Merge staging-next tree into Linus's latest version
[pandora-kernel.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
38
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40                                  unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
49
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
54
55 static struct swap_list_t swap_list = {-1, -1};
56
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
58
59 static DEFINE_MUTEX(swapon_mutex);
60
61 static inline unsigned char swap_count(unsigned char ent)
62 {
63         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
64 }
65
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69 {
70         swp_entry_t entry = swp_entry(si->type, offset);
71         struct page *page;
72         int ret = 0;
73
74         page = find_get_page(&swapper_space, entry.val);
75         if (!page)
76                 return 0;
77         /*
78          * This function is called from scan_swap_map() and it's called
79          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80          * We have to use trylock for avoiding deadlock. This is a special
81          * case and you should use try_to_free_swap() with explicit lock_page()
82          * in usual operations.
83          */
84         if (trylock_page(page)) {
85                 ret = try_to_free_swap(page);
86                 unlock_page(page);
87         }
88         page_cache_release(page);
89         return ret;
90 }
91
92 /*
93  * We need this because the bdev->unplug_fn can sleep and we cannot
94  * hold swap_lock while calling the unplug_fn. And swap_lock
95  * cannot be turned into a mutex.
96  */
97 static DECLARE_RWSEM(swap_unplug_sem);
98
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100 {
101         swp_entry_t entry;
102
103         down_read(&swap_unplug_sem);
104         entry.val = page_private(page);
105         if (PageSwapCache(page)) {
106                 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107                 struct backing_dev_info *bdi;
108
109                 /*
110                  * If the page is removed from swapcache from under us (with a
111                  * racy try_to_unuse/swapoff) we need an additional reference
112                  * count to avoid reading garbage from page_private(page) above.
113                  * If the WARN_ON triggers during a swapoff it maybe the race
114                  * condition and it's harmless. However if it triggers without
115                  * swapoff it signals a problem.
116                  */
117                 WARN_ON(page_count(page) <= 1);
118
119                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120                 blk_run_backing_dev(bdi, page);
121         }
122         up_read(&swap_unplug_sem);
123 }
124
125 /*
126  * swapon tell device that all the old swap contents can be discarded,
127  * to allow the swap device to optimize its wear-levelling.
128  */
129 static int discard_swap(struct swap_info_struct *si)
130 {
131         struct swap_extent *se;
132         sector_t start_block;
133         sector_t nr_blocks;
134         int err = 0;
135
136         /* Do not discard the swap header page! */
137         se = &si->first_swap_extent;
138         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140         if (nr_blocks) {
141                 err = blkdev_issue_discard(si->bdev, start_block,
142                                 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
143                 if (err)
144                         return err;
145                 cond_resched();
146         }
147
148         list_for_each_entry(se, &si->first_swap_extent.list, list) {
149                 start_block = se->start_block << (PAGE_SHIFT - 9);
150                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
151
152                 err = blkdev_issue_discard(si->bdev, start_block,
153                                 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
154                 if (err)
155                         break;
156
157                 cond_resched();
158         }
159         return err;             /* That will often be -EOPNOTSUPP */
160 }
161
162 /*
163  * swap allocation tell device that a cluster of swap can now be discarded,
164  * to allow the swap device to optimize its wear-levelling.
165  */
166 static void discard_swap_cluster(struct swap_info_struct *si,
167                                  pgoff_t start_page, pgoff_t nr_pages)
168 {
169         struct swap_extent *se = si->curr_swap_extent;
170         int found_extent = 0;
171
172         while (nr_pages) {
173                 struct list_head *lh;
174
175                 if (se->start_page <= start_page &&
176                     start_page < se->start_page + se->nr_pages) {
177                         pgoff_t offset = start_page - se->start_page;
178                         sector_t start_block = se->start_block + offset;
179                         sector_t nr_blocks = se->nr_pages - offset;
180
181                         if (nr_blocks > nr_pages)
182                                 nr_blocks = nr_pages;
183                         start_page += nr_blocks;
184                         nr_pages -= nr_blocks;
185
186                         if (!found_extent++)
187                                 si->curr_swap_extent = se;
188
189                         start_block <<= PAGE_SHIFT - 9;
190                         nr_blocks <<= PAGE_SHIFT - 9;
191                         if (blkdev_issue_discard(si->bdev, start_block,
192                                     nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
193                                 break;
194                 }
195
196                 lh = se->list.next;
197                 se = list_entry(lh, struct swap_extent, list);
198         }
199 }
200
201 static int wait_for_discard(void *word)
202 {
203         schedule();
204         return 0;
205 }
206
207 #define SWAPFILE_CLUSTER        256
208 #define LATENCY_LIMIT           256
209
210 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
211                                           unsigned char usage)
212 {
213         unsigned long offset;
214         unsigned long scan_base;
215         unsigned long last_in_cluster = 0;
216         int latency_ration = LATENCY_LIMIT;
217         int found_free_cluster = 0;
218
219         /*
220          * We try to cluster swap pages by allocating them sequentially
221          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
222          * way, however, we resort to first-free allocation, starting
223          * a new cluster.  This prevents us from scattering swap pages
224          * all over the entire swap partition, so that we reduce
225          * overall disk seek times between swap pages.  -- sct
226          * But we do now try to find an empty cluster.  -Andrea
227          * And we let swap pages go all over an SSD partition.  Hugh
228          */
229
230         si->flags += SWP_SCANNING;
231         scan_base = offset = si->cluster_next;
232
233         if (unlikely(!si->cluster_nr--)) {
234                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
236                         goto checks;
237                 }
238                 if (si->flags & SWP_DISCARDABLE) {
239                         /*
240                          * Start range check on racing allocations, in case
241                          * they overlap the cluster we eventually decide on
242                          * (we scan without swap_lock to allow preemption).
243                          * It's hardly conceivable that cluster_nr could be
244                          * wrapped during our scan, but don't depend on it.
245                          */
246                         if (si->lowest_alloc)
247                                 goto checks;
248                         si->lowest_alloc = si->max;
249                         si->highest_alloc = 0;
250                 }
251                 spin_unlock(&swap_lock);
252
253                 /*
254                  * If seek is expensive, start searching for new cluster from
255                  * start of partition, to minimize the span of allocated swap.
256                  * But if seek is cheap, search from our current position, so
257                  * that swap is allocated from all over the partition: if the
258                  * Flash Translation Layer only remaps within limited zones,
259                  * we don't want to wear out the first zone too quickly.
260                  */
261                 if (!(si->flags & SWP_SOLIDSTATE))
262                         scan_base = offset = si->lowest_bit;
263                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
264
265                 /* Locate the first empty (unaligned) cluster */
266                 for (; last_in_cluster <= si->highest_bit; offset++) {
267                         if (si->swap_map[offset])
268                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
269                         else if (offset == last_in_cluster) {
270                                 spin_lock(&swap_lock);
271                                 offset -= SWAPFILE_CLUSTER - 1;
272                                 si->cluster_next = offset;
273                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
274                                 found_free_cluster = 1;
275                                 goto checks;
276                         }
277                         if (unlikely(--latency_ration < 0)) {
278                                 cond_resched();
279                                 latency_ration = LATENCY_LIMIT;
280                         }
281                 }
282
283                 offset = si->lowest_bit;
284                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
285
286                 /* Locate the first empty (unaligned) cluster */
287                 for (; last_in_cluster < scan_base; offset++) {
288                         if (si->swap_map[offset])
289                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
290                         else if (offset == last_in_cluster) {
291                                 spin_lock(&swap_lock);
292                                 offset -= SWAPFILE_CLUSTER - 1;
293                                 si->cluster_next = offset;
294                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
295                                 found_free_cluster = 1;
296                                 goto checks;
297                         }
298                         if (unlikely(--latency_ration < 0)) {
299                                 cond_resched();
300                                 latency_ration = LATENCY_LIMIT;
301                         }
302                 }
303
304                 offset = scan_base;
305                 spin_lock(&swap_lock);
306                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
307                 si->lowest_alloc = 0;
308         }
309
310 checks:
311         if (!(si->flags & SWP_WRITEOK))
312                 goto no_page;
313         if (!si->highest_bit)
314                 goto no_page;
315         if (offset > si->highest_bit)
316                 scan_base = offset = si->lowest_bit;
317
318         /* reuse swap entry of cache-only swap if not busy. */
319         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
320                 int swap_was_freed;
321                 spin_unlock(&swap_lock);
322                 swap_was_freed = __try_to_reclaim_swap(si, offset);
323                 spin_lock(&swap_lock);
324                 /* entry was freed successfully, try to use this again */
325                 if (swap_was_freed)
326                         goto checks;
327                 goto scan; /* check next one */
328         }
329
330         if (si->swap_map[offset])
331                 goto scan;
332
333         if (offset == si->lowest_bit)
334                 si->lowest_bit++;
335         if (offset == si->highest_bit)
336                 si->highest_bit--;
337         si->inuse_pages++;
338         if (si->inuse_pages == si->pages) {
339                 si->lowest_bit = si->max;
340                 si->highest_bit = 0;
341         }
342         si->swap_map[offset] = usage;
343         si->cluster_next = offset + 1;
344         si->flags -= SWP_SCANNING;
345
346         if (si->lowest_alloc) {
347                 /*
348                  * Only set when SWP_DISCARDABLE, and there's a scan
349                  * for a free cluster in progress or just completed.
350                  */
351                 if (found_free_cluster) {
352                         /*
353                          * To optimize wear-levelling, discard the
354                          * old data of the cluster, taking care not to
355                          * discard any of its pages that have already
356                          * been allocated by racing tasks (offset has
357                          * already stepped over any at the beginning).
358                          */
359                         if (offset < si->highest_alloc &&
360                             si->lowest_alloc <= last_in_cluster)
361                                 last_in_cluster = si->lowest_alloc - 1;
362                         si->flags |= SWP_DISCARDING;
363                         spin_unlock(&swap_lock);
364
365                         if (offset < last_in_cluster)
366                                 discard_swap_cluster(si, offset,
367                                         last_in_cluster - offset + 1);
368
369                         spin_lock(&swap_lock);
370                         si->lowest_alloc = 0;
371                         si->flags &= ~SWP_DISCARDING;
372
373                         smp_mb();       /* wake_up_bit advises this */
374                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
375
376                 } else if (si->flags & SWP_DISCARDING) {
377                         /*
378                          * Delay using pages allocated by racing tasks
379                          * until the whole discard has been issued. We
380                          * could defer that delay until swap_writepage,
381                          * but it's easier to keep this self-contained.
382                          */
383                         spin_unlock(&swap_lock);
384                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
385                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
386                         spin_lock(&swap_lock);
387                 } else {
388                         /*
389                          * Note pages allocated by racing tasks while
390                          * scan for a free cluster is in progress, so
391                          * that its final discard can exclude them.
392                          */
393                         if (offset < si->lowest_alloc)
394                                 si->lowest_alloc = offset;
395                         if (offset > si->highest_alloc)
396                                 si->highest_alloc = offset;
397                 }
398         }
399         return offset;
400
401 scan:
402         spin_unlock(&swap_lock);
403         while (++offset <= si->highest_bit) {
404                 if (!si->swap_map[offset]) {
405                         spin_lock(&swap_lock);
406                         goto checks;
407                 }
408                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
409                         spin_lock(&swap_lock);
410                         goto checks;
411                 }
412                 if (unlikely(--latency_ration < 0)) {
413                         cond_resched();
414                         latency_ration = LATENCY_LIMIT;
415                 }
416         }
417         offset = si->lowest_bit;
418         while (++offset < scan_base) {
419                 if (!si->swap_map[offset]) {
420                         spin_lock(&swap_lock);
421                         goto checks;
422                 }
423                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
424                         spin_lock(&swap_lock);
425                         goto checks;
426                 }
427                 if (unlikely(--latency_ration < 0)) {
428                         cond_resched();
429                         latency_ration = LATENCY_LIMIT;
430                 }
431         }
432         spin_lock(&swap_lock);
433
434 no_page:
435         si->flags -= SWP_SCANNING;
436         return 0;
437 }
438
439 swp_entry_t get_swap_page(void)
440 {
441         struct swap_info_struct *si;
442         pgoff_t offset;
443         int type, next;
444         int wrapped = 0;
445
446         spin_lock(&swap_lock);
447         if (nr_swap_pages <= 0)
448                 goto noswap;
449         nr_swap_pages--;
450
451         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
452                 si = swap_info[type];
453                 next = si->next;
454                 if (next < 0 ||
455                     (!wrapped && si->prio != swap_info[next]->prio)) {
456                         next = swap_list.head;
457                         wrapped++;
458                 }
459
460                 if (!si->highest_bit)
461                         continue;
462                 if (!(si->flags & SWP_WRITEOK))
463                         continue;
464
465                 swap_list.next = next;
466                 /* This is called for allocating swap entry for cache */
467                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
468                 if (offset) {
469                         spin_unlock(&swap_lock);
470                         return swp_entry(type, offset);
471                 }
472                 next = swap_list.next;
473         }
474
475         nr_swap_pages++;
476 noswap:
477         spin_unlock(&swap_lock);
478         return (swp_entry_t) {0};
479 }
480
481 /* The only caller of this function is now susupend routine */
482 swp_entry_t get_swap_page_of_type(int type)
483 {
484         struct swap_info_struct *si;
485         pgoff_t offset;
486
487         spin_lock(&swap_lock);
488         si = swap_info[type];
489         if (si && (si->flags & SWP_WRITEOK)) {
490                 nr_swap_pages--;
491                 /* This is called for allocating swap entry, not cache */
492                 offset = scan_swap_map(si, 1);
493                 if (offset) {
494                         spin_unlock(&swap_lock);
495                         return swp_entry(type, offset);
496                 }
497                 nr_swap_pages++;
498         }
499         spin_unlock(&swap_lock);
500         return (swp_entry_t) {0};
501 }
502
503 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
504 {
505         struct swap_info_struct *p;
506         unsigned long offset, type;
507
508         if (!entry.val)
509                 goto out;
510         type = swp_type(entry);
511         if (type >= nr_swapfiles)
512                 goto bad_nofile;
513         p = swap_info[type];
514         if (!(p->flags & SWP_USED))
515                 goto bad_device;
516         offset = swp_offset(entry);
517         if (offset >= p->max)
518                 goto bad_offset;
519         if (!p->swap_map[offset])
520                 goto bad_free;
521         spin_lock(&swap_lock);
522         return p;
523
524 bad_free:
525         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
526         goto out;
527 bad_offset:
528         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
529         goto out;
530 bad_device:
531         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
532         goto out;
533 bad_nofile:
534         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
535 out:
536         return NULL;
537 }
538
539 static unsigned char swap_entry_free(struct swap_info_struct *p,
540                                      swp_entry_t entry, unsigned char usage)
541 {
542         unsigned long offset = swp_offset(entry);
543         unsigned char count;
544         unsigned char has_cache;
545
546         count = p->swap_map[offset];
547         has_cache = count & SWAP_HAS_CACHE;
548         count &= ~SWAP_HAS_CACHE;
549
550         if (usage == SWAP_HAS_CACHE) {
551                 VM_BUG_ON(!has_cache);
552                 has_cache = 0;
553         } else if (count == SWAP_MAP_SHMEM) {
554                 /*
555                  * Or we could insist on shmem.c using a special
556                  * swap_shmem_free() and free_shmem_swap_and_cache()...
557                  */
558                 count = 0;
559         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
560                 if (count == COUNT_CONTINUED) {
561                         if (swap_count_continued(p, offset, count))
562                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
563                         else
564                                 count = SWAP_MAP_MAX;
565                 } else
566                         count--;
567         }
568
569         if (!count)
570                 mem_cgroup_uncharge_swap(entry);
571
572         usage = count | has_cache;
573         p->swap_map[offset] = usage;
574
575         /* free if no reference */
576         if (!usage) {
577                 struct gendisk *disk = p->bdev->bd_disk;
578                 if (offset < p->lowest_bit)
579                         p->lowest_bit = offset;
580                 if (offset > p->highest_bit)
581                         p->highest_bit = offset;
582                 if (swap_list.next >= 0 &&
583                     p->prio > swap_info[swap_list.next]->prio)
584                         swap_list.next = p->type;
585                 nr_swap_pages++;
586                 p->inuse_pages--;
587                 if ((p->flags & SWP_BLKDEV) &&
588                                 disk->fops->swap_slot_free_notify)
589                         disk->fops->swap_slot_free_notify(p->bdev, offset);
590         }
591
592         return usage;
593 }
594
595 /*
596  * Caller has made sure that the swapdevice corresponding to entry
597  * is still around or has not been recycled.
598  */
599 void swap_free(swp_entry_t entry)
600 {
601         struct swap_info_struct *p;
602
603         p = swap_info_get(entry);
604         if (p) {
605                 swap_entry_free(p, entry, 1);
606                 spin_unlock(&swap_lock);
607         }
608 }
609
610 /*
611  * Called after dropping swapcache to decrease refcnt to swap entries.
612  */
613 void swapcache_free(swp_entry_t entry, struct page *page)
614 {
615         struct swap_info_struct *p;
616         unsigned char count;
617
618         p = swap_info_get(entry);
619         if (p) {
620                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
621                 if (page)
622                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
623                 spin_unlock(&swap_lock);
624         }
625 }
626
627 /*
628  * How many references to page are currently swapped out?
629  * This does not give an exact answer when swap count is continued,
630  * but does include the high COUNT_CONTINUED flag to allow for that.
631  */
632 static inline int page_swapcount(struct page *page)
633 {
634         int count = 0;
635         struct swap_info_struct *p;
636         swp_entry_t entry;
637
638         entry.val = page_private(page);
639         p = swap_info_get(entry);
640         if (p) {
641                 count = swap_count(p->swap_map[swp_offset(entry)]);
642                 spin_unlock(&swap_lock);
643         }
644         return count;
645 }
646
647 /*
648  * We can write to an anon page without COW if there are no other references
649  * to it.  And as a side-effect, free up its swap: because the old content
650  * on disk will never be read, and seeking back there to write new content
651  * later would only waste time away from clustering.
652  */
653 int reuse_swap_page(struct page *page)
654 {
655         int count;
656
657         VM_BUG_ON(!PageLocked(page));
658         if (unlikely(PageKsm(page)))
659                 return 0;
660         count = page_mapcount(page);
661         if (count <= 1 && PageSwapCache(page)) {
662                 count += page_swapcount(page);
663                 if (count == 1 && !PageWriteback(page)) {
664                         delete_from_swap_cache(page);
665                         SetPageDirty(page);
666                 }
667         }
668         return count <= 1;
669 }
670
671 /*
672  * If swap is getting full, or if there are no more mappings of this page,
673  * then try_to_free_swap is called to free its swap space.
674  */
675 int try_to_free_swap(struct page *page)
676 {
677         VM_BUG_ON(!PageLocked(page));
678
679         if (!PageSwapCache(page))
680                 return 0;
681         if (PageWriteback(page))
682                 return 0;
683         if (page_swapcount(page))
684                 return 0;
685
686         delete_from_swap_cache(page);
687         SetPageDirty(page);
688         return 1;
689 }
690
691 /*
692  * Free the swap entry like above, but also try to
693  * free the page cache entry if it is the last user.
694  */
695 int free_swap_and_cache(swp_entry_t entry)
696 {
697         struct swap_info_struct *p;
698         struct page *page = NULL;
699
700         if (non_swap_entry(entry))
701                 return 1;
702
703         p = swap_info_get(entry);
704         if (p) {
705                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
706                         page = find_get_page(&swapper_space, entry.val);
707                         if (page && !trylock_page(page)) {
708                                 page_cache_release(page);
709                                 page = NULL;
710                         }
711                 }
712                 spin_unlock(&swap_lock);
713         }
714         if (page) {
715                 /*
716                  * Not mapped elsewhere, or swap space full? Free it!
717                  * Also recheck PageSwapCache now page is locked (above).
718                  */
719                 if (PageSwapCache(page) && !PageWriteback(page) &&
720                                 (!page_mapped(page) || vm_swap_full())) {
721                         delete_from_swap_cache(page);
722                         SetPageDirty(page);
723                 }
724                 unlock_page(page);
725                 page_cache_release(page);
726         }
727         return p != NULL;
728 }
729
730 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
731 /**
732  * mem_cgroup_count_swap_user - count the user of a swap entry
733  * @ent: the swap entry to be checked
734  * @pagep: the pointer for the swap cache page of the entry to be stored
735  *
736  * Returns the number of the user of the swap entry. The number is valid only
737  * for swaps of anonymous pages.
738  * If the entry is found on swap cache, the page is stored to pagep with
739  * refcount of it being incremented.
740  */
741 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
742 {
743         struct page *page;
744         struct swap_info_struct *p;
745         int count = 0;
746
747         page = find_get_page(&swapper_space, ent.val);
748         if (page)
749                 count += page_mapcount(page);
750         p = swap_info_get(ent);
751         if (p) {
752                 count += swap_count(p->swap_map[swp_offset(ent)]);
753                 spin_unlock(&swap_lock);
754         }
755
756         *pagep = page;
757         return count;
758 }
759 #endif
760
761 #ifdef CONFIG_HIBERNATION
762 /*
763  * Find the swap type that corresponds to given device (if any).
764  *
765  * @offset - number of the PAGE_SIZE-sized block of the device, starting
766  * from 0, in which the swap header is expected to be located.
767  *
768  * This is needed for the suspend to disk (aka swsusp).
769  */
770 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
771 {
772         struct block_device *bdev = NULL;
773         int type;
774
775         if (device)
776                 bdev = bdget(device);
777
778         spin_lock(&swap_lock);
779         for (type = 0; type < nr_swapfiles; type++) {
780                 struct swap_info_struct *sis = swap_info[type];
781
782                 if (!(sis->flags & SWP_WRITEOK))
783                         continue;
784
785                 if (!bdev) {
786                         if (bdev_p)
787                                 *bdev_p = bdgrab(sis->bdev);
788
789                         spin_unlock(&swap_lock);
790                         return type;
791                 }
792                 if (bdev == sis->bdev) {
793                         struct swap_extent *se = &sis->first_swap_extent;
794
795                         if (se->start_block == offset) {
796                                 if (bdev_p)
797                                         *bdev_p = bdgrab(sis->bdev);
798
799                                 spin_unlock(&swap_lock);
800                                 bdput(bdev);
801                                 return type;
802                         }
803                 }
804         }
805         spin_unlock(&swap_lock);
806         if (bdev)
807                 bdput(bdev);
808
809         return -ENODEV;
810 }
811
812 /*
813  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
814  * corresponding to given index in swap_info (swap type).
815  */
816 sector_t swapdev_block(int type, pgoff_t offset)
817 {
818         struct block_device *bdev;
819
820         if ((unsigned int)type >= nr_swapfiles)
821                 return 0;
822         if (!(swap_info[type]->flags & SWP_WRITEOK))
823                 return 0;
824         return map_swap_entry(swp_entry(type, offset), &bdev);
825 }
826
827 /*
828  * Return either the total number of swap pages of given type, or the number
829  * of free pages of that type (depending on @free)
830  *
831  * This is needed for software suspend
832  */
833 unsigned int count_swap_pages(int type, int free)
834 {
835         unsigned int n = 0;
836
837         spin_lock(&swap_lock);
838         if ((unsigned int)type < nr_swapfiles) {
839                 struct swap_info_struct *sis = swap_info[type];
840
841                 if (sis->flags & SWP_WRITEOK) {
842                         n = sis->pages;
843                         if (free)
844                                 n -= sis->inuse_pages;
845                 }
846         }
847         spin_unlock(&swap_lock);
848         return n;
849 }
850 #endif /* CONFIG_HIBERNATION */
851
852 /*
853  * No need to decide whether this PTE shares the swap entry with others,
854  * just let do_wp_page work it out if a write is requested later - to
855  * force COW, vm_page_prot omits write permission from any private vma.
856  */
857 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
858                 unsigned long addr, swp_entry_t entry, struct page *page)
859 {
860         struct mem_cgroup *ptr = NULL;
861         spinlock_t *ptl;
862         pte_t *pte;
863         int ret = 1;
864
865         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
866                 ret = -ENOMEM;
867                 goto out_nolock;
868         }
869
870         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
871         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
872                 if (ret > 0)
873                         mem_cgroup_cancel_charge_swapin(ptr);
874                 ret = 0;
875                 goto out;
876         }
877
878         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
879         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
880         get_page(page);
881         set_pte_at(vma->vm_mm, addr, pte,
882                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
883         page_add_anon_rmap(page, vma, addr);
884         mem_cgroup_commit_charge_swapin(page, ptr);
885         swap_free(entry);
886         /*
887          * Move the page to the active list so it is not
888          * immediately swapped out again after swapon.
889          */
890         activate_page(page);
891 out:
892         pte_unmap_unlock(pte, ptl);
893 out_nolock:
894         return ret;
895 }
896
897 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
898                                 unsigned long addr, unsigned long end,
899                                 swp_entry_t entry, struct page *page)
900 {
901         pte_t swp_pte = swp_entry_to_pte(entry);
902         pte_t *pte;
903         int ret = 0;
904
905         /*
906          * We don't actually need pte lock while scanning for swp_pte: since
907          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
908          * page table while we're scanning; though it could get zapped, and on
909          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
910          * of unmatched parts which look like swp_pte, so unuse_pte must
911          * recheck under pte lock.  Scanning without pte lock lets it be
912          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
913          */
914         pte = pte_offset_map(pmd, addr);
915         do {
916                 /*
917                  * swapoff spends a _lot_ of time in this loop!
918                  * Test inline before going to call unuse_pte.
919                  */
920                 if (unlikely(pte_same(*pte, swp_pte))) {
921                         pte_unmap(pte);
922                         ret = unuse_pte(vma, pmd, addr, entry, page);
923                         if (ret)
924                                 goto out;
925                         pte = pte_offset_map(pmd, addr);
926                 }
927         } while (pte++, addr += PAGE_SIZE, addr != end);
928         pte_unmap(pte - 1);
929 out:
930         return ret;
931 }
932
933 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
934                                 unsigned long addr, unsigned long end,
935                                 swp_entry_t entry, struct page *page)
936 {
937         pmd_t *pmd;
938         unsigned long next;
939         int ret;
940
941         pmd = pmd_offset(pud, addr);
942         do {
943                 next = pmd_addr_end(addr, end);
944                 if (pmd_none_or_clear_bad(pmd))
945                         continue;
946                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
947                 if (ret)
948                         return ret;
949         } while (pmd++, addr = next, addr != end);
950         return 0;
951 }
952
953 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
954                                 unsigned long addr, unsigned long end,
955                                 swp_entry_t entry, struct page *page)
956 {
957         pud_t *pud;
958         unsigned long next;
959         int ret;
960
961         pud = pud_offset(pgd, addr);
962         do {
963                 next = pud_addr_end(addr, end);
964                 if (pud_none_or_clear_bad(pud))
965                         continue;
966                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
967                 if (ret)
968                         return ret;
969         } while (pud++, addr = next, addr != end);
970         return 0;
971 }
972
973 static int unuse_vma(struct vm_area_struct *vma,
974                                 swp_entry_t entry, struct page *page)
975 {
976         pgd_t *pgd;
977         unsigned long addr, end, next;
978         int ret;
979
980         if (page_anon_vma(page)) {
981                 addr = page_address_in_vma(page, vma);
982                 if (addr == -EFAULT)
983                         return 0;
984                 else
985                         end = addr + PAGE_SIZE;
986         } else {
987                 addr = vma->vm_start;
988                 end = vma->vm_end;
989         }
990
991         pgd = pgd_offset(vma->vm_mm, addr);
992         do {
993                 next = pgd_addr_end(addr, end);
994                 if (pgd_none_or_clear_bad(pgd))
995                         continue;
996                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
997                 if (ret)
998                         return ret;
999         } while (pgd++, addr = next, addr != end);
1000         return 0;
1001 }
1002
1003 static int unuse_mm(struct mm_struct *mm,
1004                                 swp_entry_t entry, struct page *page)
1005 {
1006         struct vm_area_struct *vma;
1007         int ret = 0;
1008
1009         if (!down_read_trylock(&mm->mmap_sem)) {
1010                 /*
1011                  * Activate page so shrink_inactive_list is unlikely to unmap
1012                  * its ptes while lock is dropped, so swapoff can make progress.
1013                  */
1014                 activate_page(page);
1015                 unlock_page(page);
1016                 down_read(&mm->mmap_sem);
1017                 lock_page(page);
1018         }
1019         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1020                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1021                         break;
1022         }
1023         up_read(&mm->mmap_sem);
1024         return (ret < 0)? ret: 0;
1025 }
1026
1027 /*
1028  * Scan swap_map from current position to next entry still in use.
1029  * Recycle to start on reaching the end, returning 0 when empty.
1030  */
1031 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1032                                         unsigned int prev)
1033 {
1034         unsigned int max = si->max;
1035         unsigned int i = prev;
1036         unsigned char count;
1037
1038         /*
1039          * No need for swap_lock here: we're just looking
1040          * for whether an entry is in use, not modifying it; false
1041          * hits are okay, and sys_swapoff() has already prevented new
1042          * allocations from this area (while holding swap_lock).
1043          */
1044         for (;;) {
1045                 if (++i >= max) {
1046                         if (!prev) {
1047                                 i = 0;
1048                                 break;
1049                         }
1050                         /*
1051                          * No entries in use at top of swap_map,
1052                          * loop back to start and recheck there.
1053                          */
1054                         max = prev + 1;
1055                         prev = 0;
1056                         i = 1;
1057                 }
1058                 count = si->swap_map[i];
1059                 if (count && swap_count(count) != SWAP_MAP_BAD)
1060                         break;
1061         }
1062         return i;
1063 }
1064
1065 /*
1066  * We completely avoid races by reading each swap page in advance,
1067  * and then search for the process using it.  All the necessary
1068  * page table adjustments can then be made atomically.
1069  */
1070 static int try_to_unuse(unsigned int type)
1071 {
1072         struct swap_info_struct *si = swap_info[type];
1073         struct mm_struct *start_mm;
1074         unsigned char *swap_map;
1075         unsigned char swcount;
1076         struct page *page;
1077         swp_entry_t entry;
1078         unsigned int i = 0;
1079         int retval = 0;
1080
1081         /*
1082          * When searching mms for an entry, a good strategy is to
1083          * start at the first mm we freed the previous entry from
1084          * (though actually we don't notice whether we or coincidence
1085          * freed the entry).  Initialize this start_mm with a hold.
1086          *
1087          * A simpler strategy would be to start at the last mm we
1088          * freed the previous entry from; but that would take less
1089          * advantage of mmlist ordering, which clusters forked mms
1090          * together, child after parent.  If we race with dup_mmap(), we
1091          * prefer to resolve parent before child, lest we miss entries
1092          * duplicated after we scanned child: using last mm would invert
1093          * that.
1094          */
1095         start_mm = &init_mm;
1096         atomic_inc(&init_mm.mm_users);
1097
1098         /*
1099          * Keep on scanning until all entries have gone.  Usually,
1100          * one pass through swap_map is enough, but not necessarily:
1101          * there are races when an instance of an entry might be missed.
1102          */
1103         while ((i = find_next_to_unuse(si, i)) != 0) {
1104                 if (signal_pending(current)) {
1105                         retval = -EINTR;
1106                         break;
1107                 }
1108
1109                 /*
1110                  * Get a page for the entry, using the existing swap
1111                  * cache page if there is one.  Otherwise, get a clean
1112                  * page and read the swap into it.
1113                  */
1114                 swap_map = &si->swap_map[i];
1115                 entry = swp_entry(type, i);
1116                 page = read_swap_cache_async(entry,
1117                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1118                 if (!page) {
1119                         /*
1120                          * Either swap_duplicate() failed because entry
1121                          * has been freed independently, and will not be
1122                          * reused since sys_swapoff() already disabled
1123                          * allocation from here, or alloc_page() failed.
1124                          */
1125                         if (!*swap_map)
1126                                 continue;
1127                         retval = -ENOMEM;
1128                         break;
1129                 }
1130
1131                 /*
1132                  * Don't hold on to start_mm if it looks like exiting.
1133                  */
1134                 if (atomic_read(&start_mm->mm_users) == 1) {
1135                         mmput(start_mm);
1136                         start_mm = &init_mm;
1137                         atomic_inc(&init_mm.mm_users);
1138                 }
1139
1140                 /*
1141                  * Wait for and lock page.  When do_swap_page races with
1142                  * try_to_unuse, do_swap_page can handle the fault much
1143                  * faster than try_to_unuse can locate the entry.  This
1144                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1145                  * defer to do_swap_page in such a case - in some tests,
1146                  * do_swap_page and try_to_unuse repeatedly compete.
1147                  */
1148                 wait_on_page_locked(page);
1149                 wait_on_page_writeback(page);
1150                 lock_page(page);
1151                 wait_on_page_writeback(page);
1152
1153                 /*
1154                  * Remove all references to entry.
1155                  */
1156                 swcount = *swap_map;
1157                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1158                         retval = shmem_unuse(entry, page);
1159                         /* page has already been unlocked and released */
1160                         if (retval < 0)
1161                                 break;
1162                         continue;
1163                 }
1164                 if (swap_count(swcount) && start_mm != &init_mm)
1165                         retval = unuse_mm(start_mm, entry, page);
1166
1167                 if (swap_count(*swap_map)) {
1168                         int set_start_mm = (*swap_map >= swcount);
1169                         struct list_head *p = &start_mm->mmlist;
1170                         struct mm_struct *new_start_mm = start_mm;
1171                         struct mm_struct *prev_mm = start_mm;
1172                         struct mm_struct *mm;
1173
1174                         atomic_inc(&new_start_mm->mm_users);
1175                         atomic_inc(&prev_mm->mm_users);
1176                         spin_lock(&mmlist_lock);
1177                         while (swap_count(*swap_map) && !retval &&
1178                                         (p = p->next) != &start_mm->mmlist) {
1179                                 mm = list_entry(p, struct mm_struct, mmlist);
1180                                 if (!atomic_inc_not_zero(&mm->mm_users))
1181                                         continue;
1182                                 spin_unlock(&mmlist_lock);
1183                                 mmput(prev_mm);
1184                                 prev_mm = mm;
1185
1186                                 cond_resched();
1187
1188                                 swcount = *swap_map;
1189                                 if (!swap_count(swcount)) /* any usage ? */
1190                                         ;
1191                                 else if (mm == &init_mm)
1192                                         set_start_mm = 1;
1193                                 else
1194                                         retval = unuse_mm(mm, entry, page);
1195
1196                                 if (set_start_mm && *swap_map < swcount) {
1197                                         mmput(new_start_mm);
1198                                         atomic_inc(&mm->mm_users);
1199                                         new_start_mm = mm;
1200                                         set_start_mm = 0;
1201                                 }
1202                                 spin_lock(&mmlist_lock);
1203                         }
1204                         spin_unlock(&mmlist_lock);
1205                         mmput(prev_mm);
1206                         mmput(start_mm);
1207                         start_mm = new_start_mm;
1208                 }
1209                 if (retval) {
1210                         unlock_page(page);
1211                         page_cache_release(page);
1212                         break;
1213                 }
1214
1215                 /*
1216                  * If a reference remains (rare), we would like to leave
1217                  * the page in the swap cache; but try_to_unmap could
1218                  * then re-duplicate the entry once we drop page lock,
1219                  * so we might loop indefinitely; also, that page could
1220                  * not be swapped out to other storage meanwhile.  So:
1221                  * delete from cache even if there's another reference,
1222                  * after ensuring that the data has been saved to disk -
1223                  * since if the reference remains (rarer), it will be
1224                  * read from disk into another page.  Splitting into two
1225                  * pages would be incorrect if swap supported "shared
1226                  * private" pages, but they are handled by tmpfs files.
1227                  *
1228                  * Given how unuse_vma() targets one particular offset
1229                  * in an anon_vma, once the anon_vma has been determined,
1230                  * this splitting happens to be just what is needed to
1231                  * handle where KSM pages have been swapped out: re-reading
1232                  * is unnecessarily slow, but we can fix that later on.
1233                  */
1234                 if (swap_count(*swap_map) &&
1235                      PageDirty(page) && PageSwapCache(page)) {
1236                         struct writeback_control wbc = {
1237                                 .sync_mode = WB_SYNC_NONE,
1238                         };
1239
1240                         swap_writepage(page, &wbc);
1241                         lock_page(page);
1242                         wait_on_page_writeback(page);
1243                 }
1244
1245                 /*
1246                  * It is conceivable that a racing task removed this page from
1247                  * swap cache just before we acquired the page lock at the top,
1248                  * or while we dropped it in unuse_mm().  The page might even
1249                  * be back in swap cache on another swap area: that we must not
1250                  * delete, since it may not have been written out to swap yet.
1251                  */
1252                 if (PageSwapCache(page) &&
1253                     likely(page_private(page) == entry.val))
1254                         delete_from_swap_cache(page);
1255
1256                 /*
1257                  * So we could skip searching mms once swap count went
1258                  * to 1, we did not mark any present ptes as dirty: must
1259                  * mark page dirty so shrink_page_list will preserve it.
1260                  */
1261                 SetPageDirty(page);
1262                 unlock_page(page);
1263                 page_cache_release(page);
1264
1265                 /*
1266                  * Make sure that we aren't completely killing
1267                  * interactive performance.
1268                  */
1269                 cond_resched();
1270         }
1271
1272         mmput(start_mm);
1273         return retval;
1274 }
1275
1276 /*
1277  * After a successful try_to_unuse, if no swap is now in use, we know
1278  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1279  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1280  * added to the mmlist just after page_duplicate - before would be racy.
1281  */
1282 static void drain_mmlist(void)
1283 {
1284         struct list_head *p, *next;
1285         unsigned int type;
1286
1287         for (type = 0; type < nr_swapfiles; type++)
1288                 if (swap_info[type]->inuse_pages)
1289                         return;
1290         spin_lock(&mmlist_lock);
1291         list_for_each_safe(p, next, &init_mm.mmlist)
1292                 list_del_init(p);
1293         spin_unlock(&mmlist_lock);
1294 }
1295
1296 /*
1297  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1298  * corresponds to page offset for the specified swap entry.
1299  * Note that the type of this function is sector_t, but it returns page offset
1300  * into the bdev, not sector offset.
1301  */
1302 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1303 {
1304         struct swap_info_struct *sis;
1305         struct swap_extent *start_se;
1306         struct swap_extent *se;
1307         pgoff_t offset;
1308
1309         sis = swap_info[swp_type(entry)];
1310         *bdev = sis->bdev;
1311
1312         offset = swp_offset(entry);
1313         start_se = sis->curr_swap_extent;
1314         se = start_se;
1315
1316         for ( ; ; ) {
1317                 struct list_head *lh;
1318
1319                 if (se->start_page <= offset &&
1320                                 offset < (se->start_page + se->nr_pages)) {
1321                         return se->start_block + (offset - se->start_page);
1322                 }
1323                 lh = se->list.next;
1324                 se = list_entry(lh, struct swap_extent, list);
1325                 sis->curr_swap_extent = se;
1326                 BUG_ON(se == start_se);         /* It *must* be present */
1327         }
1328 }
1329
1330 /*
1331  * Returns the page offset into bdev for the specified page's swap entry.
1332  */
1333 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1334 {
1335         swp_entry_t entry;
1336         entry.val = page_private(page);
1337         return map_swap_entry(entry, bdev);
1338 }
1339
1340 /*
1341  * Free all of a swapdev's extent information
1342  */
1343 static void destroy_swap_extents(struct swap_info_struct *sis)
1344 {
1345         while (!list_empty(&sis->first_swap_extent.list)) {
1346                 struct swap_extent *se;
1347
1348                 se = list_entry(sis->first_swap_extent.list.next,
1349                                 struct swap_extent, list);
1350                 list_del(&se->list);
1351                 kfree(se);
1352         }
1353 }
1354
1355 /*
1356  * Add a block range (and the corresponding page range) into this swapdev's
1357  * extent list.  The extent list is kept sorted in page order.
1358  *
1359  * This function rather assumes that it is called in ascending page order.
1360  */
1361 static int
1362 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1363                 unsigned long nr_pages, sector_t start_block)
1364 {
1365         struct swap_extent *se;
1366         struct swap_extent *new_se;
1367         struct list_head *lh;
1368
1369         if (start_page == 0) {
1370                 se = &sis->first_swap_extent;
1371                 sis->curr_swap_extent = se;
1372                 se->start_page = 0;
1373                 se->nr_pages = nr_pages;
1374                 se->start_block = start_block;
1375                 return 1;
1376         } else {
1377                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1378                 se = list_entry(lh, struct swap_extent, list);
1379                 BUG_ON(se->start_page + se->nr_pages != start_page);
1380                 if (se->start_block + se->nr_pages == start_block) {
1381                         /* Merge it */
1382                         se->nr_pages += nr_pages;
1383                         return 0;
1384                 }
1385         }
1386
1387         /*
1388          * No merge.  Insert a new extent, preserving ordering.
1389          */
1390         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1391         if (new_se == NULL)
1392                 return -ENOMEM;
1393         new_se->start_page = start_page;
1394         new_se->nr_pages = nr_pages;
1395         new_se->start_block = start_block;
1396
1397         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1398         return 1;
1399 }
1400
1401 /*
1402  * A `swap extent' is a simple thing which maps a contiguous range of pages
1403  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1404  * is built at swapon time and is then used at swap_writepage/swap_readpage
1405  * time for locating where on disk a page belongs.
1406  *
1407  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1408  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1409  * swap files identically.
1410  *
1411  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1412  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1413  * swapfiles are handled *identically* after swapon time.
1414  *
1415  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1416  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1417  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1418  * requirements, they are simply tossed out - we will never use those blocks
1419  * for swapping.
1420  *
1421  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1422  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1423  * which will scribble on the fs.
1424  *
1425  * The amount of disk space which a single swap extent represents varies.
1426  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1427  * extents in the list.  To avoid much list walking, we cache the previous
1428  * search location in `curr_swap_extent', and start new searches from there.
1429  * This is extremely effective.  The average number of iterations in
1430  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1431  */
1432 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1433 {
1434         struct inode *inode;
1435         unsigned blocks_per_page;
1436         unsigned long page_no;
1437         unsigned blkbits;
1438         sector_t probe_block;
1439         sector_t last_block;
1440         sector_t lowest_block = -1;
1441         sector_t highest_block = 0;
1442         int nr_extents = 0;
1443         int ret;
1444
1445         inode = sis->swap_file->f_mapping->host;
1446         if (S_ISBLK(inode->i_mode)) {
1447                 ret = add_swap_extent(sis, 0, sis->max, 0);
1448                 *span = sis->pages;
1449                 goto out;
1450         }
1451
1452         blkbits = inode->i_blkbits;
1453         blocks_per_page = PAGE_SIZE >> blkbits;
1454
1455         /*
1456          * Map all the blocks into the extent list.  This code doesn't try
1457          * to be very smart.
1458          */
1459         probe_block = 0;
1460         page_no = 0;
1461         last_block = i_size_read(inode) >> blkbits;
1462         while ((probe_block + blocks_per_page) <= last_block &&
1463                         page_no < sis->max) {
1464                 unsigned block_in_page;
1465                 sector_t first_block;
1466
1467                 first_block = bmap(inode, probe_block);
1468                 if (first_block == 0)
1469                         goto bad_bmap;
1470
1471                 /*
1472                  * It must be PAGE_SIZE aligned on-disk
1473                  */
1474                 if (first_block & (blocks_per_page - 1)) {
1475                         probe_block++;
1476                         goto reprobe;
1477                 }
1478
1479                 for (block_in_page = 1; block_in_page < blocks_per_page;
1480                                         block_in_page++) {
1481                         sector_t block;
1482
1483                         block = bmap(inode, probe_block + block_in_page);
1484                         if (block == 0)
1485                                 goto bad_bmap;
1486                         if (block != first_block + block_in_page) {
1487                                 /* Discontiguity */
1488                                 probe_block++;
1489                                 goto reprobe;
1490                         }
1491                 }
1492
1493                 first_block >>= (PAGE_SHIFT - blkbits);
1494                 if (page_no) {  /* exclude the header page */
1495                         if (first_block < lowest_block)
1496                                 lowest_block = first_block;
1497                         if (first_block > highest_block)
1498                                 highest_block = first_block;
1499                 }
1500
1501                 /*
1502                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1503                  */
1504                 ret = add_swap_extent(sis, page_no, 1, first_block);
1505                 if (ret < 0)
1506                         goto out;
1507                 nr_extents += ret;
1508                 page_no++;
1509                 probe_block += blocks_per_page;
1510 reprobe:
1511                 continue;
1512         }
1513         ret = nr_extents;
1514         *span = 1 + highest_block - lowest_block;
1515         if (page_no == 0)
1516                 page_no = 1;    /* force Empty message */
1517         sis->max = page_no;
1518         sis->pages = page_no - 1;
1519         sis->highest_bit = page_no - 1;
1520 out:
1521         return ret;
1522 bad_bmap:
1523         printk(KERN_ERR "swapon: swapfile has holes\n");
1524         ret = -EINVAL;
1525         goto out;
1526 }
1527
1528 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1529 {
1530         struct swap_info_struct *p = NULL;
1531         unsigned char *swap_map;
1532         struct file *swap_file, *victim;
1533         struct address_space *mapping;
1534         struct inode *inode;
1535         char *pathname;
1536         int i, type, prev;
1537         int err;
1538
1539         if (!capable(CAP_SYS_ADMIN))
1540                 return -EPERM;
1541
1542         pathname = getname(specialfile);
1543         err = PTR_ERR(pathname);
1544         if (IS_ERR(pathname))
1545                 goto out;
1546
1547         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1548         putname(pathname);
1549         err = PTR_ERR(victim);
1550         if (IS_ERR(victim))
1551                 goto out;
1552
1553         mapping = victim->f_mapping;
1554         prev = -1;
1555         spin_lock(&swap_lock);
1556         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1557                 p = swap_info[type];
1558                 if (p->flags & SWP_WRITEOK) {
1559                         if (p->swap_file->f_mapping == mapping)
1560                                 break;
1561                 }
1562                 prev = type;
1563         }
1564         if (type < 0) {
1565                 err = -EINVAL;
1566                 spin_unlock(&swap_lock);
1567                 goto out_dput;
1568         }
1569         if (!security_vm_enough_memory(p->pages))
1570                 vm_unacct_memory(p->pages);
1571         else {
1572                 err = -ENOMEM;
1573                 spin_unlock(&swap_lock);
1574                 goto out_dput;
1575         }
1576         if (prev < 0)
1577                 swap_list.head = p->next;
1578         else
1579                 swap_info[prev]->next = p->next;
1580         if (type == swap_list.next) {
1581                 /* just pick something that's safe... */
1582                 swap_list.next = swap_list.head;
1583         }
1584         if (p->prio < 0) {
1585                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1586                         swap_info[i]->prio = p->prio--;
1587                 least_priority++;
1588         }
1589         nr_swap_pages -= p->pages;
1590         total_swap_pages -= p->pages;
1591         p->flags &= ~SWP_WRITEOK;
1592         spin_unlock(&swap_lock);
1593
1594         current->flags |= PF_OOM_ORIGIN;
1595         err = try_to_unuse(type);
1596         current->flags &= ~PF_OOM_ORIGIN;
1597
1598         if (err) {
1599                 /* re-insert swap space back into swap_list */
1600                 spin_lock(&swap_lock);
1601                 if (p->prio < 0)
1602                         p->prio = --least_priority;
1603                 prev = -1;
1604                 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1605                         if (p->prio >= swap_info[i]->prio)
1606                                 break;
1607                         prev = i;
1608                 }
1609                 p->next = i;
1610                 if (prev < 0)
1611                         swap_list.head = swap_list.next = type;
1612                 else
1613                         swap_info[prev]->next = type;
1614                 nr_swap_pages += p->pages;
1615                 total_swap_pages += p->pages;
1616                 p->flags |= SWP_WRITEOK;
1617                 spin_unlock(&swap_lock);
1618                 goto out_dput;
1619         }
1620
1621         /* wait for any unplug function to finish */
1622         down_write(&swap_unplug_sem);
1623         up_write(&swap_unplug_sem);
1624
1625         destroy_swap_extents(p);
1626         if (p->flags & SWP_CONTINUED)
1627                 free_swap_count_continuations(p);
1628
1629         mutex_lock(&swapon_mutex);
1630         spin_lock(&swap_lock);
1631         drain_mmlist();
1632
1633         /* wait for anyone still in scan_swap_map */
1634         p->highest_bit = 0;             /* cuts scans short */
1635         while (p->flags >= SWP_SCANNING) {
1636                 spin_unlock(&swap_lock);
1637                 schedule_timeout_uninterruptible(1);
1638                 spin_lock(&swap_lock);
1639         }
1640
1641         swap_file = p->swap_file;
1642         p->swap_file = NULL;
1643         p->max = 0;
1644         swap_map = p->swap_map;
1645         p->swap_map = NULL;
1646         p->flags = 0;
1647         spin_unlock(&swap_lock);
1648         mutex_unlock(&swapon_mutex);
1649         vfree(swap_map);
1650         /* Destroy swap account informatin */
1651         swap_cgroup_swapoff(type);
1652
1653         inode = mapping->host;
1654         if (S_ISBLK(inode->i_mode)) {
1655                 struct block_device *bdev = I_BDEV(inode);
1656                 set_blocksize(bdev, p->old_block_size);
1657                 bd_release(bdev);
1658         } else {
1659                 mutex_lock(&inode->i_mutex);
1660                 inode->i_flags &= ~S_SWAPFILE;
1661                 mutex_unlock(&inode->i_mutex);
1662         }
1663         filp_close(swap_file, NULL);
1664         err = 0;
1665
1666 out_dput:
1667         filp_close(victim, NULL);
1668 out:
1669         return err;
1670 }
1671
1672 #ifdef CONFIG_PROC_FS
1673 /* iterator */
1674 static void *swap_start(struct seq_file *swap, loff_t *pos)
1675 {
1676         struct swap_info_struct *si;
1677         int type;
1678         loff_t l = *pos;
1679
1680         mutex_lock(&swapon_mutex);
1681
1682         if (!l)
1683                 return SEQ_START_TOKEN;
1684
1685         for (type = 0; type < nr_swapfiles; type++) {
1686                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1687                 si = swap_info[type];
1688                 if (!(si->flags & SWP_USED) || !si->swap_map)
1689                         continue;
1690                 if (!--l)
1691                         return si;
1692         }
1693
1694         return NULL;
1695 }
1696
1697 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1698 {
1699         struct swap_info_struct *si = v;
1700         int type;
1701
1702         if (v == SEQ_START_TOKEN)
1703                 type = 0;
1704         else
1705                 type = si->type + 1;
1706
1707         for (; type < nr_swapfiles; type++) {
1708                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1709                 si = swap_info[type];
1710                 if (!(si->flags & SWP_USED) || !si->swap_map)
1711                         continue;
1712                 ++*pos;
1713                 return si;
1714         }
1715
1716         return NULL;
1717 }
1718
1719 static void swap_stop(struct seq_file *swap, void *v)
1720 {
1721         mutex_unlock(&swapon_mutex);
1722 }
1723
1724 static int swap_show(struct seq_file *swap, void *v)
1725 {
1726         struct swap_info_struct *si = v;
1727         struct file *file;
1728         int len;
1729
1730         if (si == SEQ_START_TOKEN) {
1731                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1732                 return 0;
1733         }
1734
1735         file = si->swap_file;
1736         len = seq_path(swap, &file->f_path, " \t\n\\");
1737         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1738                         len < 40 ? 40 - len : 1, " ",
1739                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1740                                 "partition" : "file\t",
1741                         si->pages << (PAGE_SHIFT - 10),
1742                         si->inuse_pages << (PAGE_SHIFT - 10),
1743                         si->prio);
1744         return 0;
1745 }
1746
1747 static const struct seq_operations swaps_op = {
1748         .start =        swap_start,
1749         .next =         swap_next,
1750         .stop =         swap_stop,
1751         .show =         swap_show
1752 };
1753
1754 static int swaps_open(struct inode *inode, struct file *file)
1755 {
1756         return seq_open(file, &swaps_op);
1757 }
1758
1759 static const struct file_operations proc_swaps_operations = {
1760         .open           = swaps_open,
1761         .read           = seq_read,
1762         .llseek         = seq_lseek,
1763         .release        = seq_release,
1764 };
1765
1766 static int __init procswaps_init(void)
1767 {
1768         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1769         return 0;
1770 }
1771 __initcall(procswaps_init);
1772 #endif /* CONFIG_PROC_FS */
1773
1774 #ifdef MAX_SWAPFILES_CHECK
1775 static int __init max_swapfiles_check(void)
1776 {
1777         MAX_SWAPFILES_CHECK();
1778         return 0;
1779 }
1780 late_initcall(max_swapfiles_check);
1781 #endif
1782
1783 /*
1784  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1785  *
1786  * The swapon system call
1787  */
1788 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1789 {
1790         struct swap_info_struct *p;
1791         char *name = NULL;
1792         struct block_device *bdev = NULL;
1793         struct file *swap_file = NULL;
1794         struct address_space *mapping;
1795         unsigned int type;
1796         int i, prev;
1797         int error;
1798         union swap_header *swap_header;
1799         unsigned int nr_good_pages;
1800         int nr_extents = 0;
1801         sector_t span;
1802         unsigned long maxpages;
1803         unsigned long swapfilepages;
1804         unsigned char *swap_map = NULL;
1805         struct page *page = NULL;
1806         struct inode *inode = NULL;
1807         int did_down = 0;
1808
1809         if (!capable(CAP_SYS_ADMIN))
1810                 return -EPERM;
1811
1812         p = kzalloc(sizeof(*p), GFP_KERNEL);
1813         if (!p)
1814                 return -ENOMEM;
1815
1816         spin_lock(&swap_lock);
1817         for (type = 0; type < nr_swapfiles; type++) {
1818                 if (!(swap_info[type]->flags & SWP_USED))
1819                         break;
1820         }
1821         error = -EPERM;
1822         if (type >= MAX_SWAPFILES) {
1823                 spin_unlock(&swap_lock);
1824                 kfree(p);
1825                 goto out;
1826         }
1827         if (type >= nr_swapfiles) {
1828                 p->type = type;
1829                 swap_info[type] = p;
1830                 /*
1831                  * Write swap_info[type] before nr_swapfiles, in case a
1832                  * racing procfs swap_start() or swap_next() is reading them.
1833                  * (We never shrink nr_swapfiles, we never free this entry.)
1834                  */
1835                 smp_wmb();
1836                 nr_swapfiles++;
1837         } else {
1838                 kfree(p);
1839                 p = swap_info[type];
1840                 /*
1841                  * Do not memset this entry: a racing procfs swap_next()
1842                  * would be relying on p->type to remain valid.
1843                  */
1844         }
1845         INIT_LIST_HEAD(&p->first_swap_extent.list);
1846         p->flags = SWP_USED;
1847         p->next = -1;
1848         spin_unlock(&swap_lock);
1849
1850         name = getname(specialfile);
1851         error = PTR_ERR(name);
1852         if (IS_ERR(name)) {
1853                 name = NULL;
1854                 goto bad_swap_2;
1855         }
1856         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1857         error = PTR_ERR(swap_file);
1858         if (IS_ERR(swap_file)) {
1859                 swap_file = NULL;
1860                 goto bad_swap_2;
1861         }
1862
1863         p->swap_file = swap_file;
1864         mapping = swap_file->f_mapping;
1865         inode = mapping->host;
1866
1867         error = -EBUSY;
1868         for (i = 0; i < nr_swapfiles; i++) {
1869                 struct swap_info_struct *q = swap_info[i];
1870
1871                 if (i == type || !q->swap_file)
1872                         continue;
1873                 if (mapping == q->swap_file->f_mapping)
1874                         goto bad_swap;
1875         }
1876
1877         error = -EINVAL;
1878         if (S_ISBLK(inode->i_mode)) {
1879                 bdev = I_BDEV(inode);
1880                 error = bd_claim(bdev, sys_swapon);
1881                 if (error < 0) {
1882                         bdev = NULL;
1883                         error = -EINVAL;
1884                         goto bad_swap;
1885                 }
1886                 p->old_block_size = block_size(bdev);
1887                 error = set_blocksize(bdev, PAGE_SIZE);
1888                 if (error < 0)
1889                         goto bad_swap;
1890                 p->bdev = bdev;
1891                 p->flags |= SWP_BLKDEV;
1892         } else if (S_ISREG(inode->i_mode)) {
1893                 p->bdev = inode->i_sb->s_bdev;
1894                 mutex_lock(&inode->i_mutex);
1895                 did_down = 1;
1896                 if (IS_SWAPFILE(inode)) {
1897                         error = -EBUSY;
1898                         goto bad_swap;
1899                 }
1900         } else {
1901                 goto bad_swap;
1902         }
1903
1904         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1905
1906         /*
1907          * Read the swap header.
1908          */
1909         if (!mapping->a_ops->readpage) {
1910                 error = -EINVAL;
1911                 goto bad_swap;
1912         }
1913         page = read_mapping_page(mapping, 0, swap_file);
1914         if (IS_ERR(page)) {
1915                 error = PTR_ERR(page);
1916                 goto bad_swap;
1917         }
1918         swap_header = kmap(page);
1919
1920         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1921                 printk(KERN_ERR "Unable to find swap-space signature\n");
1922                 error = -EINVAL;
1923                 goto bad_swap;
1924         }
1925
1926         /* swap partition endianess hack... */
1927         if (swab32(swap_header->info.version) == 1) {
1928                 swab32s(&swap_header->info.version);
1929                 swab32s(&swap_header->info.last_page);
1930                 swab32s(&swap_header->info.nr_badpages);
1931                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1932                         swab32s(&swap_header->info.badpages[i]);
1933         }
1934         /* Check the swap header's sub-version */
1935         if (swap_header->info.version != 1) {
1936                 printk(KERN_WARNING
1937                        "Unable to handle swap header version %d\n",
1938                        swap_header->info.version);
1939                 error = -EINVAL;
1940                 goto bad_swap;
1941         }
1942
1943         p->lowest_bit  = 1;
1944         p->cluster_next = 1;
1945         p->cluster_nr = 0;
1946
1947         /*
1948          * Find out how many pages are allowed for a single swap
1949          * device. There are two limiting factors: 1) the number of
1950          * bits for the swap offset in the swp_entry_t type and
1951          * 2) the number of bits in the a swap pte as defined by
1952          * the different architectures. In order to find the
1953          * largest possible bit mask a swap entry with swap type 0
1954          * and swap offset ~0UL is created, encoded to a swap pte,
1955          * decoded to a swp_entry_t again and finally the swap
1956          * offset is extracted. This will mask all the bits from
1957          * the initial ~0UL mask that can't be encoded in either
1958          * the swp_entry_t or the architecture definition of a
1959          * swap pte.
1960          */
1961         maxpages = swp_offset(pte_to_swp_entry(
1962                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1963         if (maxpages > swap_header->info.last_page) {
1964                 maxpages = swap_header->info.last_page + 1;
1965                 /* p->max is an unsigned int: don't overflow it */
1966                 if ((unsigned int)maxpages == 0)
1967                         maxpages = UINT_MAX;
1968         }
1969         p->highest_bit = maxpages - 1;
1970
1971         error = -EINVAL;
1972         if (!maxpages)
1973                 goto bad_swap;
1974         if (swapfilepages && maxpages > swapfilepages) {
1975                 printk(KERN_WARNING
1976                        "Swap area shorter than signature indicates\n");
1977                 goto bad_swap;
1978         }
1979         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1980                 goto bad_swap;
1981         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1982                 goto bad_swap;
1983
1984         /* OK, set up the swap map and apply the bad block list */
1985         swap_map = vmalloc(maxpages);
1986         if (!swap_map) {
1987                 error = -ENOMEM;
1988                 goto bad_swap;
1989         }
1990
1991         memset(swap_map, 0, maxpages);
1992         nr_good_pages = maxpages - 1;   /* omit header page */
1993
1994         for (i = 0; i < swap_header->info.nr_badpages; i++) {
1995                 unsigned int page_nr = swap_header->info.badpages[i];
1996                 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
1997                         error = -EINVAL;
1998                         goto bad_swap;
1999                 }
2000                 if (page_nr < maxpages) {
2001                         swap_map[page_nr] = SWAP_MAP_BAD;
2002                         nr_good_pages--;
2003                 }
2004         }
2005
2006         error = swap_cgroup_swapon(type, maxpages);
2007         if (error)
2008                 goto bad_swap;
2009
2010         if (nr_good_pages) {
2011                 swap_map[0] = SWAP_MAP_BAD;
2012                 p->max = maxpages;
2013                 p->pages = nr_good_pages;
2014                 nr_extents = setup_swap_extents(p, &span);
2015                 if (nr_extents < 0) {
2016                         error = nr_extents;
2017                         goto bad_swap;
2018                 }
2019                 nr_good_pages = p->pages;
2020         }
2021         if (!nr_good_pages) {
2022                 printk(KERN_WARNING "Empty swap-file\n");
2023                 error = -EINVAL;
2024                 goto bad_swap;
2025         }
2026
2027         if (p->bdev) {
2028                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2029                         p->flags |= SWP_SOLIDSTATE;
2030                         p->cluster_next = 1 + (random32() % p->highest_bit);
2031                 }
2032                 if (discard_swap(p) == 0)
2033                         p->flags |= SWP_DISCARDABLE;
2034         }
2035
2036         mutex_lock(&swapon_mutex);
2037         spin_lock(&swap_lock);
2038         if (swap_flags & SWAP_FLAG_PREFER)
2039                 p->prio =
2040                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2041         else
2042                 p->prio = --least_priority;
2043         p->swap_map = swap_map;
2044         p->flags |= SWP_WRITEOK;
2045         nr_swap_pages += nr_good_pages;
2046         total_swap_pages += nr_good_pages;
2047
2048         printk(KERN_INFO "Adding %uk swap on %s.  "
2049                         "Priority:%d extents:%d across:%lluk %s%s\n",
2050                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2051                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2052                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2053                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2054
2055         /* insert swap space into swap_list: */
2056         prev = -1;
2057         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2058                 if (p->prio >= swap_info[i]->prio)
2059                         break;
2060                 prev = i;
2061         }
2062         p->next = i;
2063         if (prev < 0)
2064                 swap_list.head = swap_list.next = type;
2065         else
2066                 swap_info[prev]->next = type;
2067         spin_unlock(&swap_lock);
2068         mutex_unlock(&swapon_mutex);
2069         error = 0;
2070         goto out;
2071 bad_swap:
2072         if (bdev) {
2073                 set_blocksize(bdev, p->old_block_size);
2074                 bd_release(bdev);
2075         }
2076         destroy_swap_extents(p);
2077         swap_cgroup_swapoff(type);
2078 bad_swap_2:
2079         spin_lock(&swap_lock);
2080         p->swap_file = NULL;
2081         p->flags = 0;
2082         spin_unlock(&swap_lock);
2083         vfree(swap_map);
2084         if (swap_file)
2085                 filp_close(swap_file, NULL);
2086 out:
2087         if (page && !IS_ERR(page)) {
2088                 kunmap(page);
2089                 page_cache_release(page);
2090         }
2091         if (name)
2092                 putname(name);
2093         if (did_down) {
2094                 if (!error)
2095                         inode->i_flags |= S_SWAPFILE;
2096                 mutex_unlock(&inode->i_mutex);
2097         }
2098         return error;
2099 }
2100
2101 void si_swapinfo(struct sysinfo *val)
2102 {
2103         unsigned int type;
2104         unsigned long nr_to_be_unused = 0;
2105
2106         spin_lock(&swap_lock);
2107         for (type = 0; type < nr_swapfiles; type++) {
2108                 struct swap_info_struct *si = swap_info[type];
2109
2110                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2111                         nr_to_be_unused += si->inuse_pages;
2112         }
2113         val->freeswap = nr_swap_pages + nr_to_be_unused;
2114         val->totalswap = total_swap_pages + nr_to_be_unused;
2115         spin_unlock(&swap_lock);
2116 }
2117
2118 /*
2119  * Verify that a swap entry is valid and increment its swap map count.
2120  *
2121  * Returns error code in following case.
2122  * - success -> 0
2123  * - swp_entry is invalid -> EINVAL
2124  * - swp_entry is migration entry -> EINVAL
2125  * - swap-cache reference is requested but there is already one. -> EEXIST
2126  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2127  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2128  */
2129 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2130 {
2131         struct swap_info_struct *p;
2132         unsigned long offset, type;
2133         unsigned char count;
2134         unsigned char has_cache;
2135         int err = -EINVAL;
2136
2137         if (non_swap_entry(entry))
2138                 goto out;
2139
2140         type = swp_type(entry);
2141         if (type >= nr_swapfiles)
2142                 goto bad_file;
2143         p = swap_info[type];
2144         offset = swp_offset(entry);
2145
2146         spin_lock(&swap_lock);
2147         if (unlikely(offset >= p->max))
2148                 goto unlock_out;
2149
2150         count = p->swap_map[offset];
2151         has_cache = count & SWAP_HAS_CACHE;
2152         count &= ~SWAP_HAS_CACHE;
2153         err = 0;
2154
2155         if (usage == SWAP_HAS_CACHE) {
2156
2157                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2158                 if (!has_cache && count)
2159                         has_cache = SWAP_HAS_CACHE;
2160                 else if (has_cache)             /* someone else added cache */
2161                         err = -EEXIST;
2162                 else                            /* no users remaining */
2163                         err = -ENOENT;
2164
2165         } else if (count || has_cache) {
2166
2167                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2168                         count += usage;
2169                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2170                         err = -EINVAL;
2171                 else if (swap_count_continued(p, offset, count))
2172                         count = COUNT_CONTINUED;
2173                 else
2174                         err = -ENOMEM;
2175         } else
2176                 err = -ENOENT;                  /* unused swap entry */
2177
2178         p->swap_map[offset] = count | has_cache;
2179
2180 unlock_out:
2181         spin_unlock(&swap_lock);
2182 out:
2183         return err;
2184
2185 bad_file:
2186         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2187         goto out;
2188 }
2189
2190 /*
2191  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2192  * (in which case its reference count is never incremented).
2193  */
2194 void swap_shmem_alloc(swp_entry_t entry)
2195 {
2196         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2197 }
2198
2199 /*
2200  * Increase reference count of swap entry by 1.
2201  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2202  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2203  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2204  * might occur if a page table entry has got corrupted.
2205  */
2206 int swap_duplicate(swp_entry_t entry)
2207 {
2208         int err = 0;
2209
2210         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2211                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2212         return err;
2213 }
2214
2215 /*
2216  * @entry: swap entry for which we allocate swap cache.
2217  *
2218  * Called when allocating swap cache for existing swap entry,
2219  * This can return error codes. Returns 0 at success.
2220  * -EBUSY means there is a swap cache.
2221  * Note: return code is different from swap_duplicate().
2222  */
2223 int swapcache_prepare(swp_entry_t entry)
2224 {
2225         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2226 }
2227
2228 /*
2229  * swap_lock prevents swap_map being freed. Don't grab an extra
2230  * reference on the swaphandle, it doesn't matter if it becomes unused.
2231  */
2232 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2233 {
2234         struct swap_info_struct *si;
2235         int our_page_cluster = page_cluster;
2236         pgoff_t target, toff;
2237         pgoff_t base, end;
2238         int nr_pages = 0;
2239
2240         if (!our_page_cluster)  /* no readahead */
2241                 return 0;
2242
2243         si = swap_info[swp_type(entry)];
2244         target = swp_offset(entry);
2245         base = (target >> our_page_cluster) << our_page_cluster;
2246         end = base + (1 << our_page_cluster);
2247         if (!base)              /* first page is swap header */
2248                 base++;
2249
2250         spin_lock(&swap_lock);
2251         if (end > si->max)      /* don't go beyond end of map */
2252                 end = si->max;
2253
2254         /* Count contiguous allocated slots above our target */
2255         for (toff = target; ++toff < end; nr_pages++) {
2256                 /* Don't read in free or bad pages */
2257                 if (!si->swap_map[toff])
2258                         break;
2259                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2260                         break;
2261         }
2262         /* Count contiguous allocated slots below our target */
2263         for (toff = target; --toff >= base; nr_pages++) {
2264                 /* Don't read in free or bad pages */
2265                 if (!si->swap_map[toff])
2266                         break;
2267                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2268                         break;
2269         }
2270         spin_unlock(&swap_lock);
2271
2272         /*
2273          * Indicate starting offset, and return number of pages to get:
2274          * if only 1, say 0, since there's then no readahead to be done.
2275          */
2276         *offset = ++toff;
2277         return nr_pages? ++nr_pages: 0;
2278 }
2279
2280 /*
2281  * add_swap_count_continuation - called when a swap count is duplicated
2282  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2283  * page of the original vmalloc'ed swap_map, to hold the continuation count
2284  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2285  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2286  *
2287  * These continuation pages are seldom referenced: the common paths all work
2288  * on the original swap_map, only referring to a continuation page when the
2289  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2290  *
2291  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2292  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2293  * can be called after dropping locks.
2294  */
2295 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2296 {
2297         struct swap_info_struct *si;
2298         struct page *head;
2299         struct page *page;
2300         struct page *list_page;
2301         pgoff_t offset;
2302         unsigned char count;
2303
2304         /*
2305          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2306          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2307          */
2308         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2309
2310         si = swap_info_get(entry);
2311         if (!si) {
2312                 /*
2313                  * An acceptable race has occurred since the failing
2314                  * __swap_duplicate(): the swap entry has been freed,
2315                  * perhaps even the whole swap_map cleared for swapoff.
2316                  */
2317                 goto outer;
2318         }
2319
2320         offset = swp_offset(entry);
2321         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2322
2323         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2324                 /*
2325                  * The higher the swap count, the more likely it is that tasks
2326                  * will race to add swap count continuation: we need to avoid
2327                  * over-provisioning.
2328                  */
2329                 goto out;
2330         }
2331
2332         if (!page) {
2333                 spin_unlock(&swap_lock);
2334                 return -ENOMEM;
2335         }
2336
2337         /*
2338          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2339          * no architecture is using highmem pages for kernel pagetables: so it
2340          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2341          */
2342         head = vmalloc_to_page(si->swap_map + offset);
2343         offset &= ~PAGE_MASK;
2344
2345         /*
2346          * Page allocation does not initialize the page's lru field,
2347          * but it does always reset its private field.
2348          */
2349         if (!page_private(head)) {
2350                 BUG_ON(count & COUNT_CONTINUED);
2351                 INIT_LIST_HEAD(&head->lru);
2352                 set_page_private(head, SWP_CONTINUED);
2353                 si->flags |= SWP_CONTINUED;
2354         }
2355
2356         list_for_each_entry(list_page, &head->lru, lru) {
2357                 unsigned char *map;
2358
2359                 /*
2360                  * If the previous map said no continuation, but we've found
2361                  * a continuation page, free our allocation and use this one.
2362                  */
2363                 if (!(count & COUNT_CONTINUED))
2364                         goto out;
2365
2366                 map = kmap_atomic(list_page, KM_USER0) + offset;
2367                 count = *map;
2368                 kunmap_atomic(map, KM_USER0);
2369
2370                 /*
2371                  * If this continuation count now has some space in it,
2372                  * free our allocation and use this one.
2373                  */
2374                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2375                         goto out;
2376         }
2377
2378         list_add_tail(&page->lru, &head->lru);
2379         page = NULL;                    /* now it's attached, don't free it */
2380 out:
2381         spin_unlock(&swap_lock);
2382 outer:
2383         if (page)
2384                 __free_page(page);
2385         return 0;
2386 }
2387
2388 /*
2389  * swap_count_continued - when the original swap_map count is incremented
2390  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2391  * into, carry if so, or else fail until a new continuation page is allocated;
2392  * when the original swap_map count is decremented from 0 with continuation,
2393  * borrow from the continuation and report whether it still holds more.
2394  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2395  */
2396 static bool swap_count_continued(struct swap_info_struct *si,
2397                                  pgoff_t offset, unsigned char count)
2398 {
2399         struct page *head;
2400         struct page *page;
2401         unsigned char *map;
2402
2403         head = vmalloc_to_page(si->swap_map + offset);
2404         if (page_private(head) != SWP_CONTINUED) {
2405                 BUG_ON(count & COUNT_CONTINUED);
2406                 return false;           /* need to add count continuation */
2407         }
2408
2409         offset &= ~PAGE_MASK;
2410         page = list_entry(head->lru.next, struct page, lru);
2411         map = kmap_atomic(page, KM_USER0) + offset;
2412
2413         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2414                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2415
2416         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2417                 /*
2418                  * Think of how you add 1 to 999
2419                  */
2420                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2421                         kunmap_atomic(map, KM_USER0);
2422                         page = list_entry(page->lru.next, struct page, lru);
2423                         BUG_ON(page == head);
2424                         map = kmap_atomic(page, KM_USER0) + offset;
2425                 }
2426                 if (*map == SWAP_CONT_MAX) {
2427                         kunmap_atomic(map, KM_USER0);
2428                         page = list_entry(page->lru.next, struct page, lru);
2429                         if (page == head)
2430                                 return false;   /* add count continuation */
2431                         map = kmap_atomic(page, KM_USER0) + offset;
2432 init_map:               *map = 0;               /* we didn't zero the page */
2433                 }
2434                 *map += 1;
2435                 kunmap_atomic(map, KM_USER0);
2436                 page = list_entry(page->lru.prev, struct page, lru);
2437                 while (page != head) {
2438                         map = kmap_atomic(page, KM_USER0) + offset;
2439                         *map = COUNT_CONTINUED;
2440                         kunmap_atomic(map, KM_USER0);
2441                         page = list_entry(page->lru.prev, struct page, lru);
2442                 }
2443                 return true;                    /* incremented */
2444
2445         } else {                                /* decrementing */
2446                 /*
2447                  * Think of how you subtract 1 from 1000
2448                  */
2449                 BUG_ON(count != COUNT_CONTINUED);
2450                 while (*map == COUNT_CONTINUED) {
2451                         kunmap_atomic(map, KM_USER0);
2452                         page = list_entry(page->lru.next, struct page, lru);
2453                         BUG_ON(page == head);
2454                         map = kmap_atomic(page, KM_USER0) + offset;
2455                 }
2456                 BUG_ON(*map == 0);
2457                 *map -= 1;
2458                 if (*map == 0)
2459                         count = 0;
2460                 kunmap_atomic(map, KM_USER0);
2461                 page = list_entry(page->lru.prev, struct page, lru);
2462                 while (page != head) {
2463                         map = kmap_atomic(page, KM_USER0) + offset;
2464                         *map = SWAP_CONT_MAX | count;
2465                         count = COUNT_CONTINUED;
2466                         kunmap_atomic(map, KM_USER0);
2467                         page = list_entry(page->lru.prev, struct page, lru);
2468                 }
2469                 return count == COUNT_CONTINUED;
2470         }
2471 }
2472
2473 /*
2474  * free_swap_count_continuations - swapoff free all the continuation pages
2475  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2476  */
2477 static void free_swap_count_continuations(struct swap_info_struct *si)
2478 {
2479         pgoff_t offset;
2480
2481         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2482                 struct page *head;
2483                 head = vmalloc_to_page(si->swap_map + offset);
2484                 if (page_private(head)) {
2485                         struct list_head *this, *next;
2486                         list_for_each_safe(this, next, &head->lru) {
2487                                 struct page *page;
2488                                 page = list_entry(this, struct page, lru);
2489                                 list_del(this);
2490                                 __free_page(page);
2491                         }
2492                 }
2493         }
2494 }