blkdev: generalize flags for blkdev_issue_fn functions
[pandora-kernel.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
38
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40                                  unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
49
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
54
55 static struct swap_list_t swap_list = {-1, -1};
56
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
58
59 static DEFINE_MUTEX(swapon_mutex);
60
61 static inline unsigned char swap_count(unsigned char ent)
62 {
63         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
64 }
65
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69 {
70         swp_entry_t entry = swp_entry(si->type, offset);
71         struct page *page;
72         int ret = 0;
73
74         page = find_get_page(&swapper_space, entry.val);
75         if (!page)
76                 return 0;
77         /*
78          * This function is called from scan_swap_map() and it's called
79          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80          * We have to use trylock for avoiding deadlock. This is a special
81          * case and you should use try_to_free_swap() with explicit lock_page()
82          * in usual operations.
83          */
84         if (trylock_page(page)) {
85                 ret = try_to_free_swap(page);
86                 unlock_page(page);
87         }
88         page_cache_release(page);
89         return ret;
90 }
91
92 /*
93  * We need this because the bdev->unplug_fn can sleep and we cannot
94  * hold swap_lock while calling the unplug_fn. And swap_lock
95  * cannot be turned into a mutex.
96  */
97 static DECLARE_RWSEM(swap_unplug_sem);
98
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100 {
101         swp_entry_t entry;
102
103         down_read(&swap_unplug_sem);
104         entry.val = page_private(page);
105         if (PageSwapCache(page)) {
106                 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107                 struct backing_dev_info *bdi;
108
109                 /*
110                  * If the page is removed from swapcache from under us (with a
111                  * racy try_to_unuse/swapoff) we need an additional reference
112                  * count to avoid reading garbage from page_private(page) above.
113                  * If the WARN_ON triggers during a swapoff it maybe the race
114                  * condition and it's harmless. However if it triggers without
115                  * swapoff it signals a problem.
116                  */
117                 WARN_ON(page_count(page) <= 1);
118
119                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120                 blk_run_backing_dev(bdi, page);
121         }
122         up_read(&swap_unplug_sem);
123 }
124
125 /*
126  * swapon tell device that all the old swap contents can be discarded,
127  * to allow the swap device to optimize its wear-levelling.
128  */
129 static int discard_swap(struct swap_info_struct *si)
130 {
131         struct swap_extent *se;
132         sector_t start_block;
133         sector_t nr_blocks;
134         int err = 0;
135
136         /* Do not discard the swap header page! */
137         se = &si->first_swap_extent;
138         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140         if (nr_blocks) {
141                 err = blkdev_issue_discard(si->bdev, start_block,
142                                 nr_blocks, GFP_KERNEL,
143                                 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
144                 if (err)
145                         return err;
146                 cond_resched();
147         }
148
149         list_for_each_entry(se, &si->first_swap_extent.list, list) {
150                 start_block = se->start_block << (PAGE_SHIFT - 9);
151                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152
153                 err = blkdev_issue_discard(si->bdev, start_block,
154                                 nr_blocks, GFP_KERNEL,
155                                 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
156                 if (err)
157                         break;
158
159                 cond_resched();
160         }
161         return err;             /* That will often be -EOPNOTSUPP */
162 }
163
164 /*
165  * swap allocation tell device that a cluster of swap can now be discarded,
166  * to allow the swap device to optimize its wear-levelling.
167  */
168 static void discard_swap_cluster(struct swap_info_struct *si,
169                                  pgoff_t start_page, pgoff_t nr_pages)
170 {
171         struct swap_extent *se = si->curr_swap_extent;
172         int found_extent = 0;
173
174         while (nr_pages) {
175                 struct list_head *lh;
176
177                 if (se->start_page <= start_page &&
178                     start_page < se->start_page + se->nr_pages) {
179                         pgoff_t offset = start_page - se->start_page;
180                         sector_t start_block = se->start_block + offset;
181                         sector_t nr_blocks = se->nr_pages - offset;
182
183                         if (nr_blocks > nr_pages)
184                                 nr_blocks = nr_pages;
185                         start_page += nr_blocks;
186                         nr_pages -= nr_blocks;
187
188                         if (!found_extent++)
189                                 si->curr_swap_extent = se;
190
191                         start_block <<= PAGE_SHIFT - 9;
192                         nr_blocks <<= PAGE_SHIFT - 9;
193                         if (blkdev_issue_discard(si->bdev, start_block,
194                                     nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT |
195                                                         BLKDEV_IFL_BARRIER))
196                                 break;
197                 }
198
199                 lh = se->list.next;
200                 se = list_entry(lh, struct swap_extent, list);
201         }
202 }
203
204 static int wait_for_discard(void *word)
205 {
206         schedule();
207         return 0;
208 }
209
210 #define SWAPFILE_CLUSTER        256
211 #define LATENCY_LIMIT           256
212
213 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
214                                           unsigned char usage)
215 {
216         unsigned long offset;
217         unsigned long scan_base;
218         unsigned long last_in_cluster = 0;
219         int latency_ration = LATENCY_LIMIT;
220         int found_free_cluster = 0;
221
222         /*
223          * We try to cluster swap pages by allocating them sequentially
224          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
225          * way, however, we resort to first-free allocation, starting
226          * a new cluster.  This prevents us from scattering swap pages
227          * all over the entire swap partition, so that we reduce
228          * overall disk seek times between swap pages.  -- sct
229          * But we do now try to find an empty cluster.  -Andrea
230          * And we let swap pages go all over an SSD partition.  Hugh
231          */
232
233         si->flags += SWP_SCANNING;
234         scan_base = offset = si->cluster_next;
235
236         if (unlikely(!si->cluster_nr--)) {
237                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
238                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
239                         goto checks;
240                 }
241                 if (si->flags & SWP_DISCARDABLE) {
242                         /*
243                          * Start range check on racing allocations, in case
244                          * they overlap the cluster we eventually decide on
245                          * (we scan without swap_lock to allow preemption).
246                          * It's hardly conceivable that cluster_nr could be
247                          * wrapped during our scan, but don't depend on it.
248                          */
249                         if (si->lowest_alloc)
250                                 goto checks;
251                         si->lowest_alloc = si->max;
252                         si->highest_alloc = 0;
253                 }
254                 spin_unlock(&swap_lock);
255
256                 /*
257                  * If seek is expensive, start searching for new cluster from
258                  * start of partition, to minimize the span of allocated swap.
259                  * But if seek is cheap, search from our current position, so
260                  * that swap is allocated from all over the partition: if the
261                  * Flash Translation Layer only remaps within limited zones,
262                  * we don't want to wear out the first zone too quickly.
263                  */
264                 if (!(si->flags & SWP_SOLIDSTATE))
265                         scan_base = offset = si->lowest_bit;
266                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
267
268                 /* Locate the first empty (unaligned) cluster */
269                 for (; last_in_cluster <= si->highest_bit; offset++) {
270                         if (si->swap_map[offset])
271                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
272                         else if (offset == last_in_cluster) {
273                                 spin_lock(&swap_lock);
274                                 offset -= SWAPFILE_CLUSTER - 1;
275                                 si->cluster_next = offset;
276                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
277                                 found_free_cluster = 1;
278                                 goto checks;
279                         }
280                         if (unlikely(--latency_ration < 0)) {
281                                 cond_resched();
282                                 latency_ration = LATENCY_LIMIT;
283                         }
284                 }
285
286                 offset = si->lowest_bit;
287                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
288
289                 /* Locate the first empty (unaligned) cluster */
290                 for (; last_in_cluster < scan_base; offset++) {
291                         if (si->swap_map[offset])
292                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
293                         else if (offset == last_in_cluster) {
294                                 spin_lock(&swap_lock);
295                                 offset -= SWAPFILE_CLUSTER - 1;
296                                 si->cluster_next = offset;
297                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
298                                 found_free_cluster = 1;
299                                 goto checks;
300                         }
301                         if (unlikely(--latency_ration < 0)) {
302                                 cond_resched();
303                                 latency_ration = LATENCY_LIMIT;
304                         }
305                 }
306
307                 offset = scan_base;
308                 spin_lock(&swap_lock);
309                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
310                 si->lowest_alloc = 0;
311         }
312
313 checks:
314         if (!(si->flags & SWP_WRITEOK))
315                 goto no_page;
316         if (!si->highest_bit)
317                 goto no_page;
318         if (offset > si->highest_bit)
319                 scan_base = offset = si->lowest_bit;
320
321         /* reuse swap entry of cache-only swap if not busy. */
322         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
323                 int swap_was_freed;
324                 spin_unlock(&swap_lock);
325                 swap_was_freed = __try_to_reclaim_swap(si, offset);
326                 spin_lock(&swap_lock);
327                 /* entry was freed successfully, try to use this again */
328                 if (swap_was_freed)
329                         goto checks;
330                 goto scan; /* check next one */
331         }
332
333         if (si->swap_map[offset])
334                 goto scan;
335
336         if (offset == si->lowest_bit)
337                 si->lowest_bit++;
338         if (offset == si->highest_bit)
339                 si->highest_bit--;
340         si->inuse_pages++;
341         if (si->inuse_pages == si->pages) {
342                 si->lowest_bit = si->max;
343                 si->highest_bit = 0;
344         }
345         si->swap_map[offset] = usage;
346         si->cluster_next = offset + 1;
347         si->flags -= SWP_SCANNING;
348
349         if (si->lowest_alloc) {
350                 /*
351                  * Only set when SWP_DISCARDABLE, and there's a scan
352                  * for a free cluster in progress or just completed.
353                  */
354                 if (found_free_cluster) {
355                         /*
356                          * To optimize wear-levelling, discard the
357                          * old data of the cluster, taking care not to
358                          * discard any of its pages that have already
359                          * been allocated by racing tasks (offset has
360                          * already stepped over any at the beginning).
361                          */
362                         if (offset < si->highest_alloc &&
363                             si->lowest_alloc <= last_in_cluster)
364                                 last_in_cluster = si->lowest_alloc - 1;
365                         si->flags |= SWP_DISCARDING;
366                         spin_unlock(&swap_lock);
367
368                         if (offset < last_in_cluster)
369                                 discard_swap_cluster(si, offset,
370                                         last_in_cluster - offset + 1);
371
372                         spin_lock(&swap_lock);
373                         si->lowest_alloc = 0;
374                         si->flags &= ~SWP_DISCARDING;
375
376                         smp_mb();       /* wake_up_bit advises this */
377                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
378
379                 } else if (si->flags & SWP_DISCARDING) {
380                         /*
381                          * Delay using pages allocated by racing tasks
382                          * until the whole discard has been issued. We
383                          * could defer that delay until swap_writepage,
384                          * but it's easier to keep this self-contained.
385                          */
386                         spin_unlock(&swap_lock);
387                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
388                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
389                         spin_lock(&swap_lock);
390                 } else {
391                         /*
392                          * Note pages allocated by racing tasks while
393                          * scan for a free cluster is in progress, so
394                          * that its final discard can exclude them.
395                          */
396                         if (offset < si->lowest_alloc)
397                                 si->lowest_alloc = offset;
398                         if (offset > si->highest_alloc)
399                                 si->highest_alloc = offset;
400                 }
401         }
402         return offset;
403
404 scan:
405         spin_unlock(&swap_lock);
406         while (++offset <= si->highest_bit) {
407                 if (!si->swap_map[offset]) {
408                         spin_lock(&swap_lock);
409                         goto checks;
410                 }
411                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
412                         spin_lock(&swap_lock);
413                         goto checks;
414                 }
415                 if (unlikely(--latency_ration < 0)) {
416                         cond_resched();
417                         latency_ration = LATENCY_LIMIT;
418                 }
419         }
420         offset = si->lowest_bit;
421         while (++offset < scan_base) {
422                 if (!si->swap_map[offset]) {
423                         spin_lock(&swap_lock);
424                         goto checks;
425                 }
426                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
427                         spin_lock(&swap_lock);
428                         goto checks;
429                 }
430                 if (unlikely(--latency_ration < 0)) {
431                         cond_resched();
432                         latency_ration = LATENCY_LIMIT;
433                 }
434         }
435         spin_lock(&swap_lock);
436
437 no_page:
438         si->flags -= SWP_SCANNING;
439         return 0;
440 }
441
442 swp_entry_t get_swap_page(void)
443 {
444         struct swap_info_struct *si;
445         pgoff_t offset;
446         int type, next;
447         int wrapped = 0;
448
449         spin_lock(&swap_lock);
450         if (nr_swap_pages <= 0)
451                 goto noswap;
452         nr_swap_pages--;
453
454         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
455                 si = swap_info[type];
456                 next = si->next;
457                 if (next < 0 ||
458                     (!wrapped && si->prio != swap_info[next]->prio)) {
459                         next = swap_list.head;
460                         wrapped++;
461                 }
462
463                 if (!si->highest_bit)
464                         continue;
465                 if (!(si->flags & SWP_WRITEOK))
466                         continue;
467
468                 swap_list.next = next;
469                 /* This is called for allocating swap entry for cache */
470                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
471                 if (offset) {
472                         spin_unlock(&swap_lock);
473                         return swp_entry(type, offset);
474                 }
475                 next = swap_list.next;
476         }
477
478         nr_swap_pages++;
479 noswap:
480         spin_unlock(&swap_lock);
481         return (swp_entry_t) {0};
482 }
483
484 /* The only caller of this function is now susupend routine */
485 swp_entry_t get_swap_page_of_type(int type)
486 {
487         struct swap_info_struct *si;
488         pgoff_t offset;
489
490         spin_lock(&swap_lock);
491         si = swap_info[type];
492         if (si && (si->flags & SWP_WRITEOK)) {
493                 nr_swap_pages--;
494                 /* This is called for allocating swap entry, not cache */
495                 offset = scan_swap_map(si, 1);
496                 if (offset) {
497                         spin_unlock(&swap_lock);
498                         return swp_entry(type, offset);
499                 }
500                 nr_swap_pages++;
501         }
502         spin_unlock(&swap_lock);
503         return (swp_entry_t) {0};
504 }
505
506 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
507 {
508         struct swap_info_struct *p;
509         unsigned long offset, type;
510
511         if (!entry.val)
512                 goto out;
513         type = swp_type(entry);
514         if (type >= nr_swapfiles)
515                 goto bad_nofile;
516         p = swap_info[type];
517         if (!(p->flags & SWP_USED))
518                 goto bad_device;
519         offset = swp_offset(entry);
520         if (offset >= p->max)
521                 goto bad_offset;
522         if (!p->swap_map[offset])
523                 goto bad_free;
524         spin_lock(&swap_lock);
525         return p;
526
527 bad_free:
528         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
529         goto out;
530 bad_offset:
531         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
532         goto out;
533 bad_device:
534         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
535         goto out;
536 bad_nofile:
537         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
538 out:
539         return NULL;
540 }
541
542 static unsigned char swap_entry_free(struct swap_info_struct *p,
543                                      swp_entry_t entry, unsigned char usage)
544 {
545         unsigned long offset = swp_offset(entry);
546         unsigned char count;
547         unsigned char has_cache;
548
549         count = p->swap_map[offset];
550         has_cache = count & SWAP_HAS_CACHE;
551         count &= ~SWAP_HAS_CACHE;
552
553         if (usage == SWAP_HAS_CACHE) {
554                 VM_BUG_ON(!has_cache);
555                 has_cache = 0;
556         } else if (count == SWAP_MAP_SHMEM) {
557                 /*
558                  * Or we could insist on shmem.c using a special
559                  * swap_shmem_free() and free_shmem_swap_and_cache()...
560                  */
561                 count = 0;
562         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
563                 if (count == COUNT_CONTINUED) {
564                         if (swap_count_continued(p, offset, count))
565                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
566                         else
567                                 count = SWAP_MAP_MAX;
568                 } else
569                         count--;
570         }
571
572         if (!count)
573                 mem_cgroup_uncharge_swap(entry);
574
575         usage = count | has_cache;
576         p->swap_map[offset] = usage;
577
578         /* free if no reference */
579         if (!usage) {
580                 if (offset < p->lowest_bit)
581                         p->lowest_bit = offset;
582                 if (offset > p->highest_bit)
583                         p->highest_bit = offset;
584                 if (swap_list.next >= 0 &&
585                     p->prio > swap_info[swap_list.next]->prio)
586                         swap_list.next = p->type;
587                 nr_swap_pages++;
588                 p->inuse_pages--;
589         }
590
591         return usage;
592 }
593
594 /*
595  * Caller has made sure that the swapdevice corresponding to entry
596  * is still around or has not been recycled.
597  */
598 void swap_free(swp_entry_t entry)
599 {
600         struct swap_info_struct *p;
601
602         p = swap_info_get(entry);
603         if (p) {
604                 swap_entry_free(p, entry, 1);
605                 spin_unlock(&swap_lock);
606         }
607 }
608
609 /*
610  * Called after dropping swapcache to decrease refcnt to swap entries.
611  */
612 void swapcache_free(swp_entry_t entry, struct page *page)
613 {
614         struct swap_info_struct *p;
615         unsigned char count;
616
617         p = swap_info_get(entry);
618         if (p) {
619                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
620                 if (page)
621                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
622                 spin_unlock(&swap_lock);
623         }
624 }
625
626 /*
627  * How many references to page are currently swapped out?
628  * This does not give an exact answer when swap count is continued,
629  * but does include the high COUNT_CONTINUED flag to allow for that.
630  */
631 static inline int page_swapcount(struct page *page)
632 {
633         int count = 0;
634         struct swap_info_struct *p;
635         swp_entry_t entry;
636
637         entry.val = page_private(page);
638         p = swap_info_get(entry);
639         if (p) {
640                 count = swap_count(p->swap_map[swp_offset(entry)]);
641                 spin_unlock(&swap_lock);
642         }
643         return count;
644 }
645
646 /*
647  * We can write to an anon page without COW if there are no other references
648  * to it.  And as a side-effect, free up its swap: because the old content
649  * on disk will never be read, and seeking back there to write new content
650  * later would only waste time away from clustering.
651  */
652 int reuse_swap_page(struct page *page)
653 {
654         int count;
655
656         VM_BUG_ON(!PageLocked(page));
657         if (unlikely(PageKsm(page)))
658                 return 0;
659         count = page_mapcount(page);
660         if (count <= 1 && PageSwapCache(page)) {
661                 count += page_swapcount(page);
662                 if (count == 1 && !PageWriteback(page)) {
663                         delete_from_swap_cache(page);
664                         SetPageDirty(page);
665                 }
666         }
667         return count <= 1;
668 }
669
670 /*
671  * If swap is getting full, or if there are no more mappings of this page,
672  * then try_to_free_swap is called to free its swap space.
673  */
674 int try_to_free_swap(struct page *page)
675 {
676         VM_BUG_ON(!PageLocked(page));
677
678         if (!PageSwapCache(page))
679                 return 0;
680         if (PageWriteback(page))
681                 return 0;
682         if (page_swapcount(page))
683                 return 0;
684
685         delete_from_swap_cache(page);
686         SetPageDirty(page);
687         return 1;
688 }
689
690 /*
691  * Free the swap entry like above, but also try to
692  * free the page cache entry if it is the last user.
693  */
694 int free_swap_and_cache(swp_entry_t entry)
695 {
696         struct swap_info_struct *p;
697         struct page *page = NULL;
698
699         if (non_swap_entry(entry))
700                 return 1;
701
702         p = swap_info_get(entry);
703         if (p) {
704                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
705                         page = find_get_page(&swapper_space, entry.val);
706                         if (page && !trylock_page(page)) {
707                                 page_cache_release(page);
708                                 page = NULL;
709                         }
710                 }
711                 spin_unlock(&swap_lock);
712         }
713         if (page) {
714                 /*
715                  * Not mapped elsewhere, or swap space full? Free it!
716                  * Also recheck PageSwapCache now page is locked (above).
717                  */
718                 if (PageSwapCache(page) && !PageWriteback(page) &&
719                                 (!page_mapped(page) || vm_swap_full())) {
720                         delete_from_swap_cache(page);
721                         SetPageDirty(page);
722                 }
723                 unlock_page(page);
724                 page_cache_release(page);
725         }
726         return p != NULL;
727 }
728
729 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
730 /**
731  * mem_cgroup_count_swap_user - count the user of a swap entry
732  * @ent: the swap entry to be checked
733  * @pagep: the pointer for the swap cache page of the entry to be stored
734  *
735  * Returns the number of the user of the swap entry. The number is valid only
736  * for swaps of anonymous pages.
737  * If the entry is found on swap cache, the page is stored to pagep with
738  * refcount of it being incremented.
739  */
740 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
741 {
742         struct page *page;
743         struct swap_info_struct *p;
744         int count = 0;
745
746         page = find_get_page(&swapper_space, ent.val);
747         if (page)
748                 count += page_mapcount(page);
749         p = swap_info_get(ent);
750         if (p) {
751                 count += swap_count(p->swap_map[swp_offset(ent)]);
752                 spin_unlock(&swap_lock);
753         }
754
755         *pagep = page;
756         return count;
757 }
758 #endif
759
760 #ifdef CONFIG_HIBERNATION
761 /*
762  * Find the swap type that corresponds to given device (if any).
763  *
764  * @offset - number of the PAGE_SIZE-sized block of the device, starting
765  * from 0, in which the swap header is expected to be located.
766  *
767  * This is needed for the suspend to disk (aka swsusp).
768  */
769 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
770 {
771         struct block_device *bdev = NULL;
772         int type;
773
774         if (device)
775                 bdev = bdget(device);
776
777         spin_lock(&swap_lock);
778         for (type = 0; type < nr_swapfiles; type++) {
779                 struct swap_info_struct *sis = swap_info[type];
780
781                 if (!(sis->flags & SWP_WRITEOK))
782                         continue;
783
784                 if (!bdev) {
785                         if (bdev_p)
786                                 *bdev_p = bdgrab(sis->bdev);
787
788                         spin_unlock(&swap_lock);
789                         return type;
790                 }
791                 if (bdev == sis->bdev) {
792                         struct swap_extent *se = &sis->first_swap_extent;
793
794                         if (se->start_block == offset) {
795                                 if (bdev_p)
796                                         *bdev_p = bdgrab(sis->bdev);
797
798                                 spin_unlock(&swap_lock);
799                                 bdput(bdev);
800                                 return type;
801                         }
802                 }
803         }
804         spin_unlock(&swap_lock);
805         if (bdev)
806                 bdput(bdev);
807
808         return -ENODEV;
809 }
810
811 /*
812  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
813  * corresponding to given index in swap_info (swap type).
814  */
815 sector_t swapdev_block(int type, pgoff_t offset)
816 {
817         struct block_device *bdev;
818
819         if ((unsigned int)type >= nr_swapfiles)
820                 return 0;
821         if (!(swap_info[type]->flags & SWP_WRITEOK))
822                 return 0;
823         return map_swap_entry(swp_entry(type, offset), &bdev);
824 }
825
826 /*
827  * Return either the total number of swap pages of given type, or the number
828  * of free pages of that type (depending on @free)
829  *
830  * This is needed for software suspend
831  */
832 unsigned int count_swap_pages(int type, int free)
833 {
834         unsigned int n = 0;
835
836         spin_lock(&swap_lock);
837         if ((unsigned int)type < nr_swapfiles) {
838                 struct swap_info_struct *sis = swap_info[type];
839
840                 if (sis->flags & SWP_WRITEOK) {
841                         n = sis->pages;
842                         if (free)
843                                 n -= sis->inuse_pages;
844                 }
845         }
846         spin_unlock(&swap_lock);
847         return n;
848 }
849 #endif /* CONFIG_HIBERNATION */
850
851 /*
852  * No need to decide whether this PTE shares the swap entry with others,
853  * just let do_wp_page work it out if a write is requested later - to
854  * force COW, vm_page_prot omits write permission from any private vma.
855  */
856 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
857                 unsigned long addr, swp_entry_t entry, struct page *page)
858 {
859         struct mem_cgroup *ptr = NULL;
860         spinlock_t *ptl;
861         pte_t *pte;
862         int ret = 1;
863
864         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
865                 ret = -ENOMEM;
866                 goto out_nolock;
867         }
868
869         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
870         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
871                 if (ret > 0)
872                         mem_cgroup_cancel_charge_swapin(ptr);
873                 ret = 0;
874                 goto out;
875         }
876
877         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
878         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
879         get_page(page);
880         set_pte_at(vma->vm_mm, addr, pte,
881                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
882         page_add_anon_rmap(page, vma, addr);
883         mem_cgroup_commit_charge_swapin(page, ptr);
884         swap_free(entry);
885         /*
886          * Move the page to the active list so it is not
887          * immediately swapped out again after swapon.
888          */
889         activate_page(page);
890 out:
891         pte_unmap_unlock(pte, ptl);
892 out_nolock:
893         return ret;
894 }
895
896 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
897                                 unsigned long addr, unsigned long end,
898                                 swp_entry_t entry, struct page *page)
899 {
900         pte_t swp_pte = swp_entry_to_pte(entry);
901         pte_t *pte;
902         int ret = 0;
903
904         /*
905          * We don't actually need pte lock while scanning for swp_pte: since
906          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
907          * page table while we're scanning; though it could get zapped, and on
908          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
909          * of unmatched parts which look like swp_pte, so unuse_pte must
910          * recheck under pte lock.  Scanning without pte lock lets it be
911          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
912          */
913         pte = pte_offset_map(pmd, addr);
914         do {
915                 /*
916                  * swapoff spends a _lot_ of time in this loop!
917                  * Test inline before going to call unuse_pte.
918                  */
919                 if (unlikely(pte_same(*pte, swp_pte))) {
920                         pte_unmap(pte);
921                         ret = unuse_pte(vma, pmd, addr, entry, page);
922                         if (ret)
923                                 goto out;
924                         pte = pte_offset_map(pmd, addr);
925                 }
926         } while (pte++, addr += PAGE_SIZE, addr != end);
927         pte_unmap(pte - 1);
928 out:
929         return ret;
930 }
931
932 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
933                                 unsigned long addr, unsigned long end,
934                                 swp_entry_t entry, struct page *page)
935 {
936         pmd_t *pmd;
937         unsigned long next;
938         int ret;
939
940         pmd = pmd_offset(pud, addr);
941         do {
942                 next = pmd_addr_end(addr, end);
943                 if (pmd_none_or_clear_bad(pmd))
944                         continue;
945                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
946                 if (ret)
947                         return ret;
948         } while (pmd++, addr = next, addr != end);
949         return 0;
950 }
951
952 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
953                                 unsigned long addr, unsigned long end,
954                                 swp_entry_t entry, struct page *page)
955 {
956         pud_t *pud;
957         unsigned long next;
958         int ret;
959
960         pud = pud_offset(pgd, addr);
961         do {
962                 next = pud_addr_end(addr, end);
963                 if (pud_none_or_clear_bad(pud))
964                         continue;
965                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
966                 if (ret)
967                         return ret;
968         } while (pud++, addr = next, addr != end);
969         return 0;
970 }
971
972 static int unuse_vma(struct vm_area_struct *vma,
973                                 swp_entry_t entry, struct page *page)
974 {
975         pgd_t *pgd;
976         unsigned long addr, end, next;
977         int ret;
978
979         if (page_anon_vma(page)) {
980                 addr = page_address_in_vma(page, vma);
981                 if (addr == -EFAULT)
982                         return 0;
983                 else
984                         end = addr + PAGE_SIZE;
985         } else {
986                 addr = vma->vm_start;
987                 end = vma->vm_end;
988         }
989
990         pgd = pgd_offset(vma->vm_mm, addr);
991         do {
992                 next = pgd_addr_end(addr, end);
993                 if (pgd_none_or_clear_bad(pgd))
994                         continue;
995                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
996                 if (ret)
997                         return ret;
998         } while (pgd++, addr = next, addr != end);
999         return 0;
1000 }
1001
1002 static int unuse_mm(struct mm_struct *mm,
1003                                 swp_entry_t entry, struct page *page)
1004 {
1005         struct vm_area_struct *vma;
1006         int ret = 0;
1007
1008         if (!down_read_trylock(&mm->mmap_sem)) {
1009                 /*
1010                  * Activate page so shrink_inactive_list is unlikely to unmap
1011                  * its ptes while lock is dropped, so swapoff can make progress.
1012                  */
1013                 activate_page(page);
1014                 unlock_page(page);
1015                 down_read(&mm->mmap_sem);
1016                 lock_page(page);
1017         }
1018         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1019                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1020                         break;
1021         }
1022         up_read(&mm->mmap_sem);
1023         return (ret < 0)? ret: 0;
1024 }
1025
1026 /*
1027  * Scan swap_map from current position to next entry still in use.
1028  * Recycle to start on reaching the end, returning 0 when empty.
1029  */
1030 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1031                                         unsigned int prev)
1032 {
1033         unsigned int max = si->max;
1034         unsigned int i = prev;
1035         unsigned char count;
1036
1037         /*
1038          * No need for swap_lock here: we're just looking
1039          * for whether an entry is in use, not modifying it; false
1040          * hits are okay, and sys_swapoff() has already prevented new
1041          * allocations from this area (while holding swap_lock).
1042          */
1043         for (;;) {
1044                 if (++i >= max) {
1045                         if (!prev) {
1046                                 i = 0;
1047                                 break;
1048                         }
1049                         /*
1050                          * No entries in use at top of swap_map,
1051                          * loop back to start and recheck there.
1052                          */
1053                         max = prev + 1;
1054                         prev = 0;
1055                         i = 1;
1056                 }
1057                 count = si->swap_map[i];
1058                 if (count && swap_count(count) != SWAP_MAP_BAD)
1059                         break;
1060         }
1061         return i;
1062 }
1063
1064 /*
1065  * We completely avoid races by reading each swap page in advance,
1066  * and then search for the process using it.  All the necessary
1067  * page table adjustments can then be made atomically.
1068  */
1069 static int try_to_unuse(unsigned int type)
1070 {
1071         struct swap_info_struct *si = swap_info[type];
1072         struct mm_struct *start_mm;
1073         unsigned char *swap_map;
1074         unsigned char swcount;
1075         struct page *page;
1076         swp_entry_t entry;
1077         unsigned int i = 0;
1078         int retval = 0;
1079
1080         /*
1081          * When searching mms for an entry, a good strategy is to
1082          * start at the first mm we freed the previous entry from
1083          * (though actually we don't notice whether we or coincidence
1084          * freed the entry).  Initialize this start_mm with a hold.
1085          *
1086          * A simpler strategy would be to start at the last mm we
1087          * freed the previous entry from; but that would take less
1088          * advantage of mmlist ordering, which clusters forked mms
1089          * together, child after parent.  If we race with dup_mmap(), we
1090          * prefer to resolve parent before child, lest we miss entries
1091          * duplicated after we scanned child: using last mm would invert
1092          * that.
1093          */
1094         start_mm = &init_mm;
1095         atomic_inc(&init_mm.mm_users);
1096
1097         /*
1098          * Keep on scanning until all entries have gone.  Usually,
1099          * one pass through swap_map is enough, but not necessarily:
1100          * there are races when an instance of an entry might be missed.
1101          */
1102         while ((i = find_next_to_unuse(si, i)) != 0) {
1103                 if (signal_pending(current)) {
1104                         retval = -EINTR;
1105                         break;
1106                 }
1107
1108                 /*
1109                  * Get a page for the entry, using the existing swap
1110                  * cache page if there is one.  Otherwise, get a clean
1111                  * page and read the swap into it.
1112                  */
1113                 swap_map = &si->swap_map[i];
1114                 entry = swp_entry(type, i);
1115                 page = read_swap_cache_async(entry,
1116                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1117                 if (!page) {
1118                         /*
1119                          * Either swap_duplicate() failed because entry
1120                          * has been freed independently, and will not be
1121                          * reused since sys_swapoff() already disabled
1122                          * allocation from here, or alloc_page() failed.
1123                          */
1124                         if (!*swap_map)
1125                                 continue;
1126                         retval = -ENOMEM;
1127                         break;
1128                 }
1129
1130                 /*
1131                  * Don't hold on to start_mm if it looks like exiting.
1132                  */
1133                 if (atomic_read(&start_mm->mm_users) == 1) {
1134                         mmput(start_mm);
1135                         start_mm = &init_mm;
1136                         atomic_inc(&init_mm.mm_users);
1137                 }
1138
1139                 /*
1140                  * Wait for and lock page.  When do_swap_page races with
1141                  * try_to_unuse, do_swap_page can handle the fault much
1142                  * faster than try_to_unuse can locate the entry.  This
1143                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1144                  * defer to do_swap_page in such a case - in some tests,
1145                  * do_swap_page and try_to_unuse repeatedly compete.
1146                  */
1147                 wait_on_page_locked(page);
1148                 wait_on_page_writeback(page);
1149                 lock_page(page);
1150                 wait_on_page_writeback(page);
1151
1152                 /*
1153                  * Remove all references to entry.
1154                  */
1155                 swcount = *swap_map;
1156                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1157                         retval = shmem_unuse(entry, page);
1158                         /* page has already been unlocked and released */
1159                         if (retval < 0)
1160                                 break;
1161                         continue;
1162                 }
1163                 if (swap_count(swcount) && start_mm != &init_mm)
1164                         retval = unuse_mm(start_mm, entry, page);
1165
1166                 if (swap_count(*swap_map)) {
1167                         int set_start_mm = (*swap_map >= swcount);
1168                         struct list_head *p = &start_mm->mmlist;
1169                         struct mm_struct *new_start_mm = start_mm;
1170                         struct mm_struct *prev_mm = start_mm;
1171                         struct mm_struct *mm;
1172
1173                         atomic_inc(&new_start_mm->mm_users);
1174                         atomic_inc(&prev_mm->mm_users);
1175                         spin_lock(&mmlist_lock);
1176                         while (swap_count(*swap_map) && !retval &&
1177                                         (p = p->next) != &start_mm->mmlist) {
1178                                 mm = list_entry(p, struct mm_struct, mmlist);
1179                                 if (!atomic_inc_not_zero(&mm->mm_users))
1180                                         continue;
1181                                 spin_unlock(&mmlist_lock);
1182                                 mmput(prev_mm);
1183                                 prev_mm = mm;
1184
1185                                 cond_resched();
1186
1187                                 swcount = *swap_map;
1188                                 if (!swap_count(swcount)) /* any usage ? */
1189                                         ;
1190                                 else if (mm == &init_mm)
1191                                         set_start_mm = 1;
1192                                 else
1193                                         retval = unuse_mm(mm, entry, page);
1194
1195                                 if (set_start_mm && *swap_map < swcount) {
1196                                         mmput(new_start_mm);
1197                                         atomic_inc(&mm->mm_users);
1198                                         new_start_mm = mm;
1199                                         set_start_mm = 0;
1200                                 }
1201                                 spin_lock(&mmlist_lock);
1202                         }
1203                         spin_unlock(&mmlist_lock);
1204                         mmput(prev_mm);
1205                         mmput(start_mm);
1206                         start_mm = new_start_mm;
1207                 }
1208                 if (retval) {
1209                         unlock_page(page);
1210                         page_cache_release(page);
1211                         break;
1212                 }
1213
1214                 /*
1215                  * If a reference remains (rare), we would like to leave
1216                  * the page in the swap cache; but try_to_unmap could
1217                  * then re-duplicate the entry once we drop page lock,
1218                  * so we might loop indefinitely; also, that page could
1219                  * not be swapped out to other storage meanwhile.  So:
1220                  * delete from cache even if there's another reference,
1221                  * after ensuring that the data has been saved to disk -
1222                  * since if the reference remains (rarer), it will be
1223                  * read from disk into another page.  Splitting into two
1224                  * pages would be incorrect if swap supported "shared
1225                  * private" pages, but they are handled by tmpfs files.
1226                  *
1227                  * Given how unuse_vma() targets one particular offset
1228                  * in an anon_vma, once the anon_vma has been determined,
1229                  * this splitting happens to be just what is needed to
1230                  * handle where KSM pages have been swapped out: re-reading
1231                  * is unnecessarily slow, but we can fix that later on.
1232                  */
1233                 if (swap_count(*swap_map) &&
1234                      PageDirty(page) && PageSwapCache(page)) {
1235                         struct writeback_control wbc = {
1236                                 .sync_mode = WB_SYNC_NONE,
1237                         };
1238
1239                         swap_writepage(page, &wbc);
1240                         lock_page(page);
1241                         wait_on_page_writeback(page);
1242                 }
1243
1244                 /*
1245                  * It is conceivable that a racing task removed this page from
1246                  * swap cache just before we acquired the page lock at the top,
1247                  * or while we dropped it in unuse_mm().  The page might even
1248                  * be back in swap cache on another swap area: that we must not
1249                  * delete, since it may not have been written out to swap yet.
1250                  */
1251                 if (PageSwapCache(page) &&
1252                     likely(page_private(page) == entry.val))
1253                         delete_from_swap_cache(page);
1254
1255                 /*
1256                  * So we could skip searching mms once swap count went
1257                  * to 1, we did not mark any present ptes as dirty: must
1258                  * mark page dirty so shrink_page_list will preserve it.
1259                  */
1260                 SetPageDirty(page);
1261                 unlock_page(page);
1262                 page_cache_release(page);
1263
1264                 /*
1265                  * Make sure that we aren't completely killing
1266                  * interactive performance.
1267                  */
1268                 cond_resched();
1269         }
1270
1271         mmput(start_mm);
1272         return retval;
1273 }
1274
1275 /*
1276  * After a successful try_to_unuse, if no swap is now in use, we know
1277  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1278  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1279  * added to the mmlist just after page_duplicate - before would be racy.
1280  */
1281 static void drain_mmlist(void)
1282 {
1283         struct list_head *p, *next;
1284         unsigned int type;
1285
1286         for (type = 0; type < nr_swapfiles; type++)
1287                 if (swap_info[type]->inuse_pages)
1288                         return;
1289         spin_lock(&mmlist_lock);
1290         list_for_each_safe(p, next, &init_mm.mmlist)
1291                 list_del_init(p);
1292         spin_unlock(&mmlist_lock);
1293 }
1294
1295 /*
1296  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1297  * corresponds to page offset for the specified swap entry.
1298  * Note that the type of this function is sector_t, but it returns page offset
1299  * into the bdev, not sector offset.
1300  */
1301 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1302 {
1303         struct swap_info_struct *sis;
1304         struct swap_extent *start_se;
1305         struct swap_extent *se;
1306         pgoff_t offset;
1307
1308         sis = swap_info[swp_type(entry)];
1309         *bdev = sis->bdev;
1310
1311         offset = swp_offset(entry);
1312         start_se = sis->curr_swap_extent;
1313         se = start_se;
1314
1315         for ( ; ; ) {
1316                 struct list_head *lh;
1317
1318                 if (se->start_page <= offset &&
1319                                 offset < (se->start_page + se->nr_pages)) {
1320                         return se->start_block + (offset - se->start_page);
1321                 }
1322                 lh = se->list.next;
1323                 se = list_entry(lh, struct swap_extent, list);
1324                 sis->curr_swap_extent = se;
1325                 BUG_ON(se == start_se);         /* It *must* be present */
1326         }
1327 }
1328
1329 /*
1330  * Returns the page offset into bdev for the specified page's swap entry.
1331  */
1332 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1333 {
1334         swp_entry_t entry;
1335         entry.val = page_private(page);
1336         return map_swap_entry(entry, bdev);
1337 }
1338
1339 /*
1340  * Free all of a swapdev's extent information
1341  */
1342 static void destroy_swap_extents(struct swap_info_struct *sis)
1343 {
1344         while (!list_empty(&sis->first_swap_extent.list)) {
1345                 struct swap_extent *se;
1346
1347                 se = list_entry(sis->first_swap_extent.list.next,
1348                                 struct swap_extent, list);
1349                 list_del(&se->list);
1350                 kfree(se);
1351         }
1352 }
1353
1354 /*
1355  * Add a block range (and the corresponding page range) into this swapdev's
1356  * extent list.  The extent list is kept sorted in page order.
1357  *
1358  * This function rather assumes that it is called in ascending page order.
1359  */
1360 static int
1361 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1362                 unsigned long nr_pages, sector_t start_block)
1363 {
1364         struct swap_extent *se;
1365         struct swap_extent *new_se;
1366         struct list_head *lh;
1367
1368         if (start_page == 0) {
1369                 se = &sis->first_swap_extent;
1370                 sis->curr_swap_extent = se;
1371                 se->start_page = 0;
1372                 se->nr_pages = nr_pages;
1373                 se->start_block = start_block;
1374                 return 1;
1375         } else {
1376                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1377                 se = list_entry(lh, struct swap_extent, list);
1378                 BUG_ON(se->start_page + se->nr_pages != start_page);
1379                 if (se->start_block + se->nr_pages == start_block) {
1380                         /* Merge it */
1381                         se->nr_pages += nr_pages;
1382                         return 0;
1383                 }
1384         }
1385
1386         /*
1387          * No merge.  Insert a new extent, preserving ordering.
1388          */
1389         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1390         if (new_se == NULL)
1391                 return -ENOMEM;
1392         new_se->start_page = start_page;
1393         new_se->nr_pages = nr_pages;
1394         new_se->start_block = start_block;
1395
1396         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1397         return 1;
1398 }
1399
1400 /*
1401  * A `swap extent' is a simple thing which maps a contiguous range of pages
1402  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1403  * is built at swapon time and is then used at swap_writepage/swap_readpage
1404  * time for locating where on disk a page belongs.
1405  *
1406  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1407  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1408  * swap files identically.
1409  *
1410  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1411  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1412  * swapfiles are handled *identically* after swapon time.
1413  *
1414  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1415  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1416  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1417  * requirements, they are simply tossed out - we will never use those blocks
1418  * for swapping.
1419  *
1420  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1421  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1422  * which will scribble on the fs.
1423  *
1424  * The amount of disk space which a single swap extent represents varies.
1425  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1426  * extents in the list.  To avoid much list walking, we cache the previous
1427  * search location in `curr_swap_extent', and start new searches from there.
1428  * This is extremely effective.  The average number of iterations in
1429  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1430  */
1431 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1432 {
1433         struct inode *inode;
1434         unsigned blocks_per_page;
1435         unsigned long page_no;
1436         unsigned blkbits;
1437         sector_t probe_block;
1438         sector_t last_block;
1439         sector_t lowest_block = -1;
1440         sector_t highest_block = 0;
1441         int nr_extents = 0;
1442         int ret;
1443
1444         inode = sis->swap_file->f_mapping->host;
1445         if (S_ISBLK(inode->i_mode)) {
1446                 ret = add_swap_extent(sis, 0, sis->max, 0);
1447                 *span = sis->pages;
1448                 goto out;
1449         }
1450
1451         blkbits = inode->i_blkbits;
1452         blocks_per_page = PAGE_SIZE >> blkbits;
1453
1454         /*
1455          * Map all the blocks into the extent list.  This code doesn't try
1456          * to be very smart.
1457          */
1458         probe_block = 0;
1459         page_no = 0;
1460         last_block = i_size_read(inode) >> blkbits;
1461         while ((probe_block + blocks_per_page) <= last_block &&
1462                         page_no < sis->max) {
1463                 unsigned block_in_page;
1464                 sector_t first_block;
1465
1466                 first_block = bmap(inode, probe_block);
1467                 if (first_block == 0)
1468                         goto bad_bmap;
1469
1470                 /*
1471                  * It must be PAGE_SIZE aligned on-disk
1472                  */
1473                 if (first_block & (blocks_per_page - 1)) {
1474                         probe_block++;
1475                         goto reprobe;
1476                 }
1477
1478                 for (block_in_page = 1; block_in_page < blocks_per_page;
1479                                         block_in_page++) {
1480                         sector_t block;
1481
1482                         block = bmap(inode, probe_block + block_in_page);
1483                         if (block == 0)
1484                                 goto bad_bmap;
1485                         if (block != first_block + block_in_page) {
1486                                 /* Discontiguity */
1487                                 probe_block++;
1488                                 goto reprobe;
1489                         }
1490                 }
1491
1492                 first_block >>= (PAGE_SHIFT - blkbits);
1493                 if (page_no) {  /* exclude the header page */
1494                         if (first_block < lowest_block)
1495                                 lowest_block = first_block;
1496                         if (first_block > highest_block)
1497                                 highest_block = first_block;
1498                 }
1499
1500                 /*
1501                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1502                  */
1503                 ret = add_swap_extent(sis, page_no, 1, first_block);
1504                 if (ret < 0)
1505                         goto out;
1506                 nr_extents += ret;
1507                 page_no++;
1508                 probe_block += blocks_per_page;
1509 reprobe:
1510                 continue;
1511         }
1512         ret = nr_extents;
1513         *span = 1 + highest_block - lowest_block;
1514         if (page_no == 0)
1515                 page_no = 1;    /* force Empty message */
1516         sis->max = page_no;
1517         sis->pages = page_no - 1;
1518         sis->highest_bit = page_no - 1;
1519 out:
1520         return ret;
1521 bad_bmap:
1522         printk(KERN_ERR "swapon: swapfile has holes\n");
1523         ret = -EINVAL;
1524         goto out;
1525 }
1526
1527 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1528 {
1529         struct swap_info_struct *p = NULL;
1530         unsigned char *swap_map;
1531         struct file *swap_file, *victim;
1532         struct address_space *mapping;
1533         struct inode *inode;
1534         char *pathname;
1535         int i, type, prev;
1536         int err;
1537
1538         if (!capable(CAP_SYS_ADMIN))
1539                 return -EPERM;
1540
1541         pathname = getname(specialfile);
1542         err = PTR_ERR(pathname);
1543         if (IS_ERR(pathname))
1544                 goto out;
1545
1546         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1547         putname(pathname);
1548         err = PTR_ERR(victim);
1549         if (IS_ERR(victim))
1550                 goto out;
1551
1552         mapping = victim->f_mapping;
1553         prev = -1;
1554         spin_lock(&swap_lock);
1555         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1556                 p = swap_info[type];
1557                 if (p->flags & SWP_WRITEOK) {
1558                         if (p->swap_file->f_mapping == mapping)
1559                                 break;
1560                 }
1561                 prev = type;
1562         }
1563         if (type < 0) {
1564                 err = -EINVAL;
1565                 spin_unlock(&swap_lock);
1566                 goto out_dput;
1567         }
1568         if (!security_vm_enough_memory(p->pages))
1569                 vm_unacct_memory(p->pages);
1570         else {
1571                 err = -ENOMEM;
1572                 spin_unlock(&swap_lock);
1573                 goto out_dput;
1574         }
1575         if (prev < 0)
1576                 swap_list.head = p->next;
1577         else
1578                 swap_info[prev]->next = p->next;
1579         if (type == swap_list.next) {
1580                 /* just pick something that's safe... */
1581                 swap_list.next = swap_list.head;
1582         }
1583         if (p->prio < 0) {
1584                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1585                         swap_info[i]->prio = p->prio--;
1586                 least_priority++;
1587         }
1588         nr_swap_pages -= p->pages;
1589         total_swap_pages -= p->pages;
1590         p->flags &= ~SWP_WRITEOK;
1591         spin_unlock(&swap_lock);
1592
1593         current->flags |= PF_OOM_ORIGIN;
1594         err = try_to_unuse(type);
1595         current->flags &= ~PF_OOM_ORIGIN;
1596
1597         if (err) {
1598                 /* re-insert swap space back into swap_list */
1599                 spin_lock(&swap_lock);
1600                 if (p->prio < 0)
1601                         p->prio = --least_priority;
1602                 prev = -1;
1603                 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1604                         if (p->prio >= swap_info[i]->prio)
1605                                 break;
1606                         prev = i;
1607                 }
1608                 p->next = i;
1609                 if (prev < 0)
1610                         swap_list.head = swap_list.next = type;
1611                 else
1612                         swap_info[prev]->next = type;
1613                 nr_swap_pages += p->pages;
1614                 total_swap_pages += p->pages;
1615                 p->flags |= SWP_WRITEOK;
1616                 spin_unlock(&swap_lock);
1617                 goto out_dput;
1618         }
1619
1620         /* wait for any unplug function to finish */
1621         down_write(&swap_unplug_sem);
1622         up_write(&swap_unplug_sem);
1623
1624         destroy_swap_extents(p);
1625         if (p->flags & SWP_CONTINUED)
1626                 free_swap_count_continuations(p);
1627
1628         mutex_lock(&swapon_mutex);
1629         spin_lock(&swap_lock);
1630         drain_mmlist();
1631
1632         /* wait for anyone still in scan_swap_map */
1633         p->highest_bit = 0;             /* cuts scans short */
1634         while (p->flags >= SWP_SCANNING) {
1635                 spin_unlock(&swap_lock);
1636                 schedule_timeout_uninterruptible(1);
1637                 spin_lock(&swap_lock);
1638         }
1639
1640         swap_file = p->swap_file;
1641         p->swap_file = NULL;
1642         p->max = 0;
1643         swap_map = p->swap_map;
1644         p->swap_map = NULL;
1645         p->flags = 0;
1646         spin_unlock(&swap_lock);
1647         mutex_unlock(&swapon_mutex);
1648         vfree(swap_map);
1649         /* Destroy swap account informatin */
1650         swap_cgroup_swapoff(type);
1651
1652         inode = mapping->host;
1653         if (S_ISBLK(inode->i_mode)) {
1654                 struct block_device *bdev = I_BDEV(inode);
1655                 set_blocksize(bdev, p->old_block_size);
1656                 bd_release(bdev);
1657         } else {
1658                 mutex_lock(&inode->i_mutex);
1659                 inode->i_flags &= ~S_SWAPFILE;
1660                 mutex_unlock(&inode->i_mutex);
1661         }
1662         filp_close(swap_file, NULL);
1663         err = 0;
1664
1665 out_dput:
1666         filp_close(victim, NULL);
1667 out:
1668         return err;
1669 }
1670
1671 #ifdef CONFIG_PROC_FS
1672 /* iterator */
1673 static void *swap_start(struct seq_file *swap, loff_t *pos)
1674 {
1675         struct swap_info_struct *si;
1676         int type;
1677         loff_t l = *pos;
1678
1679         mutex_lock(&swapon_mutex);
1680
1681         if (!l)
1682                 return SEQ_START_TOKEN;
1683
1684         for (type = 0; type < nr_swapfiles; type++) {
1685                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1686                 si = swap_info[type];
1687                 if (!(si->flags & SWP_USED) || !si->swap_map)
1688                         continue;
1689                 if (!--l)
1690                         return si;
1691         }
1692
1693         return NULL;
1694 }
1695
1696 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1697 {
1698         struct swap_info_struct *si = v;
1699         int type;
1700
1701         if (v == SEQ_START_TOKEN)
1702                 type = 0;
1703         else
1704                 type = si->type + 1;
1705
1706         for (; type < nr_swapfiles; type++) {
1707                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1708                 si = swap_info[type];
1709                 if (!(si->flags & SWP_USED) || !si->swap_map)
1710                         continue;
1711                 ++*pos;
1712                 return si;
1713         }
1714
1715         return NULL;
1716 }
1717
1718 static void swap_stop(struct seq_file *swap, void *v)
1719 {
1720         mutex_unlock(&swapon_mutex);
1721 }
1722
1723 static int swap_show(struct seq_file *swap, void *v)
1724 {
1725         struct swap_info_struct *si = v;
1726         struct file *file;
1727         int len;
1728
1729         if (si == SEQ_START_TOKEN) {
1730                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1731                 return 0;
1732         }
1733
1734         file = si->swap_file;
1735         len = seq_path(swap, &file->f_path, " \t\n\\");
1736         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1737                         len < 40 ? 40 - len : 1, " ",
1738                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1739                                 "partition" : "file\t",
1740                         si->pages << (PAGE_SHIFT - 10),
1741                         si->inuse_pages << (PAGE_SHIFT - 10),
1742                         si->prio);
1743         return 0;
1744 }
1745
1746 static const struct seq_operations swaps_op = {
1747         .start =        swap_start,
1748         .next =         swap_next,
1749         .stop =         swap_stop,
1750         .show =         swap_show
1751 };
1752
1753 static int swaps_open(struct inode *inode, struct file *file)
1754 {
1755         return seq_open(file, &swaps_op);
1756 }
1757
1758 static const struct file_operations proc_swaps_operations = {
1759         .open           = swaps_open,
1760         .read           = seq_read,
1761         .llseek         = seq_lseek,
1762         .release        = seq_release,
1763 };
1764
1765 static int __init procswaps_init(void)
1766 {
1767         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1768         return 0;
1769 }
1770 __initcall(procswaps_init);
1771 #endif /* CONFIG_PROC_FS */
1772
1773 #ifdef MAX_SWAPFILES_CHECK
1774 static int __init max_swapfiles_check(void)
1775 {
1776         MAX_SWAPFILES_CHECK();
1777         return 0;
1778 }
1779 late_initcall(max_swapfiles_check);
1780 #endif
1781
1782 /*
1783  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1784  *
1785  * The swapon system call
1786  */
1787 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1788 {
1789         struct swap_info_struct *p;
1790         char *name = NULL;
1791         struct block_device *bdev = NULL;
1792         struct file *swap_file = NULL;
1793         struct address_space *mapping;
1794         unsigned int type;
1795         int i, prev;
1796         int error;
1797         union swap_header *swap_header;
1798         unsigned int nr_good_pages;
1799         int nr_extents = 0;
1800         sector_t span;
1801         unsigned long maxpages;
1802         unsigned long swapfilepages;
1803         unsigned char *swap_map = NULL;
1804         struct page *page = NULL;
1805         struct inode *inode = NULL;
1806         int did_down = 0;
1807
1808         if (!capable(CAP_SYS_ADMIN))
1809                 return -EPERM;
1810
1811         p = kzalloc(sizeof(*p), GFP_KERNEL);
1812         if (!p)
1813                 return -ENOMEM;
1814
1815         spin_lock(&swap_lock);
1816         for (type = 0; type < nr_swapfiles; type++) {
1817                 if (!(swap_info[type]->flags & SWP_USED))
1818                         break;
1819         }
1820         error = -EPERM;
1821         if (type >= MAX_SWAPFILES) {
1822                 spin_unlock(&swap_lock);
1823                 kfree(p);
1824                 goto out;
1825         }
1826         if (type >= nr_swapfiles) {
1827                 p->type = type;
1828                 swap_info[type] = p;
1829                 /*
1830                  * Write swap_info[type] before nr_swapfiles, in case a
1831                  * racing procfs swap_start() or swap_next() is reading them.
1832                  * (We never shrink nr_swapfiles, we never free this entry.)
1833                  */
1834                 smp_wmb();
1835                 nr_swapfiles++;
1836         } else {
1837                 kfree(p);
1838                 p = swap_info[type];
1839                 /*
1840                  * Do not memset this entry: a racing procfs swap_next()
1841                  * would be relying on p->type to remain valid.
1842                  */
1843         }
1844         INIT_LIST_HEAD(&p->first_swap_extent.list);
1845         p->flags = SWP_USED;
1846         p->next = -1;
1847         spin_unlock(&swap_lock);
1848
1849         name = getname(specialfile);
1850         error = PTR_ERR(name);
1851         if (IS_ERR(name)) {
1852                 name = NULL;
1853                 goto bad_swap_2;
1854         }
1855         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1856         error = PTR_ERR(swap_file);
1857         if (IS_ERR(swap_file)) {
1858                 swap_file = NULL;
1859                 goto bad_swap_2;
1860         }
1861
1862         p->swap_file = swap_file;
1863         mapping = swap_file->f_mapping;
1864         inode = mapping->host;
1865
1866         error = -EBUSY;
1867         for (i = 0; i < nr_swapfiles; i++) {
1868                 struct swap_info_struct *q = swap_info[i];
1869
1870                 if (i == type || !q->swap_file)
1871                         continue;
1872                 if (mapping == q->swap_file->f_mapping)
1873                         goto bad_swap;
1874         }
1875
1876         error = -EINVAL;
1877         if (S_ISBLK(inode->i_mode)) {
1878                 bdev = I_BDEV(inode);
1879                 error = bd_claim(bdev, sys_swapon);
1880                 if (error < 0) {
1881                         bdev = NULL;
1882                         error = -EINVAL;
1883                         goto bad_swap;
1884                 }
1885                 p->old_block_size = block_size(bdev);
1886                 error = set_blocksize(bdev, PAGE_SIZE);
1887                 if (error < 0)
1888                         goto bad_swap;
1889                 p->bdev = bdev;
1890         } else if (S_ISREG(inode->i_mode)) {
1891                 p->bdev = inode->i_sb->s_bdev;
1892                 mutex_lock(&inode->i_mutex);
1893                 did_down = 1;
1894                 if (IS_SWAPFILE(inode)) {
1895                         error = -EBUSY;
1896                         goto bad_swap;
1897                 }
1898         } else {
1899                 goto bad_swap;
1900         }
1901
1902         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1903
1904         /*
1905          * Read the swap header.
1906          */
1907         if (!mapping->a_ops->readpage) {
1908                 error = -EINVAL;
1909                 goto bad_swap;
1910         }
1911         page = read_mapping_page(mapping, 0, swap_file);
1912         if (IS_ERR(page)) {
1913                 error = PTR_ERR(page);
1914                 goto bad_swap;
1915         }
1916         swap_header = kmap(page);
1917
1918         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1919                 printk(KERN_ERR "Unable to find swap-space signature\n");
1920                 error = -EINVAL;
1921                 goto bad_swap;
1922         }
1923
1924         /* swap partition endianess hack... */
1925         if (swab32(swap_header->info.version) == 1) {
1926                 swab32s(&swap_header->info.version);
1927                 swab32s(&swap_header->info.last_page);
1928                 swab32s(&swap_header->info.nr_badpages);
1929                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1930                         swab32s(&swap_header->info.badpages[i]);
1931         }
1932         /* Check the swap header's sub-version */
1933         if (swap_header->info.version != 1) {
1934                 printk(KERN_WARNING
1935                        "Unable to handle swap header version %d\n",
1936                        swap_header->info.version);
1937                 error = -EINVAL;
1938                 goto bad_swap;
1939         }
1940
1941         p->lowest_bit  = 1;
1942         p->cluster_next = 1;
1943         p->cluster_nr = 0;
1944
1945         /*
1946          * Find out how many pages are allowed for a single swap
1947          * device. There are two limiting factors: 1) the number of
1948          * bits for the swap offset in the swp_entry_t type and
1949          * 2) the number of bits in the a swap pte as defined by
1950          * the different architectures. In order to find the
1951          * largest possible bit mask a swap entry with swap type 0
1952          * and swap offset ~0UL is created, encoded to a swap pte,
1953          * decoded to a swp_entry_t again and finally the swap
1954          * offset is extracted. This will mask all the bits from
1955          * the initial ~0UL mask that can't be encoded in either
1956          * the swp_entry_t or the architecture definition of a
1957          * swap pte.
1958          */
1959         maxpages = swp_offset(pte_to_swp_entry(
1960                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1961         if (maxpages > swap_header->info.last_page) {
1962                 maxpages = swap_header->info.last_page + 1;
1963                 /* p->max is an unsigned int: don't overflow it */
1964                 if ((unsigned int)maxpages == 0)
1965                         maxpages = UINT_MAX;
1966         }
1967         p->highest_bit = maxpages - 1;
1968
1969         error = -EINVAL;
1970         if (!maxpages)
1971                 goto bad_swap;
1972         if (swapfilepages && maxpages > swapfilepages) {
1973                 printk(KERN_WARNING
1974                        "Swap area shorter than signature indicates\n");
1975                 goto bad_swap;
1976         }
1977         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1978                 goto bad_swap;
1979         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1980                 goto bad_swap;
1981
1982         /* OK, set up the swap map and apply the bad block list */
1983         swap_map = vmalloc(maxpages);
1984         if (!swap_map) {
1985                 error = -ENOMEM;
1986                 goto bad_swap;
1987         }
1988
1989         memset(swap_map, 0, maxpages);
1990         nr_good_pages = maxpages - 1;   /* omit header page */
1991
1992         for (i = 0; i < swap_header->info.nr_badpages; i++) {
1993                 unsigned int page_nr = swap_header->info.badpages[i];
1994                 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
1995                         error = -EINVAL;
1996                         goto bad_swap;
1997                 }
1998                 if (page_nr < maxpages) {
1999                         swap_map[page_nr] = SWAP_MAP_BAD;
2000                         nr_good_pages--;
2001                 }
2002         }
2003
2004         error = swap_cgroup_swapon(type, maxpages);
2005         if (error)
2006                 goto bad_swap;
2007
2008         if (nr_good_pages) {
2009                 swap_map[0] = SWAP_MAP_BAD;
2010                 p->max = maxpages;
2011                 p->pages = nr_good_pages;
2012                 nr_extents = setup_swap_extents(p, &span);
2013                 if (nr_extents < 0) {
2014                         error = nr_extents;
2015                         goto bad_swap;
2016                 }
2017                 nr_good_pages = p->pages;
2018         }
2019         if (!nr_good_pages) {
2020                 printk(KERN_WARNING "Empty swap-file\n");
2021                 error = -EINVAL;
2022                 goto bad_swap;
2023         }
2024
2025         if (p->bdev) {
2026                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2027                         p->flags |= SWP_SOLIDSTATE;
2028                         p->cluster_next = 1 + (random32() % p->highest_bit);
2029                 }
2030                 if (discard_swap(p) == 0)
2031                         p->flags |= SWP_DISCARDABLE;
2032         }
2033
2034         mutex_lock(&swapon_mutex);
2035         spin_lock(&swap_lock);
2036         if (swap_flags & SWAP_FLAG_PREFER)
2037                 p->prio =
2038                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2039         else
2040                 p->prio = --least_priority;
2041         p->swap_map = swap_map;
2042         p->flags |= SWP_WRITEOK;
2043         nr_swap_pages += nr_good_pages;
2044         total_swap_pages += nr_good_pages;
2045
2046         printk(KERN_INFO "Adding %uk swap on %s.  "
2047                         "Priority:%d extents:%d across:%lluk %s%s\n",
2048                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2049                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2050                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2051                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2052
2053         /* insert swap space into swap_list: */
2054         prev = -1;
2055         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2056                 if (p->prio >= swap_info[i]->prio)
2057                         break;
2058                 prev = i;
2059         }
2060         p->next = i;
2061         if (prev < 0)
2062                 swap_list.head = swap_list.next = type;
2063         else
2064                 swap_info[prev]->next = type;
2065         spin_unlock(&swap_lock);
2066         mutex_unlock(&swapon_mutex);
2067         error = 0;
2068         goto out;
2069 bad_swap:
2070         if (bdev) {
2071                 set_blocksize(bdev, p->old_block_size);
2072                 bd_release(bdev);
2073         }
2074         destroy_swap_extents(p);
2075         swap_cgroup_swapoff(type);
2076 bad_swap_2:
2077         spin_lock(&swap_lock);
2078         p->swap_file = NULL;
2079         p->flags = 0;
2080         spin_unlock(&swap_lock);
2081         vfree(swap_map);
2082         if (swap_file)
2083                 filp_close(swap_file, NULL);
2084 out:
2085         if (page && !IS_ERR(page)) {
2086                 kunmap(page);
2087                 page_cache_release(page);
2088         }
2089         if (name)
2090                 putname(name);
2091         if (did_down) {
2092                 if (!error)
2093                         inode->i_flags |= S_SWAPFILE;
2094                 mutex_unlock(&inode->i_mutex);
2095         }
2096         return error;
2097 }
2098
2099 void si_swapinfo(struct sysinfo *val)
2100 {
2101         unsigned int type;
2102         unsigned long nr_to_be_unused = 0;
2103
2104         spin_lock(&swap_lock);
2105         for (type = 0; type < nr_swapfiles; type++) {
2106                 struct swap_info_struct *si = swap_info[type];
2107
2108                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2109                         nr_to_be_unused += si->inuse_pages;
2110         }
2111         val->freeswap = nr_swap_pages + nr_to_be_unused;
2112         val->totalswap = total_swap_pages + nr_to_be_unused;
2113         spin_unlock(&swap_lock);
2114 }
2115
2116 /*
2117  * Verify that a swap entry is valid and increment its swap map count.
2118  *
2119  * Returns error code in following case.
2120  * - success -> 0
2121  * - swp_entry is invalid -> EINVAL
2122  * - swp_entry is migration entry -> EINVAL
2123  * - swap-cache reference is requested but there is already one. -> EEXIST
2124  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2125  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2126  */
2127 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2128 {
2129         struct swap_info_struct *p;
2130         unsigned long offset, type;
2131         unsigned char count;
2132         unsigned char has_cache;
2133         int err = -EINVAL;
2134
2135         if (non_swap_entry(entry))
2136                 goto out;
2137
2138         type = swp_type(entry);
2139         if (type >= nr_swapfiles)
2140                 goto bad_file;
2141         p = swap_info[type];
2142         offset = swp_offset(entry);
2143
2144         spin_lock(&swap_lock);
2145         if (unlikely(offset >= p->max))
2146                 goto unlock_out;
2147
2148         count = p->swap_map[offset];
2149         has_cache = count & SWAP_HAS_CACHE;
2150         count &= ~SWAP_HAS_CACHE;
2151         err = 0;
2152
2153         if (usage == SWAP_HAS_CACHE) {
2154
2155                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2156                 if (!has_cache && count)
2157                         has_cache = SWAP_HAS_CACHE;
2158                 else if (has_cache)             /* someone else added cache */
2159                         err = -EEXIST;
2160                 else                            /* no users remaining */
2161                         err = -ENOENT;
2162
2163         } else if (count || has_cache) {
2164
2165                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2166                         count += usage;
2167                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2168                         err = -EINVAL;
2169                 else if (swap_count_continued(p, offset, count))
2170                         count = COUNT_CONTINUED;
2171                 else
2172                         err = -ENOMEM;
2173         } else
2174                 err = -ENOENT;                  /* unused swap entry */
2175
2176         p->swap_map[offset] = count | has_cache;
2177
2178 unlock_out:
2179         spin_unlock(&swap_lock);
2180 out:
2181         return err;
2182
2183 bad_file:
2184         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2185         goto out;
2186 }
2187
2188 /*
2189  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2190  * (in which case its reference count is never incremented).
2191  */
2192 void swap_shmem_alloc(swp_entry_t entry)
2193 {
2194         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2195 }
2196
2197 /*
2198  * Increase reference count of swap entry by 1.
2199  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2200  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2201  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2202  * might occur if a page table entry has got corrupted.
2203  */
2204 int swap_duplicate(swp_entry_t entry)
2205 {
2206         int err = 0;
2207
2208         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2209                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2210         return err;
2211 }
2212
2213 /*
2214  * @entry: swap entry for which we allocate swap cache.
2215  *
2216  * Called when allocating swap cache for existing swap entry,
2217  * This can return error codes. Returns 0 at success.
2218  * -EBUSY means there is a swap cache.
2219  * Note: return code is different from swap_duplicate().
2220  */
2221 int swapcache_prepare(swp_entry_t entry)
2222 {
2223         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2224 }
2225
2226 /*
2227  * swap_lock prevents swap_map being freed. Don't grab an extra
2228  * reference on the swaphandle, it doesn't matter if it becomes unused.
2229  */
2230 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2231 {
2232         struct swap_info_struct *si;
2233         int our_page_cluster = page_cluster;
2234         pgoff_t target, toff;
2235         pgoff_t base, end;
2236         int nr_pages = 0;
2237
2238         if (!our_page_cluster)  /* no readahead */
2239                 return 0;
2240
2241         si = swap_info[swp_type(entry)];
2242         target = swp_offset(entry);
2243         base = (target >> our_page_cluster) << our_page_cluster;
2244         end = base + (1 << our_page_cluster);
2245         if (!base)              /* first page is swap header */
2246                 base++;
2247
2248         spin_lock(&swap_lock);
2249         if (end > si->max)      /* don't go beyond end of map */
2250                 end = si->max;
2251
2252         /* Count contiguous allocated slots above our target */
2253         for (toff = target; ++toff < end; nr_pages++) {
2254                 /* Don't read in free or bad pages */
2255                 if (!si->swap_map[toff])
2256                         break;
2257                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2258                         break;
2259         }
2260         /* Count contiguous allocated slots below our target */
2261         for (toff = target; --toff >= base; nr_pages++) {
2262                 /* Don't read in free or bad pages */
2263                 if (!si->swap_map[toff])
2264                         break;
2265                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2266                         break;
2267         }
2268         spin_unlock(&swap_lock);
2269
2270         /*
2271          * Indicate starting offset, and return number of pages to get:
2272          * if only 1, say 0, since there's then no readahead to be done.
2273          */
2274         *offset = ++toff;
2275         return nr_pages? ++nr_pages: 0;
2276 }
2277
2278 /*
2279  * add_swap_count_continuation - called when a swap count is duplicated
2280  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2281  * page of the original vmalloc'ed swap_map, to hold the continuation count
2282  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2283  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2284  *
2285  * These continuation pages are seldom referenced: the common paths all work
2286  * on the original swap_map, only referring to a continuation page when the
2287  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2288  *
2289  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2290  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2291  * can be called after dropping locks.
2292  */
2293 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2294 {
2295         struct swap_info_struct *si;
2296         struct page *head;
2297         struct page *page;
2298         struct page *list_page;
2299         pgoff_t offset;
2300         unsigned char count;
2301
2302         /*
2303          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2304          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2305          */
2306         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2307
2308         si = swap_info_get(entry);
2309         if (!si) {
2310                 /*
2311                  * An acceptable race has occurred since the failing
2312                  * __swap_duplicate(): the swap entry has been freed,
2313                  * perhaps even the whole swap_map cleared for swapoff.
2314                  */
2315                 goto outer;
2316         }
2317
2318         offset = swp_offset(entry);
2319         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2320
2321         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2322                 /*
2323                  * The higher the swap count, the more likely it is that tasks
2324                  * will race to add swap count continuation: we need to avoid
2325                  * over-provisioning.
2326                  */
2327                 goto out;
2328         }
2329
2330         if (!page) {
2331                 spin_unlock(&swap_lock);
2332                 return -ENOMEM;
2333         }
2334
2335         /*
2336          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2337          * no architecture is using highmem pages for kernel pagetables: so it
2338          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2339          */
2340         head = vmalloc_to_page(si->swap_map + offset);
2341         offset &= ~PAGE_MASK;
2342
2343         /*
2344          * Page allocation does not initialize the page's lru field,
2345          * but it does always reset its private field.
2346          */
2347         if (!page_private(head)) {
2348                 BUG_ON(count & COUNT_CONTINUED);
2349                 INIT_LIST_HEAD(&head->lru);
2350                 set_page_private(head, SWP_CONTINUED);
2351                 si->flags |= SWP_CONTINUED;
2352         }
2353
2354         list_for_each_entry(list_page, &head->lru, lru) {
2355                 unsigned char *map;
2356
2357                 /*
2358                  * If the previous map said no continuation, but we've found
2359                  * a continuation page, free our allocation and use this one.
2360                  */
2361                 if (!(count & COUNT_CONTINUED))
2362                         goto out;
2363
2364                 map = kmap_atomic(list_page, KM_USER0) + offset;
2365                 count = *map;
2366                 kunmap_atomic(map, KM_USER0);
2367
2368                 /*
2369                  * If this continuation count now has some space in it,
2370                  * free our allocation and use this one.
2371                  */
2372                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2373                         goto out;
2374         }
2375
2376         list_add_tail(&page->lru, &head->lru);
2377         page = NULL;                    /* now it's attached, don't free it */
2378 out:
2379         spin_unlock(&swap_lock);
2380 outer:
2381         if (page)
2382                 __free_page(page);
2383         return 0;
2384 }
2385
2386 /*
2387  * swap_count_continued - when the original swap_map count is incremented
2388  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2389  * into, carry if so, or else fail until a new continuation page is allocated;
2390  * when the original swap_map count is decremented from 0 with continuation,
2391  * borrow from the continuation and report whether it still holds more.
2392  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2393  */
2394 static bool swap_count_continued(struct swap_info_struct *si,
2395                                  pgoff_t offset, unsigned char count)
2396 {
2397         struct page *head;
2398         struct page *page;
2399         unsigned char *map;
2400
2401         head = vmalloc_to_page(si->swap_map + offset);
2402         if (page_private(head) != SWP_CONTINUED) {
2403                 BUG_ON(count & COUNT_CONTINUED);
2404                 return false;           /* need to add count continuation */
2405         }
2406
2407         offset &= ~PAGE_MASK;
2408         page = list_entry(head->lru.next, struct page, lru);
2409         map = kmap_atomic(page, KM_USER0) + offset;
2410
2411         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2412                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2413
2414         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2415                 /*
2416                  * Think of how you add 1 to 999
2417                  */
2418                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2419                         kunmap_atomic(map, KM_USER0);
2420                         page = list_entry(page->lru.next, struct page, lru);
2421                         BUG_ON(page == head);
2422                         map = kmap_atomic(page, KM_USER0) + offset;
2423                 }
2424                 if (*map == SWAP_CONT_MAX) {
2425                         kunmap_atomic(map, KM_USER0);
2426                         page = list_entry(page->lru.next, struct page, lru);
2427                         if (page == head)
2428                                 return false;   /* add count continuation */
2429                         map = kmap_atomic(page, KM_USER0) + offset;
2430 init_map:               *map = 0;               /* we didn't zero the page */
2431                 }
2432                 *map += 1;
2433                 kunmap_atomic(map, KM_USER0);
2434                 page = list_entry(page->lru.prev, struct page, lru);
2435                 while (page != head) {
2436                         map = kmap_atomic(page, KM_USER0) + offset;
2437                         *map = COUNT_CONTINUED;
2438                         kunmap_atomic(map, KM_USER0);
2439                         page = list_entry(page->lru.prev, struct page, lru);
2440                 }
2441                 return true;                    /* incremented */
2442
2443         } else {                                /* decrementing */
2444                 /*
2445                  * Think of how you subtract 1 from 1000
2446                  */
2447                 BUG_ON(count != COUNT_CONTINUED);
2448                 while (*map == COUNT_CONTINUED) {
2449                         kunmap_atomic(map, KM_USER0);
2450                         page = list_entry(page->lru.next, struct page, lru);
2451                         BUG_ON(page == head);
2452                         map = kmap_atomic(page, KM_USER0) + offset;
2453                 }
2454                 BUG_ON(*map == 0);
2455                 *map -= 1;
2456                 if (*map == 0)
2457                         count = 0;
2458                 kunmap_atomic(map, KM_USER0);
2459                 page = list_entry(page->lru.prev, struct page, lru);
2460                 while (page != head) {
2461                         map = kmap_atomic(page, KM_USER0) + offset;
2462                         *map = SWAP_CONT_MAX | count;
2463                         count = COUNT_CONTINUED;
2464                         kunmap_atomic(map, KM_USER0);
2465                         page = list_entry(page->lru.prev, struct page, lru);
2466                 }
2467                 return count == COUNT_CONTINUED;
2468         }
2469 }
2470
2471 /*
2472  * free_swap_count_continuations - swapoff free all the continuation pages
2473  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2474  */
2475 static void free_swap_count_continuations(struct swap_info_struct *si)
2476 {
2477         pgoff_t offset;
2478
2479         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2480                 struct page *head;
2481                 head = vmalloc_to_page(si->swap_map + offset);
2482                 if (page_private(head)) {
2483                         struct list_head *this, *next;
2484                         list_for_each_safe(this, next, &head->lru) {
2485                                 struct page *page;
2486                                 page = list_entry(this, struct page, lru);
2487                                 list_del(this);
2488                                 __free_page(page);
2489                         }
2490                 }
2491         }
2492 }