylock_page(page))
893                                         goto keep;
894                                 if (PageDirty(page) || PageWriteback(page))
895                                         goto keep_locked;
896                                 mapping = page_mapping(page);
897                         case PAGE_CLEAN:
898                                 ; /* try to free the page below */
899                         }
900                 }
901
902                 /*
903                  * If the page has buffers, try to free the buffer mappings
904                  * associated with this page. If we succeed we try to free
905                  * the page as well.
906                  *
907                  * We do this even if the page is PageDirty().
908                  * try_to_release_page() does not perform I/O, but it is
909                  * possible for a page to have PageDirty set, but it is actually
910                  * clean (all its buffers are clean).  This happens if the
911                  * buffers were written out directly, with submit_bh(). ext3
912                  * will do this, as well as the blockdev mapping.
913                  * try_to_release_page() will discover that cleanness and will
914                  * drop the buffers and mark the page clean - it can be freed.
915                  *
916                  * Rarely, pages can have buffers and no ->mapping.  These are
917                  * the pages which were not successfully invalidated in
918                  * truncate_complete_page().  We try to drop those buffers here
919                  * and if that worked, and the page is no longer mapped into
920                  * process address space (page_count == 1) it can be freed.
921                  * Otherwise, leave the page on the LRU so it is swappable.
922                  */
923                 if (page_has_private(page)) {
924                         if (!try_to_release_page(page, sc->gfp_mask))
925                                 goto activate_locked;
926                         if (!mapping && page_count(page) == 1) {
927                                 unlock_page(page);
928                                 if (put_page_testzero(page))
929                                         goto free_it;
930                                 else {
931                                         /*
932                                          * rare race with speculative reference.
933                                          * the speculative reference will free
934                                          * this page shortly, so we may
935                                          * increment nr_reclaimed here (and
936                                          * leave it off the LRU).
937                                          */
938                                         nr_reclaimed++;
939                                         continue;
940                                 }
941                         }
942                 }
943
944                 if (!mapping || !__remove_mapping(mapping, page))
945                         goto keep_locked;
946
947                 /*
948                  * At this point, we have no other references and there is
949                  * no way to pick any more up (removed from LRU, removed
950                  * from pagecache). Can use non-atomic bitops now (and
951                  * we obviously don't have to worry about waking up a process
952                  * waiting on the page lock, because there are no references.
953                  */
954                 __clear_page_locked(page);
955 free_it:
956                 nr_reclaimed++;
957
958                 /*
959                  * Is there need to periodically free_page_list? It would
960                  * appear not as the counts should be low
961                  */
962                 list_add(&page->lru, &free_pages);
963                 continue;
964
965 cull_mlocked:
966                 if (PageSwapCache(page))
967                         try_to_free_swap(page);
968                 unlock_page(page);
969                 putback_lru_page(page);
970                 reset_reclaim_mode(sc);
971                 continue;
972
973 activate_locked:
974                 /* Not a candidate for swapping, so reclaim swap space. */
975                 if (PageSwapCache(page) && vm_swap_full())
976                         try_to_free_swap(page);
977                 VM_BUG_ON(PageActive(page));
978                 SetPageActive(page);
979                 pgactivate++;
980 keep_locked:
981                 unlock_page(page);
982 keep:
983                 reset_reclaim_mode(sc);
984 keep_lumpy:
985                 list_add(&page->lru, &ret_pages);
986                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
987         }
988
989         /*
990          * Tag a zone as congested if all the dirty pages encountered were
991          * backed by a congested BDI. In this case, reclaimers should just
992          * back off and wait for congestion to clear because further reclaim
993          * will encounter the same problem
994          */
995         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
996                 zone_set_flag(zone, ZONE_CONGESTED);
997
998         free_page_list(&free_pages);
999
1000         list_splice(&ret_pages, page_list);
1001         count_vm_events(PGACTIVATE, pgactivate);
1002         return nr_reclaimed;
1003 }
1004
1005 /*
1006  * Attempt to remove the specified page from its LRU.  Only take this page
1007  * if it is of the appropriate PageActive status.  Pages which are being
1008  * freed elsewhere are also ignored.
1009  *
1010  * page:        page to consider
1011  * mode:        one of the LRU isolation modes defined above
1012  *
1013  * returns 0 on success, -ve errno on failure.
1014  */
1015 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1016 {
1017         bool all_lru_mode;
1018         int ret = -EINVAL;
1019
1020         /* Only take pages on the LRU. */
1021         if (!PageLRU(page))
1022                 return ret;
1023
1024         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1025                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1026
1027         /*
1028          * When checking the active state, we need to be sure we are
1029          * dealing with comparible boolean values.  Take the logical not
1030          * of each.
1031          */
1032         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1033                 return ret;
1034
1035         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1036                 return ret;
1037
1038         /*
1039          * When this function is being called for lumpy reclaim, we
1040          * initially look into all LRU pages, active, inactive and
1041          * unevictable; only give shrink_page_list evictable pages.
1042          */
1043         if (PageUnevictable(page))
1044                 return ret;
1045
1046         ret = -EBUSY;
1047
1048         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1049                 return ret;
1050
1051         if (likely(get_page_unless_zero(page))) {
1052                 /*
1053                  * Be careful not to clear PageLRU until after we're
1054                  * sure the page is not being freed elsewhere -- the
1055                  * page release code relies on it.
1056                  */
1057                 ClearPageLRU(page);
1058                 ret = 0;
1059         }
1060
1061         return ret;
1062 }
1063
1064 /*
1065  * zone->lru_lock is heavily contended.  Some of the functions that
1066  * shrink the lists perform better by taking out a batch of pages
1067  * and working on them outside the LRU lock.
1068  *
1069  * For pagecache intensive workloads, this function is the hottest
1070  * spot in the kernel (apart from copy_*_user functions).
1071  *
1072  * Appropriate locks must be held before calling this function.
1073  *
1074  * @nr_to_scan: The number of pages to look through on the list.
1075  * @src:        The LRU list to pull pages off.
1076  * @dst:        The temp list to put pages on to.
1077  * @scanned:    The number of pages that were scanned.
1078  * @order:      The caller's attempted allocation order
1079  * @mode:       One of the LRU isolation modes
1080  * @file:       True [1] if isolating file [!anon] pages
1081  *
1082  * returns how many pages were moved onto *@dst.
1083  */
1084 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1085                 struct list_head *src, struct list_head *dst,
1086                 unsigned long *scanned, int order, isolate_mode_t mode,
1087                 int file)
1088 {
1089         unsigned long nr_taken = 0;
1090         unsigned long nr_lumpy_taken = 0;
1091         unsigned long nr_lumpy_dirty = 0;
1092         unsigned long nr_lumpy_failed = 0;
1093         unsigned long scan;
1094
1095         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1096                 struct page *page;
1097                 unsigned long pfn;
1098                 unsigned long end_pfn;
1099                 unsigned long page_pfn;
1100                 int zone_id;
1101
1102                 page = lru_to_page(src);
1103                 prefetchw_prev_lru_page(page, src, flags);
1104
1105                 VM_BUG_ON(!PageLRU(page));
1106
1107                 switch (__isolate_lru_page(page, mode, file)) {
1108                 case 0:
1109                         list_move(&page->lru, dst);
1110                         mem_cgroup_del_lru(page);
1111                         nr_taken += hpage_nr_pages(page);
1112                         break;
1113
1114                 case -EBUSY:
1115                         /* else it is being freed elsewhere */
1116                         list_move(&page->lru, src);
1117                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1118                         continue;
1119
1120                 default:
1121                         BUG();
1122                 }
1123
1124                 if (!order)
1125                         continue;
1126
1127                 /*
1128                  * Attempt to take all pages in the order aligned region
1129                  * surrounding the tag page.  Only take those pages of
1130                  * the same active state as that tag page.  We may safely
1131                  * round the target page pfn down to the requested order
1132                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1133                  * where that page is in a different zone we will detect
1134                  * it from its zone id and abort this block scan.
1135                  */
1136                 zone_id = page_zone_id(page);
1137                 page_pfn = page_to_pfn(page);
1138                 pfn = page_pfn & ~((1 << order) - 1);
1139                 end_pfn = pfn + (1 << order);
1140                 for (; pfn < end_pfn; pfn++) {
1141                         struct page *cursor_page;
1142
1143                         /* The target page is in the block, ignore it. */
1144                         if (unlikely(pfn == page_pfn))
1145                                 continue;
1146
1147                         /* Avoid holes within the zone. */
1148                         if (unlikely(!pfn_valid_within(pfn)))
1149                                 break;
1150
1151                         cursor_page = pfn_to_page(pfn);
1152
1153                         /* Check that we have not crossed a zone boundary. */
1154                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1155                                 break;
1156
1157                         /*
1158                          * If we don't have enough swap space, reclaiming of
1159                          * anon page which don't already have a swap slot is
1160                          * pointless.
1161                          */
1162                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1163                             !PageSwapCache(cursor_page))
1164                                 break;
1165
1166                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1167                                 list_move(&cursor_page->lru, dst);
1168                                 mem_cgroup_del_lru(cursor_page);
1169                                 nr_taken += hpage_nr_pages(page);
1170                                 nr_lumpy_taken++;
1171                                 if (PageDirty(cursor_page))
1172                                         nr_lumpy_dirty++;
1173                                 scan++;
1174                         } else {
1175                                 /*
1176                                  * Check if the page is freed already.
1177                                  *
1178                                  * We can't use page_count() as that
1179                                  * requires compound_head and we don't
1180                                  * have a pin on the page here. If a
1181                                  * page is tail, we may or may not
1182                                  * have isolated the head, so assume
1183                                  * it's not free, it'd be tricky to
1184                                  * track the head status without a
1185                                  * page pin.
1186                                  */
1187                                 if (!PageTail(cursor_page) &&
1188                                     !atomic_read(&cursor_page->_count))
1189                                         continue;
1190                                 break;
1191                         }
1192                 }
1193
1194                 /* If we break out of the loop above, lumpy reclaim failed */
1195                 if (pfn < end_pfn)
1196                         nr_lumpy_failed++;
1197         }
1198
1199         *scanned = scan;
1200
1201         trace_mm_vmscan_lru_isolate(order,
1202                         nr_to_scan, scan,
1203                         nr_taken,
1204                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1205                         mode);
1206         return nr_taken;
1207 }
1208
1209 static unsigned long isolate_pages_global(unsigned long nr,
1210                                         struct list_head *dst,
1211                                         unsigned long *scanned, int order,
1212                                         isolate_mode_t mode,
1213                                         struct zone *z, int active, int file)
1214 {
1215         int lru = LRU_BASE;
1216         if (active)
1217                 lru += LRU_ACTIVE;
1218         if (file)
1219                 lru += LRU_FILE;
1220         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1221                                                                 mode, file);
1222 }
1223
1224 /*
1225  * clear_active_flags() is a helper for shrink_active_list(), clearing
1226  * any active bits from the pages in the list.
1227  */
1228 static unsigned long clear_active_flags(struct list_head *page_list,
1229                                         unsigned int *count)
1230 {
1231         int nr_active = 0;
1232         int lru;
1233         struct page *page;
1234
1235         list_for_each_entry(page, page_list, lru) {
1236                 int numpages = hpage_nr_pages(page);
1237                 lru = page_lru_base_type(page);
1238                 if (PageActive(page)) {
1239                         lru += LRU_ACTIVE;
1240                         ClearPageActive(page);
1241                         nr_active += numpages;
1242                 }
1243                 if (count)
1244                         count[lru] += numpages;
1245         }
1246
1247         return nr_active;
1248 }
1249
1250 /**
1251  * isolate_lru_page - tries to isolate a page from its LRU list
1252  * @page: page to isolate from its LRU list
1253  *
1254  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1255  * vmstat statistic corresponding to whatever LRU list the page was on.
1256  *
1257  * Returns 0 if the page was removed from an LRU list.
1258  * Returns -EBUSY if the page was not on an LRU list.
1259  *
1260  * The returned page will have PageLRU() cleared.  If it was found on
1261  * the active list, it will have PageActive set.  If it was found on
1262  * the unevictable list, it will have the PageUnevictable bit set. That flag
1263  * may need to be cleared by the caller before letting the page go.
1264  *
1265  * The vmstat statistic corresponding to the list on which the page was
1266  * found will be decremented.
1267  *
1268  * Restrictions:
1269  * (1) Must be called with an elevated refcount on the page. This is a
1270  *     fundamentnal difference from isolate_lru_pages (which is called
1271  *     without a stable reference).
1272  * (2) the lru_lock must not be held.
1273  * (3) interrupts must be enabled.
1274  */
1275 int isolate_lru_page(struct page *page)
1276 {
1277         int ret = -EBUSY;
1278
1279         VM_BUG_ON(!page_count(page));
1280
1281         if (PageLRU(page)) {
1282                 struct zone *zone = page_zone(page);
1283
1284                 spin_lock_irq(&zone->lru_lock);
1285                 if (PageLRU(page)) {
1286                         int lru = page_lru(page);
1287                         ret = 0;
1288                         get_page(page);
1289                         ClearPageLRU(page);
1290
1291                         del_page_from_lru_list(zone, page, lru);
1292                 }
1293                 spin_unlock_irq(&zone->lru_lock);
1294         }
1295         return ret;
1296 }
1297
1298 /*
1299  * Are there way too many processes in the direct reclaim path already?
1300  */
1301 static int too_many_isolated(struct zone *zone, int file,
1302                 struct scan_control *sc)
1303 {
1304         unsigned long inactive, isolated;
1305
1306         if (current_is_kswapd())
1307                 return 0;
1308
1309         if (!scanning_global_lru(sc))
1310                 return 0;
1311
1312         if (file) {
1313                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1314                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1315         } else {
1316                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1317                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1318         }
1319
1320         return isolated > inactive;
1321 }
1322
1323 /*
1324  * TODO: Try merging with migrations version of putback_lru_pages
1325  */
1326 static noinline_for_stack void
1327 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1328                                 unsigned long nr_anon, unsigned long nr_file,
1329                                 struct list_head *page_list)
1330 {
1331         struct page *page;
1332         struct pagevec pvec;
1333         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1334
1335         pagevec_init(&pvec, 1);
1336
1337         /*
1338          * Put back any unfreeable pages.
1339          */
1340         spin_lock(&zone->lru_lock);
1341         while (!list_empty(page_list)) {
1342                 int lru;
1343                 page = lru_to_page(page_list);
1344                 VM_BUG_ON(PageLRU(page));
1345                 list_del(&page->lru);
1346                 if (unlikely(!page_evictable(page, NULL))) {
1347                         spin_unlock_irq(&zone->lru_lock);
1348                         putback_lru_page(page);
1349                         spin_lock_irq(&zone->lru_lock);
1350                         continue;
1351                 }
1352                 SetPageLRU(page);
1353                 lru = page_lru(page);
1354                 add_page_to_lru_list(zone, page, lru);
1355                 if (is_active_lru(lru)) {
1356                         int file = is_file_lru(lru);
1357                         int numpages = hpage_nr_pages(page);
1358                         reclaim_stat->recent_rotated[file] += numpages;
1359                 }
1360                 if (!pagevec_add(&pvec, page)) {
1361                         spin_unlock_irq(&zone->lru_lock);
1362                         __pagevec_release(&pvec);
1363                         spin_lock_irq(&zone->lru_lock);
1364                 }
1365         }
1366         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1367         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1368
1369         spin_unlock_irq(&zone->lru_lock);
1370         pagevec_release(&pvec);
1371 }
1372
1373 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1374                                         struct scan_control *sc,
1375                                         unsigned long *nr_anon,
1376                                         unsigned long *nr_file,
1377                                         struct list_head *isolated_list)
1378 {
1379         unsigned long nr_active;
1380         unsigned int count[NR_LRU_LISTS] = { 0, };
1381         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1382
1383         nr_active = clear_active_flags(isolated_list, count);
1384         __count_vm_events(PGDEACTIVATE, nr_active);
1385
1386         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1387                               -count[LRU_ACTIVE_FILE]);
1388         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1389                               -count[LRU_INACTIVE_FILE]);
1390         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1391                               -count[LRU_ACTIVE_ANON]);
1392         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1393                               -count[LRU_INACTIVE_ANON]);
1394
1395         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1396         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1397         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1398         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1399
1400         reclaim_stat->recent_scanned[0] += *nr_anon;
1401         reclaim_stat->recent_scanned[1] += *nr_file;
1402 }
1403
1404 /*
1405  * Returns true if the caller should wait to clean dirty/writeback pages.
1406  *
1407  * If we are direct reclaiming for contiguous pages and we do not reclaim
1408  * everything in the list, try again and wait for writeback IO to complete.
1409  * This will stall high-order allocations noticeably. Only do that when really
1410  * need to free the pages under high memory pressure.
1411  */
1412 static inline bool should_reclaim_stall(unsigned long nr_taken,
1413                                         unsigned long nr_freed,
1414                                         int priority,
1415                                         struct scan_control *sc)
1416 {
1417         int lumpy_stall_priority;
1418
1419         /* kswapd should not stall on sync IO */
1420         if (current_is_kswapd())
1421                 return false;
1422
1423         /* Only stall on lumpy reclaim */
1424         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1425                 return false;
1426
1427         /* If we have reclaimed everything on the isolated list, no stall */
1428         if (nr_freed == nr_taken)
1429                 return false;
1430
1431         /*
1432          * For high-order allocations, there are two stall thresholds.
1433          * High-cost allocations stall immediately where as lower
1434          * order allocations such as stacks require the scanning
1435          * priority to be much higher before stalling.
1436          */
1437         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1438                 lumpy_stall_priority = DEF_PRIORITY;
1439         else
1440                 lumpy_stall_priority = DEF_PRIORITY / 3;
1441
1442         return priority <= lumpy_stall_priority;
1443 }
1444
1445 /*
1446  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1447  * of reclaimed pages
1448  */
1449 static noinline_for_stack unsigned long
1450 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1451                         struct scan_control *sc, int priority, int file)
1452 {
1453         LIST_HEAD(page_list);
1454         unsigned long nr_scanned;
1455         unsigned long nr_reclaimed = 0;
1456         unsigned long nr_taken;
1457         unsigned long nr_anon;
1458         unsigned long nr_file;
1459         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1460
1461         while (unlikely(too_many_isolated(zone, file, sc))) {
1462                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1463
1464                 /* We are about to die and free our memory. Return now. */
1465                 if (fatal_signal_pending(current))
1466                         return SWAP_CLUSTER_MAX;
1467         }
1468
1469         set_reclaim_mode(priority, sc, false);
1470         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1471                 reclaim_mode |= ISOLATE_ACTIVE;
1472
1473         lru_add_drain();
1474         spin_lock_irq(&zone->lru_lock);
1475
1476         if (scanning_global_lru(sc)) {
1477                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1478                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1479                 zone->pages_scanned += nr_scanned;
1480                 if (current_is_kswapd())
1481                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1482                                                nr_scanned);
1483                 else
1484                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1485                                                nr_scanned);
1486         } else {
1487                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1488                         &nr_scanned, sc->order, reclaim_mode, zone,
1489                         sc->mem_cgroup, 0, file);
1490                 /*
1491                  * mem_cgroup_isolate_pages() keeps track of
1492                  * scanned pages on its own.
1493                  */
1494         }
1495
1496         if (nr_taken == 0) {
1497                 spin_unlock_irq(&zone->lru_lock);
1498                 return 0;
1499         }
1500
1501         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1502
1503         spin_unlock_irq(&zone->lru_lock);
1504
1505         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1506
1507         /* Check if we should syncronously wait for writeback */
1508         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1509                 set_reclaim_mode(priority, sc, true);
1510                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1511         }
1512
1513         local_irq_disable();
1514         if (current_is_kswapd())
1515                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1516         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1517
1518         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1519
1520         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1521                 zone_idx(zone),
1522                 nr_scanned, nr_reclaimed,
1523                 priority,
1524                 trace_shrink_flags(file, sc->reclaim_mode));
1525         return nr_reclaimed;
1526 }
1527
1528 /*
1529  * This moves pages from the active list to the inactive list.
1530  *
1531  * We move them the other way if the page is referenced by one or more
1532  * processes, from rmap.
1533  *
1534  * If the pages are mostly unmapped, the processing is fast and it is
1535  * appropriate to hold zone->lru_lock across the whole operation.  But if
1536  * the pages are mapped, the processing is slow (page_referenced()) so we
1537  * should drop zone->lru_lock around each page.  It's impossible to balance
1538  * this, so instead we remove the pages from the LRU while processing them.
1539  * It is safe to rely on PG_active against the non-LRU pages in here because
1540  * nobody will play with that bit on a non-LRU page.
1541  *
1542  * The downside is that we have to touch page->_count against each page.
1543  * But we had to alter page->flags anyway.
1544  */
1545
1546 static void move_active_pages_to_lru(struct zone *zone,
1547                                      struct list_head *list,
1548                                      enum lru_list lru)
1549 {
1550         unsigned long pgmoved = 0;
1551         struct pagevec pvec;
1552         struct page *page;
1553
1554         pagevec_init(&pvec, 1);
1555
1556         while (!list_empty(list)) {
1557                 page = lru_to_page(list);
1558
1559                 VM_BUG_ON(PageLRU(page));
1560                 SetPageLRU(page);
1561
1562                 list_move(&page->lru, &zone->lru[lru].list);
1563                 mem_cgroup_add_lru_list(page, lru);
1564                 pgmoved += hpage_nr_pages(page);
1565
1566                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1567                         spin_unlock_irq(&zone->lru_lock);
1568                         if (buffer_heads_over_limit)
1569                                 pagevec_strip(&pvec);
1570                         __pagevec_release(&pvec);
1571                         spin_lock_irq(&zone->lru_lock);
1572                 }
1573         }
1574         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1575         if (!is_active_lru(lru))
1576                 __count_vm_events(PGDEACTIVATE, pgmoved);
1577 }
1578
1579 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1580                         struct scan_control *sc, int priority, int file)
1581 {
1582         unsigned long nr_taken;
1583         unsigned long pgscanned;
1584         unsigned long vm_flags;
1585         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1586         LIST_HEAD(l_active);
1587         LIST_HEAD(l_inactive);
1588         struct page *page;
1589         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1590         unsigned long nr_rotated = 0;
1591
1592         lru_add_drain();
1593         spin_lock_irq(&zone->lru_lock);
1594         if (scanning_global_lru(sc)) {
1595                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1596                                                 &pgscanned, sc->order,
1597                                                 ISOLATE_ACTIVE, zone,
1598                                                 1, file);
1599                 zone->pages_scanned += pgscanned;
1600         } else {
1601                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1602                                                 &pgscanned, sc->order,
1603                                                 ISOLATE_ACTIVE, zone,
1604                                                 sc->mem_cgroup, 1, file);
1605                 /*
1606                  * mem_cgroup_isolate_pages() keeps track of
1607                  * scanned pages on its own.
1608                  */
1609         }
1610
1611         reclaim_stat->recent_scanned[file] += nr_taken;
1612
1613         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1614         if (file)
1615                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1616         else
1617                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1618         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1619         spin_unlock_irq(&zone->lru_lock);
1620
1621         while (!list_empty(&l_hold)) {
1622                 cond_resched();
1623                 page = lru_to_page(&l_hold);
1624                 list_del(&page->lru);
1625
1626                 if (unlikely(!page_evictable(page, NULL))) {
1627                         putback_lru_page(page);
1628                         continue;
1629                 }
1630
1631                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1632                         nr_rotated += hpage_nr_pages(page);
1633                         /*
1634                          * Identify referenced, file-backed active pages and
1635                          * give them one more trip around the active list. So
1636                          * that executable code get better chances to stay in
1637                          * memory under moderate memory pressure.  Anon pages
1638                          * are not likely to be evicted by use-once streaming
1639                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1640                          * so we ignore them here.
1641                          */
1642                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1643                                 list_add(&page->lru, &l_active);
1644                                 continue;
1645                         }
1646                 }
1647
1648                 ClearPageActive(page);  /* we are de-activating */
1649                 list_add(&page->lru, &l_inactive);
1650         }
1651
1652         /*
1653          * Move pages back to the lru list.
1654          */
1655         spin_lock_irq(&zone->lru_lock);
1656         /*
1657          * Count referenced pages from currently used mappings as rotated,
1658          * even though only some of them are actually re-activated.  This
1659          * helps balance scan pressure between file and anonymous pages in
1660          * get_scan_ratio.
1661          */
1662         reclaim_stat->recent_rotated[file] += nr_rotated;
1663
1664         move_active_pages_to_lru(zone, &l_active,
1665                                                 LRU_ACTIVE + file * LRU_FILE);
1666         move_active_pages_to_lru(zone, &l_inactive,
1667                                                 LRU_BASE   + file * LRU_FILE);
1668         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1669         spin_unlock_irq(&zone->lru_lock);
1670 }
1671
1672 #ifdef CONFIG_SWAP
1673 static int inactive_anon_is_low_global(struct zone *zone)
1674 {
1675         unsigned long active, inactive;
1676
1677         active = zone_page_state(zone, NR_ACTIVE_ANON);
1678         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1679
1680         if (inactive * zone->inactive_ratio < active)
1681                 return 1;
1682
1683         return 0;
1684 }
1685
1686 /**
1687  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1688  * @zone: zone to check
1689  * @sc:   scan control of this context
1690  *
1691  * Returns true if the zone does not have enough inactive anon pages,
1692  * meaning some active anon pages need to be deactivated.
1693  */
1694 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1695 {
1696         int low;
1697
1698         /*
1699          * If we don't have swap space, anonymous page deactivation
1700          * is pointless.
1701          */
1702         if (!total_swap_pages)
1703                 return 0;
1704
1705         if (scanning_global_lru(sc))
1706                 low = inactive_anon_is_low_global(zone);
1707         else
1708                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1709         return low;
1710 }
1711 #else
1712 static inline int inactive_anon_is_low(struct zone *zone,
1713                                         struct scan_control *sc)
1714 {
1715         return 0;
1716 }
1717 #endif
1718
1719 static int inactive_file_is_low_global(struct zone *zone)
1720 {
1721         unsigned long active, inactive;
1722
1723         active = zone_page_state(zone, NR_ACTIVE_FILE);
1724         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1725
1726         return (active > inactive);
1727 }
1728
1729 /**
1730  * inactive_file_is_low - check if file pages need to be deactivated
1731  * @zone: zone to check
1732  * @sc:   scan control of this context
1733  *
1734  * When the system is doing streaming IO, memory pressure here
1735  * ensures that active file pages get deactivated, until more
1736  * than half of the file pages are on the inactive list.
1737  *
1738  * Once we get to that situation, protect the system's working
1739  * set from being evicted by disabling active file page aging.
1740  *
1741  * This uses a different ratio than the anonymous pages, because
1742  * the page cache uses a use-once replacement algorithm.
1743  */
1744 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1745 {
1746         int low;
1747
1748         if (scanning_global_lru(sc))
1749                 low = inactive_file_is_low_global(zone);
1750         else
1751                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1752         return low;
1753 }
1754
1755 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1756                                 int file)
1757 {
1758         if (file)
1759                 return inactive_file_is_low(zone, sc);
1760         else
1761                 return inactive_anon_is_low(zone, sc);
1762 }
1763
1764 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1765         struct zone *zone, struct scan_control *sc, int priority)
1766 {
1767         int file = is_file_lru(lru);
1768
1769         if (is_active_lru(lru)) {
1770                 if (inactive_list_is_low(zone, sc, file))
1771                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1772                 return 0;
1773         }
1774
1775         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1776 }
1777
1778 static int vmscan_swappiness(struct scan_control *sc)
1779 {
1780         if (scanning_global_lru(sc))
1781                 return vm_swappiness;
1782         return mem_cgroup_swappiness(sc->mem_cgroup);
1783 }
1784
1785 /*
1786  * Determine how aggressively the anon and file LRU lists should be
1787  * scanned.  The relative value of each set of LRU lists is determined
1788  * by looking at the fraction of the pages scanned we did rotate back
1789  * onto the active list instead of evict.
1790  *
1791  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1792  */
1793 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1794                                         unsigned long *nr, int priority)
1795 {
1796         unsigned long anon, file, free;
1797         unsigned long anon_prio, file_prio;
1798         unsigned long ap, fp;
1799         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1800         u64 fraction[2], denominator;
1801         enum lru_list l;
1802         int noswap = 0;
1803         bool force_scan = false;
1804         unsigned long nr_force_scan[2];
1805
1806         /* kswapd does zone balancing and needs to scan this zone */
1807         if (scanning_global_lru(sc) && current_is_kswapd())
1808                 force_scan = true;
1809         /* memcg may have small limit and need to avoid priority drop */
1810         if (!scanning_global_lru(sc))
1811                 force_scan = true;
1812
1813         /* If we have no swap space, do not bother scanning anon pages. */
1814         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1815                 noswap = 1;
1816                 fraction[0] = 0;
1817                 fraction[1] = 1;
1818                 denominator = 1;
1819                 nr_force_scan[0] = 0;
1820                 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1821                 goto out;
1822         }
1823
1824         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1825                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1826         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1827                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1828
1829         if (scanning_global_lru(sc)) {
1830                 free  = zone_page_state(zone, NR_FREE_PAGES);
1831                 /* If we have very few page cache pages,
1832                    force-scan anon pages. */
1833                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1834                         fraction[0] = 1;
1835                         fraction[1] = 0;
1836                         denominator = 1;
1837                         nr_force_scan[0] = SWAP_CLUSTER_MAX;
1838                         nr_force_scan[1] = 0;
1839                         goto out;
1840                 }
1841         }
1842
1843         /*
1844          * With swappiness at 100, anonymous and file have the same priority.
1845          * This scanning priority is essentially the inverse of IO cost.
1846          */
1847         anon_prio = vmscan_swappiness(sc);
1848         file_prio = 200 - vmscan_swappiness(sc);
1849
1850         /*
1851          * OK, so we have swap space and a fair amount of page cache
1852          * pages.  We use the recently rotated / recently scanned
1853          * ratios to determine how valuable each cache is.
1854          *
1855          * Because workloads change over time (and to avoid overflow)
1856          * we keep these statistics as a floating average, which ends
1857          * up weighing recent references more than old ones.
1858          *
1859          * anon in [0], file in [1]
1860          */
1861         spin_lock_irq(&zone->lru_lock);
1862         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1863                 reclaim_stat->recent_scanned[0] /= 2;
1864                 reclaim_stat->recent_rotated[0] /= 2;
1865         }
1866
1867         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1868                 reclaim_stat->recent_scanned[1] /= 2;
1869                 reclaim_stat->recent_rotated[1] /= 2;
1870         }
1871
1872         /*
1873          * The amount of pressure on anon vs file pages is inversely
1874          * proportional to the fraction of recently scanned pages on
1875          * each list that were recently referenced and in active use.
1876          */
1877         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1878         ap /= reclaim_stat->recent_rotated[0] + 1;
1879
1880         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1881         fp /= reclaim_stat->recent_rotated[1] + 1;
1882         spin_unlock_irq(&zone->lru_lock);
1883
1884         fraction[0] = ap;
1885         fraction[1] = fp;
1886         denominator = ap + fp + 1;
1887         if (force_scan) {
1888                 unsigned long scan = SWAP_CLUSTER_MAX;
1889                 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1890                 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1891         }
1892 out:
1893         for_each_evictable_lru(l) {
1894                 int file = is_file_lru(l);
1895                 unsigned long scan;
1896
1897                 scan = zone_nr_lru_pages(zone, sc, l);
1898                 if (priority || noswap) {
1899                         scan >>= priority;
1900                         scan = div64_u64(scan * fraction[file], denominator);
1901                 }
1902
1903                 /*
1904                  * If zone is small or memcg is small, nr[l] can be 0.
1905                  * This results no-scan on this priority and priority drop down.
1906                  * For global direct reclaim, it can visit next zone and tend
1907                  * not to have problems. For global kswapd, it's for zone
1908                  * balancing and it need to scan a small amounts. When using
1909                  * memcg, priority drop can cause big latency. So, it's better
1910                  * to scan small amount. See may_noscan above.
1911                  */
1912                 if (!scan && force_scan)
1913                         scan = nr_force_scan[file];
1914                 nr[l] = scan;
1915         }
1916 }
1917
1918 /*
1919  * Reclaim/compaction depends on a number of pages being freed. To avoid
1920  * disruption to the system, a small number of order-0 pages continue to be
1921  * rotated and reclaimed in the normal fashion. However, by the time we get
1922  * back to the allocator and call try_to_compact_zone(), we ensure that
1923  * there are enough free pages for it to be likely successful
1924  */
1925 static inline bool should_continue_reclaim(struct zone *zone,
1926                                         unsigned long nr_reclaimed,
1927                                         unsigned long nr_scanned,
1928                                         struct scan_control *sc)
1929 {
1930         unsigned long pages_for_compaction;
1931         unsigned long inactive_lru_pages;
1932
1933         /* If not in reclaim/compaction mode, stop */
1934         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1935                 return false;
1936
1937         /* Consider stopping depending on scan and reclaim activity */
1938         if (sc->gfp_mask & __GFP_REPEAT) {
1939                 /*
1940                  * For __GFP_REPEAT allocations, stop reclaiming if the
1941                  * full LRU list has been scanned and we are still failing
1942                  * to reclaim pages. This full LRU scan is potentially
1943                  * expensive but a __GFP_REPEAT caller really wants to succeed
1944                  */
1945                 if (!nr_reclaimed && !nr_scanned)
1946                         return false;
1947         } else {
1948                 /*
1949                  * For non-__GFP_REPEAT allocations which can presumably
1950                  * fail without consequence, stop if we failed to reclaim
1951                  * any pages from the last SWAP_CLUSTER_MAX number of
1952                  * pages that were scanned. This will return to the
1953                  * caller faster at the risk reclaim/compaction and
1954                  * the resulting allocation attempt fails
1955                  */
1956                 if (!nr_reclaimed)
1957                         return false;
1958         }
1959
1960         /*
1961          * If we have not reclaimed enough pages for compaction and the
1962          * inactive lists are large enough, continue reclaiming
1963          */
1964         pages_for_compaction = (2UL << sc->order);
1965         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1966                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1967         if (sc->nr_reclaimed < pages_for_compaction &&
1968                         inactive_lru_pages > pages_for_compaction)
1969                 return true;
1970
1971         /* If compaction would go ahead or the allocation would succeed, stop */
1972         switch (compaction_suitable(zone, sc->order)) {
1973         case COMPACT_PARTIAL:
1974         case COMPACT_CONTINUE:
1975                 return false;
1976         default:
1977                 return true;
1978         }
1979 }
1980
1981 /*
1982  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1983  */
1984 static void shrink_zone(int priority, struct zone *zone,
1985                                 struct scan_control *sc)
1986 {
1987         unsigned long nr[NR_LRU_LISTS];
1988         unsigned long nr_to_scan;
1989         enum lru_list l;
1990         unsigned long nr_reclaimed, nr_scanned;
1991         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1992
1993 restart:
1994         nr_reclaimed = 0;
1995         nr_scanned = sc->nr_scanned;
1996         get_scan_count(zone, sc, nr, priority);
1997
1998         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1999                                         nr[LRU_INACTIVE_FILE]) {
2000                 for_each_evictable_lru(l) {
2001                         if (nr[l]) {
2002                                 nr_to_scan = min_t(unsigned long,
2003                                                    nr[l], SWAP_CLUSTER_MAX);
2004                                 nr[l] -= nr_to_scan;
2005
2006                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2007                                                             zone, sc, priority);
2008                         }
2009                 }
2010                 /*
2011                  * On large memory systems, scan >> priority can become
2012                  * really large. This is fine for the starting priority;
2013                  * we want to put equal scanning pressure on each zone.
2014                  * However, if the VM has a harder time of freeing pages,
2015                  * with multiple processes reclaiming pages, the total
2016                  * freeing target can get unreasonably large.
2017                  */
2018                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2019                         break;
2020         }
2021         sc->nr_reclaimed += nr_reclaimed;
2022
2023         /*
2024          * Even if we did not try to evict anon pages at all, we want to
2025          * rebalance the anon lru active/inactive ratio.
2026          */
2027         if (inactive_anon_is_low(zone, sc))
2028                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2029
2030         /* reclaim/compaction might need reclaim to continue */
2031         if (should_continue_reclaim(zone, nr_reclaimed,
2032                                         sc->nr_scanned - nr_scanned, sc))
2033                 goto restart;
2034
2035         throttle_vm_writeout(sc->gfp_mask);
2036 }
2037
2038 /*
2039  * This is the direct reclaim path, for page-allocating processes.  We only
2040  * try to reclaim pages from zones which will satisfy the caller's allocation
2041  * request.
2042  *
2043  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2044  * Because:
2045  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2046  *    allocation or
2047  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2048  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2049  *    zone defense algorithm.
2050  *
2051  * If a zone is deemed to be full of pinned pages then just give it a light
2052  * scan then give up on it.
2053  */
2054 static void shrink_zones(int priority, struct zonelist *zonelist,
2055                                         struct scan_control *sc)
2056 {
2057         struct zoneref *z;
2058         struct zone *zone;
2059         unsigned long nr_soft_reclaimed;
2060         unsigned long nr_soft_scanned;
2061
2062         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2063                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2064                 if (!populated_zone(zone))
2065                         continue;
2066                 /*
2067                  * Take care memory controller reclaiming has small influence
2068                  * to global LRU.
2069                  */
2070                 if (scanning_global_lru(sc)) {
2071                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2072                                 continue;
2073                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2074                                 continue;       /* Let kswapd poll it */
2075                         /*
2076                          * This steals pages from memory cgroups over softlimit
2077                          * and returns the number of reclaimed pages and
2078                          * scanned pages. This works for global memory pressure
2079                          * and balancing, not for a memcg's limit.
2080                          */
2081                         nr_soft_scanned = 0;
2082                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2083                                                 sc->order, sc->gfp_mask,
2084                                                 &nr_soft_scanned);
2085                         sc->nr_reclaimed += nr_soft_reclaimed;
2086                         sc->nr_scanned += nr_soft_scanned;
2087                         /* need some check for avoid more shrink_zone() */
2088                 }
2089
2090                 shrink_zone(priority, zone, sc);
2091         }
2092 }
2093
2094 static bool zone_reclaimable(struct zone *zone)
2095 {
2096         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2097 }
2098
2099 /* All zones in zonelist are unreclaimable? */
2100 static bool all_unreclaimable(struct zonelist *zonelist,
2101                 struct scan_control *sc)
2102 {
2103         struct zoneref *z;
2104         struct zone *zone;
2105
2106         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2107                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2108                 if (!populated_zone(zone))
2109                         continue;
2110                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2111                         continue;
2112                 if (!zone->all_unreclaimable)
2113                         return false;
2114         }
2115
2116         return true;
2117 }
2118
2119 /*
2120  * This is the main entry point to direct page reclaim.
2121  *
2122  * If a full scan of the inactive list fails to free enough memory then we
2123  * are "out of memory" and something needs to be killed.
2124  *
2125  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2126  * high - the zone may be full of dirty or under-writeback pages, which this
2127  * caller can't do much about.  We kick the writeback threads and take explicit
2128  * naps in the hope that some of these pages can be written.  But if the
2129  * allocating task holds filesystem locks which prevent writeout this might not
2130  * work, and the allocation attempt will fail.
2131  *
2132  * returns:     0, if no pages reclaimed
2133  *              else, the number of pages reclaimed
2134  */
2135 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2136                                         struct scan_control *sc,
2137                                         struct shrink_control *shrink)
2138 {
2139         int priority;
2140         unsigned long total_scanned = 0;
2141         struct reclaim_state *reclaim_state = current->reclaim_state;
2142         struct zoneref *z;
2143         struct zone *zone;
2144         unsigned long writeback_threshold;
2145
2146         get_mems_allowed();
2147         delayacct_freepages_start();
2148
2149         if (scanning_global_lru(sc))
2150                 count_vm_event(ALLOCSTALL);
2151
2152         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2153                 sc->nr_scanned = 0;
2154                 if (!priority)
2155                         disable_swap_token(sc->mem_cgroup);
2156                 shrink_zones(priority, zonelist, sc);
2157                 /*
2158                  * Don't shrink slabs when reclaiming memory from
2159                  * over limit cgroups
2160                  */
2161                 if (scanning_global_lru(sc)) {
2162                         unsigned long lru_pages = 0;
2163                         for_each_zone_zonelist(zone, z, zonelist,
2164                                         gfp_zone(sc->gfp_mask)) {
2165                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2166                                         continue;
2167
2168                                 lru_pages += zone_reclaimable_pages(zone);
2169                         }
2170
2171                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2172                         if (reclaim_state) {
2173                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2174                                 reclaim_state->reclaimed_slab = 0;
2175                         }
2176                 }
2177                 total_scanned += sc->nr_scanned;
2178                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2179                         goto out;
2180
2181                 /*
2182                  * Try to write back as many pages as we just scanned.  This
2183                  * tends to cause slow streaming writers to write data to the
2184                  * disk smoothly, at the dirtying rate, which is nice.   But
2185                  * that's undesirable in laptop mode, where we *want* lumpy
2186                  * writeout.  So in laptop mode, write out the whole world.
2187                  */
2188                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2189                 if (total_scanned > writeback_threshold) {
2190                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2191                         sc->may_writepage = 1;
2192                 }
2193
2194                 /* Take a nap, wait for some writeback to complete */
2195                 if (!sc->hibernation_mode && sc->nr_scanned &&
2196                     priority < DEF_PRIORITY - 2) {
2197                         struct zone *preferred_zone;
2198
2199                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2200                                                 &cpuset_current_mems_allowed,
2201                                                 &preferred_zone);
2202                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2203                 }
2204         }
2205
2206 out:
2207         delayacct_freepages_end();
2208         put_mems_allowed();
2209
2210         if (sc->nr_reclaimed)
2211                 return sc->nr_reclaimed;
2212
2213         /*
2214          * As hibernation is going on, kswapd is freezed so that it can't mark
2215          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2216          * check.
2217          */
2218         if (oom_killer_disabled)
2219                 return 0;
2220
2221         /* top priority shrink_zones still had more to do? don't OOM, then */
2222         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2223                 return 1;
2224
2225         return 0;
2226 }
2227
2228 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2229                                 gfp_t gfp_mask, nodemask_t *nodemask)
2230 {
2231         unsigned long nr_reclaimed;
2232         struct scan_control sc = {
2233                 .gfp_mask = gfp_mask,
2234                 .may_writepage = !laptop_mode,
2235                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2236                 .may_unmap = 1,
2237                 .may_swap = 1,
2238                 .order = order,
2239                 .mem_cgroup = NULL,
2240                 .nodemask = nodemask,
2241         };
2242         struct shrink_control shrink = {
2243                 .gfp_mask = sc.gfp_mask,
2244         };
2245
2246         trace_mm_vmscan_direct_reclaim_begin(order,
2247                                 sc.may_writepage,
2248                                 gfp_mask);
2249
2250         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2251
2252         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2253
2254         return nr_reclaimed;
2255 }
2256
2257 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2258
2259 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2260                                                 gfp_t gfp_mask, bool noswap,
2261                                                 struct zone *zone,
2262                                                 unsigned long *nr_scanned)
2263 {
2264         struct scan_control sc = {
2265                 .nr_scanned = 0,
2266                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2267                 .may_writepage = !laptop_mode,
2268                 .may_unmap = 1,
2269                 .may_swap = !noswap,
2270                 .order = 0,
2271                 .mem_cgroup = mem,
2272         };
2273
2274         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2275                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2276
2277         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2278                                                       sc.may_writepage,
2279                                                       sc.gfp_mask);
2280
2281         /*
2282          * NOTE: Although we can get the priority field, using it
2283          * here is not a good idea, since it limits the pages we can scan.
2284          * if we don't reclaim here, the shrink_zone from balance_pgdat
2285          * will pick up pages from other mem cgroup's as well. We hack
2286          * the priority and make it zero.
2287          */
2288         shrink_zone(0, zone, &sc);
2289
2290         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2291
2292         *nr_scanned = sc.nr_scanned;
2293         return sc.nr_reclaimed;
2294 }
2295
2296 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2297                                            gfp_t gfp_mask,
2298                                            bool noswap)
2299 {
2300         struct zonelist *zonelist;
2301         unsigned long nr_reclaimed;
2302         int nid;
2303         struct scan_control sc = {
2304                 .may_writepage = !laptop_mode,
2305                 .may_unmap = 1,
2306                 .may_swap = !noswap,
2307                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2308                 .order = 0,
2309                 .mem_cgroup = mem_cont,
2310                 .nodemask = NULL, /* we don't care the placement */
2311                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2312                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2313         };
2314         struct shrink_control shrink = {
2315                 .gfp_mask = sc.gfp_mask,
2316         };
2317
2318         /*
2319          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2320          * take care of from where we get pages. So the node where we start the
2321          * scan does not need to be the current node.
2322          */
2323         nid = mem_cgroup_select_victim_node(mem_cont);
2324
2325         zonelist = NODE_DATA(nid)->node_zonelists;
2326
2327         trace_mm_vmscan_memcg_reclaim_begin(0,
2328                                             sc.may_writepage,
2329                                             sc.gfp_mask);
2330
2331         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2332
2333         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2334
2335         return nr_reclaimed;
2336 }
2337 #endif
2338
2339 /*
2340  * pgdat_balanced is used when checking if a node is balanced for high-order
2341  * allocations. Only zones that meet watermarks and are in a zone allowed
2342  * by the callers classzone_idx are added to balanced_pages. The total of
2343  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2344  * for the node to be considered balanced. Forcing all zones to be balanced
2345  * for high orders can cause excessive reclaim when there are imbalanced zones.
2346  * The choice of 25% is due to
2347  *   o a 16M DMA zone that is balanced will not balance a zone on any
2348  *     reasonable sized machine
2349  *   o On all other machines, the top zone must be at least a reasonable
2350  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2351  *     would need to be at least 256M for it to be balance a whole node.
2352  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2353  *     to balance a node on its own. These seemed like reasonable ratios.
2354  */
2355 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2356                                                 int classzone_idx)
2357 {
2358         unsigned long present_pages = 0;
2359         int i;
2360
2361         for (i = 0; i <= classzone_idx; i++)
2362                 present_pages += pgdat->node_zones[i].present_pages;
2363
2364         /* A special case here: if zone has no page, we think it's balanced */
2365         return balanced_pages >= (present_pages >> 2);
2366 }
2367
2368 /* is kswapd sleeping prematurely? */
2369 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2370                                         int classzone_idx)
2371 {
2372         int i;
2373         unsigned long balanced = 0;
2374         bool all_zones_ok = true;
2375
2376         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2377         if (remaining)
2378                 return true;
2379
2380         /* Check the watermark levels */
2381         for (i = 0; i <= classzone_idx; i++) {
2382                 struct zone *zone = pgdat->node_zones + i;
2383
2384                 if (!populated_zone(zone))
2385                         continue;
2386
2387                 /*
2388                  * balance_pgdat() skips over all_unreclaimable after
2389                  * DEF_PRIORITY. Effectively, it considers them balanced so
2390                  * they must be considered balanced here as well if kswapd
2391                  * is to sleep
2392                  */
2393                 if (zone->all_unreclaimable) {
2394                         balanced += zone->present_pages;
2395                         continue;
2396                 }
2397
2398                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2399                                                         i, 0))
2400                         all_zones_ok = false;
2401                 else
2402                         balanced += zone->present_pages;
2403         }
2404
2405         /*
2406          * For high-order requests, the balanced zones must contain at least
2407          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2408          * must be balanced
2409          */
2410         if (order)
2411                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2412         else
2413                 return !all_zones_ok;
2414 }
2415
2416 /*
2417  * For kswapd, balance_pgdat() will work across all this node's zones until
2418  * they are all at high_wmark_pages(zone).
2419  *
2420  * Returns the final order kswapd was reclaiming at
2421  *
2422  * There is special handling here for zones which are full of pinned pages.
2423  * This can happen if the pages are all mlocked, or if they are all used by
2424  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2425  * What we do is to detect the case where all pages in the zone have been
2426  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2427  * dead and from now on, only perform a short scan.  Basically we're polling
2428  * the zone for when the problem goes away.
2429  *
2430  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2431  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2432  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2433  * lower zones regardless of the number of free pages in the lower zones. This
2434  * interoperates with the page allocator fallback scheme to ensure that aging
2435  * of pages is balanced across the zones.
2436  */
2437 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2438                                                         int *classzone_idx)
2439 {
2440         int all_zones_ok;
2441         unsigned long balanced;
2442         int priority;
2443         int i;
2444         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2445         unsigned long total_scanned;
2446         struct reclaim_state *reclaim_state = current->reclaim_state;
2447         unsigned long nr_soft_reclaimed;
2448         unsigned long nr_soft_scanned;
2449         struct scan_control sc = {
2450                 .gfp_mask = GFP_KERNEL,
2451                 .may_unmap = 1,
2452                 .may_swap = 1,
2453                 /*
2454                  * kswapd doesn't want to be bailed out while reclaim. because
2455                  * we want to put equal scanning pressure on each zone.
2456                  */
2457                 .nr_to_reclaim = ULONG_MAX,
2458                 .order = order,
2459                 .mem_cgroup = NULL,
2460         };
2461         struct shrink_control shrink = {
2462                 .gfp_mask = sc.gfp_mask,
2463         };
2464 loop_again:
2465         total_scanned = 0;
2466         sc.nr_reclaimed = 0;
2467         sc.may_writepage = !laptop_mode;
2468         count_vm_event(PAGEOUTRUN);
2469
2470         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2471                 unsigned long lru_pages = 0;
2472                 int has_under_min_watermark_zone = 0;
2473
2474                 /* The swap token gets in the way of swapout... */
2475                 if (!priority)
2476                         disable_swap_token(NULL);
2477
2478                 all_zones_ok = 1;
2479                 balanced = 0;
2480
2481                 /*
2482                  * Scan in the highmem->dma direction for the highest
2483                  * zone which needs scanning
2484                  */
2485                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2486                         struct zone *zone = pgdat->node_zones + i;
2487
2488                         if (!populated_zone(zone))
2489                                 continue;
2490
2491                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2492                                 continue;
2493
2494                         /*
2495                          * Do some background aging of the anon list, to give
2496                          * pages a chance to be referenced before reclaiming.
2497                          */
2498                         if (inactive_anon_is_low(zone, &sc))
2499                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2500                                                         &sc, priority, 0);
2501
2502                         if (!zone_watermark_ok_safe(zone, order,
2503                                         high_wmark_pages(zone), 0, 0)) {
2504                                 end_zone = i;
2505                                 break;
2506                         } else {
2507                                 /* If balanced, clear the congested flag */
2508                                 zone_clear_flag(zone, ZONE_CONGESTED);
2509                         }
2510                 }
2511                 if (i < 0)
2512                         goto out;
2513
2514                 for (i = 0; i <= end_zone; i++) {
2515                         struct zone *zone = pgdat->node_zones + i;
2516
2517                         lru_pages += zone_reclaimable_pages(zone);
2518                 }
2519
2520                 /*
2521                  * Now scan the zone in the dma->highmem direction, stopping
2522                  * at the last zone which needs scanning.
2523                  *
2524                  * We do this because the page allocator works in the opposite
2525                  * direction.  This prevents the page allocator from allocating
2526                  * pages behind kswapd's direction of progress, which would
2527                  * cause too much scanning of the lower zones.
2528                  */
2529                 for (i = 0; i <= end_zone; i++) {
2530                         struct zone *zone = pgdat->node_zones + i;
2531                         int nr_slab;
2532                         unsigned long balance_gap;
2533
2534                         if (!populated_zone(zone))
2535                                 continue;
2536
2537                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2538                                 continue;
2539
2540                         sc.nr_scanned = 0;
2541
2542                         nr_soft_scanned = 0;
2543                         /*
2544                          * Call soft limit reclaim before calling shrink_zone.
2545                          */
2546                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2547                                                         order, sc.gfp_mask,
2548                                                         &nr_soft_scanned);
2549                         sc.nr_reclaimed += nr_soft_reclaimed;
2550                         total_scanned += nr_soft_scanned;
2551
2552                         /*
2553                          * We put equal pressure on every zone, unless
2554                          * one zone has way too many pages free
2555                          * already. The "too many pages" is defined
2556                          * as the high wmark plus a "gap" where the
2557                          * gap is either the low watermark or 1%
2558                          * of the zone, whichever is smaller.
2559                          */
2560                         balance_gap = min(low_wmark_pages(zone),
2561                                 (zone->present_pages +
2562                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2563                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2564                         if (!zone_watermark_ok_safe(zone, order,
2565                                         high_wmark_pages(zone) + balance_gap,
2566                                         end_zone, 0)) {
2567                                 shrink_zone(priority, zone, &sc);
2568
2569                                 reclaim_state->reclaimed_slab = 0;
2570                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2571                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2572                                 total_scanned += sc.nr_scanned;
2573
2574                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2575                                         zone->all_unreclaimable = 1;
2576                         }
2577
2578                         /*
2579                          * If we've done a decent amount of scanning and
2580                          * the reclaim ratio is low, start doing writepage
2581                          * even in laptop mode
2582                          */
2583                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2584                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2585                                 sc.may_writepage = 1;
2586
2587                         if (zone->all_unreclaimable) {
2588                                 if (end_zone && end_zone == i)
2589                                         end_zone--;
2590                                 continue;
2591                         }
2592
2593                         if (!zone_watermark_ok_safe(zone, order,
2594                                         high_wmark_pages(zone), end_zone, 0)) {
2595                                 all_zones_ok = 0;
2596                                 /*
2597                                  * We are still under min water mark.  This
2598                                  * means that we have a GFP_ATOMIC allocation
2599                                  * failure risk. Hurry up!
2600                                  */
2601                                 if (!zone_watermark_ok_safe(zone, order,
2602                                             min_wmark_pages(zone), end_zone, 0))
2603                                         has_under_min_watermark_zone = 1;
2604                         } else {
2605                                 /*
2606                                  * If a zone reaches its high watermark,
2607                                  * consider it to be no longer congested. It's
2608                                  * possible there are dirty pages backed by
2609                                  * congested BDIs but as pressure is relieved,
2610                                  * spectulatively avoid congestion waits
2611                                  */
2612                                 zone_clear_flag(zone, ZONE_CONGESTED);
2613                                 if (i <= *classzone_idx)
2614                                         balanced += zone->present_pages;
2615                         }
2616
2617                 }
2618                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2619                         break;          /* kswapd: all done */
2620                 /*
2621                  * OK, kswapd is getting into trouble.  Take a nap, then take
2622                  * another pass across the zones.
2623                  */
2624                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2625                         if (has_under_min_watermark_zone)
2626                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2627                         else
2628                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2629                 }
2630
2631                 /*
2632                  * We do this so kswapd doesn't build up large priorities for
2633                  * example when it is freeing in parallel with allocators. It
2634                  * matches the direct reclaim path behaviour in terms of impact
2635                  * on zone->*_priority.
2636                  */
2637                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2638                         break;
2639         }
2640 out:
2641
2642         /*
2643          * order-0: All zones must meet high watermark for a balanced node
2644          * high-order: Balanced zones must make up at least 25% of the node
2645          *             for the node to be balanced
2646          */
2647         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2648                 cond_resched();
2649
2650                 try_to_freeze();
2651
2652                 /*
2653                  * Fragmentation may mean that the system cannot be
2654                  * rebalanced for high-order allocations in all zones.
2655                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2656                  * it means the zones have been fully scanned and are still
2657                  * not balanced. For high-order allocations, there is
2658                  * little point trying all over again as kswapd may
2659                  * infinite loop.
2660                  *
2661                  * Instead, recheck all watermarks at order-0 as they
2662                  * are the most important. If watermarks are ok, kswapd will go
2663                  * back to sleep. High-order users can still perform direct
2664                  * reclaim if they wish.
2665                  */
2666                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2667                         order = sc.order = 0;
2668
2669                 goto loop_again;
2670         }
2671
2672         /*
2673          * If kswapd was reclaiming at a higher order, it has the option of
2674          * sleeping without all zones being balanced. Before it does, it must
2675          * ensure that the watermarks for order-0 on *all* zones are met and
2676          * that the congestion flags are cleared. The congestion flag must
2677          * be cleared as kswapd is the only mechanism that clears the flag
2678          * and it is potentially going to sleep here.
2679          */
2680         if (order) {
2681                 for (i = 0; i <= end_zone; i++) {
2682                         struct zone *zone = pgdat->node_zones + i;
2683
2684                         if (!populated_zone(zone))
2685                                 continue;
2686
2687                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2688                                 continue;
2689
2690                         /* Confirm the zone is balanced for order-0 */
2691                         if (!zone_watermark_ok(zone, 0,
2692                                         high_wmark_pages(zone), 0, 0)) {
2693                                 order = sc.order = 0;
2694                                 goto loop_again;
2695                         }
2696
2697                         /* If balanced, clear the congested flag */
2698                         zone_clear_flag(zone, ZONE_CONGESTED);
2699                 }
2700         }
2701
2702         /*
2703          * Return the order we were reclaiming at so sleeping_prematurely()
2704          * makes a decision on the order we were last reclaiming at. However,
2705          * if another caller entered the allocator slow path while kswapd
2706          * was awake, order will remain at the higher level
2707          */
2708         *classzone_idx = end_zone;
2709         return order;
2710 }
2711
2712 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2713 {
2714         long remaining = 0;
2715         DEFINE_WAIT(wait);
2716
2717         if (freezing(current) || kthread_should_stop())
2718                 return;
2719
2720         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2721
2722         /* Try to sleep for a short interval */
2723         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2724                 remaining = schedule_timeout(HZ/10);
2725                 finish_wait(&pgdat->kswapd_wait, &wait);
2726                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2727         }
2728
2729         /*
2730          * After a short sleep, check if it was a premature sleep. If not, then
2731          * go fully to sleep until explicitly woken up.
2732          */
2733         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2734                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2735
2736                 /*
2737                  * vmstat counters are not perfectly accurate and the estimated
2738                  * value for counters such as NR_FREE_PAGES can deviate from the
2739                  * true value by nr_online_cpus * threshold. To avoid the zone
2740                  * watermarks being breached while under pressure, we reduce the
2741                  * per-cpu vmstat threshold while kswapd is awake and restore
2742                  * them before going back to sleep.
2743                  */
2744                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2745                 schedule();
2746                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2747         } else {
2748                 if (remaining)
2749                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2750                 else
2751                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2752         }
2753         finish_wait(&pgdat->kswapd_wait, &wait);
2754 }
2755
2756 /*
2757  * The background pageout daemon, started as a kernel thread
2758  * from the init process.
2759  *
2760  * This basically trickles out pages so that we have _some_
2761  * free memory available even if there is no other activity
2762  * that frees anything up. This is needed for things like routing
2763  * etc, where we otherwise might have all activity going on in
2764  * asynchronous contexts that cannot page things out.
2765  *
2766  * If there are applications that are active memory-allocators
2767  * (most normal use), this basically shouldn't matter.
2768  */
2769 static int kswapd(void *p)
2770 {
2771         unsigned long order, new_order;
2772         int classzone_idx, new_classzone_idx;
2773         pg_data_t *pgdat = (pg_data_t*)p;
2774         struct task_struct *tsk = current;
2775
2776         struct reclaim_state reclaim_state = {
2777                 .reclaimed_slab = 0,
2778         };
2779         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2780
2781         lockdep_set_current_reclaim_state(GFP_KERNEL);
2782
2783         if (!cpumask_empty(cpumask))
2784                 set_cpus_allowed_ptr(tsk, cpumask);
2785         current->reclaim_state = &reclaim_state;
2786
2787         /*
2788          * Tell the memory management that we're a "memory allocator",
2789          * and that if we need more memory we should get access to it
2790          * regardless (see "__alloc_pages()"). "kswapd" should
2791          * never get caught in the normal page freeing logic.
2792          *
2793          * (Kswapd normally doesn't need memory anyway, but sometimes
2794          * you need a small amount of memory in order to be able to
2795          * page out something else, and this flag essentially protects
2796          * us from recursively trying to free more memory as we're
2797          * trying to free the first piece of memory in the first place).
2798          */
2799         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2800         set_freezable();
2801
2802         order = new_order = 0;
2803         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2804         for ( ; ; ) {
2805                 int ret;
2806
2807                 /*
2808                  * If the last balance_pgdat was unsuccessful it's unlikely a
2809                  * new request of a similar or harder type will succeed soon
2810                  * so consider going to sleep on the basis we reclaimed at
2811                  */
2812                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2813                         new_order = pgdat->kswapd_max_order;
2814                         new_classzone_idx = pgdat->classzone_idx;
2815                         pgdat->kswapd_max_order =  0;
2816                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2817                 }
2818
2819                 if (order < new_order || classzone_idx > new_classzone_idx) {
2820                         /*
2821                          * Don't sleep if someone wants a larger 'order'
2822                          * allocation or has tigher zone constraints
2823                          */
2824                         order = new_order;
2825                         classzone_idx = new_classzone_idx;
2826                 } else {
2827                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2828                         order = pgdat->kswapd_max_order;
2829                         classzone_idx = pgdat->classzone_idx;
2830                         pgdat->kswapd_max_order = 0;
2831                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2832                 }
2833
2834                 ret = try_to_freeze();
2835                 if (kthread_should_stop())
2836                         break;
2837
2838                 /*
2839                  * We can speed up thawing tasks if we don't call balance_pgdat
2840                  * after returning from the refrigerator
2841                  */
2842                 if (!ret) {
2843                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2844                         order = balance_pgdat(pgdat, order, &classzone_idx);
2845                 }
2846         }
2847         return 0;
2848 }
2849
2850 /*
2851  * A zone is low on free memory, so wake its kswapd task to service it.
2852  */
2853 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2854 {
2855         pg_data_t *pgdat;
2856
2857         if (!populated_zone(zone))
2858                 return;
2859
2860         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2861                 return;
2862         pgdat = zone->zone_pgdat;
2863         if (pgdat->kswapd_max_order < order) {
2864                 pgdat->kswapd_max_order = order;
2865                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2866         }
2867         if (!waitqueue_active(&pgdat->kswapd_wait))
2868                 return;
2869         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2870                 return;
2871
2872         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2873         wake_up_interruptible(&pgdat->kswapd_wait);
2874 }
2875
2876 /*
2877  * The reclaimable count would be mostly accurate.
2878  * The less reclaimable pages may be
2879  * - mlocked pages, which will be moved to unevictable list when encountered
2880  * - mapped pages, which may require several travels to be reclaimed
2881  * - dirty pages, which is not "instantly" reclaimable
2882  */
2883 unsigned long global_reclaimable_pages(void)
2884 {
2885         int nr;
2886
2887         nr = global_page_state(NR_ACTIVE_FILE) +
2888              global_page_state(NR_INACTIVE_FILE);
2889
2890         if (nr_swap_pages > 0)
2891                 nr += global_page_state(NR_ACTIVE_ANON) +
2892                       global_page_state(NR_INACTIVE_ANON);
2893
2894         return nr;
2895 }
2896
2897 unsigned long zone_reclaimable_pages(struct zone *zone)
2898 {
2899         int nr;
2900
2901         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2902              zone_page_state(zone, NR_INACTIVE_FILE);
2903
2904         if (nr_swap_pages > 0)
2905                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2906                       zone_page_state(zone, NR_INACTIVE_ANON);
2907
2908         return nr;
2909 }
2910
2911 #ifdef CONFIG_HIBERNATION
2912 /*
2913  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2914  * freed pages.
2915  *
2916  * Rather than trying to age LRUs the aim is to preserve the overall
2917  * LRU order by reclaiming preferentially
2918  * inactive > active > active referenced > active mapped
2919  */
2920 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2921 {
2922         struct reclaim_state reclaim_state;
2923         struct scan_control sc = {
2924                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2925                 .may_swap = 1,
2926                 .may_unmap = 1,
2927                 .may_writepage = 1,
2928                 .nr_to_reclaim = nr_to_reclaim,
2929                 .hibernation_mode = 1,
2930                 .order = 0,
2931         };
2932         struct shrink_control shrink = {
2933                 .gfp_mask = sc.gfp_mask,
2934         };
2935         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2936         struct task_struct *p = current;
2937         unsigned long nr_reclaimed;
2938
2939         p->flags |= PF_MEMALLOC;
2940         lockdep_set_current_reclaim_state(sc.gfp_mask);
2941         reclaim_state.reclaimed_slab = 0;
2942         p->reclaim_state = &reclaim_state;
2943
2944         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2945
2946         p->reclaim_state = NULL;
2947         lockdep_clear_current_reclaim_state();
2948         p->flags &= ~PF_MEMALLOC;
2949
2950         return nr_reclaimed;
2951 }
2952 #endif /* CONFIG_HIBERNATION */
2953
2954 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2955    not required for correctness.  So if the last cpu in a node goes
2956    away, we get changed to run anywhere: as the first one comes back,
2957    restore their cpu bindings. */
2958 static int __devinit cpu_callback(struct notifier_block *nfb,
2959                                   unsigned long action, void *hcpu)
2960 {
2961         int nid;
2962
2963         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2964                 for_each_node_state(nid, N_HIGH_MEMORY) {
2965                         pg_data_t *pgdat = NODE_DATA(nid);
2966                         const struct cpumask *mask;
2967
2968                         mask = cpumask_of_node(pgdat->node_id);
2969
2970                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2971                                 /* One of our CPUs online: restore mask */
2972                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2973                 }
2974         }
2975         return NOTIFY_OK;
2976 }
2977
2978 /*
2979  * This kswapd start function will be called by init and node-hot-add.
2980  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2981  */
2982 int kswapd_run(int nid)
2983 {
2984         pg_data_t *pgdat = NODE_DATA(nid);
2985         int ret = 0;
2986
2987         if (pgdat->kswapd)
2988                 return 0;
2989
2990         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2991         if (IS_ERR(pgdat->kswapd)) {
2992                 /* failure at boot is fatal */
2993                 BUG_ON(system_state == SYSTEM_BOOTING);
2994                 printk("Failed to start kswapd on node %d\n",nid);
2995                 ret = -1;
2996         }
2997         return ret;
2998 }
2999
3000 /*
3001  * Called by memory hotplug when all memory in a node is offlined.
3002  */
3003 void kswapd_stop(int nid)
3004 {
3005         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3006
3007         if (kswapd)
3008                 kthread_stop(kswapd);
3009 }
3010
3011 static int __init kswapd_init(void)
3012 {
3013         int nid;
3014
3015         swap_setup();
3016         for_each_node_state(nid, N_HIGH_MEMORY)
3017                 kswapd_run(nid);
3018         hotcpu_notifier(cpu_callback, 0);
3019         return 0;
3020 }
3021
3022 module_init(kswapd_init)
3023
3024 #ifdef CONFIG_NUMA
3025 /*
3026  * Zone reclaim mode
3027  *
3028  * If non-zero call zone_reclaim when the number of free pages falls below
3029  * the watermarks.
3030  */
3031 int zone_reclaim_mode __read_mostly;
3032
3033 #define RECLAIM_OFF 0
3034 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3035 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3036 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3037
3038 /*
3039  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3040  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3041  * a zone.
3042  */
3043 #define ZONE_RECLAIM_PRIORITY 4
3044
3045 /*
3046  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3047  * occur.
3048  */
3049 int sysctl_min_unmapped_ratio = 1;
3050
3051 /*
3052  * If the number of slab pages in a zone grows beyond this percentage then
3053  * slab reclaim needs to occur.
3054  */
3055 int sysctl_min_slab_ratio = 5;
3056
3057 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3058 {
3059         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3060         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3061                 zone_page_state(zone, NR_ACTIVE_FILE);
3062
3063         /*
3064          * It's possible for there to be more file mapped pages than
3065          * accounted for by the pages on the file LRU lists because
3066          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3067          */
3068         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3069 }
3070
3071 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3072 static long zone_pagecache_reclaimable(struct zone *zone)
3073 {
3074         long nr_pagecache_reclaimable;
3075         long delta = 0;
3076
3077         /*
3078          * If RECLAIM_SWAP is set, then all file pages are considered
3079          * potentially reclaimable. Otherwise, we have to worry about
3080          * pages like swapcache and zone_unmapped_file_pages() provides
3081          * a better estimate
3082          */
3083         if (zone_reclaim_mode & RECLAIM_SWAP)
3084                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3085         else
3086                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3087
3088         /* If we can't clean pages, remove dirty pages from consideration */
3089         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3090                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3091
3092         /* Watch for any possible underflows due to delta */
3093         if (unlikely(delta > nr_pagecache_reclaimable))
3094                 delta = nr_pagecache_reclaimable;
3095
3096         return nr_pagecache_reclaimable - delta;
3097 }
3098
3099 /*
3100  * Try to free up some pages from this zone through reclaim.
3101  */
3102 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3103 {
3104         /* Minimum pages needed in order to stay on node */
3105         const unsigned long nr_pages = 1 << order;
3106         struct task_struct *p = current;
3107         struct reclaim_state reclaim_state;
3108         int priority;
3109         struct scan_control sc = {
3110                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3111                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3112                 .may_swap = 1,
3113                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3114                                        SWAP_CLUSTER_MAX),
3115                 .gfp_mask = gfp_mask,
3116                 .order = order,
3117         };
3118         struct shrink_control shrink = {
3119                 .gfp_mask = sc.gfp_mask,
3120         };
3121         unsigned long nr_slab_pages0, nr_slab_pages1;
3122
3123         cond_resched();
3124         /*
3125          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3126          * and we also need to be able to write out pages for RECLAIM_WRITE
3127          * and RECLAIM_SWAP.
3128          */
3129         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3130         lockdep_set_current_reclaim_state(gfp_mask);
3131         reclaim_state.reclaimed_slab = 0;
3132         p->reclaim_state = &reclaim_state;
3133
3134         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3135                 /*
3136                  * Free memory by calling shrink zone with increasing
3137                  * priorities until we have enough memory freed.
3138                  */
3139                 priority = ZONE_RECLAIM_PRIORITY;
3140                 do {
3141                         shrink_zone(priority, zone, &sc);
3142                         priority--;
3143                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3144         }
3145
3146         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3147         if (nr_slab_pages0 > zone->min_slab_pages) {
3148                 /*
3149                  * shrink_slab() does not currently allow us to determine how
3150                  * many pages were freed in this zone. So we take the current
3151                  * number of slab pages and shake the slab until it is reduced
3152                  * by the same nr_pages that we used for reclaiming unmapped
3153                  * pages.
3154                  *
3155                  * Note that shrink_slab will free memory on all zones and may
3156                  * take a long time.
3157                  */
3158                 for (;;) {
3159                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3160
3161                         /* No reclaimable slab or very low memory pressure */
3162                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3163                                 break;
3164
3165                         /* Freed enough memory */
3166                         nr_slab_pages1 = zone_page_state(zone,
3167                                                         NR_SLAB_RECLAIMABLE);
3168                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3169                                 break;
3170                 }
3171
3172                 /*
3173                  * Update nr_reclaimed by the number of slab pages we
3174                  * reclaimed from this zone.
3175                  */
3176                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3177                 if (nr_slab_pages1 < nr_slab_pages0)
3178                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3179         }
3180
3181         p->reclaim_state = NULL;
3182         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3183         lockdep_clear_current_reclaim_state();
3184         return sc.nr_reclaimed >= nr_pages;
3185 }
3186
3187 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3188 {
3189         int node_id;
3190         int ret;
3191
3192         /*
3193          * Zone reclaim reclaims unmapped file backed pages and
3194          * slab pages if we are over the defined limits.
3195          *
3196          * A small portion of unmapped file backed pages is needed for
3197          * file I/O otherwise pages read by file I/O will be immediately
3198          * thrown out if the zone is overallocated. So we do not reclaim
3199          * if less than a specified percentage of the zone is used by
3200          * unmapped file backed pages.
3201          */
3202         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3203             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3204                 return ZONE_RECLAIM_FULL;
3205
3206         if (zone->all_unreclaimable)
3207                 return ZONE_RECLAIM_FULL;
3208
3209         /*
3210          * Do not scan if the allocation should not be delayed.
3211          */
3212         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3213                 return ZONE_RECLAIM_NOSCAN;
3214
3215         /*
3216          * Only run zone reclaim on the local zone or on zones that do not
3217          * have associated processors. This will favor the local processor
3218          * over remote processors and spread off node memory allocations
3219          * as wide as possible.
3220          */
3221         node_id = zone_to_nid(zone);
3222         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3223                 return ZONE_RECLAIM_NOSCAN;
3224
3225         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3226                 return ZONE_RECLAIM_NOSCAN;
3227
3228         ret = __zone_reclaim(zone, gfp_mask, order);
3229         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3230
3231         if (!ret)
3232                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3233
3234         return ret;
3235 }
3236 #endif
3237
3238 /*
3239  * page_evictable - test whether a page is evictable
3240  * @page: the page to test
3241  * @vma: the VMA in which the page is or will be mapped, may be NULL
3242  *
3243  * Test whether page is evictable--i.e., should be placed on active/inactive
3244  * lists vs unevictable list.  The vma argument is !NULL when called from the
3245  * fault path to determine how to instantate a new page.
3246  *
3247  * Reasons page might not be evictable:
3248  * (1) page's mapping marked unevictable
3249  * (2) page is part of an mlocked VMA
3250  *
3251  */
3252 int page_evictable(struct page *page, struct vm_area_struct *vma)
3253 {
3254
3255         if (mapping_unevictable(page_mapping(page)))
3256                 return 0;
3257
3258         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3259                 return 0;
3260
3261         return 1;
3262 }
3263
3264 /**
3265  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3266  * @page: page to check evictability and move to appropriate lru list
3267  * @zone: zone page is in
3268  *
3269  * Checks a page for evictability and moves the page to the appropriate
3270  * zone lru list.
3271  *
3272  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3273  * have PageUnevictable set.
3274  */
3275 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3276 {
3277         VM_BUG_ON(PageActive(page));
3278
3279 retry:
3280         ClearPageUnevictable(page);
3281         if (page_evictable(page, NULL)) {
3282                 enum lru_list l = page_lru_base_type(page);
3283
3284                 __dec_zone_state(zone, NR_UNEVICTABLE);
3285                 list_move(&page->lru, &zone->lru[l].list);
3286                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3287                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3288                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3289         } else {
3290                 /*
3291                  * rotate unevictable list
3292                  */
3293                 SetPageUnevictable(page);
3294                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3295                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3296                 if (page_evictable(page, NULL))
3297                         goto retry;
3298         }
3299 }
3300
3301 /**
3302  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3303  * @mapping: struct address_space to scan for evictable pages
3304  *
3305  * Scan all pages in mapping.  Check unevictable pages for
3306  * evictability and move them to the appropriate zone lru list.
3307  */
3308 void scan_mapping_unevictable_pages(struct address_space *mapping)
3309 {
3310         pgoff_t next = 0;
3311         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3312                          PAGE_CACHE_SHIFT;
3313         struct zone *zone;
3314         struct pagevec pvec;
3315
3316         if (mapping->nrpages == 0)
3317                 return;
3318
3319         pagevec_init(&pvec, 0);
3320         while (next < end &&
3321                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3322                 int i;
3323                 int pg_scanned = 0;
3324
3325                 zone = NULL;
3326
3327                 for (i = 0; i < pagevec_count(&pvec); i++) {
3328                         struct page *page = pvec.pages[i];
3329                         pgoff_t page_index = page->index;
3330                         struct zone *pagezone = page_zone(page);
3331
3332                         pg_scanned++;
3333                         if (page_index > next)
3334                                 next = page_index;
3335                         next++;
3336
3337                         if (pagezone != zone) {
3338                                 if (zone)
3339                                         spin_unlock_irq(&zone->lru_lock);
3340                                 zone = pagezone;
3341                                 spin_lock_irq(&zone->lru_lock);
3342                         }
3343
3344                         if (PageLRU(page) && PageUnevictable(page))
3345                                 check_move_unevictable_page(page, zone);
3346                 }
3347                 if (zone)
3348                         spin_unlock_irq(&zone->lru_lock);
3349                 pagevec_release(&pvec);
3350
3351                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3352         }
3353
3354 }
3355
3356 /**
3357  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3358  * @zone - zone of which to scan the unevictable list
3359  *
3360  * Scan @zone's unevictable LRU lists to check for pages that have become
3361  * evictable.  Move those that have to @zone's inactive list where they
3362  * become candidates for reclaim, unless shrink_inactive_zone() decides
3363  * to reactivate them.  Pages that are still unevictable are rotated
3364  * back onto @zone's unevictable list.
3365  */
3366 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3367 static void scan_zone_unevictable_pages(struct zone *zone)
3368 {
3369         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3370         unsigned long scan;
3371         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3372
3373         while (nr_to_scan > 0) {
3374                 unsigned long batch_size = min(nr_to_scan,
3375                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3376
3377                 spin_lock_irq(&zone->lru_lock);
3378                 for (scan = 0;  scan < batch_size; scan++) {
3379                         struct page *page = lru_to_page(l_unevictable);
3380
3381                         if (!trylock_page(page))
3382                                 continue;
3383
3384                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3385
3386                         if (likely(PageLRU(page) && PageUnevictable(page)))
3387                                 check_move_unevictable_page(page, zone);
3388
3389                         unlock_page(page);
3390                 }
3391                 spin_unlock_irq(&zone->lru_lock);
3392
3393                 nr_to_scan -= batch_size;
3394         }
3395 }
3396
3397
3398 /**
3399  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3400  *
3401  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3402  * pages that have become evictable.  Move those back to the zones'
3403  * inactive list where they become candidates for reclaim.
3404  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3405  * and we add swap to the system.  As such, it runs in the context of a task
3406  * that has possibly/probably made some previously unevictable pages
3407  * evictable.
3408  */
3409 static void scan_all_zones_unevictable_pages(void)
3410 {
3411         struct zone *zone;
3412
3413         for_each_zone(zone) {
3414                 scan_zone_unevictable_pages(zone);
3415         }
3416 }
3417
3418 /*
3419  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3420  * all nodes' unevictable lists for evictable pages
3421  */
3422 unsigned long scan_unevictable_pages;
3423
3424 int scan_unevictable_handler(struct ctl_table *table, int write,
3425                            void __user *buffer,
3426                            size_t *length, loff_t *ppos)
3427 {
3428         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3429
3430         if (write && *(unsigned long *)table->data)
3431                 scan_all_zones_unevictable_pages();
3432
3433         scan_unevictable_pages = 0;
3434         return 0;
3435 }
3436
3437 #ifdef CONFIG_NUMA
3438 /*
3439  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3440  * a specified node's per zone unevictable lists for evictable pages.
3441  */
3442
3443 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3444                                           struct sysdev_attribute *attr,
3445                                           char *buf)
3446 {
3447         return sprintf(buf, "0\n");     /* always zero; should fit... */
3448 }
3449
3450 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3451                                            struct sysdev_attribute *attr,
3452                                         const char *buf, size_t count)
3453 {
3454         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3455         struct zone *zone;
3456         unsigned long res;
3457         unsigned long req = strict_strtoul(buf, 10, &res);
3458
3459         if (!req)
3460                 return 1;       /* zero is no-op */
3461
3462         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3463                 if (!populated_zone(zone))
3464                         continue;
3465                 scan_zone_unevictable_pages(zone);
3466         }
3467         return 1;
3468 }
3469
3470
3471 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3472                         read_scan_unevictable_node,
3473                         write_scan_unevictable_node);
3474
3475 int scan_unevictable_register_node(struct node *node)
3476 {
3477         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3478 }
3479
3480 void scan_unevictable_unregister_node(struct node *node)
3481 {
3482         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3483 }
3484 #endif